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S2.3.1 Robustness to noise in the similarity matrix

Proof via First-Order Approximation

We derive approximate bounds for error tolerance using a first-order approximation approach to
theoretically illustrate the robustness of spectral seriation. The main result is presented in Theorem 2.
We first present two related lemmas to assist with the proof, where Lemma 1 provides the perturbation
bounds for eigenvalues of symmetric matrices, and Lemma 2 provides the upper bound of the Fiedler
value.

Lemma 1 Let A,B ∈ Cn×n be Hermitian matrices, λ(A) = {λi} , λ(B) = {µi} , λ1 ≤ λ2 ≤
· · · ≤ λn, µ1 ≤ µ2 ≤ · · · ≤ µn, then:

|µi − λi| ≤ ∥B−A∥2.

Lemma 2 λ is the Fiedler value of the Laplacian matrix L of the similarity matrix S ′, then:

λ ≤ n
n−1 min1≤i≤n {Lii}.

Theorem 2 For a similarity matrix S ′, suppose the error matrix of it is ∆S ′. When 2||∆S ′||F ≤
1 − min1≤i≤n{∑t ̸=i |S

′
it|}

n−1 , the seriation obtained by the spectral ranking algorithm using S ′ is the
same as that obtained by the spectral ranking algorithm using S ′ +∆S ′.

Proof. To prove the above statement, it is sufficient to demonstrate that when fi ≥ fj , fi +∆fi ≥
fj +∆fj ,

∑
t ̸=i ∆S ′

it ≤
∑

t̸=j ∆S ′
jt, that is,

fi − fj ≥ ∆fj −∆fi,∀1 ≤ i, j ≤ n, (12)

where fi is the i-th element of the Fiedler vector f of S ′, ∆fi is the change in fi after adding noise.

The following proof is only considering the situation where fi, fj ≥ 0,∆fi ≤ 0,∆fj ≥ 0. When the
given upper bound of the error satisfies the above condition, the other conditions are also satisfied.

According to the definition of the Fiedler vector, we have

(L+∆L)(f +∆f) = (λ+∆λ)(f +∆f). (13)
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We make a simplified approximation by expanding the above equation and neglect terms that approach
zero in most cases, then only considering the i-th component, we have

∑
t ̸=i

S ′
it − λ+ 1

∆fi ≈

∆λ−
∑
t̸=i

∆S ′
it

 fi. (14)

According to Lemma 2,

∆fi ≥
n− 1

n− 1−min1≤i≤n

{∑
t ̸=i |S′

it|
}
∆λ−

∑
t̸=i

∆S ′
it

 fi, (15)

∆fj ≤
n− 1

n− 1−min1≤i≤n

{∑
t̸=i |S′

it|
}
∆λ−

∑
t̸=j

∆S ′
jt

 fj . (16)

Then,

∆fj −∆fi ≤
n− 1

n− 1−min1≤i≤n

{∑
t ̸=i |S′

it|
} [

−∆λ+ (n− 1) max
1≤i,j≤n

∣∣∆S ′
ij

∣∣] (fi − fj)

(17)
≤ fi − fj (18)

Combined with Lemma 1, and || · ||2 ≤ || · ||F, we have

2||∆S ′||F ≤ 1−
min1≤i≤n

{∑
t̸=i |S′

it|
}

n− 1
. (19)

□

It is noted that during the process of proof, we assume that the diagonal elements of S ′ are not
perturbed. This is reasonable since the diagonal elements correspond to cosine similarity between the
same features, which will always be 1. This proof demonstrates that the Fiedler vector is tolerant to
error values in S ′.

Proof Via Eigenvalue gaps

We can also derive tighter bounds for error tolerance using a more rigorous approach via eigenvalue
gap analysis. We outline the proof below for interested readers.

The main result is presented in Theorem 2. We first present Stewart’s theorem in Lemma 1 to assist
with the proof, where it can provide corresponding eigenvalue conditions for the stability of the
subspace spanned by the eigenvectors.

Lemma 1 (Stewart’s theorem). Let S,E ∈ Rn×n be symmetric matrices and consider V1 ∈ Rd×n,
V2 ∈ R(n−d)×n, where range(V1) is an invariant subspace for S. Let V = [V1, V2] be an orthogonal
matrix, and let:

V TSV =

[
Q1 0
0 Q2

]
, V TEV =

[
E11 E12

E21 E22

]
.

If δ = λmin − µmax − ∥E11∥2 − ∥E22∥2 > 0, and ∥E21∥2 ≤ δ
2 , where λ and µ are the eigenvalues

of Q1 and Q2, respectively, then there exists a matrix P ∈ R(n−d)×n with ∥P∥2 ≤ 2
δ ∥E21∥2 such

that the columns of V ′
1 = (V1 + V2P )

(
I + PTP

) 1
2 form an invariant subspace for S + E.

Theorem 2 For a similarity matrix S ′ ∈ Rn×n, suppose the error matrix of it is E ∈ Rn×n. When

||E||1 ≤ λ3−λ2

8
√
n

,
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where λ2, λ3 are the second smallest and the third smallest eigenvalue of Laplacian matrix of S ′, the
Fiedler vector of S ′ ∈ Rn×n is stable. So the seriation obtained by the spectral ranking algorithm is
robust to noise in S ′.

Proof. Considering that when eigenvalues cluster together, the corresponding eigenvectors are ill
conditioned and the inappropriateness of using eigenvectors can also be observed when dealing with
a matrix having two eigenvectors with equal eigenvalues, in this section, we begin by studying the
stability of the subspace spanned by Fiedler vector and unit vector, thereby ensuring the stability of
Fiedler vector naturally.

Let the eigenvalues of Laplacian matrix L(S′) and L(E) be λn ≥ λn−1 ≥ · · · ≥ λ1 and ϵn ≥ ϵn−1 ≥
· · · ≥ ϵ1 respectively. Correspondingly, the eigenvalues of −L(S′) and −L(E) are −λi and −ϵi,
i = 1, . . . , n, and they share the same eigenvectors with L(S′) and L(E) respectively. Thus, Fielder
vector and unit vector are also eigenvectors of −L(S′).

We have

−λ2 − (−λ3)−
∥∥∥L(E)

11

∥∥∥
2
−

∥∥∥L(E)
22

∥∥∥
2
≥ −λ2 − (−λ3)− 2∥L(E)∥2. (20)

When −λ2 − (−λ3) > 4∥L(E)∥2, that is, −λ2 − (−λ3)− 2∥L(E)∥2 > 2∥L(E)∥2. Then equation
(12) becomes

−λ2 − (−λ3)−
∥∥∥L(E)

11

∥∥∥
2
−
∥∥∥L(E)

22

∥∥∥
2
> 2∥L(E)∥2 ≥ 2

∥∥∥L(E)
12

∥∥∥
2
. (21)

Based on equation (13), we can derive δ ≥ 2
∥∥∥L(E)

12

∥∥∥
2
. Next, it is obviously that when ∥L(E)∥2 > 0,

δ > 0.

Furthermore, we can derive that

∥L(E)∥2 ≤
√
n∥L(E)∥1 ≤ 2

√
n∥E∥1. (22)

To sum up, when 8
√
n||E||1 ≤ λ3−λ2, the prerequisites of Stewart’s theorem are met, so the Fielder

vector is stable under perturbation E. So the seriation obtained by the spectral ranking algorithm is
robust to noise in S ′.

□

S2.3.2 Robustness to noise in feature representations

Proof Via First-Order Approximation

Theorem 3 For a similarity matrix S ′, suppose rows i and column i are corrupted due to in-
adequate feature representations being learnt for sample i. When ||∆S′

[i,:]||2 − ||∆S′
[i,:]||1 +

max1≤j≤n

∣∣∆S ′
ij

∣∣ ≤ 1 − min1≤i≤n{∑t̸=i |S
′
it|}

n−1 , the seriation obtained by the spectral ranking
algorithm using S ′ is the same as that obtained by the spectral ranking algorithm using S ′ +∆S ′.

Proof: When only the i-th row and i-th column of the similar matrix are corrupted, we have∑
t ̸=j ∆S ′

jt = ∆S ′
ij . Then, based on the proof of Theorem 1,

∆fj −∆fi ≤
n− 1

n− 1−min1≤i≤n

{∑
t ̸=i |S′

it|
} [

−∆λ− |∆S ′
ij |+ ||∆S′

[i,:]||1
]
(fi − fj) (23)

≤ fi − fj (24)

In this case, ||∆S||F = ||∆S′
[i,:]||2. And the above inequality holds for all 1 ≤ j ≤ n, so

||∆S′
[i,:]||2 − ||∆S′

[i,:]||1 + max
1≤j≤n

∣∣∆S ′
ij

∣∣ ≤ 1−
min1≤i≤n

{∑
t ̸=i |S′

it|
}

n− 1
(25)

Proof Via Eigenvalue gaps
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Theorem 3 For a similarity matrix S ′ ∈ Rn×n, suppose rows i and column i are corrupted due to
inadequate feature representations being learnt for sample i. When

||E[i,:]||2 ≤ (λ3−λ2)
√

minj≥3

∏n
z=2,z ̸=j |λz−λj |

3(n−2)
√∏n

z=3(λz−λ2)
,

the seriation obtained by the spectral ranking algorithm using S ′ is the same as that obtained by the
spectral ranking algorithm using S ′ + E.

Proof: First, we provide a derivation of the first-order Taylor expansion of Fiedler vector after adding
noise. Note that in this case, we only consider that the algebraic multiplicity of the eigenvectors of
the Laplacian matrix is all equal to 1.

Let L′, f ′, λ′
i, v

′
i, and L, f , λi, vi be Laplacian matrix, Fiedler vector, eigenvalue and eigenvector of

Laplacian matrix after and before adding noise respectively. λ1 ≤ λ2 · · · ≤ λn, λ′
1 ≤ λ′

2 · · · ≤ λ′
n.

f ′ can be written as

f ′ = α

f +
∑
j ̸=2

βjvj

 , (26)

λ′
2 = λ2 + ν. (27)

α is used to ensure that f ′T f ′ = 1. Then,

L′f ′ = λ′
2f

′, (28)

⇒ (L+ L(E))(f +
∑
j ̸=2

βjvj) = (λ2 + ν)(f +
∑
j ̸=1

βjvj), (29)

⇒ L(E)f +
∑
j ̸=2

βjL
(E)vj =

∑
j ̸=2

(λ2 − λj)βjαj + ν(f +
∑
j ̸=2

βjvj), (30)

⇒ ν = fTL(E)f +
∑
j ̸=2

βjf
TL(E)vj , (31)

⇒ (λ2 − λj + ν)βk = vTk L
(E)f +

∑
j ̸=2

βjv
T
k L

(E)vj . (32)

Equation (19) based on the definition of f , equation (20) apply fT and equation (21) apply vTk , k ̸= 2.

Expand ν, α, βj as follows:

ν = 0 + εν(1) +O(ε2), (33)

α = 1 + εα(1) +O(ε2), (34)

βj = 0 + εβ
(1)
j +O(ε2), (35)

where ε −→ 0. Let L(E) = εB and then combine it with equation (20) and (21), we have

ν(1) = fTBF , (36)

β
(1)
j =

vTk Bf

λ2 − λj
. (37)

Next, we prove that α(1) = 0.

(1 + 2εα(1) +O(ε2))

1 + 2ε
∑
j ̸=2

β
(1)
j fT vj +O(ε2)

 (38)

= 1 + 2εα(1) +O(ε2), (39)
= 1, (40)
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⇒ α(1) = 0. (41)

Therefore,

f ′ = f +
∑
j ̸=2

vTj L
(E)f

λ2 − λj
vj . (42)

Let ∆fp = f ′
p − fp, ∆fq = f ′

q − fq . To prove our theorem, it is sufficient to demonstrate that when
fp ≥ fq , f ′

p ≥ f ′
q , that is,

fp − fq ≥ ∆fq −∆fp,∀1 ≤ p, q ≤ n, (43)

where fp is the p-th element of the Fiedler vector f of S ′. The following proof is only considering
the situation where fp, fq ≥ 0,∆fq ≤ 0,∆fp ≥ 0. When the given upper bound of the error satisfies
the above condition, the other conditions are also satisfied.

According to equation (31), we can derive

∆fq −∆fp =
∑
j ̸=2

vTj L
(E)f

λ2 − λj
(vjq − vjp). (44)

In this section, only the i-th row and i-th column of the similarity matrix are corrupted, so E and
L(E) can be written as follows:

E =


Ei1

...
Ei1, · · · , 0, · · · , Ein

...
Ein

 .

L(E) =



Ei1

Ei2

...

Ei1, Ei2, · · · ,
∑

j Eij , · · · , Ein

...

Ein


,

=



0

0

...

Ei1, · · · , Eii, · · · , Ein

...

0



+



Ei1

Ei2

...

0, · · · , Eii, · · · , 0

...

Ein



+


0
0

0, 0, · · · ,
∑

j Eij , · · · , 0
...
0

 .
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It is noted that we assume that the diagonal elements of S ′ are not perturbed. This is reasonable since
the diagonal elements correspond to cosine similarity between the same features, which will always
be 1.

So ∑
j ̸=2

vTj L
(E)f

λ2 − λj
(vjq − vjp) =

∑
j ̸=2

vjif
TE[i,:] + fiv

T
j E[i,:] + fivjie

TE[i,:]

λ2 − λj
(vjq − vjp), (45)

= (
∑
j ̸=2

vjif
T + fiv

T
j + fivjie

T

λ2 − λj
(vjq − vjp))||E[i,:]||2, (46)

≤
∑
j ̸=2

(vji + fi + fivji)(vjp − vjq)

λj − λ2
||E[i,:]||2. (47)

We know that

|vjp − vjq| =

√
2

∏n−1
z=2 (µz − λj)∏n

z=2,z ̸=j (λz − λj)
, (48)

where 0 = µ1 < µ2 ≤ · · · ≤ µn−1 are the eigenvalues of the scaled Laplacian for the (i, j)-coalesced
graph.

When ||E[i,:]||2 ≤ (λ3−λ2)
√

minj≥3

∏n
z=2,z ̸=j |λz−λj |

3(n−2)
√∏n

z=3(λz−λ2)
and combined with equation (36) and equation

(37), we can derive that

∑
j ̸=2

vTj L
(E)f

λ2 − λj
(vjq − vjp) ≤

√
2

∏n−1
z=2 (µz − λ2)∏n
z=3 (λz − λ2)

= fp − fq. (49)

□

S3 Experiments

S3.1.4 Impact of unlabeled batch size

In our experiments, we use a batch size of 10 samples to perform spectral seriation and enforce
supervision on unlabeled samples. We test the sensitivity of our method to the size of the unlabeled
batch. We perform this on our synthetic dataset to se how results are affected by different batch sizes
for sampling unlabeled data. We show results using batch sizes in 5, 10, 20, 30, 40 in Table S1. We
can see that performance is mostly stable, although a larger batch-size can lead to slightly reduced
performance.

Table S1: Results using different batch sizes for unlabeled data sampling
Batch Size MAE ↓ R2↑
5 0.028 ± 0.008 96.8% ± 1.8
10 0.027 ± 0.009 97.3% ± 2.4
20 0.028 ± 0.008 97.3% ± 2.2
30 0.029 ± 0.007 97.2% ± 1.7
40 0.033 ± 0.009 96.4% ± 2.3

S3.1.5 Computational and memory costs

We provide reference times in seconds for performing one iteration of training and inference for
different methods in Table S2. Actual times may differ depending on hardware and environment. We
note that CLSS does not introduce significant computational complexity since additional calculations
involving eigenvalue decomposition can be performed efficiently with existing computational tools
and algorithms. Test-time inference is also more efficient than state-of-the-art semi-supervised
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Table S2: Computational time in seconds for one iteration of training and inference.
Type Method Training Testing

Supervised Regression 0.2015 0.0013
Regression + ODE 0.2167 0.0012

Semi-
supervised

Mean-teacher 0.2145 0.0012
CPS 0.2022 0.0018
UCVME 0.2487 0.0043
CLSS (Ours) 0.2310 0.0013

methods because we only require predictions from one model, instead of taking the average from two
co-trained models.

We also show the number of model parameters required for each method in Table S3. We note that
CLSS only uses one model, whilst alternative methods rely on two co-trained models which requires
doubles the memory.

Table S3: Number of model parameters for each method.
Type Method Number of parameters

Supervised Regression 34,401
Regression + ODE 34,401

Semi-
supervised

Mean-teacher 68,802
CPS 68,802
UCVME 69,004
CLSS (Ours) 34,401

S3.1.6 Hyper-parameter sensitivity

Hyper-parameters were selected based on a coarse search on the validation set. We show hyper-
parameter sensitivity results performed using a quarter of available labels for reference (Table S4).
Each parameter is adjusted individually whilst keeping the remaining ones at the optimum value.

Table S4: Results using different hyper-parameter settings
Hyper-parameter Value MAE

wSC

0.01 0.033
0.001 0.027
0.0001 0.030

wUC

0.01 0.032
0.001 0.027
0.0001 0.031

wUR

0.01 0.052
0.001 0.027
0.0001 0.030

S3.2 Validation on Brain Age estimation from MRI Scans

S3.2.1 Comparison with state-of-the-art alternatives and ablation studies

To analyse the effect of different components in our methodology, namely the use of LSC , LUC , and
LUR, we perform training with the loss functions added separately to study their impact. Results are
shown in Table S5.

We can see that each individual component leads to contributions in improved performance across all
settings. This provides empirical support for our method on a real-world dataset.
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Table S5: Ablation study of different components
MAE↓

Method SC UC UR 1/5 labels 1/4 labels 1/3 labels 1/2 labels
Regression 9.95 ± 1.41 11.93 ± 1.40 11.76 ± 1.75 10.93 ± 1.60
Regression+LSC ✓ 10.55 ± 1.94 10.61 ± 1.64 11.21 ± 1.90 11.62 ± 1.50
Regression+LSC+LUC ✓ ✓ 9.97 ± 1.54 10.04 ± 1.56 9.83 ± 1.56 9.43 ± 1.57
Ours ✓ ✓ ✓ 9.58 ± 1.48 9.68 ± 1.22 9.72 ± 1.29 9.37 ± 1.17

R2↑
Method ODE ULB PSL 1/5 labels 1/4 labels 1/3 labels 1/2 labels
Regression 43.1% ± 14.4 20.2% ± 16.3 23.3% ± 20.7 33.3% ± 16.7
Regression+ODE ✓ 36.1% ± 20.1 33.5% ± 18.2 30.0% ± 20.9 24.8% ± 17.5
Regression+ODE+ULB ✓ ✓ 41.9% ± 15.6 40.6% ± 17.0 44.6% ± 16.3 47.0% ± 16.7
Ours ✓ ✓ ✓ 45.0% ± 17.6 44.5% ± 11.5 44.9% ± 14.9 48.9% ± 13.2

S3.2.2 Hyper-parameter sensitivity

Hyper-parameters were selected based on a coarse search on the validation set. We show hyper-
parameter sensitivity results performed using half of available labels for reference (Table S6). Each
parameter is adjusted individually whilst keeping the remaining ones at the optimum value.

Table S6: Results using different hyper-parameter settings
Hyper-parameter Value MAE

wSC

5 12.73
1 9.37
0.2 9.42

wUC

0.5 10.24
0.05 9.37
0.005 9.45

wUR

0.1 9.49
0.01 9.37
0.001 10.61

S3.3 Validation on Age-Estimation from photographs

S3.3.1 Comparison with state-of-the-art alternatives and ablation studies

We add the loss values LSC , LUC , and LUR separately during training to investigate their individual
impact for age estimation from photographs. Results are shown in Table S7.

Table S7: Ablation study of different components
MAE↓

Method SC UC UR 1/30 labels 1/25 labels 1/20 labels 1/15 labels
Regression 10.14 ± 0.25 9.99 ± 0.11 9.10 ± 0.15 8.58 ± 0.10
Regression+LSC ✓ 10.02 ± 0.23 9.87 ± 0.20 8.97 ± 0.14 8.51 ± 0.12
Regression+LSC+LUC ✓ ✓ 9.97 ± 0.18 9.62 ± 0.14 8.88 ± 0.12 8.49 ± 0.10
Ours ✓ ✓ ✓ 9.95 ± 0.18 9.59 ± 0.12 8.89 ± 0.09 8.45 ± 0.11

R2↑
Method SC UC UR 1/30 labels 1/25 labels 1/20 labels 1/15 labels
Regression 63.6% ± 1.6 64.5% ± 0.8 70.4% ± 0.9 72.9% ± 0.8
Regression+LSC ✓ 63.9% ± 1.5 65.4% ± 1.3 70.8% ± 0.9 73.2% ± 0.6
Regression+LSC+LUC ✓ ✓ 64.1% ± 1.0 66.6% ± 0.7 71.5% ± 0.7 73.5% ± 0.6
Ours ✓ ✓ ✓ 64.5% ± 1.0 66.9% ± 0.7 71.3% ± 0.7 73.7% ± 0.6
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We can see that LSC and LUC both lead to significant improvements in performance, demonstrating
the effectiveness of using spectral seriation for contrastive learning on unsupervised samples. Further
improvements from using LUR are more limited.

S3.3.2 Hyper-parameter sensitivity

Hyper-parameters were selected based on a coarse search on the validation set. We show hyper-
parameter sensitivity results performed using 1/25 of available labels for reference (Table S8). Each
parameter is adjusted individually whilst keeping the remaining ones at the optimum value.

Table S8: Results using different hyper-parameter settings
Hyper-parameter Value MAE

wSC

5 9.73
1 9.59
0.2 9.91

wUC

0.5 10.70
0.05 9.59
0.005 9.64

wUR

0.1 9.97
0.01 9.59
0.001 9.65
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