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Abstract

Diffusion models have achieved great success in modeling continuous data modali-
ties such as images, audio, and video, but have seen limited use in discrete domains
such as language. Recent attempts to adapt diffusion to language have presented
diffusion as an alternative to existing pretrained language models. We view dif-
fusion and existing language models as complementary. We demonstrate that
encoder-decoder language models can be utilized to efficiently learn high-quality
language autoencoders. We then demonstrate that continuous diffusion models
can be learned in the latent space of the language autoencoder, enabling us to
sample continuous latent representations that can be decoded into natural language
with the pretrained decoder. We validate the effectiveness of our approach for
unconditional, class-conditional, and sequence-to-sequence language generation.
We demonstrate across multiple diverse data sets that our latent language diffu-
sion models are significantly more effective than previous diffusion language
models. Our code is available at https://github.com/justinlovelace/
latent-diffusion-for-language.

1 Introduction

Although originally introduced by Sohl-Dickstein et al. [61] in 2015, diffusion models did not see
widespread use until Ho et al. [22] demonstrated their viability for high-quality image generation in
2020. Since then, research has driven rapid improvements and they have recently surpassed generative
adversarial networks on image generation benchmarks [12] and autoregressive models on density
estimation benchmarks [30], outclassing generative modeling paradigms that have dominated those
areas for the better part of a decade. Diffusion models are now, arguably, the most widely used class
of generative models for continuous data modalities such as images, audio, and video [54, 32, 23].

The widespread success of diffusion models across a variety of domains and applications makes them
appealing for language generation. However, they have seen less use in discrete domains, where the
gradual transition of discrete states to Gaussian noise (and vice versa) is not as natural as in continuous
domains. Prior work proposes to learn continuous diffusion models in the space of learnable word
embeddings and decodes the continuous generations with a rounding step [36]. However, combining
representation learning with the diffusion objective requires careful regularization to avoid collapse.

One breakthrough in image generation was the introduction of latent diffusion [51], where diffusion
models are trained to produce samples from the latent distribution of a pretrained autoencoder. This
offloads the task of generating high-frequency details to the autoencoder and enables the diffusion
process to focus on the high-level semantics of images. In this paper, we explore the viability of
latent diffusion for text generation. We claim that this approach is particularly well-suited for discrete
modalities because it offloads the challenge of modeling a discrete distribution to the autoencoder
and simplifies the diffusion process by restricting it to the continuous, latent feature space.

We introduce Latent Diffusion for Language Generation (LD4LG), a method that leverages the latent
space of a pretrained encoder-decoder network (e.g. BART [35], T5 [50]) to learn a high-quality
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diffusion model for text. The latent representations from such models are high-dimensional and
input-length dependent — complicating the use of diffusion models [51, 66]. To address both issues,
we learn an additional compression module that maps the high-dimensional encoder representations
to a lower-dimensional fixed-length representation. We also learn a corresponding reconstruction
network to map these fixed-length features back to high dimensional features that guide the language
decoder (via cross-attention) to reconstruct the original language.

The low-dimensional representation is ideally suited for diffusion. For language generation, we
use a diffusion model to generate a low-dimensional (fixed-length) latent, which is mapped into a
higher dimensional space with the reconstruction network. This high dimensional representation then
guides the pre-trained decoder to generate natural language. Our approach naturally combines the
continuous, fixed-length diffusion process with discrete, variable length text generation.

We demonstrate that LD4LG is effective for unconditional, class-conditional, and sequence-to-
sequence language generation across a variety of datasets. Our approach significantly outperforms
recent diffusion language models while using fewer sampling steps. For instance, we achieve a
MAUVE score [47] of .716 for the ROCStories dataset with 250 sampling steps while Diffusion-
LM [36] achieves a MAUVE score of .043 using 2000 sampling timesteps. For the challenging
XSum summarization benchmark, we achieve a ROUGE-L of 31.9 with 250 timesteps while the
recently proposed DiffuSeq [16] achieves a ROUGE-L of 14.1 with 2000 timesteps. We also find
that the diffusion models offer some benefits over a strong autoregressive baseline. In particular, we
observe that our latent language diffusion is less susceptible to memorization and more effective for
class-conditional generation.

2 Background

Diffusion models [61, 22, 63] are a class of latent variable models that learn to iteratively transform
random Gaussian noise, which can be sampled analytically, to a sample from an unknown data
distribution specified by a collection of samples. This mapping is defined through a forward diffusion
process that iteratively adds Gaussian noise to samples, and a generative process that iteratively
“denoises” samples from the Gaussian distribution to obtain samples from the data distribution. We
provide a formal description of diffusion models in the appendix.

The diffusion model consists of a denoising network x̂θ trained with a regression objective

L(θ) = Et,x,ϵ[λt∥x̂θ(
√
αtx+

√
1− αtϵ, t)− x∥22]

where x is the training data, t ∼ U(0,1) is the timestep, ϵ ∼ N (0,1) is Gaussian noise, αt defines
the noise schedule, and λt is a time-dependent weighting term. The denoising network is therefore
trained to denoise a noisy latent, zt =

√
αtx +

√
1− αtϵ, to the clean data, x, with a regression

objective that emphasizes certain times t. Sampling algorithms start from pure Gaussian noise,
z1 ∼ N (0,1), and utilize the denoising network to iteratively generate latents zt1 , zt2 , ..., ztT where
1 = t1 > t2 > ... > tT = 0, with decreasing levels of noise until z0 is drawn approximately from
the data distribution.

3 Latent Diffusion For Language

Figure 1 presents an overview of Latent Diffusion for Language Generation. Our method consists
of two main parts. We augment a pretrained encoder-decoder language model with two learnable
networks to develop a high-quality language autoencoder with a compact latent space. We then
introduce continuous diffusion models that learn to generate samples from the latent distribution
of our language autoencoders. These continuous samples can, by design, be decoded into natural
language.

3.1 Language Autoencoder

We base our architecture on pretrained encoder-decoder language models (depicted in blue), such as
BART [35] and T5 [50] (we present results with both). By default, we freeze the pre-trained models
and learn only the autoencoding modules to accelerate training. The Language Encoder, E(·), maps
variable-length language, represented as a sequence of tokens, w ∈ NL, to a latent representation of
the same length, E(w) ∈ RL×dLM .
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Figure 1: Overview of our proposed latent language diffusion framework.

Compression Network. The learnable Compression Network maps the encoder features to a com-
pact latent space that is well-suited for diffusion. We adopt the Perceiver Resampler [2] architecture,
originally developed to compress image features for a vision-language model, which is depicted in
Figure 2. The Perceiver Resampler, like the transformer, consists of a stack of alternating multi-head
attention (MHA) blocks and feedforward (FF) layers. We refer the reader to Vaswani et al. [69] for
a detailed description of these components. We learn ℓ latent queries Z ∈ Rℓ×dLM that iteratively
cross-attend to the language encoder features E(w) ∈ RL×dLM to extract information. We follow
Alayrac et al. [2] and allow the latent queries to simultaneously attend to themselves and the frozen
encoder representations. We can write the attention layer as

Z = Z + MHA(q = Z, kv = [Z;E(w)])

where MHA(·) is the multi-head attention operation with queries, q, and keys/values, kv. This
design compresses the encoder representations to the fixed sequence length, ℓ, of the latents. After
each multi-head attention layer, a feedforward layer is applied to the latent query representations.

Figure 2: Architecture of our Compression
Network.

After the Compression Network maps the input to a
fixed sequence length, we reduce the dimensionality
of the output to dimension dae with a learnable linear
projection. The compression network therefore maps
the variable length output of the frozen encoder to a
compact latent space

x = fϕ(E(w)) ∈ Rℓ×dae

of fixed length ℓ < L and dimensionality dae < dLM
where we will learn our diffusion model.

To ensure that the latent space is appropriately scaled
for diffusion, we can optionally constrain the norm
of the latent space. Since Eϵ∼N (0,I)[∥ϵ∥22] = dae [1],
we can normalize the latent vectors along the feature dimension so that ∥xi∥22 = dae similar to prior
work on text diffusion [13].

Reconstruction Network. The Reconstruction Network maps the compressed latent space to the fea-
ture space expected by the Language Decoder. To achieve this, we project x = fϕ(E(w)) ∈ Rℓ×dae

back up to dimension dLM, add learnable absolute position embeddings, and pass it through a standard
transformer model to obtain features gϕ(x) ∈ Rℓ×dLM .

The Language Decoder, D(·), cross-attends to to these features and generates text autoregressively.
We train the compression and reconstruction networks to produce features that guide the decoder to
reconstruct the input text

w ≈ D(gϕ(x)) = D(gϕ(fϕ(E(w)))

with the cross-entropy loss. This gives us a continuous, semantic latent space that can be decoded to
natural language.
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Implementation Details. We utilize BART-base and FLAN-T5-base [10] as the encoder-decoder
language models throughout this work and learn language autoencoders for each dataset. During
autoencoder training, we freeze the pre-trained language models and only learn the autoencoding
modules. The autoencoder training could likely be amortized across datasets by training a general-
purpose language autoencoder on a large corpus of text, but we leave such explorations to future
work. We train the autoencoder to reconstruct the input language with the cross-entropy loss. For the
diffusion latent space, we set ℓ = 32, dae = 64 and utilize 3 layers in both autoencoding modules
across all monolingual datasets.

For our machine translation experiments, we utilize MT5-base [72] to develop our autoencoder. We
found it beneficial to jointly fine-tune the language model and the autoencoding modules, likely
because the dataset is an order of magnitude larger than our other datasets and therefore benefits from
the additional capacity. We use the same latent dimensionality, but only use a single layer for the
autoencoding modules. We report full hyperparameter settings in the appendix. We constrain the
norm of the latent space across models and datasets except when using FLAN-T5 because it led to a
minor degradation in autoencoding performance and downstream generation quality.

3.2 Latent Language Diffusion

Figure 1 outlines our latent language diffusion framework. Given some dataset of natural language,
D, we can now sample continuous data as x = fϕ(E(w)) ∈ Rℓ×dae where w ∼ D. We then train a
continuous denoising network, x̂θ(), to recover x with the standard regression objective

L(θ) = Et,x,ϵ[λt∥x̂θ(
√
αtx+

√
1− αtϵ, t)− x∥22]

with some time-dependent weighting λt. In practice, the denoising network is often parameterized
as an ϵ-prediction network [22] or a v-prediction network [57] where the velocity, v, is defined as
v =

√
αtϵ−

√
1− αtx. These parameterizations can be interpreted as different weighting functions,

λt, for the regression objective above (see Salimans and Ho [57]. We adopt the v-parameterization in
this work because it has been shown to be effective for latent image diffusion [51].

For generation, we sample a latent variable, z1 ∈ Rℓ×dae ∼ N (0, I), that is iteratively denoised to
produce a sample, x = z0, from the distribution of the language autoencoder’s latent space. We
then generate natural language with the pretrained reconstruction network and language decoder
w = D(gϕ(x)). We train our diffusion models with the cosine noise schedule αt = cos(0.5πt)2

[45, 57, 55] by default. For our machine translation experiments, we employ a scaled cosine noise
schedule (see subsection E.2 in the appendix for full details) [7, 27]. For generation, we use the
DDPM sampler with 250 sampling timesteps. For text generation with the pretrained decoder, we
utilize beam search with 4 beams. We train all of our diffusion models with a single Nvidia A6000
GPU except for the machine translation models which are trained with 4 Nvidia A6000 GPUs.

Denoising Network Architecture. Our denoising network, x̂θ(zt, t), is a pre-LayerNorm trans-
former [69, 70] with 12 layers and a dimension of 768. We utilize learnable absolute positional
encodings and GeGLU activations [59]. Bao et al. [4] adapted transformers to image diffusion and
found that dense connections [28] between early and late layers are beneficial due to the dense nature
of the denoising objective. We adopt this modification to improve the suitability of the transformer
for diffusion. The autoencoder latent is projected to the transformer dimension, processed by the
transformer, and then projected back to dimensionality of the autoencoder latent to obtain the final
prediction. Following prior work [6, 56, 7], we utilize α-conditioning to condition the model on the
level of noise. We map αt to a sinusoidal positional embedding [69] and pass it through an MLP with
a single hidden layer to obtain a time embedding. We add this time embedding to the input sequence
and apply adaptive layer normalization [46] conditioned on the time embedding to the output of every
feedfoward layer.

Self-Conditioning We utilize the self-conditioning technique introduced by Chen et al. [8] which
has been shown to improve the quality of diffusion models [8, 67]. The denoising network is typically
conditioned on the latent variable and the current timestep as x̃t = x̂θ(zt, t). Self-conditioning
proposes to condition the network on its estimate of the data from the previous timestep, s > t, to
improve the prediction at the current timestep x̃t = x̂θ(zt, t, x̃s). During inference, the sampling
procedure is inherently iterative and at time t, we have already computed the output of the denoising
network for the previous step. Therefore, it does not require any additional applications of the
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network. We must, however, modify the training procedure so that the denoising network learns to
utilize the estimate of the data, and we must define the inference behavior for the first timestep.

For each training step, we sample some time t ∼ U([0, 1]) as before. With probability p, we do not
provide any estimate of the data for self-conditioning, denoted x̃t,∅ = x̂θ(zt, t, ∅). With probability
1 − p, however, we mimic the inference behavior by first computing x̃t,∅ = x̂θ(zt, t, ∅) and then
computing an additional estimate x̃t = x̂θ(zt, t, sg(x̃t,∅)) where sg() is the stop-gradient operation.
This second estimate is then used to compute the loss. We follow Chen et al. [8] and set p = 0.5.

This training procedure also maintains the capacity for inference without self-conditioning which
is utilized to generate the first estimate during sampling. We condition on the previous estimate by
concatenating it with the noisy latent along the feature dimension. When the previous estimate is not
provided, we concatenate a learnable embedding with the noisy latent.

Class-Conditional Diffusion. For class-conditional diffusion, we have some dataset where each
natural language utterance is associated with one of C class labels representing, for example, the topic
of the text. We condition the denoising network on the class label, y, during training, x̃t = x̂θ(zt, t, y).
We replace the ground truth class label, yi, with a null label, y∅, with probability p = 0.1 to maintain
the capacity for unconditional generation. At inference time, we can choose some class y to guide the
sampling process to generate text from the specified class. We condition on class labels by introducing
learnable embeddings for all labels, including the null label, and add it to the time embedding.

Sequence-to-Sequence Diffusion. Given some seq2seq dataset consisting of source-target language
pairs (wsrc,wtrg) ∼ D, we condition our denoising network on the source sequence and generate
the target latent xtrg = fϕ(E(wtrg)). For news summarization, for instance, we generate a latent
representation of the summary by conditioning the network on the article text. To achieve this, we
introduce a cross-attention layer after every self-attention layer in the denoising network that attends
to features from a frozen language encoder.

In general, we can incorporate any language encoder, Esrc(·), to extract features from the source text.
By default, we use the same pretrained encoder used for our language autoencoder. For our machine
translation experiments, we condition our latent diffusion models on representations from a frozen
MT5-XL encoder, which we found to be more effective than MT5-base representations. Therefore,
given a sample from our seq2seq dataset, (wsrc,wtrg) ∼ D, we can compute xtrg = fϕ(E(wtrg)) and
use a modified seq2seq diffusion objective

L(θ) = Et,(wsrc,wtrg),ϵ[λt∥x̂θ(
√
αtxtrg +

√
1− αtϵ, t, Esrc(wsrc))− xtrg∥22].

We also utilize classifier-free guidance [21] to improve sample quality. We jointly learn an uncondi-
tional network, x̂θ(zt, t), and a conditional network, x̂θ(zt, t, E(wsrc)), by dropping the conditioning
information with probability p = 0.1 during training. When we drop the conditioning information,
we cross-attend to a learnable embedding instead of the embedded source text. During sampling, we
use guidance weight w and compute the prediction as

x̃t = wx̂θ(zt, t, E(wsrc)) + (1− w)x̂θ(zt, t).

Setting w = 1.0 corresponds to the conditional diffusion model while setting w > 1.0 strengthens
the influence of the conditioning information. We use w = 2.0 for the seq2seq tasks and ablate this
choice in section 5.

We can also generate multiple outputs S for each input by sampling different latents z1 ∼ N (0, I).
We then select the most promising candidate with Minimum Bayes Risk (MBR) Decoding [15, 34].
In MBR decoding, we define a loss function L, such as the negative Rouge, and use it to select
a candidate wMBR = argminw∈S

1
|S|

∑︁
w′∈S L(w,w′). In our experiments, we use |S| = 5 and

denote the results from using MBR decoding as MBR-5. We also report results using the ground
truth to select the best candidate woracle = argminw∈SL(w,wtrg) to provide an upper bound on the
performance of our method given optimal sample selection. Because this requires knowledge of the
ground-truth target text, we refer to this as Oracle sampling.

4 Datasets

We evaluate LD4LG on a variety of natural language datasets. ROCStories [42] is a corpus of 98k
five-sentence commonsense stories, that capture casual and temporal relations. The AG News Topic
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Classification [60] dataset consists of news articles across four topics: World, Sports, Business,
Sci/Tech with article titles and descriptions from 120k training instances. We focus on generating
the article descriptions in this work. The XSum [44] dataset consists of BBC articles from 2010
to 2017 covering a wide range of topics (e.g., News, Politics, Sports, etc.). The training split has
204k instances and each example contains a document and a summary. The QQP [9] dataset consists
of 400k question pairs, where each example is two similar questions and a binary value indicating
whether the two questions have the same meaning. The WMT 2014 English-German [5] dataset
is a widely used machine translation dataset consisting of roughly 4.5 million sentence pairs. We
present detailed dataset statistics in the appendix.

4.1 Evaluation Metrics.

We use MAUVE Score [47] and Perplexity (Ppl) to evaluate the quality of our generated text.
MAUVE Score is a metric for open-ended text generation that compares the distribution of generated
text with that of reference text using divergence frontiers. We follow Pillutla et al. [47] and use the
GPT-2-Large model [49] to embed the text. Perplexity measures how likely the generated samples
are according to an autoregressive language model; we use GPT-2-Large to compute perplexity.

We also want to quantify the Diversity (Div) of generations. We define diversity as
Div =

∏︁4
n=2

|unique n-grams({wi})|
|total n-grams({wi})| where {wi} is a set of generated samples [68]. The metrics dis-

cussed so far can be optimized by generating samples from the training set. We measure the proportion
of generated 4-grams that are found in the training set to quantify the degree of Memorization (Mem).

To evaluate the performance for monolingual seq2seq language generation tasks, we utilize
Rouge [37] and BERTScore [75]. Rouge-1/2 measures the number of unigrams/bigrams in the refer-
ence that appear in the generated text and Rouge-L measures the longest common sequence between
the texts. BERTScore uses contextual embeddings from a pretrained language model to measure the
similarity between texts. We follow prior work and use the microsoft/deberta-xlarge-mnli
model [18] to extract contextual embeddings. For our machine translation experiments, we report
SacreBLEU scores [5] to ensure fair comparison with prior work.

For our unconditional and class-conditional language generation experiments, we sample 1000
instances from the diffusion model. For the MAUVE reference text, we sample 1000 instances from
the test set. We repeat this 5 times and report the mean and standard deviation as meanstdev. We
also compute reference values for our metrics with natural samples from the test set. The reference
MAUVE, for instance, is computed between 1000 train and 1000 test samples. Qualitative samples
from our models are in the supplemental materials.

5 Experiments

5.1 Language Autoencoder

We evaluate the effectiveness of our proposed language autoencoder using heldout examples from
our datasets. As a point of comparison, we also evaluate the default behavior of the language models
that we use to develop the language autoencoders. A consequence of BART’s particular denoising
objective is that the pretrained model already generates a copy of the input language, although this is
not true of other models such as T5 or FLAN-T5.

We present results for our two most complex datasets, ROCStories and AG News, in Table 1 and
present the results for XSum, QQP, and WMT14-En-De, which show similar trends, in the appendix.
We observe that our BART-base autoencoder is able to compress the feature space by a factor of 24×
while improving the fidelity of the reconstructions. Our autoencoding modules are also effective at
converting the pretrained FLAN-T5 into a language autoencoder, even though that is different from
the model’s default behavior. Across both models and all datasets, our language autoencoders are
able to achieve near-perfect reconstruction with a low-dimensional latent space.

5.2 Unconditonal Language Generation

Baselines. We evaluate our approach’s capacity for unconditional language generation with the
ROCStories and AG News datasets. We compare against the recently proposed Diffusion-LM model
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Table 1: Effectiveness of Language Autoencoder
Method Latent Dimensions Hidden Units RocStories AG News

Rouge-1/2/L BLEU Rouge-1/2/L BLEU

BART-Base L× 768 ≤ 49,152 98.9/98.2/98.8 97.5 99.6/99.4/99.6 98.6
BART-Base Autoencoder 32× 64 2048 99.2/98.5/99.2 97.6 99.7/99.4/99.7 98.8

FLAN-T5-Base L× 768 ≤ 49,152 21.5/11.8/19.4 0.7 63.6/53.0/59.6 42.3
FLAN-T5-Base Autoencoder 32× 64 2048 98.4/96.9/98.4 95.8 99.1/98.3/99.1 96.8

[36]. We also fine-tune the pretrained GPT-2-Medium model, which is roughly 1.6× larger than our
denoising network, as a strong autoregressive baseline [49]. For sampling from GPT-2, we prompt
it with a BOS token and utilize nucleus sampling (p = 0.95) [24]. We explore different sampling
configurations in the appendix and find that they lead to similar conclusions.

Results. We present this comparison in Table 2. We observe that our approach is significantly
more effective than Diffusion-LM at modeling language distributions, as demonstrated by the higher
MAUVE scores, while requiring fewer sampling steps. Diffusion-LM is unable to model diverse
language distributions and exhibits poor diversity. Utilizing high quality latent spaces from pretrained
language models improves the effectiveness of our diffusion model. We observe that both language
models are highly effective for the AG News dataset, but using BART-base leads to a stronger
MAUVE score for the ROCStories dataset. Across both datasets, FLAN-T5-base produces more
diverse generations and exhibits less memorization.

While GPT-2 generally achieves strong language generation metrics, it is more susceptible to mem-
orization than LD4LG. For the AG News dataset, GPT-2 exhibits significant memorization and a
lower MAUVE score. We do find that GPT-2 samples have lower perplexity. However, measuring
perplexity with a pretrained GPT-2 model likely biases the metric towards the fine-tuned GPT-2
model. Moreover, MAUVE scores have a stronger correlation with human judgments of quality [47].

Table 2: Unconditional Language Generation Evaluation. The fine-tuned language model is presented
in gray.

ROCStories AG News

Timesteps MAUVE ↑ Ppl ↓ Div ↑ Mem ↓ MAUVE ↑ Ppl ↓ Div ↑ Mem ↓
Reference - .951.007 21.1.3 .414.003 .362.003 .951.014 43.61.2 .658.002 .385.005

Diffusion-LM [36] 2000 .043.006 47.3.6 .128.002 .434.002 .012.001 67.11.2 .043.002 .086.006
LD4LG (BART-Base) 250 .716.019 30.6.5 .331.005 .441.004 .866.016 100.62.9 .540.006 .293.001
LD4LG (FLAN-T5-base) 250 .481.007 37.5.4 .389.002 .387.002 .859.020 122.03.9 .624.008 .221.003

GPT-2-Medium - .788.025 20.0.2 .372.002 .688.006 .820.012 37.31.1 .532.017 .829.005

Benefits of Compression. Because the pretrained BART model already copies the input text, we
can ablate the impact of learning a compact latent space by learning a diffusion model directly in
the encoder feature space. One complication of this setting is that the sequence length of the BART
features vary. During training, the sequence length is simply determined by the sample. During
generation, however, we must specify the length. To determine the sequence length for generation,
we opt to sample a length from the empirical distribution of lengths in the training set. We refer to
this baseline as BART-Diffusion and outline full implementation details in the appendix.

We compare BART-Diffusion with our proposed approach in Table 3. We quantify the speedup
by measuring how long it takes each approach to match the peak validation MAUVE of BART-
Diffusion. We observe that learning a compact latent space is beneficial both in terms of absolute
performance and wall-clock time, reaching the peak MAUVE of BART-diffusion in a quarter of the
time. Compressing the latent space along the sequence dimension significantly reduces the overhead
per iteration due to the quadratic cost of self-attention, and we also observe faster convergence.

Self-conditioning. We ablate the impact of self-conditioning in Table 4. We find that it significantly
improves the MAUVE score and the perplexity of the generated text, but sacrifices some diversity.
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Table 3: Benefits of Compression (ROCStories)
Hidden Units Relative Speedup MAUVE ↑ Ppl ↓ Div ↑ Mem ↓

BART-Diffusion ≤ 49,152 1.0× .605.024 46.8.7 .424.004 .304.003
LD4LG (BART-base) 2048 3.86× .716.019 30.6.5 .331.005 .441.004

Table 4: Impact of Self-Conditioning (ROCStories)
MAUVE ↑ Ppl ↓ Div ↑ Mem ↓

LD4LG (BART-base) .716.019 30.6.5 .331.005 .441.004
- Self-cond. .480.018 79.31.0 .427.004 .299.003

Table 5: Metrics for class-conditional generation.
LD4LG (BART-base) LD4LG (FLAN-T5-base)

Conditioning MAUVE ↑ Mem ↓ MAUVE ↑ Mem ↓
World Sports Business Sci/Tech World Sports Business Sci/Tech

D
iff

us
io

n

World .842.017 .015.002 .026.002 .020.002 .296.002 .809.024 .013.001 .025.002 .022.002 .233.005

Sports .013.001 .845.024 .011.001 .010.000 .305.003 .011.001 .836.020 .009.000 .009.000 .249.004

Business .024.002 .011.001 .752.030 .068.005 .363.009 .025.003 .011.001 .765.016 .076.008 .244.004

Sci/Tech .023.002 .012.001 .082.008 .813.028 .225.004 .024.001 .011.001 .082.010 .843.033 .169.004

Conditional GPT-2 Reference

Conditioning MAUVE ↑ Mem ↓ MAUVE ↑ Mem ↓
World Sports Business Sci/Tech World Sports Business Sci/Tech

C
om

pa
ri

so
ns World .805.022 .012.000 .025.002 .021.002 .402.002 .963.009 .018.001 .034.002 .032.003 .388.007

Sports .017.001 .840.019 .012.001 .013.001 .369.004 .018.001 .958.007 .014.001 .014.002 .346.002

Business .037.003 .012.001 .629.029 .069.007 .479.007 .040.005 .014.001 .968.009 .125.009 .441.003

Sci/Tech .033.002 .013.001 .102.015 .697.027 .434.004 .036.003 .016.001 .133.013 .955.011 .366.003

5.3 Class-Conditonal Language Generation

Baselines. Conditional training with control tokens is one of the most widely used methods for
controlling autoregressive models [14, 29, 40, 33]. We prepend the class label to each sample as a
control token and fine-tune GPT-2-medium for class-conditional generation. Because memorizing
the training instances associated with each class is a trivial solution, we terminate training when the
model’s memorization exceeds the reference values.

Results. We evaluate the effectiveness of class-conditioning with the AG News topic classification
dataset. We sample instances for each class and compute the MAUVE scores between natural
instances from each class. We report these metrics in Table 5. We observe that the MAUVE scores are
highest when the conditioning and ground-truth labels are aligned across all methods, demonstrating
that the label guides the generation effectively. We observe that our approach is more consistently
effective at class-conditional generation, particularly for the two most similar classes, business and
sci/tech. The GPT-2 baseline is again more susceptible to memorization than our approach.

5.4 Sequence-to-Sequence Language Generation

Baselines. We compare against directly fine-tuning BART-base and FLAN-T5-base on the XSum
summarization and QQP paraphrasing datasets. For diffusion baselines, we compare against the
following continuous diffusion models learned in the space of word embeddings: DiffuSeq [16],
CDCD [13], DINOISER [73], and GENIE [38]. We also compare against the following discrete
diffusion models which learn to invert discrete corruption processes (e.g. masking): Reparameterized
Discrete Diffusion (RDM) [76] and DiffusionBERT [19]. We compare directly against the metrics
reported in prior work on our datasets. For XSum, we additionally train a DiffuSeq model using the
official implementation. We note that Gong et al. [16] typically train their models much longer than
ours. The XSum DiffuSeq model, for instance, is trained for over 3 × more epochs than our approach.
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For machine translation, we compare directly against the prior work that reported SacreBLEU scores
to ensure a fair comparison [48].

Table 6: Seq2Seq Evaluation on QQP. Results
from fine-tuned language models are in gray.

Method Sampling Rouge-1/2/L ↑ BERTScore ↑

DiffuSeq [16] Random 55.2/29.2/52.7 82.4
RDM-absorbing [76] Random —/—/57.9 83.7
RDM-multinomial [76] Random —/—/57.3 83.7
LD4LG (BART-base) Random 62.6/39.0/60.3 85.8
LD4LG (FLAN-T5-Base) Random 62.1/38.4/59.7 85.8

DiffuSeq [16] MBR-10 —/—/58.8 83.7
RDM-absorbing [76] MBR-10 —/—/59.5 84.7
RDM-multinomial [76] MBR-10 —/—/58.5 84.7
DiffusionBERT [19] MBR-10 —/—/58.9 —
LD4LG (BART-base) MBR-5 63.3/40.3/61.1 86.2
LD4LG (FLAN-T5-Base) MBR-5 63.0/39.7/60.7 86.1

DiffuSeq [16] Oracle-5 67.4/43.9/65.8 83.7
LD4LG (BART-base) Oracle-5 68.0/46.6/66.0 87.2
LD4LG (FLAN-T5-Base) Oracle-5 67.8/46.0/65.7 87.2

BART-Base Nucleus 51.5/28.1/48.3 79.9
FLAN-T5-Base Nucleus 55.0/30.1/52.3 83.2

BART-Base Beam 61.9/39.0/59.5 85.5
FLAN-T5-Base Beam 63.0/40.1/60.5 86.2

Table 7: Seq2Seq Evaluation on XSum. Results
from fine-tuned language models are in gray.

Method Sampling Rouge-1/2/L ↑ BERTScore ↑

DiffuSeq [16] Random 18.9/1.3/13.6 46.8
LD4LG (BART-base) Random 37.6/15.5/30.8 74.1
LD4LG (FLAN-T5-Base) Random 38.1/15.9/31.2 74.8

DiffuSeq [16] MBR-5 19.3/1.7/14.1 46.9
LD4LG (BART-base) MBR-5 38.2/16.2/31.5 74.5
LD4LG (FLAN-T5-Base) MBR-5 38.7/16.6/31.9 75.2

DiffuSeq [16] Oracle-5 23.5/2.3/18.6 47.9
GENIE [38] Oracle-5 37.3/15.3/29.4 —
GENIE w/ pre-training [38] Oracle-5 41.2/19.1/33.4 —
LD4LG (BART-base) Oracle-5 42.4/19.4/36.4 75.3
LD4LG (FLAN-T5-Base) Oracle-5 43.0/20.0/37.2 76.1

BART-Base Nucleus 35.1/13.3/27.7 73.1
FLAN-T5-Base Nucleus 34.6/12.9/27.2 72.7

BART-Base Beam 39.9/18.0/32.6 75.6
FLAN-T5-Base Beam 39.7/17.7/32.3 75.3

Table 8: Machine translation results on
WMT14-En-De. Baseline results are from
[13, 73].

Method Sampling SacreBLEU

En→De De→En

CDCD [13] Random 19.3 24.9
LD4LG (MT5-base) Random 21.4 26.2

Diffusion-LM [36] MBR-5 15.3 17.3
CDCD [13] MBR-10 19.7 25.4
DINOISER [73] MBR-5 24.3 28.8
LD4LG (MT5-base) MBR-5 22.4 27.0

Results. We present our comparison on QQP and
XSum in Table 6 and Table 7. Our approach signifi-
cantly outperforms recent diffusion language models
across both datasets, especially for the more challeng-
ing XSum dataset. For instance, DiffuSeq is reason-
ably effective for QQP, but it struggles with XSum
and fails to generate coherent text (see samples in
appendix). Our method, on the other hand, is compet-
itive with fine-tuning. LD4LG narrowly outperforms
fine-tuning on QQP with MBR decoding, but the fine-
tuned models are slightly more effective on the XSum
dataset. Across both datasets, LD4LG with oracle
sampling outperforms all approaches (including di-
rect fine-tuning methods) with just 5 random samples.
This demonstrates that LD4LG has good coverage,
but MBR decoding does not consistently identify the best candidate. In our experiments, we use
classifier-free guidance with guidance strength w = 2.0. We ablate this choice with validation
samples in Figure 3 and observe that such guidance meaningfully improves performance.

Figure 3: Ablation of classifier-free guid-
ance on the XSum summarization bench-
mark.

We report our machine translation results in Table 8. We
observe that LD4LG outperforms the Diffusion-LM and
CDCD baselines although it lags behind the DINOISER
baseline. This demonstrates that our method can effec-
tively take advantage of strong pre-trained multilingual
language models for effective multilingual generation.

6 Future Work

Our experiments demonstrate that latent language diffu-
sion models can generate high-quality natural language
in a variety of settings. In continuous domains, diffusion
models are remarkably effective for applications ranging
from image editing [41] to solving inverse problems [64].
We are excited to explore the potential applications en-
abled by effective language diffusion models. We expect
that LD4LG is a natural fit for applications such as lan-
guage editing (e.g. style transfer) and controllable generation (e.g. mitigating toxicity).
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Despite achieving good performance, LD4LG has important limitations. Sampling from diffusion
models is slow due to the iterative generative process. LD4LG improves upon some prior continuous
text diffusion models (that use 2000 steps) and only uses 250 sampling steps. However, speeding up
the inference process of diffusion models is an active area of research and techniques developed for
image diffusion can likely be adapted for LD4LG [65, 57]. Song et al. [65], for instance, distilled
a trained image diffusion model to produce high-quality samples in a single step. We leave the
extension of such techniques to language generation as future work. In subsection 5.4, we observe
that diffusion models have excellent coverage but MBR decoding fails to identify the best candidate;
developing improved sampling procedures or candidate re-ranking methods would likely improve
performance for tasks such as summarization and machine translation.

7 Related Work

Diffusion models. Diffusion models [61, 22] are a class of generative models that have led to
impressive results in image synthesis, recently surpassing Generative Adversarial Networks [17, 12].
These models typically operate directly in pixel-space, learning a distribution over images. Rombach
et al. [52] introduced latent diffusion for image synthesis and demonstrated that they can be learned
in the latent space of a pretrained autoencoder. Latent diffusion has since been successful in other
domains such as audio synthesis [32], symbolic music generation [58], and molecule generation [71].

Diffusion for Language. Prior work has focused on directly modeling discrete data by designing
diffusion processes for discrete state spaces [25, 3, 26]. Li et al. [36] train a continuous diffusion
model in the space of token embeddings that are learned jointly with the denoising objective and
decode generations with a rounding step. Strudel et al. [67] scaled up this approach and instead
learn the diffusion model in the space of pretrained word embeddings and find that low-dimensional
embeddings are better suited for diffusion. Gong et al. [16] extend Diffusion-LM [36] to sequence-to-
sequence tasks by concatenating the source and target sequence and only performing diffusion for the
target sequence. Chen et al. [8] map words to arbitrary binary strings, represented as a sequence of
real numbers. They then train a continuous diffusion model and round the generated sequences to
produce binary strings. The authors also introduce self-conditioning, which we adopt for our method.

8 Conclusion

In this work, we demonstrate that latent diffusion is an effective paradigm for language generation. To
achieve this, we introduce a method for compressing the high-dimensional, variable-length language
representations from pre-trained language models into a compact, fixed-size latent representation that
can be decoded into natural language. This compact latent representation is, by design, well-suited
for learning continuous latent diffusion models. Our latent language diffusion models are effective
for unconditional, class-conditional, and sequence-to-sequence language generation. They offer
some benefits over fine-tuned auto-regressive language models and significantly outperform recent
diffusion language models across a variety of datasets.
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A Diffusion Models

We present a formal description of diffusion [22, 62, 30]. Diffusion models are latent variable models
with latents z = {zt|t ∈ [0, 1]} that are given by the forward diffusion process q(z|x), with the data,
x ∼ p(x), being drawn from an unknown distribution.

The forward process is a Markovian process that iteratively adds Gaussian noise to the data over time

q(zt|x) = N (zt;
√
αtx, (1− αt)I), q(zt|zs) = N (zt;

√
αt|szs, (1− αt|s)I)

where αt|s = αt/αs and 0 ≤ s < t ≤ 1. The noise schedule, specified by αt ∈ [0, 1], decreases
with t until the final latent becomes approximately Gaussian, q(z1) ≈ N (z1;0, I) — independent of
the original data. The forward process therefore defines a transition from the data distribution to a
Gaussian distribution.

Given access to the original data x, the forward process can be inverted analytically. For t > s, we
have

q(zs|zt,x) = N (µQ(zt,x, s, t), σ
2
Q(s, t)I)

where

µQ(zt,x, s, t) =

√
αs(1− αt|s)

1− αt
x+

√
αt|s(1− αs)

1− αt
zt, σ2

Q(s, t) =
(1− αs)(1− αt|s)

1− αt
.

We utilize this to define our generative process. Because x is unavailable during generation, we
train a neural network to approximate the original data given some noisy latent and the timestep,
x̂θ(zt, t) ≈ x. The denoising network is trained utilizing a regression loss

L(θ) = Et,x,ϵ[λt∥x̂θ(
√
αtx+

√
1− αtϵ, t)− x∥22]

with some time-dependent weighting λt. This loss function can be motivated as the weighted
variational lower bound of the log likelihood of the data under the forward diffusion process [22, 31].
In practice, the denoising network is often parameterized as an ϵ-prediction network [22] or a
v-prediction network [57] where the velocity, v, is defined as v =

√
αtϵ −

√
1− αtx. These

parameterizations can be interpreted as different weighting functions, λt, for the regression objective
[57]. We adopt the v-parameterization throughout this work.

With a trained denoising network, we define our generative process as

pθ(zs|zt) = N (zs;µθ(zt, s, t), σ
2(s, t)I)

where
µθ(zt, s, t) = µQ(zt, x̂θ(zt, t), s, t), σ2(s, t) = 1− αt|s.

We therefore substitute our estimate of the clean data into the posterior distribution of q(zs|zt,x)
to parameterize the mean of our generative process pθ(zs|zt). We follow Ho et al. [22] and set the
variance of pθ(zs|zt) to σ2(s, t) = 1− αt|s, a choice given by the variance of the forward process.

For generation, we utilize the standard DDPM sampler, also known as the ancestral sampler [22]. We
sample some initial noise zt1 = z1 ∼ N (0, I) and iteratively apply the update rule

zti+1 = µθ(zti , ti+1, ti) + σ(ti+1, ti)ϵ

where ϵ ∼ N (0, I) and the intermediate timesteps 1 = t1 > t2 > ... > tT = 0 linearly interpolate
between 1 and 0. We use T = 250 sampling timesteps by default.

B Additional Language Autoencoder Results

We present results for our language autoencoders on XSum, QQP and WMT14 in Table 9. We
observe that our proposed language autoencoders are similarly effective for these datasets.

We also ablate the performance as we vary the dimensionality of the latent space in Table 10. We
observe, as expected, that the reconstruction performance improves as the dimensionality of the latent
space increases and degrades as we decrease the size of the latent representation. We found our
default dimensionality of 32× 64 to be generally effective for high quality reconstructions across
datasets.
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Table 9: Effectiveness of Language Autoencoder
Method Latent Dimensions Hidden Units XSum QQP

Rouge-1/2/L BLEU Rouge-1/2/L BLEU

BART-Base L× 768 ≤ 49,152 99.9/99.9/99.9 99.9 99.9/99.9/99.9 99.8
BART-Base Autoencoder 32× 64 2048 99.8/99.6/99.8 99.3 99.9/99.8/99.9 99.1

FLAN-T5-Base L× 768 ≤ 49,152 65.7/51.2/59.9 45.7 26.9/14.1/24.3 10.8
FLAN-T5-Base Autoencoder 32× 64 2048 99.6/99.3/99.6 98.8 99.8/99.5/99.7 98.5

WMT14 English WMT14 German

Rouge-1/2/L BLEU Rouge-1/2/L BLEU

MT5-Base Autoencoder 32× 64 2048 99.7/99.2/99.7 99.2 99.8/99.4/99.8 99.1

Table 10: Ablation of Autoencoder Latent Dimensionality
Method Latent Dimensions Hidden Units RocStories

Rouge-L BLEU

BART-Base L× 768 ≤ 49,152 98.8 97.5

BART-Base
Autoencoder

32× 32 1024 97.0 92.4
32× 64 2048 99.2 97.6
64× 64 4096 99.2 97.7

C Impact of Sampling Steps

We present the results from different sampling configurations for the ROCStories dataset in Table 11.
We also report the wall clock time needed to generate the 1000 samples across the different numbers
of sampling timesteps while batching the generations with a batch size of 128.

We find that the number of sampling steps introduces a tradeoff between the diversity and the quality
of the text, with more sampling steps leading to more fluent but less diverse text and fewer sampling
steps leading to less fluent but more diverse text. When using BART-base, the MAUVE score is
maximized when utilizing only 100-250 steps, demonstrating that it achieves a reasonable balance
between diversity and quality. When utilizing FLAN-T5-base, on the other hand, we find that the
MAUVE score improves monotonically with increased sampling steps. This suggests that the latent
distribution of the FLAN-T5-base autoencoder may be more challenging to learn. Increasing the
capacity of the denoising network or the language autoencoder may therefore be beneficial when
using FLAN-T5-base.

We observe that the sampling time scales with the number of sampling steps as expected, although
there is also a fixed cost from the reconstruction network and the autoregressive decoder that is
independent of the number of sampling steps.

Table 11: Evaluation of different sampling configurations. We use 250 steps by default.

ROCStories

Sampling Steps MAUVE ↑ Ppl ↓ Div ↑ Mem ↓ Wall Clock Time (1000 samples)

Reference - .951.007 21.1.3 .414.003 .362.003 -

LD4LG (BART-base)

50 .684.031 52.6.3 .407.004 .337.003 1m27s
100 .719.022 38.5.8 .368.002 .392.001 1m55s
250 .716.019 30.6.5 .331.005 .441.004 3m20s
500 .704.033 28.1.3 .313.003 .462.003 5m44s
1000 .667.026 25.9.1 .295.002 .481.004 10m30s

LD4LG (FLAN-T5-base)

50 .331.028 67.9.7 .456.001 .283.001 1m34s
100 .421.012 48.7.7 .423.002 .334.002 2m02s
250 .481.007 37.5.4 .389.002 .387.002 3m29s
500 .495.024 32.8.6 .370.006 .413.006 5m51s
1000 .522.023 30.6.3 .360.004 .432.005 10m38s

17



Table 12: Evaluation of different nucleus sampling configurations.

ROCStories

Sampling Parameter (p) MAUVE ↑ Ppl ↓ Div ↑ Mem ↓

GPT-2-Medium

.90 .762.027 19.6.3 .362.008 .718.006

.95 .788.025 20.0.2 .372.002 .688.006

.98 .782.020 20.2.3 .378.002 .666.008
1.00 .793.024 20.5.4 .385.004 .637.006

D GPT-2 Sampling Ablation

We report an ablation of the nucleus sampling parameter, p, in Table 12. The memorization does
exhibit some sensitivity to the nucleus sampling parameter, but the memorization is consistently
higher than the LD4LG models across all sampling configurations.

E Implementation Details

All of the models presented in this work are trained on a single Nvidia A6000 except for the DiffuSeq
XSum baseline which was trained with two Nvidia A6000s.

E.1 Language Autoencoders

We adopt the pre-LN design [70] for both the compression and reconstruction networks and therefore
apply layer normalization before all attention and feedfoward blocks. We also adopt query-key
normalization [11] and apply RMSNorm [74] to the queries and keys before computing the dot product
similarities in the attention mechanism. We found that this enabled training with a larger learning rate
which accelerated training. We present the hyperparameters for our language autoencoders across all
datasets in this work in Table 13.

We also report additional details such as the number of trainable parameters and training time. The
training time is similar across datasets because we use the same hyperparameters, so we simply report
the training times for the ROCStories dataset for the monolingual models. For the MT5-base base
autoencoder, we report the training time for the German autoencoder which is similar to the English
autoencoder. We note that our implementation is not optimized for runtime and that pre-computing
and caching the language encoder representations would significantly accelerate training.

E.2 Latent Diffusion For Language Generation

We present the training details across the different datasets in Table 14. We tuned hyperparameters
using the validation MAUVE scores for the ROCStories dataset and found that they generally
transferred well across datasets. We therefore used the same hyperparameters across datasets, except
that we utilized the L1 loss instead of the L2 loss for the Seq2Seq tasks. Consistent with prior work
on image-to-image diffusion models [53], we observed that the L1 loss improved the fidelity of the
generations at the cost of sacrificing some diversity. This improved fidelity translated to improvements
in our metrics of interest, although the L2 loss may still be desireable for settings where diversity is of
greater importance. For the unconditional and class-conditional language models, we did not observe
overfitting to be a problem and simply use the final checkpoint for evaluation. For the monolingual
Seq2Seq tasks, we utilize the checkpoint with the best validation ROUGE-L. For machine translation,
we utilize the checkpoint with the best validation SacreBLEU.

For the machine translation experiments, we observed benefits from rescaling the noise schedule to
emphasize training at higher levels of noise. This idea was introduced by Hoogeboom et al. [27] and
Chen [7] to improve high-resolution image diffusion models. Both Hoogeboom et al. [27] and Chen
[7] shift an existing noise schedule by some scale factor, s, to increase the time spent at higher noise
levels. Given a noise schedule αt with SNR λt =

α2
t

1−α2
t

, the shifted noise schedule, αt,s ∈ [0, 1], is
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Table 13: Training details for our language autoencoders.

Language Model

BART-base FLAN-T5-base MT5-Base

Trainable Params 26M 26M 591M
Compression Architecture Perceiver Resampler [2]
Perceiver Layers 3 3 1
Perceiver Dimension 768 768 768
Self-Attention Heads 12 12 12
Autoencoder Latent Length (ℓ) 32 32 32
Autoencoder Dimension (dae) 64 64 64
Reconstruction Architecture Transformer [69]
Transformer Layers 3 3 1
Transformer Dimension 768 768 768
Self-Attention Heads 12 12 12
Activation Function GELU [20]
Max Seq Length 64 64 128
Optimizer AdamW [39]
Learning Rate 1e-4 1e-4 1e-4
(β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Batch Size 256 256 128
Warmup Steps 1000 1000 1000
Learning Rate Schedule Linear Decay
Weight Decay 1e-2 1e-2 1e-2
Gradient Clipping 1.0 1.0 1.0
Training Steps 50k 50k 50k
Training Time 12h38m 20h17m 20h29m

defined so that
α2
t,s

1− α2
t,s

= λt,s = λt ∗ s2 =
α2
t

1− α2
t

∗ s2.

Given αt and the scale factor s, the scaled noise schedule αt,s can be computed in closed-form. Using
the relationship that α2

t = sigmoid(log(λt)) (see Kingma et al. [30]), the new noise schedule can be
computed as

α2
t,s = sigmoid(log(λt,s)) = sigmoid(log(λt ∗ s2)) = sigmoid(log(λt) + 2 log(s)).

We employ a shifted cosine noise schedule with s = 0.1 for machine translation. Past work on text
diffusion for machine translation observed that training at higher levels of noise improves the models
utilization of the conditioning information (i.e. the source sentence) [73].

During the inference process, image diffusion models typically rescale the estimate of the data to the
range of pixel values (i.e. [-1,1]) at each sampling step. When we restrict the latent space so that
∥xi∥22 = dae, we similarly rescale the intermediate estimates of the data to enforce this constraint.
This design decision is not critical and similar performance is achieved without this rescaling. We
did, however, observe that this made the generative process more robust to large guidance weights
which may be important in some settings. This observation is consistent with prior findings from
text-to-image diffusion [55].

We also report the wall clock times for training the models, although our implementation could
be further optimized to improve training times. The primary cause of the slowdown for AG News
compared to ROCStories, for instance, stems from additional validation sampling and logging for
class-conditional generation during training.

When decoding the sampled latent vectors, we utilize beam search with a beam size of 4, a repetition
penalty of 1.2 [29], and prevent generations of duplicate trigrams.

E.3 BART-Diffusion

For our BART-Diffusion baseline, we utilize the same denoising architecture as our LD4LG method.
As discussed in the main paper, the sequence length of the BART features vary with the length of
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the input text. During training, the sequence length is simply determined by the training instance.
To select the length of the Gaussian noise during generation, we sample a length from the empirical
distribution of lengths in the training set.

We observed that the v-prediction parameterization was less effective in this setting and the ϵ-
prediction parameterization was unstable. We therefore adopted the x-prediction parameterization.
This is consistent with past work that has found the x-prediction parameterization to be more effective
for high-dimensional data [36, 8].

Another challenge is that we can no longer control the scale of the latent space. We therefore follow
common practices from latent image diffusion and normalize the latent space to have unit variance
[51]. When normalizing the latent space, we utilize the first batch of training data to compute
the mean for each feature dimension, averaging across the samples in the batch and the sequence
lengths of the samples. Therefore, we compute the mean vector µ̂ = 1

bℓ

∑︁
b,ℓ xb,ℓ, µ̂ ∈ Rd where

x ∈ Rb×ℓ×d is some batched data. We then compute the global variance across all dimensions in the
centered latent space σ̂2 = 1

bℓd

∑︁
b,ℓ,d(xb,ℓ,d − µ̂d)

2, σ̂2 ∈ R to rescale the latent space to have unit
variance. We otherwise train this baseline with the same hyperparameters as LD4LG.

E.4 Diffusion LM

We train our Diffusion-LM models utilizing the public implementation by Li et al. [36]2. We utilize
the provided command and hyperparameter settings for the ROCStories dataset. To adapt it to the
AG News dataset, we increase the batch size from 64 to 128 and set the number of training steps to
250k match our training configuration. We otherwise utilize the same hyperparameter settings as the
ROCStories model. We attempted to double the learning rate from 1e-4 to 2e-4 to account for the
doubled batch size, but observed training instabilities and therefore used the original learning rate of
1e-4.

E.5 GPT-2

We present the default hyperparameters for the GPT-2-Medium baseline in Table 15. For sampling
from GPT-2, we prompt it with a BOS token and utilize nucleus sampling (p = 0.95). We use the
same repetition penalty of 1.2 [29] that we use for the LD4LG language decoders and similarly
prevent generations of duplicate trigrams.

E.6 DiffuSeq

For the QQP dataset, we compute the metrics with the model generations released by Gong et al.
[16]. We utilize the official implementation from Gong et al. [16]3 to train a DiffuSeq model on
the XSum dataset. In their work, the DiffuSeq models were trained with the same hyperparameters
across all datasets considered, except for the number of training steps which varied across datasets.
We therefore adopt their default hyperparameters for the XSum dataset.

We observed that the DiffuSeq models were trained for much longer than our models. The official
implementation also utilized gradient accumulation with microbatches of 128 to achieve a large
effective batch size of 40964. We trained the XSum DiffuSeq model for 960k iterations which is
significantly longer than the 250k iterations used by our LD4LG XSum model. Due to the use of
gradient accumulation, this corresponds to 30k gradient updates. The XSum DiffuSeq baseline was
therefore trained for over 3.8× more epochs than our method.

A limitation of the DiffuSeq model compared to LD4LG is that it concatenates the source and target
sequences as the input to their transformer model. DiffuSeq therefore scales quadratically with
respect to the combined length of the source and target sequence. Our denoising network, on the
other hand, operates upon a fixed sequence length of ℓ = 32 latents and only cross-attends to the

2https://github.com/XiangLi1999/Diffusion-LM
3https://github.com/Shark-NLP/DiffuSeq
4We note that the original DiffuSeq implementation had a bug in its implementation of distributed training

(see https://github.com/Shark-NLP/DiffuSeq/issues/37. We describe the behavior of the original
implementation.
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source representations. As a result, our method scales linearly with respect to the length of the source
sequence5. This enables LD4LG to more efficiently incorporate long contexts than DiffuSeq.

By default, the official DiffuSeq implementation limits the combined length of the source and target
sequences to a maximum length of 128. This could put it at a disadvantage compared to our model
which incorporates up to 256 tokens of the source sequence. To ensure a fair comparison, we also
experimented with increasing the maximum sequence length for the DiffuSeq model to 256 tokens,
which significantly increases the training overhead. After training the model for 640k iterations,
which took 5 days with two Nvidia A6000 GPUs, we observed worse performance than the model
using the default length of 128.

E.7 Encoder-Decoder Language models

We report training hyperparameters for fine-tuning the pre-trained encoder-decoder language models
models on the Seq2Seq datasets in Table 16. We perform early stopping with the validation ROUGE-
L.

E.8 Evaluation Metrics

For the MAUVE, ROUGE, BLEU, BERTScore, Perplexity, and SacreBLEU metrics, we utilize
the implementations provided by the Huggingface evaluate library (https://huggingface.co/
docs/evaluate/. For SacreBLEU, we follow prior work and use the intl tokenizer if the target
language is German and use the 13a tokenizer if the target language is English.

For the n-gram metrics, we utilize the en_core_web_sm tokenizer from Spacy (https://spacy.
io/) to split the generations into tokens.

F Dataset Statistics

ROCStories [42]. The dataset consists of 98,161 instances. We hold out 1,000 instances for
validation, 4,000 instances for testing, and utilize the remaining 93,161 instances for training.

AG News Topic Classification [60]. The dataset consists of titles and short descriptions from news
articles. We discard the titles and focus on generating the descriptions in this work. The official
train/test splits have 120k training instances and 7,600 testing instances. We hold out 1,000 instances
from the training set for validation. We therefore utilize 119k training instances, 1,000 validation
instances, and 7,600 test instances.

XSUM [43]. The dataset consists of BBC articles from 2010 to 2017 covering a wide range of
topics (e.g., News, Politics, Sports, etc.). Each example in the dataset consists of a news article and a
summary. It has 204,045 training instances, 11,332 validation instances, and 11,334 test instances.

QQP [9]. The dataset consists of 400k question pairs, where example consists of two similar
questions and a binary value indicating whether the two questions have the same meaning. The
semantically similar questions can be utilized as a paraphrasing dataset. We use the version released
by Gong et al. [16] to enable direct comparison. It has 144,715 training instances, 2,048 validation
instances, and 2,500 test instances.

WMT 2014 English-German [5]. The dataset consists of roughly 4.5 million paired English
and German sentences for training. The validation and testing splits each have roughly 3k paired
sentences.

G Qualitative Examples

We present random unconditional samples from the diffusion models for the ROCStories (Table 17)
and AG News (Table 18) datasets. We note that because the Diffusion-LM learns token representations
from scratch and cannot model rare words, Li et al. [36] replace rare words with an UNK token. We
observe that these tokens are often generated, leading to incoherent text. This problem is particularly

5For LD4LG, the frozen language encoder still scales quadratically with the source sequence length, but the
source representations can be pre-computed and cached prior to training.
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Table 14: Training details for LD4LG across different datasets.

ROCStories AG News XSum QQP WMT14-En-De

Trainable Params 188M 190M 217M 217M 218M
Sampling Timesteps 250
Noise Schedule Cosine Cosine Cosine Cosine Shifted Cosine (s = 0.1) [27, 7]
Regression Loss L2 L2 L1 L1 L1
Transformer Layers 12
Transformer Dimension 768
Self-Attention Heads 12
Dense Connections [4] 3
Activation Function GeGLU [59]
Optimizer AdamW [39]
Learning Rate 2e-4 2e-4 2e-4 2e-4 4e-4
(β1, β2) (0.9, 0.999)
Batch Size 128 128 128 128 512
Warmup Steps 1000
Learning Rate Schedule Cosine Decay
Weight Decay 1e-6
Dropout 0.1 0.1 0.1 0.1 0.0
Gradient Clipping 1.0 1.0 1.0 1.0 0.2
EMA Decay 0.9999
Training Steps 250k 250k 250k 250k 500k
Max Seq Length (Source) n/a n/a 256 64 128
Training Time (BART-base) 1d 11h 1d 20h 2d 22h 1d 20h —
Training Time (FLAN-T5-base) 1d 17h 1d 21h 4d 2h 2d 7h —
Training Time (MT5-base) — — — — 9d 16h

Table 15: Training details for our autoregressive baseline across different datasets.

ROCStories AG News

Model GPT-2-Medium
Trainable Params 355M
Max Seq Length 64

Optimizer AdamW [39]
Learning Rate 8e-5

(β1, β2) (0.9, 0.999)
Batch Size 32

Warmup Steps 500
Learning Rate Schedule Linear Decay

Weight Decay 1e-2
Dropout 0.1

Gradient Clipping 1.0
Training Steps 100k

Table 16: Training details for our Seq2Seq baselines model.

XSum QQP

Model BART-base FLAN-T5-base BART-base FLAN-T5-base
Trainable Params 139M 220M 139M 220M

Max Seq Length (Source) 256 64
Max Seq Length (Target) 64

Optimizer AdamW [39]
Learning Rate 5e-5 1e-4 5e-5 5e-5

(β1, β2) (0.9, 0.999)
Batch Size 32

Warmup Steps 500
Learning Rate Schedule Linear Decay

Weight Decay 1e-2
Gradient Clipping 1.0

Training Steps 100k
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Table 17: Random samples from ROCStories dataset.

LD4LG (BART-base) LD4LG (FLAN-T5-base) Diffusion-LM

After a long line in line, Amy was
ready to carry her cart. She asked if
she should put the money in a bag.
The cashier gave her a quarter and
she opened the bag. She was happy
to see that she paid for the amount
on the line. The checkier checked
when she

Emma was playing with her doll
doll. She was having a good time
when suddenly she slipped! The
doll doll shattered in many places!
Emma was so upset she cried and
cried! Her mother took her home
and got her a new band-aid.

Tom was going to eat with friends.
But it was stressed out. So He de-
cided to go to the local bar. But
when he realized his friend was too
much. The police allowed home to
pull him home.

Barry was a popular high school stu-
dent. He always got good grades in
school. Barry’s friends all met up.
He arrived at his new job with a big
grin. Barry decided he would start
the new job as a teacher.

Max wanted to build a tree in his
backyard. He researched guides on
what kind of plant to plant. He
went online and cut trees so he could
see one that would cover large. He
bought all his supplies and drove
to the farm dealership. They had
planted a beautiful backyard in his
neighborhood.

Rita was about to go out in the UNK.
UNK was the UNK and Rita was
very nervous. She took out the
ball was beginning to UNK. She
kicked the ball still and knew she
was a good kid. She looked in her
shoulder and immediately ran to the
sound.

Michael had a crush on a girl. He
finally had the courage to talk to her.
Michael went over to her and she
walked down a hallway. They chat-
ted for hours. Michael wished he
had never asked another girl.

John and Molly thought it would be
fun to go to Europe. They decided
to take their little child to go swim-
ming. The child had a wonderful
time playing in the waves. They also
had ta lot of local food. They were
exhausted when they still had to re-
turn home.

I bought a new UNK. It was a UNK.
My friends asked it for some money.
We didn’t listen. I was declined.

Ed got a chihuahua. It escaped its
cage. Ed was able to free the chi-
huohua. He wanted to keep him so
he let it alone. Ed is able to keep the
rest out.

Yesterday lulu went to the theme
park. To her surprise her phone fell
out at the park. She was so disap-
pointed. But thankfully no one was
looking for it. She had to walk home
as fast as she could to get it.

Todd was walking his dog with his
dog. The UNK hit by minutes
close to check something out. There
was a small UNK and UNK off of
the ground. He got to the UNK’s
house to find UNK UNK. Todd’s
dog started to listen to the UNK of
it.

Maria was getting ready for her trip.
She wanted a specific bathing suit,
and went to the mall. She tried on
many different outfits, but none fit.
Maria realized she had found a great
deal while shopping. She bought
herself a nice suit.

Anna had been friends with her fam-
ily for years, but curious. Later,
Anna’s mom told her she might be
sick after a bad age. Anna broke up
with this, and swore that she would
not get sick. That night, Anna threw
up all over the house

Stacy wanted to learn how to ride
a horse. She found a long one
near her UNK. She decided to UNK
on. Finally she was able to ride a
UNK. Stacy was happy to be her
own horse.

pronounced for the AG News dataset which has a more diverse vocabulary and uses many proper
nouns such as names that are out-of-vocabulary. We also present random class-conditional samples
for the AG News datasets (Table 19 and Table 20) for all of the classes.

We present examples of sequence-to-sequence generations for QQP in Table 21 and XSum in Table 22.
While the DiffuSeq generations are somewhat reasonable for the simpler QQP paraphrasing dataset,
the model completely fails to produce coherent summaries for the challenging XSum dataset. This is
the case even though DiffuSeq is trained for significantly longer than LD4LG and uses 8× as many
sampling timesteps.

23



Table 18: Random samples from AG News dataset. HTML entities are decoded for readability.

LD4LG (BART-base) LD4LG (FLAN-T5-base) Diffusion-LM

What could have been a decisive
role in Disney’s merger of a lead-
ing media group, but not only it
appears to have been. Last night,
the founders of the media conglom-
erate’s leading stock management
unit, introduced legislation capping
the

Sachin Tendulkar has found himself
fit to India’s batting squad ahead
of this weekend’s final and final
session of the first Test against
Bangladesh in East Oval.

UNK UNK UNK UNK UNK -
UNK, UNK - UNK UNK UNK de
UNK, the UNK UNK UNK, the
UNK UNK of a UNK UNK UNK
UNK.

The startup provider will provide
CRM-based services for small and
midsize businesses on its offices.

America Online and Ask Jeeves set-
tle over file-swapping technology
that could lead to lawsuits against
hundreds of online businesses and
result in fraud.

A federal grand judge has reached a
new $ UNK stake in UNK for the $
35 billion, UNK leading investors to
the UNK. & <FONT face="verdana,
MS Sans Serif, arial, helvetica "
size="-2 " Washington UNK ;

Real Madrid moved to the top
of the Bayern Munich’s Premier
League standings on Wednesday,
with Atletico Atletico in charge fol-
lowing a 2-0 draw against Porto.

Reuters - U.S. oil and gas compa-
nies will try to develop and develop
a new greenhouse gas system over
the next two years in a bid to give
a more cautious sense of environ-
mental conditions for the economy,
a senior US Energy Department of-
ficial said on Wednesday.

North Korea’s UNK UNK and UNK
UNK UNK UNK the UNK of UNK,
UNK UNK, UNK UNK UNK 6 - 4,
6 - 4 at the $ UNK US UNK today.

Reuters - Three more Americans
will be able to make cloning cloned
research to make medical research
and innovation that brings them to
the massive victims of tuberculosis
vaccine, the British government an-
nounced on Friday.

Andre Agassi upset Carlos Moya 6-
4, 6-2, 6-3 to reach the Stockholm
Trophy for the first time on Sunday
and wrapped up his first grand slam
title.

LONDON ( Reuters ) - It was
UNK but the European team’s UNK
man’s Davis Cup game was upheld
in the last week due to their start
into the semi - finals, manager said.

Gary Sidson wants the Miami Heat
step down from the Dallas Maver-
icks at the end of the offseason after
undergoing medical proceedings to
relieve him. Sidson told The As-
sociated Press. "Every wife has a
choice" to make him head with

Canada’s rules for federal audits
pose a threat to Canadian compa-
nies, some wanting to keep journal-
ists out of their jobs, Sen. Thomas
Powell warned during his annual
meeting of the Securities and Ex-
change Commission last summer.

UNK - UNK UNK, the UNK of
the UNK UNK has decided to stop
UNK to the old UNK : UNK UNK
UNK a UNK, of his father UNK of
UNK.
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Table 19: Random conditional samples from AG News dataset. HTML entities are decoded for
readability.

LD4LG (BART-base)

World Sports Business Sci/Tech

President Bush’s re-
election has been a
number of central issues
of the Middle East,
but it appears to have
happened. He headed
the US intelligence
committee’s re-election
yesterday, prompting
end of the

Australia have dropped
their suspension for next
week’s game of the first
cricket series against In-
dia, but it seems to have
emerged. Last night,
owners of the Inter-
national Cricket Coun-
cil’s leading governing
body, announced plans
for scrapping the

What could have been
the final step in Dis-
ney’s merger of a lead-
ing media group, but it’s
likely to happen. Last
year, the longtime media
conglomerate’s (NYSE:
news - research) re-
search and cable empire
topped the $10

What could have been
a role in the digital’s
business of the record
industry, but it already
makes a message to
investors. Last year,
founders of the mu-
sic industry’s leading
record companies, pro-
posed legislation scrap-
ping the

AP - The Bush ad-
ministration has agreed
to change its portfo-
lio of redeploying addi-
tional U.S. troops to Iraq
to prevent possible de-
ployment of many U.K.
troops there, the White
House and Democratic
lawmakers said Friday.

You go home, sit uni-
form and work in four
times. Every day now
the Expos are starting to
change, along with many
people. I want to get us
about the goals and fore-
casts of their playoff

The internet phone
provider will charge
fee-based phone calls
more closely to keep
consumers in their
hands.

The upstart will provide
satellite-based phone ser-
vices and more services
to help customers man-
age their Web applica-
tions.

The government stepped
up a programme yester-
day to monitor Russia’s
school siege, including
a school in Beslan in a
school where more than
400 people have fled
Russia.

Real Madrid could be in
trouble to disrupt Bay-
ern Munich’s Champi-
ons League clash with
Porto at the San Siro
on Sunday. Although
the recent hat-trick from
Ronaldinho has helped
Brazil

The Kremlin asked a
court order yesterday
to punish Irina Yukos’
CEO, chairman of Rus-
sia’s state gas monopoly
and the beleaguered oil
firm Yukos.

The Cassini-US space-
craft continues to moni-
tor Saturn’s largest moon
Titan, Saturn’s larger
moon Titan. A region
where the swirling of
dust and dust have trig-
gered Saturn

Reuters - Prince
Thatcher will be re-
leased in Cuba after
undergoing a brain
surgery, her father said
on Friday as she flew to
the Middle East to help
patients evacuate her.

AP - Terrell Owens
will be suspended indef-
initely for the Kansas
City Chiefs due to Hur-
ricane Frances, and he
will return to the team
Sunday when they face
the Tampa Bay Bucca-
neers.

Where you’ve ever seen
any wireless lending us-
ing the Internet you see
in your house, or brings
it to a great shift when
you teleport to the net?

Reuters - stem cells can
be used to make cloned
cells for medical re-
search experiments and
innovations that could
open the open to future
women cloning, British
researchers reported on
Friday.

NEW DELHI: Prime
Minister Manmohan
Singh asked the gov-
ernment to do more at
reviving the Kashmir
peace process with India.
Singh, a spokesman for
the Association of Ase
Nations on Monday said
the Indian Government
is willing to post off

ATHENS – Paul
Hamm made a surprise
exit from the Athens
Olympics in favor of the
Olympics after entering
the Games but plans to
give him, his spokesman
said Monday. "No one
has a mistake" to the US
gymnastics body.

MOSCOW (CBS.MW)
– Supporters of Rus-
sia’s beleaguered oil
firm Yukos have an-
nounced they will file
for bankruptcy this week
to press ahead with a
$1.1-billion back-tax
bill.

NewsFactor - IBM
(NYSE: IBM) is ac-
quiring its WebSphere
division in a deal valued
at US $160 million
in cash. Meanwhile,
the companies said
the deal valued of US
$1.5 billion for Sybase
(Nasdaq: ADABECKs)
(Rasdaq
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Table 20: Random conditional samples from AG News dataset. HTML entities are decoded for
readability.

LD4LG (FLAN-T5-Base)

World Sports Business Sci/Tech

British Prime Minister
Tony Blair met secu-
rity officials at Queen’s
Palace in London just
two weeks after the US-
led invasion of Iraq.

LeBron James did all
of them they needed,
leading the Sacramento
Kings to a 92-80 victory
Friday night against the
Toronto Raptors at Air
Canada Center.

US Airways has reached
an agreement with
its pilots representing
the nation’s biggest
airline, just three weeks
after emerging from
bankruptcy protection.

The first close-up images
of Saturn’s largest moon
Titan have been seen sev-
eral times or long on
August 28th this image
captured by the Cassini
Space Telescope.

AFP-based Southeast
Asian countries agreed
to negotiations on a
job-cutting deal that
could result in a trade
fiasco in the world’s
biggest economy and
a solution to post-war
conflict.

AFP-Ajax Amsterdam
coach Rafael Nedved set
aside to order a shake-
up of the Spanish pre-
mier league club after a
month of speculation.

SAN FRANCISCO
(CBS-MW): Cingular
Wireless is close to talks
over a possible US $11
billion purchase of US
storage firm Veritas
Software.

America Online and Ask
Jeeves continue to work
on file-swapping tech-
nology that could lead to
hundreds of online busi-
nesses of revolution.

WASHINGTON
(Reuters) - U.S. health
and health officials
agreed on Wednesday
to begin testing a new
biodegradable drug that
tests questionable risks
of heart disease, with a
newly published report
from the Food and Drug
Administration (FDA)
only the only one likely
to have

AP - The University of
Washington announced
Wednesday that its new
football coach, Tyrone
Willingham will be serv-
ing as head coach at
Notre Dame for its only
second run in the va-
cancy.

WASHINGTON
(Reuters) - U.S. chain
store sales grew by 0.2
percent in the latest
week, held back by
the biggest year-earlier
pace in history, the
Commerce Department
said on Wednesday.

Reuters’s web search
leader Yahoo will begin
testing a new desktop
search engine with Web
searches next month in a
bid to maintain Google’s
remaining foothold in
the Internet world, a
company executive said
on Wednesday.

Voters had to cast their
ballots in Afghanistan’s
landmark presidential
election with an easy
and easy win over
Hamid Karzai as its first
popularly elected leader.

Miguel Jimenez shot a
4-under 66 to take a
one-stroke lead over Car-
los Moya after the third
round of the PGA Tour
tournament.

’We’re all wanted to win
one - I all want to do
that, "Tiger Woods’ had
already had a very cru-
cial victory.

Grand Theft Auto
needed only 200,000 to
get on Xbox; although
they just wanted to do so,
it’s just very impressive.

AP - Records of the oil-
for-food market and job
embargoes produce yet
another political stale-
mate for Democratic
Sen. John Kerry’s ef-
fort to end the lawsuits
of journalists, including
the ones carried out by
the White House, at the
summer weekend

AP: The Boston Red Sox
are old, but the slugger
of baseball is old, de-
spite an expected flurry
of diplomacy and out-
rage from fans that the
holidays will bring their
way at Fenway night,
Sunday night end

The new Securities and
Exchange Commission
rules will lead to a
deep defence of corpo-
rate business and the
company will continue
its oversight of account-
ing practices, US U.S.
Senator Thomas Powell
warned during a brief
with the Security and Ex-
change Board last night.

If file-sharing services
are legal, the Federal
Court of Justice (FTC) is
not liable for copyright
infringements in the UK,
which was brought in
by the Federal Trade
Commission (FTC) rul-
ing, brought in yester-
day.
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Table 21: Samples from QQP Paraphrasing Dataset.

Source: What are some creative and innovative business ideas with less investment in India?

Reference: What are some best business ideas with minimum investment?

LD4LG (BART-Base) LD4LG (FLAN-T5-base) DiffuSeq

What are some innovative business
ideas with less investment?

What are some creative business
ideas with lesser investment?

what are best business ideas with
less class investment?

What are some new business ideas
with minimum investment?

What are some new business ideas
with minimum investment?

what are some business ideas with
less investment in india?

What are some new business ideas
with lesser investment?

What are some new business ideas
with lesser investment?

what are some business ideas with
available in india?

Source: Can height increase after 25?

Reference: Can someone increase their height naturally after 19?

LD4LG (BART-Base) LD4LG (FLAN-T5-base) DiffuSeq

Is it possible to increase their height
after the age of 25?

Is it possible to increase height after
the age of 21? how can i increase taller after 21?

Is it possible to increase the height
after the age of 21?

Is it possible to increase height after
the age of 25?

how can i increase height at after
21?

Is there any way to increase the
height after 21?

Is it possible to increase height after
age of 21?

how girls is increase our height? can
be his, 21 18 years?
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Table 22: Samples from XSum Summarization Dataset. Parts of the articles are omitted for brevity.

Article: Two-year-old Lane Thomas Graves had been playing in the sand near the resort’s Seven Seas Lagoon
when he was dragged underwater by the creature... The lighthouse has been installed near to where the attack
occurred... A Disney spokesperson said they hoped the monument would spread awareness for the Lane
Thomas Foundation, which also uses the lighthouse as its logo. Who is liable for alligator boy’s death? "The
lighthouse sculpture has been installed to help spread awareness of the Lane Thomas Foundation, which was
established to provide assistance and support to families whose children need organ transplants," Walt Disney
World said in a statement.
Reference: Walt Disney World has unveiled a lighthouse memorial for a young boy who was killed by an
alligator while on holiday at the Florida theme park.

LD4LG (BART-Base) LD4LG (FLAN-T5-base) DiffuSeq

A giant lighthouse in memory of a
US boy who was fatally attacked
by an alligator has been installed at
Walt Disney World.

A sculpture lighthouse has been in-
stalled in memory of an Ameri-
can boy killed by an alligator at a
Florida theme resort.

a teenager has been ap graves
claimed in after the in the over
killing sand of an resort.

A national lighthouse in memory of
a US boy who died when he was
attacked by an alligator has been in-
stalled at Disney World.

A US boy has been killed by an al-
ligator while playing in sand at a
Florida theme resort, officials say.

a woman has died from s over a a
caused parents in county accident a.

A giant lighthouse has been in-
stalled at Walt Disney World in
Florida in memory of a US boy
killed by an alligator.

A Disney lighthouse has been in-
stalled in memory of an Ameri-
can boy killed by an alligator on a
Florida holiday resort.

a speech of man who killed the us-
ing his leicester has by a resort been
some been has resort playing by
raised.

Article: The Sky Blues currently play in Coventry’s Ricoh Arena but had a long dispute with the stadium’s
previous owners... In a statement, Rugby Borough Council said its leader and the council’s executive director
and head of planning had met with Coventry City in March. "The club requested the meeting to understand
how the council would deal with any planning application for potential stadium sites in the borough of
Rugby," it said. It said the plans would need to be finalised by September to be included in the council’s
local plan, but added that a site had yet to be identified. Peter Ward, from Sky Blues Supporters’ Consultative
Group, said he was pleased to hear that things were "moving" with the club’s search for a new home. "It’s
good that finally there is some evidence things
Reference: Planners in Rugby have revealed they have been in talks with Coventry City Football Club about
building a stadium in the borough.

LD4LG (BART-Base) LD4LG (FLAN-T5-base) DiffuSeq

Premiership club Rugby Football
Club have met with Coventry City
Council to discuss a potential new
stadium in the city.

Coventry City have held talks with
Rugby Borough Council to consider
plans for a new stadium.

coventry city will have midfielder
barack their for as has a poor his at
side the club one back until.

Coventry City’s Rugby Football
Club have met with local authori-
ties to discuss the potential site of a
new stadium for next season.

Coventry City have held talks with
Rugby Borough Council to discuss
the search for a new stadium.

owners city’s david stadium been
has council been sky a to league by
talks from the club’at london.

Coventry City football club has met
with Rugby Borough Council to dis-
cuss potential sites for a new sta-
dium in the city.

Coventry City FC has held talks
with the borough council to discuss
a new stadium.

coventry city have set a stadium new
league over cup death following a
after deal - was league their a club
club.
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