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Abstract

In natural vision, feedback connections support versatile visual inference capabili-1

ties such as making sense of the occluded or noisy bottom-up sensory information2

or mediating pure top-down processes such as imagination. However, the mech-3

anisms by which the feedback pathway learns to give rise to these capabilities4

flexibly are not clear. We propose that top-down effects emerge through alignment5

between feedforward and feedback pathways, each optimizing its own objectives.6

To achieve this co-optimization, we introduce Feedback-Feedforward Alignment7

(FFA), a learning algorithm that leverages feedback and feedforward pathways8

as mutual credit assignment computational graphs, enabling alignment. In our9

study, we demonstrate the effectiveness of FFA in co-optimizing classification and10

reconstruction tasks on widely used MNIST and CIFAR10 datasets. Notably, the11

alignment mechanism in FFA endows feedback connections with emergent visual12

inference functions, including denoising, resolving occlusions, hallucination, and13

imagination. Moreover, FFA offers bio-plausibility compared to traditional back-14

propagation (BP) methods in implementation. By repurposing the computational15

graph of credit assignment into a goal-driven feedback pathway, FFA alleviates16

weight transport problems encountered in BP, enhancing the bio-plausibility of the17

learning algorithm. Our study presents FFA as a promising proof-of-concept for18

the mechanisms underlying how feedback connections in the visual cortex support19

flexible visual functions. This work also contributes to the broader field of visual20

inference underlying perceptual phenomena and has implications for developing21

more biologically inspired learning algorithms.22

1 Introduction23

Humans possess remarkable abilities to infer the properties of objects even in the presence of24

occlusion or noise. They can mentally imagine objects and reconstruct their complete forms, even25

when only partial information is available, regardless of whether they have ever seen the complete26

form before. The process of visual inference on noisy or uncertain stimuli requires additional time,27

implying cognitive processes that go beyond a simple feedforward pass on visual input and suggest the28

involvement of additional mechanisms such as feedback and recurrence (Kar et al., 2019; Kietzmann29

et al., 2019; Gilbert and Sigman, 2007; Debes and Dragoi, 2023; Kreiman and Serre, 2020). Despite30

the abundant evidence on the involvement of feedback connections in various cognitive processes,31

understanding the precise mechanisms through which they flexibly give rise to the ability to infer or32

generate perceptual experiences is not clear.33

While hierarchical feedforward models of the ventral visual cortex based on deep learning of dis-34

criminative losses have achieved remarkable success in computer vision tasks (Yamins et al., 2014;35

Khaligh-Razavi and Kriegeskorte, 2014; Lindsay, 2021), alternative frameworks, such as predictive36
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processing models, offer a distinct perspective on visual processing. Predictive processing models37

propose that the brain generates fine-grained predictions about incoming sensory inputs and compares38

them with actual sensory signals to minimize prediction errors (Rao and Ballard, 1999; Friston, 2009;39

Clark, 2013). These models emphasize the role of feedback connections in the visual cortex, with40

higher-level areas sending top-down predictions to lower-level areas to guide perception. Unlike41

deep learning models that learn from large-scale datasets, predictive processing models prioritize42

the role of prior knowledge and expectations in shaping perception as originally emphasized as far43

back as Helmholtz (Helmholtz et al., 1909). By incorporating generative models, these frameworks44

provide a mechanism for understanding how the brain actively constructs visual representations and45

resolves ambiguities, including the perception of occluded or uncertain stimuli. While predictive46

processing models emphasize the active role of top-down predictions and prior knowledge in shaping47

visual perception, they lag behind feedforward models in mechanistic specificity and thus direct48

neurophysiological evidence (Walsh et al., 2020; Clark, 2013; Keller and Mrsic-Flogel, 2018).49

Another main constraint on the space of models is the learning algorithm to train the model. Classical50

error backpropagation (BP) has been a workhorse algorithm for training discriminative, feedforward51

deep neural networks, particularly for visual object recognition (Rumelhart et al., 1986; Krizhevsky52

et al., 2012). Despite its immense success in training the state-of-the-art, BP has been critiqued on a53

number of implementational issues, some of which also call into question its bio-plausibility for the54

brain: weight symmetry requires weight transport to the feedback network (Grossberg, 1987), the55

feedback network is not used during runtime inference, and feedforward discrimination performance56

is not robust to noise (Goodfellow et al., 2015; Akrout, 2019). Beyond these issues, BP is an infinites-57

imally local estimate of the gradient, and other higher-order methods for computing the gradient58

could accelerate learning. As pointed out by Bengio (2014), the inverse of the weight matrix, rather59

than the transpose, may provide a valid path for credit assignment, learning a linear extrapolation of60

the underlying landscape (Bengio, 2014). However, attempts to match BP by learning the inverse61

weights instead of the transpose in a stage-wise fashion, also called target propagation (TP), have62

yielded limited practical success for reasons that are not entirely clear (Lee et al., 2014; Bartunov63

et al., 2018)– potentially related to the difficulty of learning an inverse function using noisy gradients64

as opposed to the relative ease of taking a transpose, a noiseless procedure (Kunin et al., 2020).65

Here, we simultaneously learn feedforward and feedback functions that are mutual global inverses of66

each other such that each path can perform credit assignment for the other during the training pass.67

We term this Feedback-Feedforward Alignment (FFA) since the discriminator (encoder) contributes68

the gradients for the reconstructor (decoder) and vice versa. We show that rather than trading against69

each other as in typical, single-objective settings, co-optimizing discrimination and reconstruction70

objectives can lead to a mutualistic symbiotic interaction.71

Next, we explore the potential of the gradient path as a model of feedback connections. Inspired by72

the structural similarity of the credit assignment computational graph and the feedforward pass which73

parallels the anatomically reciprocated forward and feedback connections in the visual cortex (Markov74

et al., 2013, 2014). Importantly we hypothesized an objective function for feedback connections75

motivated by the High-resolution buffer hypothesis by Lee and Mumford (2003) regarding the76

primary visual cortex (V1), arguing that V1 is uniquely situated to act as a high-resolution buffer to77

synthesize images through generative processes. We hypothesized that by co-tuning feedforward and78

feedback connections to optimize two different but dependent objective functions, we could explain79

the properties of flexible visual inference of visual detail under occlusion, denoising, dreaming, and80

mental imagery.81

The contributions of this study are as follows:82

• Based on the role of feedback connections in the brain, we propose a novel strategy to train83

neural networks to co-optimize for two objective functions.84

• We leverage the credit assignment computational graph as feedback connections during85

learning and inference.86

• We suggest and verify that training feedforward and feedback connections for discrimination87

and reconstruction respectively, induces noise robustness.88

• We show that FFA can flexibly support an array of versatile visual inferences such as89

resolving occlusion, hallucination, and visual imagery.90
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Figure 1: Feedback Feedforward Alignment. Learning: backpropagation and feedback alignment
train a discriminator with symmetric WT

f or fixed random Ri weights, respectively. FFA maps input
x to latents y as in a discriminator but also reconstructs the input x̂ from the latent. The forward
and backward pathways also pass gradients back for their counterpart performing inference in the
opposite direction. Inference: We run forward and feedback connections trained under FFA in a
loop to update the activations (x) for each of the inference tasks e.g. mental imagery. ∆ shows
the difference between the input signal and the reconstructed (output). % denotes adjusted value to
accommodate convergence. ∗ shows the desired value. See algorithm 1 in Section 8.4

2 Related Work91

2.1 Models of visual perception and inference in the brain92

In going beyond purely feedforward models, there is a large hypothesis space of recurrent neural93

network models (RNNs), and training inference into an RNN via backpropagation through time raises94

severe questions about bio-plausibility of the learning algorithm as well as architecture(Lillicrap and95

Santoro, 2019). Prior work on RNNs for visual classification whether through complex architecture96

search (Nayebi et al., 2022) or through imposing theoretically motivated lateral recurrent connections97

(Tang et al., 2014, 2018) has shown benefits for the classification loss but was not geared to improve98

our understanding of how feedback or recurrence supports inference of visual details. On the other99

hand, there is increasing evidence supporting distinct phases of processing pertaining to perception and100

inference which parallels the notion of bottom-up versus top-down processing. Recent studies suggest101

that feedforward and feedback signaling operate through distinct "channels," enabling feedback102

signals to influence the forward processing without directly affecting the forward-propagated activity103

(Semedo et al., 2022; Kreiman and Serre, 2020). Thus, implementing recursion through feedforward104

and feedback-dominated phases, as we suggest in FFA, has an anatomical and physiological basis.105

Internally generated perceptual experiences, such as hallucinations, dreams, and mental imagery evoke106

vivid experiences that mimic the perception of real-world stimuli. Neuroimaging studies demonstrate107

an overlap in neural activation between internally generated experiences and perception suggesting a108

shared neural substrate for generating and processing sensory information (Ganis et al., 2004; Pearson,109

2019; Pearson et al., 2008; Abid et al., 2016; Dijkstra et al., 2017). While studies have provided110

insights into the brain regions involved in these phenomena, the neural mechanisms and computations111

underlying hallucination and imagery remain a topic of ongoing research and debate. One challenge is112
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Figure 2: Co-optimization in FFA. A) Accuracy and reconstruction performance for FFA and
control algorithms as a function of epochs. B) Dual-task performance for a variety of feedforward
discriminative and autoencoder architectures trained under BP or FA compared to FFA training. The
shaded area represents the desired corner. C) Robustness to input Gaussian noise as measured by test
accuracy on the noisy input.

that hallucinations and imagery are subjective experiences that are difficult to objectively measure and113

study(Pearson et al., 2008). Additionally, the neural correlates of these experiences can vary across114

individuals and different types of hallucinations (Suzuki et al., 2017, 2023). Thus, computational115

modeling of how comparable phenomena can emerge in neural networks, without explicitly training116

for complex non-bio-plausible generative objective functions, helps elucidate the neural mechanisms117

that may underpin these internally-generated perceptions.118

2.2 Bio-plausible training119

Our work also falls within the class of bio-plausible extensions of the original BP algorithm that try to120

avoid the weight transport problem (Grossberg, 1987). One line of work uses a strategy that still aims121

for BP-like symmetric weights while circumventing weight transport by designing a training objective122

for the feedback path that encourages symmetry (Akrout et al., 2019). For example, augmenting a123

reconstruction loss with weight decay will constrain solutions to the transpose in the linear setting124

(Kunin et al., 2019, 2020). However, our method differs in two key ways. First, those methods require125

invoking a separate gradient pass to train the feedback weights whereas we accomplish the training126

of feedback with the same feedforward network, thus adding no other hidden paths. Second, those127

methods explicitly seek symmetry whereas we do not constrain the stage-wise feedback weights, only128

their end-to-end goal. Our algorithm resembles the stage-wise reconstruction in target propagation129

(TP) which could also result in end-to-end propagation of latent representations back to inputs if130

noise at each local propagation step is sufficiently small (Bengio, 2014; Lee et al., 2014). Unlike131

the original TP, we do not constrain the intermediate stages and do not use any BP training on the132

penultimate layer of the discriminator.133

3 Feedforward and feedback alignment134

During the training, BP uses a computational graph to backpropagate the error to the hidden layers135

Figure 1. This computational graph is a linear neural network that is the transpose of the forward136

4



in
pu

ts
itr

 0
itr

 1
itr

 2
itr

 3re
co

ns
tru

ct
ed

 im
ag

es

FFA BP-AutoencoderFA-Autoencoder
AA B

Figure 3: Denoising in FFA. Closed-loop inference on noisy inputs (σ2 = 0.4) performed by FFA
and control algorithms assuming a static read-out for discrimination set by iteration 0. Shown at right,
the sample reconstructions recovered by FFA and control autoencoders over 4 iterations (no clipping
or other processing was performed on these images).

neural network and is constantly updated every time the forward weights are updated. FA and in137

general the family of the random feedback gradient path such as DFA, use random values and do138

not update the backward weights during the training. FFA in essence runs two FA algorithms to139

train the forward pass and backward pass alternatively. The FFA diagram in Figure 1 highlights140

its two distinguishing features: feedback (decoder) has an end-to-end goal and co-opting of the141

forward discriminator path (encoder) to train this decoder. Below, we compare how FFA operates on142

MNIST across two architectures (fully connected and convolutional) and on CIFAR10 using a ResNet143

architecture by directly reconstructing from the ten-dimensional discriminator output. For details on144

the architecture please refer to Supplementary material 8.1. For each architecture, we compare FFA145

to BP and feedback alignment (FA) (Lillicrap et al., 2016) training of a single objective (feedforward146

discrimination or an autoencoder loss) resulting in 5 control models: FFA, BP, FA, BP-AE, and147

FA-AE. The purpose of these controls was to verify that the properties of gradient descent on a single148

loss does not trivially invoke reconstruction of input for example in BP-trained networks.149

3.1 FFA achieves the co-optimization of discrimination and reconstruction150

We highlight performance results on a convolutional architecture but also report results on a fully151

connected architecture. Convolutional architectures are potentially of greater interest because they152

are used for scaling up algorithms to larger datasets. Furthermore, convolutional architectures tend to153

expose greater performance gaps between BP and FA (Bartunov et al., 2018). FFA-trained networks154

achieved digit discrimination performance on par with FA but slightly below BP (Figure 2). However,155

on MNIST, discrimination performance is exceedingly high. Critically, we were also interested in156

seeing if FFA could co-train, using only the discriminator weights for credit assignment, a digit157

reconstruction path. We found that FFA produced reconstruction on par with a BP-trained autoencoder158

for convolutional architectures while slightly lagging the autoencoder standard for reconstruction159

on fully connected architectures. Thus, within the same network, FFA co-optimizes two objectives160

at levels approaching the high individual standards set by a BP-trained discriminator and a BP-161

trained reconstructor (see Figure 2 and Supp. Figure 7). In FFA, like FA, the feedforward and162

feedback weights aligned over training (Lillicrap et al., 2016), but only in FFA, alignment is useful163

for reconstruction, presumably because both paths are free to align to each other which breaks the164

random feedback constraint of FA. In examining discrimination versus reconstruction performance,165

these can be mutually exclusive. For example, single objective networks tend to improve along166

one axis or the other. In contrast, FFA-trained networks moved toward the top-right corner of the167

plot indicating co-optimization along both axes (Figure 2, scatter plot). As shown in Figure 2 B168

for CIFAR10, FFA and FA both struggle to keep up with BP, so for the rest of the paper regarding169

inference, we focus on MNIST.170
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Figure 4: Resolving occlusion. A 15x15 black square occludes the digits in the first columns as
shown in the second column. For high noise and low noise visual inference, the resolved digit is
depicted in 5th and the last columns, respectively.

3.2 FFA induces robustness to image noise and adversarial attacks171

Although in FFA training, we did not use any noise augmentation, as we show in this section, the172

network trained under FFA developed robustness to noise and adversarial attacks relative to the173

BP control. Previous works showed that BP networks are vulnerable to noise and highlighted that174

FA-trained networks are surprisingly robust (Goodfellow et al., 2015; Akrout, 2019). When pixel175

noise was used to degrade input characters, we found that FFA was more robust than BP conferring176

some of the same robustness seen in FA (Figure 2 C). This advantage of FFA and FA over BP was177

also true for gradient-based white-box adversarial attacks (Figure Suppl. 8).178

4 Flexible visual inference through recursion179

While FFA is not explicitly a recurrent network, by coupling the feedforward and feedback pathways180

through mutual learning of dual, complementary losses, it may indirectly encourage compatibility181

in their inference processes. That is, we can run the network in a closed loop, passing z from the182

decoder back in as input to the encoder (replacing x) (see Figure 1). In this section, we explore183

the capabilities of FFA in dealing with missing information (noise or occlusion) and in generation184

(visual imagery, hallucinations, or dreams). It is worth noting that FFA was not trained to perform185

any of these tasks and was only trained for discrimination and reconstruction, conditioned on this186

discrimination.187

The inference algorithm we use in this section relies on two main components: recursion, and noisiness188

of inference in each recursion. The algorithm was developed in Kadkhodaie and Simoncelli (2021)189

for denoiser autoencoders based on Empirical Bayes Theorem (Miyasawa, 1961). Although FFA is190

not trained as a denoiser autoencoder (no noisy input was used during training), we hypothesized that191

since it exhibits robustness to noise properties, then the theory applies here and the algorithm can be192

adapted to draw effective inferences from the representation learned by FFA. We especially focused193

on the effect of the noisiness of inference to inform the computational role of noise in neuronal194

activation as this remains largely unknown despite extensive active research (Echeveste and Lengyel,195

2018; Findling and Wyart, 2021; McDonnell and Ward, 2011).196

4.1 Denoising197

As a first step toward future recurrent processing within FFA, we simply ran the network in a closed198

loop, passing x̂ from the decoder back in as input to the encoder (replacing x) (see Figure 1) and199

found that both discrimination and reconstruction performance is sustained over iterations similar to200

an autoencoder whereas BP and FA discriminators change over multiple closed-loop iterations and201

thus would require a dynamic decoder to recover any performance (Figure 3).202
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Figure 5: Hallucination. Without external input, we let the inference algorithm run on the FFA-trained
network until convergence (the last column) for high noise (upper) and low noise (lower) inference.
The sample iterations are linearly spaced and for high noise, there are typically twice as many
iterations needed. Refer to Section 8.6 for iteration values.

4.2 Resolving occlusions203

We occlude parts of an input image by a blank square and run the network inference. The assumption204

here is that the occluded image was briefly presented and during the inference, the original image is205

not accessible throughout inference. Figure 4 shows examples of completion of the pattern using206

FFA. Even though for high noise inference more iterations were needed, the generated samples do207

not reflect any superiority compared to low noise inference which took fewer iterations to converge.208

4.3 Hallucination209

Visual hallucinations refer to the experience of perceiving objects or events even when there is no210

corresponding sensory stimulation that would typically give rise to such perceptions. As mentioned211

above, the spontaneous activity in V1 is linked to the vividness of hallucinated patterns. Here, we212

let the FFA-trained network run through the inference algorithm starting from Gaussian noise and213

adding noise in each iteration. As shown in Figure 5, when in the high noise regime (β = 0.2), the214

quality of hallucinated digits is better compared to the low noise regime (β = 0.99, for the definition215

of β see Section 8.4). Given that the noise in the inference algorithm controls the convergence rate216

(Kadkhodaie and Simoncelli, 2021), these results suggest that the computational role of spontaneous217

activity in generating stronger hallucinated percepts may be the refinement of the hallucinated218

patterns.219

4.4 Mental imagery220

Visual mental imagery refers to the ability to create mental representations or pictures of visual221

information in the absence of actual sensory input (Pearson et al., 2015; Colombo, 2012). A key222

distinction between mental imagery and hallucinations is that mental imagery involves voluntarily223

creating mental images through imagination, while hallucinations are involuntary sensory perceptions.224

To implement the voluntary, top-down activation of a percept (e.g. ’9’), we add the average activation225

pattern of the category in the latent layer to each recursion in the inference algorithm. Presumably, the226

brain has a recollection of the category which can be read out from memory during mental imagery.227

Figure 6 shows that as noise in the inference goes higher, so does the quality of the imagined digits.228
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Figure 6: Visual imagery. Generated samples (upper panels) using the inference algorithm on the FFA-
trained network when top-down signal ’5’ (left) and ’3’ (right) was activated. The sample iterations
(equally spaced) for sample generations were shown in the lower panel. Each row corresponds to an
inference noise level. Refer to Section 8.5 for iteration and β values

5 Limitations229

We acknowledge several limitations of the Feedback-Feedforward Alignment (FFA) framework in its230

current form. One key limitation is the difficulty of scaling FFA to larger datasets, such as ImageNet.231

While we observed gaps in performance compared to classical backpropagation (BP) on CIFAR10,232

we found little difference compared to the Feedback Alignment (FA) baseline in discrimination233

performance. However, it is possible that FFA could be more suitable for specific architectures,234

such as transformers, where layer sizes do not decrease towards the output layer. Scaling up FFA235

requires further theoretical and empirical exploration. Another limitation is related to the assessment236

of the generated inferences. Currently, the evaluation relies primarily on visual inspection. Although237

we included classifier accuracy reports for denoising, it assumes that perception arises solely from238

top activations and that bottom hierarchy activation (such as V1) does not directly contribute to239

perception. Enhancing the evaluation methodology to incorporate more objective measures and240

quantitative assessments of generated inferences would strengthen the framework. Furthermore,241

while FFA demonstrates a balance between discrimination performance, efficient learning, and robust242

recurrent inference, it is important to acknowledge that FFA may not fully capture all aspects of the243

biological brain. The framework represents a step towards understanding the brain’s mechanisms244

but may still fall short in faithfully replicating the intricacies of neural processing. Overall, these245

limitations highlight the need for further research and development to address the scalability of246

FFA, refine evaluation methodologies, and gain deeper insights into the biological plausibility of the247

framework. Overcoming these limitations will pave the way for more effective and robust alternatives248

to BP, advancing the understanding and application of neural network training algorithms.249
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6 Conclusions250

In moving beyond classical error backpropagation training of a single-objective, feedforward network,251

we have presented a feedforward-feedback algorithm that trains neural networks to achieve mutualistic252

optimization of dual objectives. Co-optimization provides attendant advantages: avoids weight253

transport, increases robustness to noise and adversarial attack, and gives feedback its own runtime254

function that allows closed-loop inference. Through our experiments, we demonstrated that the255

network trained using the FFA approach supports various visual inference tasks.256

7 Broader Impacts257

This work has broader impacts that include advancing our understanding of human perception,258

enhancing the robustness and performance of neural networks, helping to identify the emergence259

of closed-loop inference in larger networks for real-time applications, and potential implications260

for clinical research of mental disorders. By studying the neural mechanisms underlying visual261

perception, this research contributes to our understanding of natural and artificial vision.262
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8 Supplementary380

8.1 Model architectures381

For the experiment on a fully connected architecture, we used a 4-layer network with [1024,382

256,256,10] neurons in each layer and ReLU non-linearity between layers. For the experiment383

on a convolutional architecture, we used a modified version of resnet (He et al., 2015), where the384

last convolutional layer has the same number of channels as classes, and an adaptive average pooling385

operator is used to read out of each channel (see below). Since the last layer doesn’t have any386

learnable parameters, the penultimate layer can be as large as desired which works fine for FFA. The387

convolutional architecture consists of 11 convolutional layers with 658,900 trainable parameters in388

total.389

For autoencoder controls (trained under BP or FA), we additionally trained a linear decoder on the390

activations of the penultimate layer to assess the linear separability of the representation learned by391

autoencoders.392

modelF : D a t a P a r a l l e l (393

( module ) : AsymResLNet10F (394

( conv1 ) : AsymmetricFeedbackConv2d ( 1 , 64 , k e r n e l _ s i z e = (7 , 7 ) ,395

s t r i d e = ( 2 , 2 ) , padd ing =( 3 , 3 ) , b i a s = F a l s e )396

( bn1 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 ,397

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )398

( r e l u ) : ReLU( i n p l a c e =True )399

( conv11 ) : AsymmetricFeedbackConv2d ( 6 4 , 64 , k e r n e l _ s i z e = (3 , 3 ) ,400

s t r i d e = ( 1 , 1 ) , padd ing =( 1 , 1 ) , b i a s = F a l s e )401

( bn11 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 ,402

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )403

( conv12 ) : AsymmetricFeedbackConv2d ( 6 4 , 64 , k e r n e l _ s i z e = (3 , 3 ) ,404

s t r i d e = ( 1 , 1 ) , padd ing =( 1 , 1 ) , b i a s = F a l s e )405

( bn12 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 ,406

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )407

( conv21 ) : AsymmetricFeedbackConv2d ( 6 4 , 64 , k e r n e l _ s i z e = (3 , 3 ) ,408

s t r i d e = ( 1 , 1 ) , padd ing =( 1 , 1 ) , b i a s = F a l s e )409

( bn21 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 ,410

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )411

( conv22 ) : AsymmetricFeedbackConv2d ( 6 4 , 128 ,412

k e r n e l _ s i z e = (3 , 3 ) ,413

s t r i d e = ( 1 , 1 ) , padd ing =( 1 , 1 ) , b i a s = F a l s e )414

( bn22 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,415

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )416

( downsample1 ) : AsymmetricFeedbackConv2d ( 6 4 , 128 ,417

k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s = F a l s e )418

( bn23 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,419

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )420

( conv31 ) : AsymmetricFeedbackConv2d ( 1 2 8 , 128 ,421

k e r n e l _ s i z e = (3 , 3 ) ,422

s t r i d e = ( 2 , 2 ) , padd ing =( 1 , 1 ) , b i a s = F a l s e )423

( bn31 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,424

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )425

( conv32 ) : AsymmetricFeedbackConv2d ( 1 2 8 , 128 ,426

k e r n e l _ s i z e = (3 , 3 ) ,427

s t r i d e = ( 1 , 1 ) , padd ing =( 1 , 1 ) , b i a s = F a l s e )428

( bn32 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,429

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )430

( conv41 ) : AsymmetricFeedbackConv2d ( 1 2 8 , 128 ,431

k e r n e l _ s i z e = (3 , 3 ) ,432

s t r i d e = ( 1 , 1 ) , padd ing =( 1 , 1 ) , b i a s = F a l s e )433

( bn41 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,434

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )435
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( conv42 ) : AsymmetricFeedbackConv2d ( 1 2 8 , 10 ,436

k e r n e l _ s i z e = (3 , 3 ) ,437

s t r i d e = ( 1 , 1 ) , padd ing =( 1 , 1 ) , b i a s = F a l s e )438

( bn42 ) : BatchNorm2d ( 1 0 , eps =1e −05 , momentum = 0 . 1 ,439

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )440

( downsample2 ) : AsymmetricFeedbackConv2d ( 1 2 8 , 10 ,441

k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (2 , 2 ) , b i a s = F a l s e )442

( avgpoo l ) : Adapt iveAvgPool2d ( o u t p u t _ s i z e = (1 , 1 ) ) )443

)444

445

modelB : D a t a P a r a l l e l (446

( module ) : AsymResLNet10B (447

( upsample2 ) : Asymmetr icFeedbackConvTranspose2d ( 1 0 , 128 ,448

k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (2 , 2 ) , o u t p u t _ p a d d i n g = (1 , 1 ) ,449

b i a s = F a l s e )450

( bn42 ) : BatchNorm2d ( 1 0 , eps =1e −05 , momentum = 0 . 1 ,451

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )452

( conv42 ) : Asymmetr icFeedbackConvTranspose2d ( 1 0 , 128 ,453

k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )454

( r e l u ) : ReLU( i n p l a c e =True )455

( bn41 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,456

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )457

( conv41 ) : Asymmetr icFeedbackConvTranspose2d ( 1 2 8 , 128 ,458

k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )459

( bn32 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,460

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )461

( conv32 ) : Asymmetr icFeedbackConvTranspose2d ( 1 2 8 , 128 ,462

k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )463

( bn31 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,464

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )465

( conv31 ) : Asymmetr icFeedbackConvTranspose2d ( 1 2 8 , 128 ,466

k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) , padd ing = (1 , 1 ) ,467

o u t p u t _ p a d d i n g = (1 , 1 ) , b i a s = F a l s e )468

( bn23 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,469

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )470

( upsample1 ) : Asymmetr icFeedbackConvTranspose2d ( 1 2 8 , 64 ,471

k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s = F a l s e )472

( bn22 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 ,473

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )474

( conv22 ) : Asymmetr icFeedbackConvTranspose2d ( 1 2 8 , 64 ,475

k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )476

( bn21 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 ,477

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )478

( conv21 ) : Asymmetr icFeedbackConvTranspose2d ( 6 4 , 64 ,479

k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )480

( bn12 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 ,481

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )482

( conv12 ) : Asymmetr icFeedbackConvTranspose2d ( 6 4 , 64 ,483

k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )484

( bn11 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 ,485

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )486

( conv11 ) : Asymmetr icFeedbackConvTranspose2d ( 6 4 , 64 ,487

k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )488

( bn1 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 ,489

a f f i n e =True , t r a c k _ r u n n i n g _ s t a t s = F a l s e )490

( conv1 ) : Asymmetr icFeedbackConvTranspose2d ( 6 4 , 1 ,491

k e r n e l _ s i z e = (7 , 7 ) , s t r i d e = (2 , 2 ) , padd ing = (2 , 2 ) ,492

o u t p u t _ p a d d i n g = (1 , 1 ) , b i a s = F a l s e ) )493

)494
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8.2 More control networks: autoencoders495

MNIST CIFAR10

Figure 7: Co-optimization in FFA compared to single objective (either discrimination or reconstruc-
tion) control networks for MNIST and CIFAR10 (extensive version of Figure 2).
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8.3 Robustness assessment496

We added Gaussian noise with zero mean and varied the variance σ2 = [0.0, 0.2, 0.4, 0.8, 1.0] to497

assess the robustness of models to input noise. We also performed a widely used white box adversarial498

attack Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015). FGSM can be summarized by499

x
′
= x+ σsign(∆xJ(x, y

∗))

where σ is the magnitude of the perturbation, J is the loss function and y∗is the label of x. While in500

BP this perturbation is computed through transposed forward parameters, for FFA and FA, we use501

their gradient pass parameters which are learned feedback and random feedback, respectively. We502

used a range of ϵ to cover the interval between 0 to 1.

Figure 8: Robustness to Gaussian noise and adversarial attacks for MNIST. Robustness to noise and
adversarial attacks in input (image) space for FFA and control algorithms. FA and FFA both exhibit
more robustness than BP-trained discriminators.

503

8.4 Visual inference algorithm504

We adapt the sampling algorithm developed in (Kadkhodaie and Simoncelli, 2021) to implement the505

visual inference in FFA-trained networks. β parameter which varies between 0 and 1 controls the506

proportion of injected noise (β = 1 indicates no noise).507

Algorithm 1 *
parameters: σ0, σL, h0, β
initialization: t = 1, draw x0 ∼ N (0.5, σ2

0I)
while σt−1 ≤ σL do

ht =
h0t

1+h0(t−1)

dt = xt−1 − x̂t−1

σ2
t = ||dt||2

N

γ2
t =

(
(1− βht)

2 − (1− ht)
2
)
σ2
t

Draw zt ∼ N (0, I)
xt ← xt−1 + htdt + γtzt
t← t+ 1

end
Stochastic gradient ascent method for sampling from the implicit prior in a denoiser autoencoder as
in Kadkhodaie and Simoncelli (2021)
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8.5 Visual imagery508
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Figure 9: Sample visual imagery related to Figure 6 in the main text.
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8.6 Hallucinations509
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Figure 10: Sample hallucinations related to Figure 5 in the main text.

17


