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Abstract

Reconstructing hand-held objects from a single RGB image is an important and
challenging problem. Existing works utilizing Signed Distance Fields (SDF) reveal
limitations in comprehensively capturing the complex hand-object interactions,
since SDF is only reliable within the proximity of the target, and hence, infeasible
to simultaneously encode local hand and object cues. To address this issue, we
propose DDF-HO, a novel approach leveraging Directed Distance Field (DDF) as
the shape representation. Unlike SDF, DDF maps a ray in 3D space, consisting
of an origin and a direction, to corresponding DDF values, including a binary
visibility signal determining whether the ray intersects the objects and a distance
value measuring the distance from origin to target in the given direction. We
randomly sample multiple rays and collect local to global geometric features for
them by introducing a novel 2D ray-based feature aggregation scheme and a 3D
intersection-aware hand pose embedding, combining 2D-3D features to model hand-
object interactions. Extensive experiments on synthetic and real-world datasets
demonstrate that DDF-HO consistently outperforms all baseline methods by a large
margin, especially under Chamfer Distance, with about 80% leap forward. Codes
are available at https://github.com/ZhangCYG/DDFHO.

1 Introduction

Hand-held object reconstruction refers to creating a 3D model for the object grasped by the hand. It is
an essential and versatile technique with many practical applications, e.g. robotics [78, 66, 39, 73, 72],
augmented and virtual reality [37], medical imaging [50]. Hence, in recent years, significant research
efforts have been directed towards the domain of reconstructing high-quality shapes of hand-held
objects, without relying on object templates or depth information. Despite the progress made, most
existing methods rely on the use of Signed Distance Fields (SDF) as the primary shape representation,
which brings about two core challenges in hand-held object reconstruction due to the inherent
characteristics of SDF.

First, SDF is an undirected function in 3D space. Consequently, roughly determining the nearest
point on the target object to a sampled point in the absence of object shape knowledge is infeasible.
This limitation poses a significant challenge for single image hand-held object reconstruction as it is
difficult to extract the necessary features to represent both the sampled point and its nearest neighbor
on the object surface. Previous methods [67] have attempted to address this challenge by aggregating
features within a local patch centered around the projection of the point, as shown in Fig. 1 (S-2).
However, this approach is unreliable when the sampled point is far from the object surface since
the local patch may not include the information of its nearest point. Therefore, for hand-held object
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Figure 1: SDF vs DDF based hand-held object reconstruction. Given an input RGB image (a)
and estimated hand and camera pose (b), SDF-based and DDF-based reconstruction pipelines vary
from sampling spaces (S-1, D-1) and feature aggregation techniques (S-2, D-2 and S-3, D-3). SDF
points sampling space must stay close to the object surface (S-1) or would lead to degraded network
prediction results [47], while DDF ray sampling space (D-1) can be large enough to encapsulate the
hand and object meshes. SDF methods typically aggregate features for the sampled point P in its local
patch, which is not reliable when P is far from the object surface (S-2). DDF, however, aggregates
features along the projection line r′ for ray R, which naturally captures both the information of
the point and its intersection with the object surface (D-2). SDF methods cannot directly yield the
contact points on the hand surface, so that only global relative hand joints encoding is used (S-3).
On the contrast, DDF can get the intersection region of sampled rays and hand surface, leading to
more representative local intersection-aware hand encoding (D-3). Due to these characteristics, we
demonstrate that DDF is more suitable to model hand-object interactions. Consequently, DDF-based
method achieves more complete and accurate hand-held object reconstruction results (S-4, D-4).

reconstruction, SDF-based methods either directly encode hand pose as a global cue [67] or propagate
information between hand and object in 2D feature space [10], which fails to model hand-object
interactions in 3D space. Second, SDF is compact and can not naturally encapsulate the inherent
characteristics of an object such as symmetry. However, many man-made objects in everyday scenes
exhibit some degree of (partial-)symmetry, and the inability of SDF to capture this information results
in a failure to recover high-quality shapes, especially when the object is heavily occluded by the hand.

To overcome aforementioned challenges, we present DDF-HO, a novel Directed Distance Field
(DDF) based Hand-held Object reconstruction framework, which takes a single RGB-image as input
and outputs 3D model of the target object. In contrast to SDF, DDF maps a ray, comprising an
origin and a direction, in 3D space to corresponding DDF values, including a binary visibility signal
determining whether the intersection exists and a scalar distance value measuring the distance from
origin to target along the sampled direction.

As shown in Fig. 1, we demonstrate the superiority of DDF over SDF in modeling hand-object
interactions. For each sampled ray, we collect its features to capture hand-object relationship by
combining 2D-3D geometric features via our 2D ray-based feature aggregation and 3D intersection-
aware hand pose embedding. We first project the ray onto the image, yielding a 2D ray or a dot
(degeneration case), and then aggregate features of all the pixels along the 2D ray as the 2D features,
which encapsulate 2D local hand-object cues. Then we collect 3D geometric features, including
direct hand pose embedding as global information [67] and ray-hand intersection embedding as
local geometric prior. In this manner, hand pose and shape serve as strong priors to enhance the
object reconstruction, especially when there is heavy occlusion. Additionally, we also introduce a
geometric loss term to exploit the symmetry of everyday objects. In particular, we randomly sample
two bijection sets of 3D rays, where corresponding rays have identical origin on the reflective plane
but with opposite directions. Thus the DDF predictions of corresponding rays in the two sets should
be the same, enabling a direct supervision loss for shape.
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In summary, our main contributions are as follows. First, we present DDF-HO, a novel hand-held
object reconstruction pipeline that utilizes DDF as the shape representation, demonstrating superiority
in modeling hand-object intersections over SDF-based competitors. Second, we extract local to global
features capturing hand-object relationship by introducing a novel 2D ray-based feature aggregation
scheme and a 3D intersection-aware hand pose embedding. Third, extensive experiments on synthetic
and real-world datasets demonstrate that our method consistently outperforms competitors by a large
margin, enabling real-world applications requiring high-quality hand-held object reconstruction.

2 Related Works

Hand Pose Estimation. Hand pose estimation methods from RGB(-D) input can be broadly
categorized into two streams: model-free and model-based methods. Model-free methods typically
involve lifting detected 2D keypoints to 3D joint positions and hand skeletons [32, 44, 45, 46, 53, 52,
80]. Alternatively, they directly predict 3D hand meshes [11, 21, 48]. On the other hand, model-based
methods [3, 55, 58, 77, 79] utilize regression or optimization techniques to estimate statistical models
with low-dimensional parameters, such as MANO [54]. Our approach aligns with the model-based
stream of methods, as they tend to be more robust to occlusion [67].

Single-view Object Reconstruction. The problem of single-view object reconstruction using
neural networks has long been recognized as an ill-posed problem. Initially, researchers focus on
designing category-specific networks for 3D prediction, either with direct 3D supervision [7, 35, 16]
or without it [25, 34, 38, 68, 17]. Some approaches aim to learn a shared model across multiple
categories using 3D voxel representations [12, 22, 64, 65, 57], meshes [24, 27, 63, 51], or point
clouds [19, 40]. Recently, neural implicit representations have emerged as a powerful technique in
the field [42, 31, 2, 1, 47, 33, 70]. These approaches have demonstrated impressive performance.

Hand-held Object Reconstruction. Accurately reconstructing hand-held objects presents a signif-
icant challenge, yet it plays a crucial role in understanding human-object interaction. Prior works
[20, 28, 59, 61] aim to simplify this task by assuming access to known object templates and jointly
regressing hand poses and 6DoF object poses [15, 18, 75, 76, 60, 71]. Joint reasoning approaches
encompass various techniques, including implicit feature fusion [9, 23, 41, 56], leveraging geometric
constraints [4, 6, 13, 26, 74], and encouraging physical realism [62, 49]. Recent researches focus on
directly reconstructing hand-held object meshes without relying on any prior assumptions. These
methods aim to recover 3D shapes from single monocular RGB inputs. For instance, [29] designs
a joint network that predicts object mesh vertices and MANO parameters of the hand, while [36]
predicts them in the latent space. Additionally, [10] and [67] utilize Signed Distance Field (SDF) as
the representation of hand and object shapes. In contrast, our method introduces a novel representation
called Directed Distance Field (DDF) and demonstrates its superiority in reconstructing hand-held
objects, surpassing the performance of previous SDF-based methods.

3 Method

3.1 Preliminaries

SDF. Consider a 3D object shape O ⊂ B, where B ⊂ R3 denotes the bounding volume that will
act as the domain of the field, SDF maps a randomly sampled point P ∈ B to a a scalar value d
representing the shortest distance from P to the surface of the 3D object shape O. This scalar value
can be positive, negative, or zero, depending on whether the point lies outside, inside, or on the
surface of the object, respectively.

From SDF to DDF. SDF is widely used in the object reconstruction, however, due to its inherent
undirected and compact nature, it is hard to effectively represent the complex hand-object interactions,
as explained in Fig. 1. Hence, in this paper, we propose to utilize DDF, recently proposed and applied
by [2, 31, 69], as an extension of SDF for high-quality hand-held object reconstruction.

DDF. Given a 3D ray LP,θ(t) = P + tθ, consisting of an origin P ∈ B and a view direction θ ∈ S2,
where S2 denotes the set of 3D direction vectors having 2 degree-of-freedom. If this ray intersects
with the target object O ⊂ B at some t ≥ 0, it is considered as visible, and DDF maps it to a
non-negative scalar field D : B × S2 → R+, measuring the distance from the origin P towards the
first intersection with the object along the direction θ. To conveniently model the visibility of a ray, a
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Figure 2: Overview of DDF-HO. Given an RGB-image (I-A), we first employ an off-the-shelf pose
detector to predict camera pose θC and hand pose θH (45D parameters defined in MANO model [54]),
as shown in (I-B) and (I-C) respectively. For the input of DDF, we sample multiple rays (R-A) in 3D
space, and project them onto the 2D image (R-B). The corresponding intersections with the hand
skeleton are also calculated (R-C). Then for each ray LP,θ, we collect 2D ray-based feature F2D

from (2-A) to (2-F), and 3D intersection-aware hand embedding FG
3D and FL

3D from (3-A) to (3-D).
Finally, we concatenate all features and ray representation as F = {P, θ,F2D,FG

3D,FL
3D} to predict

corresponding DDF values.

binary visibility field is introduced as ξ(P, θ) = 1[LP,θ is visible], i.e. for a visible ray, ξ(P, θ) = 1.
Moreover, [2, 31] provide several convenient ways to convert DDF to other 3D representations
including point cloud, mesh and vanilla SDF.

3.2 DDF-HO: Overview

Objective. Given a single RGB image I containing a human hand grasping an arbitrary object,
DDF-HO aims at reconstructing the 3D shape O of the target object, circumventing the need of object
template, category or depth priors.

Initialization. As shown in Fig. 2 (I-A)-(I-C), we first adopt an off-the-shelf framework [29, 55]
to estimate the hand articulation θH and the corresponding camera pose θC for the input image I,
where θH is defined in the parametric MANO model with 45D articulation parameters [54] and θC
denotes the 6D pose, rotation R ∈ SO(3) and translation t ∈ R3, of the perspective camera with
respect to the world frame.

Image Feature Encoding. Hierarchical feature maps of image I are extracted via ResNet [30] to
encode 2D cues, as shown in Fig. 2 (2-A) and (2-B).

Ray Sampling. We sample 3D rays {LP,θ}, with origins P ∈ B and directions θ ∈ S2, and
transform the rays into the normalized wrist frame with the predicted hand pose θH , as in IHOI [67].
The specific ray sampling algorithm adopted in the training stage is introduced in detail in the
Supplementary Material.

Ray Feature Aggregation. To predict corresponding DDF values of {LP,θ}, we collect and
concatenate three sources of information: basic ray representations {P, θ}, 2D projected ray features
F2D, 3D intersection-aware hand features F3D. For F2D, we project each 3D ray onto the feature
maps extracted from I, yielding a 2D ray {lp,θ∗} or a dot (degeneration case). Note that in the
degeneration case, the sampled 3D ray passes through the camera center, we only need to collect
F2D inside the patch centered at p, as in the SDF-based methods [67]. For other non-trivial cases, we
aggregate features along {lp,θ∗} using the 2D Ray-Based Feature Aggregation technique, introduced
in detail in Sec. 3.3. For F3D, besides global hand pose embedding as in [67], we also encapsulate
the intersection of the ray with the hand joints as local geometric cues to depict the relationship of
hand-object interaction, which is further introduced in detail in Sec. 3.4.

4



DDF Reconstruction. Concatenating {P, θ,F2D,F3D} as input, we employ an 8-layer MLP
network [31] to predict corresponding DDF values.

3.3 Ray-Based Feature Aggregation

Object

Hand Joints

Ray-Hand

Intersection

Ray-Object

Intersection

(a) (b)

Figure 3: 3D intersection-aware local geometric
feature FL

3D. We collect it by resolving the nearest
neighboring hand joints of ray-hand intersection.

Previous SDF-based methods [67] typically ag-
gregates feature for each sampled point within
a local patch centered at its projection, posing
a significant challenge for hand-held object re-
construction as the aggregated feature may not
contain necessary information for predicting the
intersection, as illustrated in Fig. 1 (S-2). When
the sampled point is far from the object sur-
face, its local feature may even be completely
extracted from the background, making it in-
feasible to predict corresponding SDF values.
As a consequence, SDF-based methods either
leverage hand pose as a global cue [67] or only
propagate hand-object features in 2D space [10],
failing to capture hand-object interactions in 3D
space. In DDF-HO, besides the ray representa-
tion {P, θ}, we combine two additional sources of features F2D and F3D for each sampled 3D ray
to effectively aggregate all necessary information for predicting the DDF value.

We first collect F2D from the input image I, by employing our 2D Ray-Based Feature Aggregation
technique. Given a 3D ray LP,θ , as shown in Fig. 2 (R-A) and (R-B), the origin is projected via
p = K(RP + t)/Pz , where Pz denotes z component of P , and the direction θ∗ is determined as
the normal vector from p towards the projection of another point P∗ on the 3D ray, yielding the
projected 2D ray lp,θ∗ . Then we sample Kl points {pil, i = 1, ...,Kl} on the 2D ray, and extract local
patch features F l

2D = {F i} for all Kl points as well as the feature Fp
2D of origin projection p via

bilinear interpolation on the hierarchical feature maps of I. Finally, we leverage the cross-attention
mechanism to aggregate 2D ray feature F2D for LP,θ as,

F2D = Fp
2D +MultiH(Fp

2D,F l
2D,F l

2D) (1)

where MultiH refers to the multi-head attention and Q = Fp
2D,K = V = F l

2D.

B1 B2 B1 B2

Figure 4: Construction of the symmetry loss.

Comparing with single point based patch fea-
tures used in SDF methods, F2D naturally cap-
tures more information, leading to superior re-
construction quality. First, 2D features from the
origin of the 3D ray towards its intersection on
the object surface are aggregated, enabling re-
liable DDF prediction for the ray whose origin
is far from the object surface. In this manner,
we can sample 3D rays in the whole domain, as
shown in Fig. 1 (D-1), encapsulating and recon-
structing hand and object simultaneously with
a single set of samples. Second, features related
to the hand along the projected 2D ray are also
considered, providing strong priors for object
reconstruction.

3.4 Hand-Object Interaction Modelling

We model hand-object interactions in two aspects. First, in 2D features maps, hand information
along the projected 2D ray is encoded into F2D, as introduced in Sec. 3.3. Second, we collect F3D,
which encodes both global hand pose embedding FG

3D as in [67] (details in Supplementary Material)
and local geometric feature FL

3D indicating the intersection of each ray with the hand. As shown in
Fig. 2 (3-C) and (3-D), for each 3D ray LP,θ, FL

3D is collected in three steps. First, we calculate the
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shortest path from LP,θ towards the hand skeleton, constructed by the MANO model and predicted
hand articulation parameter θH , yielding starting point PS on LP,θ and endpoint PD on the hand
skeleton. Then we detect K3D nearest neighboring hand joints of PD on the hand skeleton, using
geodesic distance. Finally, PS is transformed to the local coordinates of detected hand joints (Fig. 2
3-C), indicated by the MANO model, and thereby obtaining FL

3D by concatenating all these local
coordinates of PS . In summary, F3D is represented as F3D = {FG

3D,FL
3D}.

Our hand-object interaction modeling technique has two primary advantages over IHOI [67], in
which sampled points are only encoded with all articulation points of the hand skeleton, as shown in
Fig. 1 (S-3). First, our technique extracts and utilizes 2D features F2D that reflect the interaction
between the hand and object, providing more useful cues to reconstruct hand-held objects. Second,
we incorporate 3D intersection-based hand embeddings F3D that offer more effective global to local
hand cues as geometric priors to guide the learning of object shape, especially when a 3D ray passing
through the contact region between the hand and object. In such case, the intersection with the hand
skeleton is closer to the intersection with the object than the origin of the ray, thereby encoding the
local hand information around the intersection provides useful object shape priors, as shown in Fig. 3.
In other cases, our method works similarly to IHOI, where the embeddings serve as a global locator
to incorporate hand pose.

3.5 Conditional DDF for Hand-held Object Reconstruction

Given concatenated feature F = {P, θ,F2D,F3D} for each 3D ray LP,θ, we leverage an 8-layer
MLP to map F to the corresponding DDF value: distance D and binary visible signal ξ. The input
{P, θ} is positional encoded by γ function as [42]. ξ is output after the 3rd layer to leave the network
capacity for the harder distance estimation task. We also introduce a skip connection of the input 3D
ray {P, θ} to the 4th layer to preserve low-level local geometry.

The loss functions of our conditional directed distance field network consist of depth term LD =

ξ|D̂ −D|, visibility term Lξ = BCE(ξ̂, ξ) and symmetry term Ls = |D̂1 − D̂2|, with D̂, ξ̂ being
the predictions of D, ξ respectively. For symmetric objects, we randomly sample two bijection
sets of 3D rays, where corresponding rays have identical origin on the reflective plane but with
opposite directions. Specifically, before our experiments, all symmetric objects are preprocessed to
be symmetric with respect to the XY plane {X = 0, Y = 0}. To determine whether the object is
symmetric, we first flipping the sampled points P on the object surface w.r.t the XY plane, yielding
P ′. Then we compare the Chamfer Distance between the object surface and P ′. If the distance
lies below a threshold (1e-3), the object is considered symmetric. As for building two bijection
sets B1 : {P1, θ1} and B2 : {P2, θ2}, we first randomly sample origins P1 : {(x1, y1, z1))} and
directions θ1 : {(α1, β1, γ1))} to construct B1. Then, we flip B1 with respect to the reflective plane
to generate B2 by P2 : {(x1, y1,−z1))}, θ2 : {(α1, β1,−γ1))}. Since the object is symmetric, the
DDF values D̂1, D̂2 of corresponding rays in B1 and B2 should be the same, which establishes our
symmetry loss term. The process of constructing the symmetry loss is shown in Fig. 4.

The final loss is defined as L = Lξ + λ1LD + λ2Ls, where λ1, λ2 are weighting factors.

4 Experiments

4.1 Experimental Setup

Datasets. A synthetic dataset ObMan [29] and two real-world datasets HO3D(v2) [28], MOW [6] are
utilized to evaluate DDF-HO in various scenarios. ObMan consists of 2772 objects of 8 categories
from ShapeNet [8], with 21K grasps generated by GraspIt [43]. The grasped objects are rendered
over random backgrounds through Blender 1. We follow [29, 67] to split the training and testing sets.
HO3D(v2) [28] contains 77,558 images from 68 sequences with 10 different persons manipulating 10
different YCB objects [5]. The pose annotations are yielded by multi-camera optimization pipelines.
We follow [28] to split training and testing sets. MOW [6] comprises a total of 442 images and
121 object templates, collected from in-the-wild hand-object interaction datasets [14, 56]. The
approximated ground truths are generated via a single-frame optimization method [6]. The training
and testing splits remain the same as the released code of [67].

1https://www.blender.org/
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Figure 5: Reconstruction quality comparisons on Obman [29] by category. From 0 to 7, we demon-
strate the results of IHOI [67] vs DDF-HO on the categories: Bottle, Bowl, Camera, Can, Cellphone,
Jar, Knife, Remote Control sequentially. DDF-HO consistently outperforms IHOI.

Method F-5 ↑ F-10 ↑ CD ↓ F-5 ↑ F-10 ↑ CD ↓
HO [29] 0.08 0.19 4.60 0.05 0.14 6.03
GF [36] 0.09 0.21 5.23 0.07 0.16 6.25

IHOI [67] 0.21 0.38 1.99 0.17 0.31 4.17
Ours 0.28 0.42 0.55 0.24 0.36 0.73

Table 1: Results on HO3D(v2) [28] dataset with finetuning (left) and zero-shot generalization from
ObMan [29] dataset (right). Overall best results are in bold.

Evaluation Metrics. We first utilize [2] to convert the predicted DDF into point cloud representation
and then compare against the sampled point cloud from the corresponding ground truth mesh.
Following [67], we report Chamfer Distance (CD, mm), F-score at 5mm threshold (F-5) and 10mm
threshold (F-10) of the converted object point cloud, which reflects the quality of hand-held object
reconstruction.

Baselines. Three baseline methods are chosen to ensure fair comparisons with our DDF-HO method,
taking into account that they aim to predict the shape of hand-held objects directly from a single RGB
input and do not rely on known object templates, category information, or depth priors. The baselines
include Atlas-Net [27] based HO [29], implicit field based GF [36] and SDF based IHOI [67].

Implementation Details. We conduct the training, evaluation and visualization of DDF-HO on a
single A100 40GB GPU. We use the same off-line systems [29, 55] as [67] to estimate the hand
and camera poses. We also adopt a ResNet34 [30] image encoder to extract a 5-resolution visual
feature pyramid, the same with [67]. In all the three datasets, we sample 20K 3D rays for each
object and generate the ground truth using the ray marching algorithm in Trimesh 2. The number
of sampled points Kl along the projected 2D ray is set to 8 and number of multi-head attention is 2
for 2D Ray-Based Feature Aggregation technique. K3D for FL

3D introduced in Sec. 3.4 is set as 8.
DDF-HO is trained end-to-end using Adam with a learning rate of 1e-4 on ObMan for 100 epochs.
Following [67], we use the network weights learned on synthetic ObMan to initialize the training on
HO3D(v2) and MOW. Training on HO3D(v2) and MOW also use Adam optimizer with a learning
rate 1e-5 for another 100 and 10 epochs, respectively following [67]. The weighting factors of the
loss for DDF-HO λ1, λ2 are set to 5.0 and 0.5, respectively. Note that we do not include the symmetry
loss term Ls in the training except in the Ablation Study Tab. 4 for a fair comparison, since other
baselines do not leverage this additional information. Note that during evaluation, we convert the DDF
representation to point cloud [2], while during visualization, we convert DDF to mesh [2, 31]. Details
of ground truth generation and network architecture are provided in the Supplementary Material.

4.2 Evaluation on Synthetic Scenarios

As shown in Tab. 3, the evaluation on the synthetic large-scale dataset ObMan demonstrates that
DDF-HO achieves high-quality hand-held object reconstruction with the assistance of suitable DDF
representation. Our proposed method exhibits state-of-the-art performance under all three evaluation
metrics of F-5, F-10, and CD. Specifically, we achieve a significant improvement over the current
state-of-the-art SDF-based IHOI, with a gain of 13% and 4% on F-5 and F-10, respectively. This
improvement can be attributed to DDF-HO’s more suitable ray-based feature aggregation technique,

2https://trimsh.org/
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Method F-5 ↑ F-10 ↑ CD ↓ F-5 ↑ F-10 ↑ CD ↓
IHOI [67] 0.10 0.19 7.83 0.09 0.17 8.43

Ours 0.16 0.22 1.59 0.14 0.19 1.89

Table 2: Results on MOW [6] dataset, with the setting of finetuning (left) and zero-shot generalization
from ObMan [29] dataset (right). Overall best results are in bold.

Input image
Ground truth

Camera view

IHOI

Camera view

Ours

Camera view

Ground truth

Novel view

IHOI

Novel view

Ours

Novel view

Figure 6: Visualization results on ObMan [29]. Our method consistently outperforms IHOI [67].

which allows for more exquisite hand-held object reconstruction. Notably, DDF-HO’s CD metric is
reduced by 85% compared to IHOI and 77% compared to HO, indicating that our predicted object
surface contains much fewer outliers.

Fig. 6 presents improved visualizations of DDF-HO, showcasing enhanced and more accurate surface
reconstruction of hand-held objects. While IHOI can achieve decent object surface recovery within
the camera view, the reconstructed surface appears rough with numerous outliers when observed
from novel angles. This suggests that IHOI lacks the ability to perceive 3D hand-held objects due to
its limited modeling of hand-object interaction in 3D space. In contrast, DDF-HO utilizes a more
suitable DDF representation, resulting in smooth and precise reconstructions from any viewpoint of
the object.

4.3 Evaluation on Real-world Scenarios

Method F-5 ↑ F-10 ↑ CD ↓
HO [29] 0.23 0.56 0.64
GF [36] 0.30 0.51 1.39

IHOI [67] 0.42 0.63 1.02
Ours 0.55 0.67 0.14

Table 3: Results on ObMan [29] dataset.
Overall best results are in bold.

In addition to synthetic scenarios, we conduct exper-
iments on two real-world datasets, HO3D(v2) and
MOW, to evaluate DDF-HO’s performance in handling
real-world human-object interactions . Table 1 consti-
tutes the evaluation results on HO3D(v2) after finetun-
ing (with related settings described in Section 4.1), as
well as the zero-shot generalization results, where we
directly conducted inference on HO3D(v2) using the
weights from training on ObMan. Furthermore, Table 2
presents results on MOW under the same setting.

Our method, after finetuning on the real-world data,
achieves state-of-the-art performance on both datasets. Specifically, on HO3D(v2), we observe a
considerable improvement compared to IHOI and other methods, with an increase in F-5 by 7%,
F-10 by 4%, and a significant decrease in CD by 73%. On MOW, our approach also outperforms the
previous state-of-the-art methods, achieving a remarkable performance gain in terms of increased F-5
(6%), F-10 (3%), and reduced CD (80%) compared with IHOI [67]. Fig. 7 shows the visualization
comparison results on MOW. DDF-HO performs well under the real-world scenario, yielding more
accurate reconstruction results.

Furthermore, the zero-shot experiments demonstrate that DDF-HO has a stronger ability for synthetic-
to-real generalization. Specifically, on HO3D(v2), DDF-HO yields superior performance in terms of
F-5 by 7%, F-10 by 5%, and a decreased CD by 82%. Moreover, the results on MOW also indicate
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Figure 7: Visualization results on MOW [6]. Our method consistently surpasses IHOI [67].

that our method, trained only on synthetic datasets, can still achieve decent performance in real-world
scenarios, thanks to the generic representation ability of DDF for hand-object interaction modeling.

4.4 Efficiency

To demonstrate the efficiency of DDF-HO, we compare the network size and the running speed with
IHOI, which is a typical SDF-based hand-held object reconstruction method. All experiments are
conducted on a single NVIDIA A100 GPU.

DDF-HO runs at 44FPS, which is slower than IHOI with 172 FPS, but still achieves real-time
performance. The slower inference comes from the attention calculation for 2D ray-based feature
aggregation and the more elaborated 3D feature generation. For model size, the two methods share a
similar scale (24.5M of DDF-HO and 24.0M of IHOI). Generally, the increased parameters mainly
come from the cross attention mechanism in 2D ray-based feature aggregation. Other modules are
only adopted to collect features to model hand-object interactions and do not significantly increase
the network size.

4.5 Ablation Studies

We conduct ablation studies on the ObMan and HO3D(v2) datasets to evaluate the impact of three
key assets of DDF representation: Ray-Based Feature Aggregation (RFA), Intersection-aware Hand
Feature (IHF), and Symmetry Loss (SYM). The results of the ablation studies are presented in Tab. 4.

On ObMan, we first replace the SDF representation with DDF without any modifications to feature
aggregation, resulting in a slight improvement over the SDF-based IHOI with a 3% increase in F-5
metric. This indicates that although DDF is more suitable for representing hand-object interaction
(with almost an 80% decrease in CD metric), more sophisticated feature aggregation designs are
required. Next, we add RFA considering the characteristics of sampled rays, leading to a 5% increase
in F-5 and a 4% increase in F-10. Subsequently, adding IHF, which models hand-object interaction
locally by considering the intersection information of the hand, resulted in a 5% increase in F-5
and a 3% increase in F-10. This indicates that considering the intersection information of the hand
can improve the accuracy of hand-held object reconstruction. Finally, adding the SYM loss, which
captures the symmetry nature of everyday objects and handles self-occluded scenarios caused by
hands, results in another 2% increase in F-5 and a 1% increase in F-10. On the HO3D(v2) dataset,
RFA, IHF, and SYM modules play similar roles as on ObMan.

Additionally, we evaluate the influence of input hand pose on DDF-HO by adding Gaussian noise
to the estimated hand poses (Pred) or ground truth hand poses (GT) in the input. The results of the
ablation studies (Tab. 5) demonstrate the robustness of DDF-HO in handling noisy input hand poses.

5 Conclusion

In this paper, we present DDF-HO, a novel pipeline that utilize DDF as the shape representation to
reconstruct hand-held objects, and demonstrate its superiority in modeling hand-object interactions
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RFA IHF SYM F-5 ↑ F-10 ↑ CD ↓ F-5 ↑ F-10 ↑ CD ↓
SDF baseline [67] 0.42 0.63 1.02 0.21 0.38 1.99
× × × 0.45 0.60 0.22 0.24 0.38 0.62
✓ × × 0.50 0.64 0.17 0.26 0.39 0.58
✓ ✓ × 0.55 0.67 0.14 0.28 0.42 0.55
✓ ✓ ✓ 0.57 0.68 0.13 0.29 0.43 0.52

Table 4: Ablation studies for key assets of DDF-HO on ObMan [29] (left) and HO3D(v2) [28]
datasets (right).

Noise F-5 ↑ F-10 ↑ CD ↓ F-5 ↑ F-10 ↑ CD ↓
Pred 0.55 0.67 0.14 0.28 0.42 0.55

Pred+σ = 0.1 0.54 0.66 0.15 0.24 0.35 0.73
Pred+σ = 0.5 0.47 0.60 0.18 0.20 0.30 0.83
Pred+σ = 1.0 0.42 0.55 0.25 0.17 0.27 0.98
Pred+σ = 1.5 0.38 0.52 0.31 0.14 0.25 1.24

GT 0.59 0.70 0.10 0.30 0.45 0.50
GT+σ = 0.1 0.58 0.69 0.11 0.27 0.43 0.58
GT+σ = 0.5 0.51 0.63 0.16 0.23 0.34 0.76

Table 5: Ablation studies for input hand pose on ObMan [29] (left) and HO3D(v2) [28] datasets
(right). The Pred row remains the same setting with the Tab. 1 and 3.

over competitors. Specifically, for each sampled ray in 3D space, we collect its features capturing
local-to-global hand-object relationships by introducing a novel 2D ray-based feature aggregation
and 3D intersection-aware hand pose embedding. Extensive experiments on synthetic dataset Obman
and real-world datasets HO3D(v2) and MOW verify the effectiveness of DDF-HO on reconstructing
high-quality hand-held objects.

Limitations. DDF-HO naturally inherits the shortcomings of DDF. First, the higher dimensional
input of DDF makes it harder to train than SDF, resulting in more complex data, algorithm and
network structure requirements. This may hinder the performance of DDF-based methods when
scaling up to large-scale scenes, like traffic scenes. Second, to enable more photorealistic object
reconstruction, there are other characteristics like translucency, material and appearance need to be
properly represented. This requires further research to fill the gap.
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