
Efficient Meta Neural Heuristic for Multi-Objective
Combinatorial Optimization (Appendix)

A Model architecture

The architecture of the base model in meta-learning is the same as POMO [26], composed of an
encoder and a decoder (see Figure 2(a)). For node features x1, . . . ,xn, the encoder first computes
initial node embeddings h0

1, . . . ,h
0
n ∈ Rd (d = 128) by a linear projection (LP). The final node

embeddings hN
1 , . . . ,hN

n are further computed by N = 6 attention layers. Each attention layer is
composed of a multi-head attention (MHA) with M = 8 heads and fully connected feed-forward
(FF) sublayer. Each sublayer adds a skip-connection (ADD) and batch normalization (BN).

The decoder sequentially chooses a node according to a probability distribution produced by the
node embeddings to construct a solution. The total decoding step T is determined by the specific
problem. At step t in the decoding procedure, the query qc ∈ Rd is computed by an MHA layer
using the node embeddings and problem-specific context embedding hc (see Appendix D). The key
k1, . . . ,kn ∈ Rd is computed by ki′ = WKhi′ for node i′. Then, in the final single-head attention
layer, the compatibility u is computed by qc and ki′ as follows,

ui′ =

{ −∞, node i′ is masked

C · tanh( qT
c ki′√
d/M

), otherwise (7)

where C = 10 is adopted to clip the result. Finally, the probability distribution Pθ(π|s) to select
node i′ is computed by the softmax function,

Pi′ = Pθ(πt = i′|π1:t−1, s) =
eui′∑n
j=1 e

uj
. (8)

For the meta-model θ, θhead can be defined as WK for the final single-head attention layer, and
θbody is composed of the whole encoder θen and the decoder body θde−body.

In each meta-iteration, we adopt a multi-task model θ̃, as shown in Figure 2(b), to learn Ñ sampled
tasks in parallel. The multi-task model θ̃ consists of θ̃body and θ̃head1

, . . . , θ̃headÑ
, where θ̃body and

θ̃headi
have the same architecture as θbody and θhead, respectively. θ̃headi

, i.e., WK
i , is individually

updated for subproblem i, while θ̃body is shared across Ñ tasks. Specifically, the shared node
embeddings are first computed by θ̃en. Then, at step t in the decoding procedure, for subproblem
i, the query qc,i is computed using the node embeddings and context embedding hc,i. The key
k1,i, . . . ,kn,i is computed by ki′,i = WK

i hi′ . The compatibility ui is computed as follows,

ui′,i =

{ −∞, node i′ is masked

C · tanh(q
T
c,iki′,i√
d/M

), otherwise (9)

Finally, the probability Pθ̃i(π|s) for subproblem i to select node i′ is computed as follows,

Pi′,i = Pθ̃i(πt = i′|π1:t−1, s) =
eui′,i∑n
j=1 e

uj,i
. (10)

B Scaled symmetric sampling method

The scaled symmetric sampling method is shown in Algorithm 2. The scaled factor f ′
m is first

estimated (Lines 1 – 3). Then ⌊Ñ/M⌋ weight vectors are randomly sampled (Lines 5 – 6). For each
of them, M − 1 scaled symmetric weight vectors are generated (Lines 7 – 16).
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Algorithm 2 Scaled symmetric sampling method
Input: meta-model θ, problem size n, weight vector distribution Λ, number of objectives M , number

of symmetric sampled weight vectors Ñ , validation dataset V
1: {πk|Vj} ∼ GreedyRollout(Pθ(·|Vj)), ∀j ∈ {1, · · · , |V|}, ∀k ∈ {1, · · · , n}
2: πj ← argmaxk g(πk|(Vj ,1/M))

3: f ′
m ← 1

|V|
∑|V|

j=1 fm(πj), ∀m ∈ {1, · · · ,M}
4: for i = 1 to Ñ do
5: if i ≤ ⌊Ñ/M⌋ then
6: λi ∼ SampleWeight(Λ)
7: else if ⌊Ñ/M⌋ < i ≤M × ⌊Ñ/M⌋ then
8: for m = 1 to M do
9: λ′

i ← λi

10: if m = 1 then
11: λi,m ← λ′

i−⌊Ñ/M⌋,M × f ′
M/f ′

m

12: else
13: λi,m ← λ′

i−⌊Ñ/M⌋,m−1
× f ′

m−1/f
′
m

14: end if
15: end for
16: λi ← λi/

∑M
m=1 λi,m

17: else
18: λi ∼ SampleWeight(Λ)
19: end if
20: end for
Output: {λ1, · · · ,λÑ}

C Hierarchical fine-tuning method

We consider an L-level a-section hierarchy. The whole weight space is uniformly divided into N (l)

subspaces in level l. N (l) weight vectors are the centers of these subspaces. In level l + 1, the N (l)

submodels are fine-tuned to derive N (l+1) = aN (l) submodels with K(l+1) fine-tuning steps, which
are the centers of N (l+1) subspaces. The j-th submodel in level l + 1 is fine-tuned from the i-th
submodel in level l, where the j-th weight vector belongs to the i-th subspace in level l.

The uniform division of the weight space is illustrated as follows. According to the Das and Dennis
[44] method, CM−1

H+M−1 vertices can be generated, where M is the number of objectives and H is
a user-defined hyper-parameter. Then, the whole weight space is uniformly divided by CM−1

H+M−1

vertices. The division with H(l) = 2l can be seen in Figure 5. There are 2l subspaces for M = 2 and
4l subspaces for M = 3 in level l.

Note that the final N weights are given beforehand. Thus, we set N (L) = N , where N (L−1) =
aL−1 < N and aL ≥ N , i.e., L = 7 for M = 2 and L = 4 for M = 3. The final N submodels are
fine-tuned by N (L−1) submodels.

For the meta-model or a coarse-tuned submodel in level l (l < L), its fine-tuning process with a given
weight vector and K fine-tuning steps is shown in Algorithm 3.

D Details of MOCOPs

D.1 MOTSP

D.1.1 Problem definition

The multi-objective traveling salesman problem (MOTSP) is defined on a complete graph with n
nodes and M cost matrices. Node i has M 2D coordinates {x1

i , . . . ,x
M
i }, where the m-th cost

between node i and j is given by the Euclidean distance cmij = ∥xm
i − xm

j ∥2. The goal is to find a
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Figure 5: The hierarchy of fine-tuning. (a) M = 2. (b) M = 3.

Algorithm 3 Fine-tuning process in each level
Input: the meta-model or a coarse-tuned submodel θ, a given weight vector λ, fine-tuning steps K,

batch size B, problem size n
1: for k = 1 to K do
2: sj ∼ SampleInstance(S), ∀j ∈ {1, . . . , B}
3: {πk|sj ,λ} ∼ SampleRollout(Pθ̃i(·|sj)), ∀j ∈ {1, . . . , B}, ∀k ∈ {1, . . . , n}
4: bj ← 1

n

∑n
k=1 g(π

k|sj ,λ)

5: ∇L(θ̃)← 1
Bn

B∑
j=1

n∑
k=1

[(g(πk|sj ,λ)− bj)∇logPθ(π
k|sj)]

6: θ ← Adam(θ,∇L(θ))
7: end for

Output: The fine-tuned submodel θ

permutation π to minimize all the M costs simultaneously, as follows,

min f(π) = (f1(π), f2(π), . . . , fM (π)), (11)

where fm(π) = cmπn,π1
+

n−1∑
j=1

cmπj ,πj+1
. (12)

For the M -objective TSP type 2, each node has (M − 1) 2D coordinates and one number interpreted
as its altitude. The single-objective counterpart, TSP, is a well-known NP-hard problem. It appears
that MOTSP is even harder. Thus, its approximate Pareto optimal solutions are commonly pursued.

D.1.2 Instance

For the M -objective TSP type 1, each node has M 2D coordinates. The random instances with n
nodes are sampled from uniform distribution on [0, 1]2M . For the M -objective TSP type 2, each node
has (M − 1) 2D coordinates and one number. The random instances with n nodes are sampled from
uniform distribution on [0, 1]2M−1.

D.1.3 Model details

The input dimension of the M -objective TSP type 1 is 2M for the encoder. The input dimension of
the M -objective TSP type 2 is 2M − 1 for the encoder.
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For MOTSP, POMO [26] uses n context embedding h1
c , . . . ,h

n
c to calculate the probability of node

selection in the decoder. At the decoding step t, hk
c is defined as follows,

hk
c =

{
[h̄k;hk

πt−1
;hk

π1
], t > 1

none, t = 1
(13)

where [; ] is the concatenation and the graph embedding h̄k =
∑n

i=1 h
k
i . For t = 1, the first node is

not selected by the decoder. Instead, it is defined as hk
π1

= hk. In the decoding procedure, the nodes
already visited need to be masked.

D.2 MOCVRP

D.2.1 Problem definition

The capacitated vehicle routing problem (CVRP), a classical extension of TSP, contains n customer
nodes and a depot node. Each node has a 2D coordinate. In addition, customer i has a demand di to
be satisfied. A fleet of homogeneous vehicles with identical capacity D is initially placed at the depot.
Vehicles must serve all the customers and finally return to the depot. The capacity constraints must
be satisfied, i.e., the remaining capacity of vehicles for serving customer i must be no less than di.

For the multi-objective capacitated vehicle routing problem (MOCVRP), we consider two conflicting
objectives, i.e., the total traveling distance and the traveling distance of the longest route (makespan).

D.2.2 Instance

For MOCVRP, the coordinates of the depot and customers are sampled from uniform distribution on
[0, 1]2. Following the previous work [26, 12], the demand di is randomly chosen from {1, . . . , 9}
and the capacity is set to D = 30/40/50 for n = 20/50/100. Without loss of generality, the demand
and capacity are normalized as d̂i = di/D and D̂ = D/D = 1, respectively.

D.2.3 Model details

The inputs of MOCVRP are a 2D vector of the depot and n 3D vectors of the customers for the
encoder. Their embeddings with both 128 dimensions are obtained by two linear projections with
two separate parameter matrices.

For MOCVRP, the context embedding in the decoder is defined as the concatenation of the graph
embedding, the embedding of the last node, and the remaining capacity. Since the first node of CVRP
must be the depot node, POMO assigns the second node, i.e., the first customer node, to produce n
various solutions. In the decoding procedure, the nodes already visited and the nodes with a larger
demand than the remaining capacity need to be masked.

D.3 MOKP

D.3.1 Problem definition

Knapsack problem (KP) is also a representative combinatorial optimization problem. The multi-
objective 0-1 knapsack problem (MOKP) with M objectives and n items is defined as follows,

max f(x) = (f1(x), f2(x), . . . , fM (x)), (14)

where fm(x) =

n∑
i=1

vmi xi, (15)

subject to

n∑
i=1

wixi ≤W, (16)

xi ∈ {0, 1}, (17)

where item i has a weight wi and M different values {v1i , v
2
i , . . . , v

M
i }. W is the weight capacity of

the knapsack. The goal is to find a solution x to maximize all the M total values simultaneously. The
single-objective KP is also an NP-hard problem, so MOKP is even harder.
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Table 3: Hypervolume illustration.

Table 4: Reference points and ideal points.

Problem Size r∗ z∗

Bi-TSP-1

20 (20, 20) (0, 0)
50 (35, 35) (0, 0)
100 (65, 65) (0, 0)
150 (85, 85) (0, 0)
200 (115, 115) (0, 0)

Bi-KP
50 (5, 5) (30, 30)
100 (20, 20) (50, 50)
200 (30, 30) (75, 75)

Tri-TSP-1
20 (20, 20, 20) (0, 0)
50 (35, 35, 35) (0, 0)
100 (65, 65, 65) (0, 0)

Bi-CVRP
20 (30, 4) (0, 0)
50 (45, 4) (0, 0)
100 (80, 4) (0, 0)

Bi-TSP-2
20 (20, 12) (0, 0)
50 (35, 25) (0, 0)
100 (65, 45) (0, 0)

Tri-TSP-2
20 (20, 20, 12) (0, 0)
50 (35, 35, 25) (0, 0)
100 (65, 65, 45) (0, 0)

D.3.2 Instance

As in the previous work [26, 12], the values and weight for each item of MOKP are all sampled from
uniform distribution on [0, 1]. The knapsack capacity is set to W = 12.5/25/25 for n = 50/100/200.

D.3.3 Model details

For the M -objective MOKP, as each item has M values and one weight, the input dimension is M +1
for the encoder. The policy network of MOKP is as the same as that of MOTSP. In the decoding
procedure, the context embedding is defined as the concatenation of the graph embedding and the
remaining capacity. The items already selected and the items with a larger weight than the remaining
capacity need to be masked.

E Hypervolume indicator

The hypervolume (HV) indicator is widely used to evaluate the performance of the methods for
MOCOPs, since HV can comprehensively measure the convergence and diversity of PF without the
ground truth Pareto front [51]. For a given M -objective PF and a reference point r∗, HV(PF , r∗)
is defined as follows,

HV(PF , r∗) = µ(S), (18)

S = {r ∈ RM |∃r ∈ PF such that y ≺ r ≺ r∗}, (19)

where r∗i > max{fi(x)|f(x) ∈ PF} (or r∗i < min{fi(x)|f(x) ∈ PF} for the maximization
problem), ∀i ∈ {1, . . . ,M}, and µ is the Lebesgue measure. An example with M = 2 is presented
in Figure 3, where PF = {f(x1),f(x2),f(x3),f(x4)}. HV(PF , r∗) is equal to the size of the
grey area in this example.

Since HV value would considerably vary with the objective domain, we record the normalized
HV ratio HV′(PF , r∗) = HV(PF , r∗)/

∏M
i=1 |r∗i − z∗i |, where z∗ is an ideal point satisfying

z∗i < min{fi(x)|f(x) ∈ PF} (or z∗i > max{fi(x)|f(x) ∈ PF} for the maximization problem),
∀i ∈ {1, . . . ,M}. For a problem, all methods share the same r∗ and z∗, as shown in Table 4.
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Figure 6: Training Stability on MOCOPs with balanced objective domains.

F More details of learning efficiency

F.1 Training efficiency

EMNH uses almost the equal number of training instances to MDRL [13] and PMOCO [12]. At-
tributed to the accelerated training method, EMNH only consumes approximately 1/Ñ training time
of MDRL. For EMNH, we set Tm = 3000, Tu = 100, and B = 64 to train the meta-model, i.e.,
overall 1.92× 107 training instances. MDRL adopts the same training hyper-parameters as EMNH,
i.e., the same amount of training instances. According to the settings of PMOCO, it trains the model
by 200 epochs, with 1× 105 instances at each epoch, i.e., overall 2× 107 training instances, a little
more than that of EMNH. The total training time of PMOCO is close to that of EMNH.

As a multi-model method, DRL-MOA [8] needs to train multiple networks with more training
instances to deal with multiple subproblems. DRL-MOA first trains a submodel for the first weight
vector by 200 epochs with 1 × 105 instances at each epoch, and then transfers its parameter by 5
epochs to derive another submodel for its neighbor subproblem. With a sequential parameter-transfer
process, a set of submodels are obtained for various pre-given weight vectors. For the bi/tri-objective
problems, the number of subproblems N is set to 101/105. Hence, DRL-MOA needs to train 101/105
submodels with total 700/720 training epochs.

F.2 Training stability

Figure 6 shows the results on Bi-TSP-1 with the balanced objective domains. EMNH-S and EMNH-R
denote EMNH with the symmetric sampling method and the random sampling method, respectively.
HV is computed by fine-tuning the meta-model with K = 1 step at each level. The results show that
EMNH achieves the stablest training process. The performance of EMNH and EMNH-S are close,
while the training processes of other two methods with random sampling are unstable. However, for
Bi-CVRP with the imbalanced objective domains, EMNH, which adjusts the sampled weight vectors
by the objective domains, outperforms other methods, as shown in Figure 4(b).

Table 5 reports the final HV indicators of the trained model, which also exhibits higher solution
quality of EMNH. The best result and its statistically indifferent results using a Wilcoxon rank-sum
test at 1% level are highlighted as bold. The second-best result and its statistically indifferent results
are highlighted as underline. The method with “-Aug" represents the inference results using instance
augmentation (see Appendix G) of POMO.

F.3 Fine-tuning efficiency

To study the fine-tuning efficiency, we compare the hierarchical fine-tuning method of EMNH with the
vanilla fine-tuning method of MDRL. For K steps at each level with M = 2 in EMNH, the total fine-
tuning step is

∑L−1
l=1 2lK +NK = 227K with N = 101, where L satisfies 2L−1 < N and 2L ≥ N ,

i.e., L = 7. For MDRL, each submodel is fine-tuned directly from the meta-model with K̃ steps,
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Table 5: Solution quality of the scaled symmetric sampling method.

n=20 n=50
Method HV↑ Gap↓ HV↑ Gap↓

B
i-

T
SP

-1

MDRL 0.6271 0.00% 0.6374 0.53%
EMNH-R 0.6269 0.04% 0.6339 1.07%
EMNH-S 0.6270 0.02% 0.6362 0.72%
EMNH 0.6271 0.00% 0.6362 0.72%

MDRL-Aug 0.6271 0.00% 0.6408 0.00%
EMNH-R-Aug 0.6269 0.04% 0.6391 0.26%
EMNH-S-Aug 0.6270 0.02% 0.6408 0.00%
EMNH-Aug 0.6271 0.00% 0.6408 0.00%

B
i-

C
V

R
P

MDRL 0.4291 0.26% 0.4082 0.58%
EMNH-R 0.3774 12.26% 0.3743 8.83%
EMNH-S 0.4158 3.34% 0.3825 6.84%
EMNH 0.4299 0.07% 0.4098 0.19%

MDRL-Aug 0.4294 0.19% 0.4092 0.34%
EMNH-R-Aug 0.3849 10.53% 0.3786 7.78%
EMNH-S-Aug 0.4179 2.87% 0.3870 5.76%
EMNH-Aug 0.4302 0.00% 0.4106 0.00%

so the total fine-tuning step is NK̃ = 101K̃. Thus, for K = 1/5/10/15/20, K̃ = 2/11/22/34/45
ensures that the total fine-tuning step of MDRL is approximately equal to that of EMNH. For M = 3
with N = 105, K is set to 25 for EMNH, while K̃ is set to 45 for MDRL to make the equal total of
fine-tuning steps.

Figure 7 shows that, on various MOCOPs, EMNH attains better solution quality than MDRL with
equal total fine-tuning steps, especially a larger gap with a few fine-tuning steps, which means that
EMNH has higher fine-tuning efficiency. Furthermore, PMOCO is equipped with the hierarchical
fine-tuning method for a fair comparison. However, it could hardly get improved, which indicates
that EMNH has more potential to derive performant submodels to deal with specific tasks. Besides,
in most cases, EMNH outperforms PMOCO only with a few fine-tuning steps (K = 5).

G Instance augmentation

Instance augmentation exploits multiple efficient transformations for the original instance that
share the same optimal solution. Then, all transformed problems are solved and the best solution
among them are finally selected. According to POMO [26], a 2D coordinate (x, y) has eight different
transformations, {(x, y), (y, x), (x, 1−y), (y, 1−x), (1−x, y), (1−y, x), (1−x, 1−y), (1−y, 1−x)}.

For the M -objective TSP type 1, each node has M 2D coordinates, so it has 8M different transforma-
tions. For the M -objective TSP type 2, each node has (M − 1) 2D coordinates and a 1D coordinate.
The 1D coordinate x has two different transformations, {x, 1− x}. Thus, the M -objective TSP type
2 has 2× 8M−1 different transformations. For MOCVRP, each node has a 2D coordinate, so it has 8
different transformations. MOKP has no transformation.

H More results on MOCOPs with imbalanced objective domains

H.1 Scaled weight sampling method for training

For the problems with imbalanced objective domains, including Bi-CVRP, Bi-TSP-2, and Tri-TSP-
2, we further study PMOCO with a scaled sampling method in the training phase, denoted as
PMOCO-S. Specifically, in each sampling for PMOCO, a sampled weight vector λ is sacled by f ′ as
λs
m = λm/f ′

m, where f ′
m is dynamically estimated by the model on a validation dataset associated

with λ = (1/M, . . . , 1/M) during training. Table 6 shows that PMOCO-S could certainly improve
the performance of PMOCO for Bi-CVRP and Tri-TSP-2, but it is still inferior to EMNH.
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Figure 7: Fine-tuning efficiency on various MOCOPs.

H.2 Scaled weight assignment method for inference

Similar to other decomposition-based methods like PMOCO and MDRL, EMNH also faces the
challenge of non-uniformly solution distributions. However, this issue can be mitigated by employing
appropriate weight assignment methods during inference, as EMNH offers the flexibility to handle
arbitrary weight vectors. Specifically, when the approximate scales of different objectives are known,
we can normalize them to [0,1] to achieve a more uniform Pareto front. Alternatively, we can adjust
the weight assignment to generate a more uniform Pareto front.
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Table 6: PMOCO with the scaled sampling method.

n=20 n=50 n=100
Method HV↑ Gap↓ HV↑ Gap↓ HV↑ Gap↓

B
i-

C
V

R
P

PMOCO 0.4267 0.81% 0.4036 1.70% 0.3913 4.07%
PMOCO-S 0.4274 0.65% 0.4057 1.19% 0.4042 0.91%

EMNH 0.4299 0.07% 0.4098 0.19% 0.4072 0.17%
PMOCO-Aug 0.4294 0.19% 0.4080 0.63% 0.3969 2.70%

PMOCO-S-Aug 0.4295 0.16% 0.4090 0.39% 0.4063 0.39%
EMNH-Aug 0.4302 0.00% 0.4106 0.00% 0.4079 0.00%

B
i-

T
SP

-2

PMOCO 0.6590 1.18% 0.7347 0.51% 0.7944 0.65%
PMOCO-S 0.6520 2.23% 0.7333 0.70% 0.7927 0.86%

EMNH 0.6669 0.00% 0.7361 0.32% 0.7965 0.39%
PMOCO-Aug 0.6653 0.24% 0.7375 0.14% 0.7988 0.10%

PMOCO-S-Aug 0.6624 0.67% 0.7366 0.26% 0.7974 0.28%
EMNH-Aug 0.6669 0.00% 0.7385 0.00% 0.7996 0.00%

Tr
i-

T
SP

-2

PMOCO 0.5020 0.30% 0.5176 1.95% 0.5777 2.02%
PMOCO-S 0.4917 2.34% 0.5175 1.97% 0.5778 2.00%

EMNH 0.5022 0.26% 0.5205 1.40% 0.5813 1.41%
PMOCO-Aug 0.5035 0.00% 0.5258 0.40% 0.5862 0.58%

PMOCO-S-Aug 0.5029 0.12% 0.5259 0.38% 0.5863 0.56%
EMNH-Aug 0.5035 0.00% 0.5279 0.00% 0.5896 0.00%

A scaled weight assignment (SWA) method can be directly applied to alleviate this issue. Specifically,
each uniform weight vector λ is scaled by f ′ as λs

m = λm/f ′
m and normalized to [0, 1]M . Here, f ′

is estimated using a validation dataset associated with λ = (1/M, . . . , 1/M). The advantage of this
SWA method is that it does not require prior problem information.

The results on Tri-TSP instances with asymmetric Pareto fronts are presented in Figure 8. For
these instances, the coordinates for the three objectives are randomly sampled from [0, 1]2, [0, 0.5]2,
[0, 0.1]2, respectively. The results demonstrate that EMNH-SWA effectively produces a more uniform
Pareto front. Compared to a scaling weight method with prior knowledge used in PMOCO [12],
where uniform weight vectors are element-wise multiplied by (1,2,10) and then normalized back to
[0, 1]3, EMNH-SWA achieves desirable performance.

I Detailed results of generalization capability

We test the generalization capability of our EMNH on larger-scale random instances (n=150/200)
and three commonly used MOTSP benchmark instances (KroAB100/150/200) in TSPLIB [52], as
shown in Tables 7 and 8, respectively. EMNH, which is trained and fine-tuned both on the instances
with n=100, has a superior generalization capability compared with the state-of-the-art MOEA and
other neural heuristics for larger problem sizes.

J Hyper-parameter study

J.1 Number of sampled weight vectors

Figure 9 shows the results for various Ñ . For bi-objective problems, Ñ = 1 leads to a significantly
unstable training process, since the sample number is quite small and it has no symmetric sample.
Ñ = 3 also causes a slightly unstable training process. Ñ = kM with k ∈ {1, 2, . . . } can effectively
stabilize the training process. In summary, Ñ = M is a more favorable setting.

J.2 Scalarization method

EMNH is generic for solving MOCOPs based on decomposition [17], which can employ various
scalarization methods, including weighted sum (WS) and Tchebycheff (TCH).
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Figure 8: Solutions generated by using 105 uniform/non-uniform distributed weights on Tri-TSP-1
(n=20) with asymmetric Pareto front. (a) Uniform weights. (b) EMNH with uniform weights. (c)
PMOCO with uniform weights. (d) A priori non-uniform weights. (e) EMNH with a priori non-
uniform weights. (f) PMOCO with a priori non-uniform weights. (g) Weights generated by the scaled
weight assignment (SWA) method. (h) EMNH with SWA.

Table 7: Results of generalization capability on 200 random instances .

Bi-TSP-1 (n=150) Bi-TSP-1 (n=200)
Method HV↑ Gap↓ Time HV↑ Gap↓ Time

WS-LKH 0.7149 -2.38% 13h 0.7490 -2.50% 22h
PPLS/D-C 0.6784 3.25% 21h 0.7106 3.11% 32h

DRL-MOA 0.6901 1.17% 45s 0.7219 1.20% 87s
PMOCO 0.6910 1.05% 45s 0.7231 1.04% 87s
MDRL 0.6922 0.87% 40s 0.7251 0.77% 84s
EMNH 0.6930 0.76% 40s 0.7260 0.64% 83s

PMOCO-Aug 0.6967 0.23% 47m 0.7283 0.33% 1.6h
MDRL-Aug 0.6976 0.10% 47m 0.7299 0.11% 1.6h
EMNH-Aug 0.6983 0.00% 47m 0.7307 0.00% 1.6h
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Table 8: Results of generalization capability on benchmark instances.

KroAB100 KroAB150 KroAB200
Method HV↑ Gap↓ Time HV↑ Gap↓ Time HV↑ Gap↓ Time

WS-LKH 0.7022 -0.92% 2.3m 0.7017 -1.81% 4.0m 0.7430 -2.20% 5.6m
PPLS/D-C 0.6785 2.77% 31m 0.6659 3.84% 1.1h 0.7100 2.69% 3.1h

DRL-MOA 0.6903 0.79% 10s 0.6794 1.42% 18s 0.7185 1.17% 23s
PMOCO 0.6878 1.15% 9s 0.6819 1.06% 17s 0.7193 1.06% 23s
MDRL 0.6881 1.11% 10s 0.6831 0.89% 17s 0.7209 0.84% 23s
EMNH 0.6900 0.83% 9s 0.6832 0.87% 16s 0.7217 0.73% 23s

PMOCO-Aug 0.6937 0.30% 12s 0.6886 0.09% 19s 0.7251 0.26% 27s
MDRL-Aug 0.6950 0.11% 13s 0.6890 0.03% 19s 0.7261 0.12% 28s
EMNH-Aug 0.6958 0.00% 12s 0.6892 0.00% 18s 0.7270 0.00% 27s

0 6 0 0 1 2 0 0 1 8 0 0 2 4 0 0 3 0 0 0
0 . 4 0 0
0 . 4 5 0
0 . 5 0 0
0 . 5 5 0
0 . 6 0 0
0 . 6 0 5
0 . 6 1 0
0 . 6 1 5
0 . 6 2 0
0 . 6 2 5

HV

T m

 N  =  6
 N  =  5
 N  =  4
 N  =  3
 N  =  2
 N  =  1

B i - T S P - 1  ( n = 2 0 )

(a)

0 6 0 0 1 2 0 0 1 8 0 0 2 4 0 0 3 0 0 0
0 . 3 0 0
0 . 3 2 0
0 . 3 4 0
0 . 3 6 0
0 . 3 8 0
0 . 4 0 0
0 . 4 0 5
0 . 4 1 0
0 . 4 1 5
0 . 4 2 0
0 . 4 2 5
0 . 4 3 0

HV

T m

 N  =  6
 N  =  5
 N  =  4
 N  =  3
 N  =  2
 N  =  1

B i - C V R P  ( n = 2 0 )

(b)

Figure 9: Effects of the number of sampled weight vectors.

Table 9: Effects of the scalarization method.

n=20 n=50 n=100
Method HV↑ Gap↓ HV↑ Gap↓ HV↑ Gap↓

B
i-

T
SP

-1 EMNH-TCH 0.6271 0.00% 0.6331 1.20% 0.6927 1.37%
EMNH-WS 0.6271 0.00% 0.6364 0.69% 0.6969 0.77%

EMNH-TCH-Aug 0.6294 -0.37% 0.6401 0.11% 0.6995 0.40%
EMNH-WS-Aug 0.6271 0.00% 0.6408 0.00% 0.7023 0.00%

Tr
i-

T
SP

-1 EMNH-TCH 0.4665 1.00% 0.4175 5.50% 0.4681 5.87%
EMNH-WS 0.4698 0.30% 0.4324 2.13% 0.4866 2.15%

EMNH-TCH-Aug 0.4710 0.04% 0.4295 2.78% 0.4814 3.20%
EMNH-WS-Aug 0.4712 0.00% 0.4418 0.00% 0.4973 0.00%

WS is the simplest method and is effective for the convex PF . It considers the linear combination of
M objectives, as follows,

min
x∈X

gws(x|λ) =
M∑

m=1

λmfm(x). (20)

In theory, TCH can tackle the concave PF , but it would lead to a more complex objective function.
It is defined as follows,

min
x∈X

gtch(x|λ) = max
1≤m≤M

{λm|fm(x)− z∗m|}, (21)

where z∗m < minx∈X fm(x) is an ideal value of fm(x).

As shown in Table 9, the results show that WS is a simple yet effective scalarization method
for the studied problems. In principle, EMNH can freely use any existing scalarizing function.
Different scalarization methods have their own strengths and drawbacks, but the study with respect to
scalarization methods is beyond the scope of this paper, which we will investigate in the future.
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Table 10: Results of lightweight fine-tuning methods.

n=20 n=100
Method HV Gap HV Gap

B
i-

C
V

R
P

PMOCO-Aug 0.4294 0.19% 0.3966 2.77%
MDRL-Aug 0.4292 0.23% 0.4072 0.17%

EMDRL-Aug 0.4302 0.00% 0.4079 0.00%
EMDRL-FD-Aug 0.4299 0.07% 0.4082 -0.07%
EMDRL-FH-Aug 0.4298 0.09% 0.4082 -0.07%

Tr
i-

T
SP

-1
PMOCO-Aug 0.4712 0.00% 0.4956 0.34%
MDRL-Aug 0.4712 0.00% 0.4958 0.30%

EMDRL-Aug 0.4712 0.00% 0.4973 0.00%
EMDRL-FD-Aug 0.4710 0.04% 0.4925 0.97%
EMDRL-FH-Aug 0.4707 0.11% 0.4906 1.35%

Table 11: Parameter numbers of various parts of models.

Bi-CVRP Model Tri-TSP-1 Model
Whole Model Decoder Head Whole Model Decoder Head

#(Parameters) 1287K 98K 16K 1303K 115K 16K
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Figure 10: Solutions of Tri-TSP-1 (n=20) generated with various numbers of weight vectors. (a) 105
weights. (b) 300 weights. (c) 1035 weights.

K Trade-off between lightweight fine-tuning and performance

For a given weight vector, EMNH fine-tunes the meta-model to derive a submodel to solve the
corresponding subproblem. We study another two (relatively) lightweight fine-tuning methods,
including only updating the head parameter (denoted as EMNH-FH) according to feature reuse [15]
and only updating the decoder parameter (denoted as EMNH-FD) like PMOCO [12]. These two
methods even allow us to only fine-tune and store parts of the original submodels, i.e., N heads or N
decoders, thereby being more computationally efficient. Meanwhile, such benefit may bring about
performance sacrifices in some cases. We report the results in Table 10 and the parameter numbers of
various parts of the model in Table 11. The lightweight fine-tuning has slightly inferior performance
compared with the original EMNH in most cases except on Bi-CVRP (n=100). Generally, the more
lightweight of the fine-tuning, the more performance deterioration (i.e.,EMNH-FH v.s. EMNH-FD as
displayed in the table below, where FH is more light than FD). However, these lightweight fine-tuning
methods can be used as alternatives when the computational and memory resources are limited.

Moreover, same as EMNH, EMNH-FH can also generate much more dense Pareto solutions to
improve the performance via increasing weight vectors and corresponding fine-tuned heads. We
have plotted the generated Pareto fronts with 105, 300 and 1035 weight vectors on Tri-TSP-1 which
verified the above point, as shown in Figure 10.
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