
Efficient Meta Neural Heuristic for Multi-Objective
Combinatorial Optimization

Jinbiao Chen1, Jiahai Wang1,2,3,∗ , Zizhen Zhang1,∗, Zhiguang Cao4, Te Ye1, Siyuan Chen1

1School of Computer Science and Engineering, Sun Yat-sen University, P.R. China
2Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education,

Sun Yat-sen University, P.R. China
3Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, P.R. China

4School of Computing and Information Systems, Singapore Management University, Singapore
chenjb69@mail2.sysu.edu.cn, {wangjiah,zhangzzh7}@mail.sysu.edu.cn

zgcao@smu.edu.sg, {yete,chensy47}@mail2.sysu.edu.cn

Abstract

Recently, neural heuristics based on deep reinforcement learning have exhibited
promise in solving multi-objective combinatorial optimization problems (MO-
COPs). However, they are still struggling to achieve high learning efficiency and
solution quality. To tackle this issue, we propose an efficient meta neural heuristic
(EMNH), in which a meta-model is first trained and then fine-tuned with a few steps
to solve corresponding single-objective subproblems. Specifically, for the training
process, a (partial) architecture-shared multi-task model is leveraged to achieve
parallel learning for the meta-model, so as to speed up the training; meanwhile, a
scaled symmetric sampling method with respect to the weight vectors is designed to
stabilize the training. For the fine-tuning process, an efficient hierarchical method
is proposed to systematically tackle all the subproblems. Experimental results on
the multi-objective traveling salesman problem (MOTSP), multi-objective capaci-
tated vehicle routing problem (MOCVRP), and multi-objective knapsack problem
(MOKP) show that, EMNH is able to outperform the state-of-the-art neural heuris-
tics in terms of solution quality and learning efficiency, and yield competitive
solutions to the strong traditional heuristics while consuming much shorter time.

1 Introduction

Multi-objective combinatorial optimization problems (MOCOPs) [1] are widely studied and applied
in many real-world sectors, such as telecommunication, logistics, manufacturing, and inventory.
Typically, an MOCOP requires the simultaneous optimization of multiple conflicting objectives,
where the amelioration of an objective may lead to the deterioration of others. Therefore, a set of
trade-off solutions, known as Pareto-optimal solutions, are usually sought for MOCOPs.

Generally, it is difficult to exactly find all the Pareto-optimal solutions of an MOCOP [2], especially
given that the decomposed single-objective subproblem might already be NP-hard. Hence, heuristic
methods [3] are usually preferred to solve MOCOPs in reality, as they can attain approximate
Pareto-optimal solutions in (relatively) reasonable time. Nevertheless, the traditional heuristics are
still lacking due to their reliance on handcrafted rules and massive iterative steps, and superfluous
computation even for instances of the same (or similar) class.

Recently, inspired by the success of deep reinforcement learning (DRL) in learning neural heuristics
for solving the single-objective combinatorial optimization problems (COPs) [4–7], a number of

∗Jiahai Wang and Zizhen Zhang are the corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

𝜃init

𝜃1

𝜃meta𝜃

෩𝑁 sampled

weights

Training

instances

𝜃𝑖

…
…

𝜃 ෩𝑁

Tu

steps

Tm iterations

𝜃1

𝜃𝑖

𝜃𝑁

…
…

…
…

6
1

2 3

45

1

2 3

4
5

6

1

2 3

45

6
Fine-tunning

instances

N test

weights

Test instances

Meta-learning process

Fine-tuning

process Inference process

𝜃1
(1)

N test

weights

Fine-tunning

instances

𝜃init 𝜃meta

෩𝑁 symmetric

sampled weights

Training

instances

Tu steps

Tm iterations

෨𝜃body

෨𝜃head1

෨𝜃head෩𝑁

෨𝜃head𝑖

…
…

𝜃body𝜃head

𝜃2
(1)

𝜃1
(2)

𝜃2
(2)

𝜃3
(2)

𝜃4
(2)

𝜃1

𝜃𝑖

𝜃𝑁

…
…

…
…

… 6
1

2 3

45

1

2 3

4
5

6

1

2 3

45

6

Accelerated meta-learning process Hierachical fine-tuning process Inference process

Test instances

Figure 1: The overall framework of EMNH.

DRL-based neural heuristics [8–13] have also been investigated for MOCOPs. While bypassing the
handcrafted rules, these neural heuristics adopt an end-to-end paradigm to construct solutions without
iterative search. Benefiting from a large amount of data (i.e., problem instances), a well-trained deep
model allows the neural heuristic to automatically extract informative and expressive features for
decision making and generalize to unseen instances as well.

Although demonstrating promise for solving MOCOPs, those neural heuristics still struggle to achieve
high learning efficiency and solution quality. Particularly, in this line of works, the early attempts
[8–11] always train multiple deep models, i.e., one for each preference (weight) combination, making
them less practical. While the well-known preference-conditioned multi-objective combinatorial
optimization (PMOCO) [12] realized a unified deep model by introducing a huge hypernetwork,
it leaves considerable gaps in terms of solution quality. The recent Meta-DRL (MDRL) [13] has
demonstrated the capability to enhance solution quality over existing state-of-the-art algorithms.
However, it still faces challenges related to inefficient and unstable training procedures, as well as
undesirable fine-tuning processes. This paper thereby proposes an efficient meta neural heuristic
(EMNH) to further strengthen the learning efficiency and solution quality, the framework of which
is illustrated in Figure 1. Following the meta-learning paradigm [13, 14], EMNH first trains a
meta-model and then quickly fine-tunes it according to the weight (preference) vector to tackle the
corresponding single-objective subproblems.

Our contributions are summarized as follows. (1) We propose an efficient meta-learning scheme to
accelerate the training. Inspired by the feature reuse of meta-learning [15], we introduce a multi-task
model composed of a parameter-shared body (all other layers of neural network except the last one)
and respective task-related heads (the last layer of the network), rather than respective submodels, to
train the meta-model, which is able to handle different tasks (subproblems) in parallel. (2) We design
a scaled symmetric sampling method regarding the weight vectors to stabilize the training. In each
meta-iteration, once a weight vector is sampled, its scaled symmetric weight vectors will also be
engendered, which help avoid fluctuations of the parameter update for the meta-model, especially on
problems with objectives of imbalanced domains. (3) We present a hierarchical fine-tuning method
to efficiently cope with all the subproblems. Since it is redundant to derive a specific submodel for
each subproblem in the early tuning process, our meta-model can be gradually fine-tuned to act as
specialized submodels from low level to high level, which takes much fewer fine-tuning steps in total.
Moreover, experimental results on three classic MOCOPs confirmed the effectiveness of our designs.

2 Related works

Exact and heuristic methods for MOCOPs. Over the past decades, MOCOPs have been attracting
increasing attention from the computational intelligence community, and tremendous works have
been proposed. Generally, exact methods [2] are able to gain the accurate Pareto-optimal solutions,
but their computational time may exponentially grow. Heuristic methods such as multi-objective

2

evolutionary algorithms (MOEAs) are popular in practice, where the representative paradigms for
the general multi-objective optimization include NSGA-II [16] and MOEA/D [17]. Among them, a
number of MOEAs outfitted with local search [18–20] are specifically designed for MOCOPs, which
iteratively perform a search in the solution space to find approximate Pareto-optimal solutions.

Neural heuristics for COPs. As the early attempts, neural construction heuristics based on deep
models [21–23] were proposed to learn to directly construct solutions for (single-objective) COPs.
Among them, the classic Attention Model (AM) [24] was proposed inspired by Transformer architec-
ture [25], and known as a milestone for solving vehicle routing problems. A number of subsequent
works [26–30] were developed based on AM, including the popular policy optimization with multiple
optima (POMO) [26], which leveraged the solution symmetries and significantly enhanced the perfor-
mance over AM. Besides, graph neural networks were also employed to learn graphic embeddings for
solving COPs [31–34]. Different from the above neural construction heuristics, neural improvement
heuristics [35–39] were proposed to assist iteration-based methods to refine an initial solution.

Neural heuristics for MOCOPs. MOCOPs seek for a set of trade-off solutions, which could be
obtained by solving a series of single-objective subproblems. According to the number of trained
models, neural heuristics could be roughly classified into multi-model and single-model ones. The
former adopts multiple networks to tackle respective subproblems, where the set of networks could
also be collaboratively trained with a neighborhood-based parameter-transfer strategy [8, 9], or
evolved with MOEA [10, 11]. Differently, the latter usually exploits a unified network to tackle all the
subproblems, which is more flexible and practical. For example, taking the weight (preference) vector
of a subproblem as the input, PMOCO introduces a hypernetwork to learn the decoder parameters [12].
However, the hypernetwork may cause extra complexity to the original deep reinforcement learning
model, rendering it less effective to learn more accurate mapping from the preference to the optimal
solution of the corresponding subproblem. By contrast, MDRL [13] leverages the meta-learning to
train a deep reinforcement learning model that could be fine-tuned for various subproblems. However,
its learning efficiency is far from optimal, especially given the slow and unstable training due to
sequential learning of randomly sampled tasks, and inefficient fine-tuning due to redundant updates.

3 Preliminary

3.1 MOCOP

In general, an MOCOP could be defined as

min
x∈X

f(x) = (f1(x), f2(x), . . . , fM (x)), (1)

where f(x) is an M -objective vector, X is a discrete decision space, and the objectives might be
conflicted. The Pareto-optimal solutions concerned by decision makers are defined as follows.

Definition 1 (Pareto dominance). Let u, v ∈ X , u is said to dominate v (u ≺ v) if and only if
fi(u) ≤ fi(v),∀i ∈ {1, . . . ,M} and ∃j ∈ {1, . . . ,M}, fj(u) < fj(v).

Definition 2 (Pareto optimality). A solution x∗ ∈ X is Pareto-optimal if x∗ is not dominated by
any other solution in X , i.e., ∄x′ ∈ X such that x′ ≺ x∗. The set of all Pareto optimal solutions
P = {x∗ ∈ X | ∄x′ ∈ X : x′ ≺ x∗} is called the Pareto set. The image of Pareto set in the objective
space, i.e., PF = {f(x) | x ∈ P} is called the Pareto front.

3.2 Decomposition

The decomposition strategy is always applied for solving MOCOPs [17], since it is straightforward yet
effective to guide the search towards prescribed directions. Specifically, MOCOPs can be decomposed
into N scalarized single-objective subproblem g(x|λ), where the weight vector λ ∈ RM satisfies
λm ≥ 0 and

∑M
m=1 λm = 1. Then, PF is approximated by solving the subproblems systematically.

Regarding the decomposition strategy, the weighted sum (WS) and Tchebycheff [40] are commonly
used. As a simple representative, WS considers the linear combination of M objectives as follows,

min
x∈X

gws(x|λ) =
M∑

m=1

λmfm(x). (2)

3

Given the weight vector λ, the corresponding single-objective subproblem could be cast as a sequential
decision problem and solved through DRL. In particular, a solution is represented as a sequence
π = {π1, . . . , πT } with length T , and a stochastic policy for yielding solution π from instance
s is calculated as P (π|s) =

∏T
t=1 Pθ(πt|π1:t−1, s), where Pθ(πt|π1:t−1, s) is the node selection

probability parameterized by θ (the subscript of θi, πi, Pi for subproblem i is omitted for readability).

3.3 Meta-learning

Meta-learning [14, 41] aims to train a model that can learn to tackle various tasks (i.e., subproblems)
via fine-tuning. Naturally, a meta-model can be trained to quickly adapt to N corresponding subprob-
lems given N weight vectors. Generally, meta-learning comprises three processes for MOCOPs. In
the meta-learning process, a model θ is trained by repeatedly sampling tasks from the whole task
space. In the fine-tuning process, N submodels θ1, . . . ,θN based on the given weight vectors are
fine-tuned from θ using fine-tuning instances (also called query set). In the inference process, N
subproblems of an instance are solved using the submodels to approximate the Pareto set.

4 Methodology

Our efficient meta neural heuristic (EMNH) includes an accelerated and stabilized meta-learning
process, a hierarchical fine-tuning process, and an inference process, as depicted in Figure 1. EMNH
is generic, where we adopt the first-order gradient-based Reptile [14] as the backbone of meta-
learning, and employ the popular neural solver POMO [26] as the base model. In our meta-learning
process, the model θ is trained with Tm meta-iterations, where a multi-task model is exploited to
speed up the training and a scaled symmetric sampling method is designed to stabilize the training. In
our fine-tuning process, the meta-model θ is hierarchically and quickly fine-tuned with a few gradient
updates to solve the corresponding subproblems. The details for each design are presented below.

4.1 Accelerated training

In the accelerated training process, as shown in Algorithm 1, the meta-model θ is trained with Tm

meta-iterations. In each iteration, the model needs to be optimized by learning Ñ sampled tasks
(subproblems) with Tu-step gradient updates. Inspired by the feature reuse of meta-learning [15], it
is unnecessary and expensive to serially update the meta-model through the Ñ respective submodels
of the same architecture. On the other hand, it is reasonable to assume that only the head θhead is
specified for a task, while the body θbody can be reused for all tasks. To realize such a lightweight
meta-learning scheme, we further introduce a multi-task model θ̃ which is composed of a shared
body and Ñ respective heads to learn the Ñ tasks in parallel.

Specifically, since our EMNH adopts the encoder-decoder structured POMO as the base model, as
depicted in Figure 2(a), 1) θhead could be defined as the decoder head, i.e., WK ∈ Rd×d in the last
single-head attention layer, where d is empirically set to 128 [26]; 2) θbody could be composed of the
whole encoder θen and the decoder body θde−body. For a problem instance with n nodes, the node
embeddings h1, . . . ,hn ∈ Rd are computed by θen at the encoding step. At each decoding step,
the query qc ∈ Rd is first computed by θde−body using the node embeddings and problem-specific
context embedding hc. Then, the last single-head attention layer computes the probability of node
selection Pθ(π|s) using qc and the key k1, . . . ,kn ∈ Rd, where ki′ for node i′ is computed by θhead,
i.e., ki′ = WKhi′ . More details are presented in Appendix A.

As demonstrated in Figure 2(b), for natural accommodation, the multi-task model θ̃ consists of θ̃body
and θ̃head1 , . . . , θ̃headÑ

, where θ̃body and θ̃headi have the same architecture as θbody and θhead,
respectively. Note that θ̃headi is individually updated for subproblem i, while θ̃body is shared for Ñ
tasks. Concretely, since the subproblems are captured by different weight vectors but the same (or
similar) node features, the shared node embeddings are computed by θ̃en. At each decoding step, for
subproblem i, the query qc,i is first computed by θ̃de−body using the node embeddings and context
embedding hc,i. Then, the key is computed as ki′,i = WK

i hi′ for node i′. Finally, the single-head
attention layer computes the probability of node selection Pθ̃i(π|s) for subproblem i using qc,i and
k1,i, . . . ,kn,i. In practice, WK

1 , . . . ,WK
Ñ

are concatenated to tackle the Ñ tasks in parallel.

4

Algorithm 1 Accelerated training process

Input: initialized meta-model θ, number of symmetric sampled weight vectors Ñ , initialized multi-
task model θ̃, initial meta-learning rate ϵ0, number of meta-iterations Tm, number of update steps
of the multi-task model Tu, batch size B, problem size n

1: ϵ← ϵ0
2: for tm = 1 to Tm do
3: λi is obtained by the scaled symmetric sampling method, ∀i ∈ {1, . . . , Ñ}
4: θ̃body ← θbody
5: θ̃headi ← θhead, ∀i
6: for tu = 1 to Tu do
7: sj ∼ SampleInstance(S), ∀j ∈ {1, . . . , B}
8: {πk|sj ,λi} ∼ SampleRollout(Pθ̃i(·|sj)), ∀k ∈ {1, . . . , n}, ∀i, ∀j
9: bij ← 1

n

∑n
k=1 g(π

k|sj ,λi)

10: ∇L(θ̃)← 1
ÑBn

Ñ∑
i=1

B∑
j=1

n∑
k=1

[(gkij − bij)∇logPθ̃i(π
k|sj)]

11: θ̃ ← Adam(θ̃,∇L(θ̃))
12: end for
13: θbody ← θ̃body

14: θhead ← θhead + ϵ(1
Ñ

∑Ñ
i=1 θ̃headi

− θhead)

15: ϵ← ϵ− ϵ0/Tm

16: end for
Output: The trained meta-model θ

LP

𝑥1 ... 𝑥𝑛

×𝒩 Layers ×T Steps

Solution

MHA

ADD & BN

FF

Node Feature

ℎ1
𝑙 ... ℎ𝑛

𝑙

ℎ1
𝑙 ... ℎ𝑛

𝑙

ADD & BN

ℎ1
𝒩 ... ℎ𝑛

𝒩

MHA

(𝜃de−body)
𝑊𝐾

(𝜃head)

𝑞𝑐 𝑘1 ... 𝑘𝑛

Compatibility

Masked Softmax

𝑝1
𝑡 ... 𝑝𝑛

𝑡

𝜋𝑡

ℎ𝑐

𝜃en

DecoderEncoder

(a)

ℎ𝑐ℎ𝑐

𝜋𝑡𝜋𝑡

𝑝1
𝑡 ... 𝑝𝑛

𝑡
𝑝1
𝑡 ... 𝑝𝑛

𝑡

𝑞𝑐𝑞𝑐 𝑘1 ... 𝑘𝑛𝑘1 ... 𝑘𝑛

𝑊𝐾

(𝜃head)
𝑊𝐾

(𝜃head)

LP

𝑥1 ... 𝑥𝑛

×𝒩 Layers ×T Steps

DecoderEncoder

෩𝑁 Solutions

MHA

ADD & BN

FF

Node Feature

ℎ1
𝑙 ... ℎ𝑛

𝑙

ℎ1
𝑙 ... ℎ𝑛

𝑙

ADD & BN

ℎ1
𝒩 ... ℎ𝑛

𝒩

MHA

(෨𝜃de−body)

𝑊1
𝐾

(෨𝜃head1)

𝑞𝑐 𝑘1 ... 𝑘𝑛

Compatibility

Masked Softmax

𝑝1
𝑡 ... 𝑝𝑛

𝑡

𝜋𝑡

ℎ𝑐

෨𝜃en
×෩𝑁

×෩𝑁

×෩𝑁

(b)

Figure 2: Model architectures. (a) Base model (POMO). (b) Multi-task model.

We extend REINFORCE [42] to train the multi-task model θ̃, including θ̃body for all tasks and
θ̃headi for task i. Specifically, θ̃ is optimized by gradient descent with the multi-task loss ∇L =
1
Ñ

∑Ñ
i=1∇Li, where Li(θ̃|s) is the i-th task loss and its gradient is estimated as follows,

∇Li(θ̃|s) = EPθ̃i(π|s)[(g(π|s,λi)− bi(s))∇logPθ̃i(π|s)], (3)

where bi(s) =
1
n

∑n
k=1 g(π

k|s,λi) is a baseline to reduce the gradient variance; π1, . . . ,πn are
solutions produced by POMO with n different starting nodes. In practice, ∇L is approximated using
Monte Carlo sampling, and computed by a batch with B instances as follows,

∇L(θ̃) ≈ 1

ÑBn

Ñ∑
i=1

B∑
j=1

n∑
k=1

[(gkij − bij)∇logPθ̃i(π
k|sj)], (4)

where gkij = g(πk|sj ,λi) and bij = bi(sj). θ̃ is then optimized with Tu steps using Adam [43].

5

(0,1) (1,0)

…

(0,1) (1,0)

…

(0,1) (1,0)

…

𝝀1 𝝀2 ෨𝝀1 ෨𝝀2 ෨𝝀1 ෨𝝀2

Balanced space

𝝀1
𝑠 𝝀2

𝑠

Meta-model

𝝀 Sampled weight
෨𝝀 Symmetric weight

(0.2,0.8)

(0.4,0.6)

(0.2,0.8) (0.8,0.2)

f1 = f2, Balance f1 = f2, Balance f1/f2 = 7/3, Imbalance

(0.2,0.8)

(0.37,0.63) (0.63,0.37)

(0.43,0.57)

Rotational symmetry

Scale

Meta-model update

(a) (b) (c)

(0,1) (1,0)

Figure 3: (a) Random sampling. (b) Symmetric sampling. (c) Scaled symmetric sampling.

4.2 Stabilized training

In each meta-iteration, the deviation of Ñ (usually a small number) randomly sampled weight vectors
may cause fluctuations to the parameter update of the meta-model, thereby leading to unstable training
performance. For example, as shown in Figure 3(a), the biased samples of weight vectors, i.e., λ1

and λ2, make the meta-model tend to favor the second objective more in this iteration.

To address this issue, we first design a symmetric sampling method for the case of balanced objective
domain, as illustrated in Figure 3(b). Once a weight vector λ̃1 is sampled, its M -1 rotational
symmetric weight vectors λ̃2, . . . , λ̃M are calculated and used to reduce the bias as follows,

λ̃i,m =

{
λ̃i−1,M , m = 1

λ̃i−1,m−1, otherwise
. (5)

For the case of imbalanced objective domains, we further design a scaled symmetric sampling method.
In particular, the m-th weight λm is scaled as λm/f∗

m, where f∗
m is the ideal objective value but

difficult to be calculated beforehand. Thus, f∗
m is replaced with f ′

m, which is dynamically estimated
using the meta-model on a validation dataset with λ = (1/M, . . . , 1/M) during training.

Concretely, for a sampled λ̃1, it is first multiplied by f ′ to scale objectives into the balanced domains.
Then, its M -1 rotational symmetric weight vectors are obtained by Eq. (5). Finally, they are divided
by f ′ to scale back to the original domain to attain the genuine rotational symmetric weight vectors.
An example for λ̃1 = (0.2, 0.8) and its scaled symmetric λ̃2 = (0.43, 0.57) are demonstrated in
Figure 3(c). In summary, the scaled symmetric λ̃2, . . . , λ̃M for a given λ̃1 are calculated as follows,

λs
i,m =

{
λ̃i−1,M × f ′

M/f ′
m, m = 1

λ̃i−1,m−1 × f ′
m−1/f

′
m, otherwise

. (6)

Then, the vectors are normalized as λ̃i,m =
λs
i,m∑M

m=1 λs
i,m

. The pseudo code of the scaled symmetric

sampling method for the weight vectors is presented in Appendix B.

4.3 Hierarchical fine-tuning

Once the meta-model is trained, it can be fine-tuned with a number of gradient updates to derive
customized submodels for given weight vectors. However, it still might be expensive for MOCOPs
since numerous submodels need to be individually fine-tuned from the meta-model. From a systematic
perspective, the early coarse-tuning processes in which the parameters of neighboring submodels
might be close, could be merged. In this sense, we propose a hierarchical method to efficiently
fine-tune the numerous subproblems from the lowest to the highest level, as illustrated in Figure 1.

6

We suggest an L-level and a-section hierarchy to gradually produce more specific submodels. Partic-
ularly, all N (l) weight vectors in level l are defined as the centers of their corresponding subspaces
that uniformly divide the whole weight vector space based on the Das and Dennis [44] method. N (l)

submodels are then fine-tuned to derive N (l+1) = aN (l) submodels with K(l+1) fine-tuning steps in
level l+1. Finally, N (L−1) submodels are fine-tuned to derive N (L) = N submodels, which are used
to solve the N given subproblems. More details of this fine-tuning are presented in Appendix C.

For the L-level and a-section hierarchy with aL = N and K(1) = · · · = K(L) = K, the total
fine-tuning step is Th

f =
∑L

l=1 Kal = Ka(aL − 1)/(a− 1). For the vanilla process, each submodel
needs KL fine-tuning steps to achieve comparable performance, thus T v

f = KLN = KLaL steps in
total. Hence, the hierarchical fine-tuning only needs Th

f /T
v
f ≈ 1/L of the vanilla fine-tuning steps.

5 Experimental results

5.1 Experimental settings

We conduct computational experiments to evaluate the proposed method on the multi-objective trav-
eling salesman problem (MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP),
and multi-objective knapsack problem (MOKP). Following the convention in [26, 12], we consider
the instances of different sizes n=20/50/100 for MOTSP/MOCVRP and n=50/100/200 for MOKP.
All experiments are run on a PC with an Intel Xeon 4216 CPU and an RTX 3090 GPU.

Problems. Four classes of MOTSP [45] are considered, including bi-objective TSP type 1&2 (Bi-
TSP-1, Bi-TSP-2) and tri-objective TSP type 1&2 (Tri-TSP-1, Tri-TSP-2). For the M -objective TSP
type 1, node i has M 2D coordinates {x1

i , . . . ,x
M
i }, where the m-th cost between node i and j is

defined as the Euclidean distance cmij = ∥xm
i − xm

j ∥2. For the M -objective TSP type 2, a node
contains M -1 2D coordinates together with the altitude, so the M -th cost is defined as the altitude
variance. For the bi-objective CVRP (Bi-CVRP) [46], two conflicting objectives with imbalanced
domains, i.e., the total traveling distance and the traveling distance of the longest route (also called
makespan), are considered. For the bi-objective KP (Bi-KP) [47], item i has a single weight and two
distinct values. More details of these MOCOPs are presented in Appendix D.

Hyper-parameters. The meta-learning rate ϵ is linearly annealed to 0 from ϵ0 = 1 initially. A
constant learning rate of the Adam optimizer is set to 10−4. We set B = 64, Tm = 3000, Tu = 100,
and Ñ = M . The N weight vectors in PF construction are produced according to [44], where
N = CM−1

H+M−1. H is set to 100 (N = 101) and 13 (N = 105) for M = 2 and M = 3, respectively.
WS scalarization is adopted. In the hierarchy of fine-tuning, the whole weight space is uniformly
divided by the Das and Dennis [44] method with H(l) = 2l, i.e., level l has 2l or 4l subspaces
and L = 7 or L = 4 for M = 2 or M = 3. The number of fine-tuning steps at each level is
K(l) = K = 20 or K(l) = K = 25 for M = 2 or M = 3.

Baselines. Two kinds of strong baselines are introduced, and all of them adopt WS (weighted sum)
scalarization for fair comparisons. (1) The state-of-the-art neural heuristics, including MDRL [13],
PMOCO [12], and DRL-based multiobjective optimization algorithm (DRL-MOA) [8]. Same as
EMNH, all these neural heuristics adopt POMO as the base model for single-objective subproblems.
(2) The state-of-the-art traditional heuristics, including PPLS/D-C [20], WS-LKH, and WS-DP.
PPLS/D-C is a local-search-based MOEA proposed for MOCOPs, where a 2-opt heuristic is used
for MOTSP and MOCVRP, and a greedy transformation heuristic [48] is used for MOKP, running
with 200 iterations for all the three problems. WS-LKH and WS-DP are based on the state-of-the-art
heuristics for decomposed single-objective subproblems, i.e., LKH [49, 50] for MOTSP and dynamic
programming (DP) for MOKP, respectively. Our code is publicly available2.

Metrics. Our EMNH is evaluated in terms of solution quality and learning efficiency. Solution
quality is mainly measured by hypervolume (HV) [51], where a higher HV means a better solution
set (the definition is presented in Appendix E). Learning efficiency mainly refers to the training and
fine-tuning efficiency, which are measured by training time for the same amount of training instances
and solution quality with the same total fine-tuning steps (see Appendix F), respectively.

2https://github.com/bill-cjb/EMNH

7

https://github.com/bill-cjb/EMNH

Table 1: Results on 200 random instances for MOCOPs with balanced objective domains.

Bi-TSP-1 (n=20) Bi-TSP-1 (n=50) Bi-TSP-1 (n=100)
Method HV↑ Gap↓ Time HV↑ Gap↓ Time HV↑ Gap↓ Time

WS-LKH 0.6270 0.02% 10m 0.6415 -0.11% 1.8h 0.7090 -0.95% 6.0h
PPLS/D-C 0.6256 0.24% 26m 0.6282 1.97% 2.8h 0.6844 2.55% 11h

DRL-MOA 0.6257 0.22% 6s 0.6360 0.75% 9s 0.6970 0.75% 21s
PMOCO 0.6259 0.19% 6s 0.6351 0.89% 10s 0.6957 0.94% 19s
MDRL 0.6271 0.00% 5s 0.6364 0.69% 9s 0.6969 0.77% 17s
EMNH 0.6271 0.00% 5s 0.6364 0.69% 9s 0.6969 0.77% 16s
PMOCO-Aug 0.6270 0.02% 45s 0.6395 0.20% 2.3m 0.7016 0.10% 15m
MDRL-Aug 0.6271 0.00% 33s 0.6408 0.00% 1.7m 0.7022 0.01% 14m
EMNH-Aug 0.6271 0.00% 33s 0.6408 0.00% 1.7m 0.7023 0.00% 14m

Bi-KP (n=50) Bi-KP (n=100) Bi-KP (n=200)
Method HV↑ Gap↓ Time HV↑ Gap↓ Time HV↑ Gap↓ Time

WS-DP 0.3561 0.00% 22m 0.4532 0.07% 2.0h 0.3601 0.06% 5.8h
PPLS/D-C 0.3528 0.93% 18m 0.4480 1.21% 47m 0.3541 1.72% 1.5h

DRL-MOA 0.3559 0.06% 9s 0.4531 0.09% 18s 0.3601 0.06% 1.0m
PMOCO 0.3552 0.25% 6s 0.4523 0.26% 22s 0.3595 0.22% 1.3m
MDRL 0.3530 0.87% 6s 0.4532 0.07% 21s 0.3601 0.06% 1.2m
EMNH 0.3561 0.00% 6s 0.4535 0.00% 21s 0.3603 0.00% 1.2m

Tri-TSP-1 (n=20) Tri-TSP-1 (n=50) Tri-TSP-1 (n=100)
Method HV↑ Gap↓ Time HV↑ Gap↓ Time HV↑ Gap↓ Time

WS-LKH 0.4712 0.00% 12m 0.4440 -0.50% 1.9h 0.5076 -2.07% 6.6h
PPLS/D-C 0.4698 0.30% 1.4h 0.4174 5.52% 3.9h 0.4376 12.00% 14h

DRL-MOA 0.4699 0.28% 6s 0.4303 2.60% 9s 0.4806 3.36% 19s
PMOCO 0.4693 0.40% 5s 0.4315 2.33% 8s 0.4858 2.31% 18s
MDRL 0.4699 0.28% 5s 0.4317 2.29% 9s 0.4852 2.43% 16s
EMNH 0.4699 0.28% 5s 0.4324 2.13% 9s 0.4866 2.15% 16s
PMOCO-Aug 0.4712 0.00% 3.2m 0.4409 0.20% 28m 0.4956 0.34% 1.7h
MDRL-Aug 0.4712 0.00% 2.6m 0.4408 0.23% 25m 0.4958 0.30% 1.7h
EMNH-Aug 0.4712 0.00% 2.6m 0.4418 0.00% 25m 0.4973 0.00% 1.7h

5.2 Solution quality

The results for MOTSP, MOCVRP, and MOKP are recorded in Tables 1 and 2, including the average
HV, gap, and total running time for solving 200 random test instances. To further show the significant
differences between the results, a Wilcoxon rank-sum test at 1% significance level is adopted. The
best result and the one without statistical significance to it are highlighted as bold. The second-best
result and the one without statistical significance to it are highlighted as underline. The method with
“-Aug" represents the inference results using instance augmentation [12] (see Appendix G).

Optimality gap. The gaps of HV with respect to EMNH-Aug are reported for all methods. Accord-
ing to the results in Tables 1 and 2, EMNH outperforms other neural heuristics without instance
augmentation on all problems. When equipped with instance augmentation, EMNH-Aug further
improves the solution, and performs superior to most of the baselines, while slightly inferior to
WS-LKH on MOTSP with n=50 and n=100. However, as iteration-based methods, WS-LKH and
MOEAs take quite long running time on MOCOPs. For the neural heuristics, DRL-MOA is less agile
since it trains multiple fixed models for a priori weight vectors. For new weight vectors concerned by
decision makers, EMNH, MDRL, and PMOCO are able to efficiently produce high-quality trade-off
solutions, where EMNH achieves the smallest gap.

Imbalanced objective domains. As demonstrated in Table 2, the gaps between EMNH and PMOCO
or MDRL are further increased on the problems with imbalanced objective domains, i.e., Bi-CVRP, Bi-
TSP-2, and Tri-TSP-2. EMNH exhibits more competitive performance on these problems, revealing

8

Table 2: Results on 200 random instances for MOCOPs with imbalanced objective domains.

Bi-CVRP (n=20) Bi-CVRP (n=50) Bi-CVRP (n=100)
Method HV↑ Gap↓ Time HV↑ Gap↓ Time HV↑ Gap↓ Time

PPLS/D-C 0.4287 0.35% 1.6h 0.4007 2.41% 9.7h 0.3946 3.26% 38h

DRL-MOA 0.4287 0.35% 10s 0.4076 0.73% 12s 0.4055 0.59% 33s
PMOCO 0.4267 0.81% 7s 0.4036 1.70% 12s 0.3913 4.07% 32s
MDRL 0.4291 0.26% 8s 0.4082 0.58% 13s 0.4056 0.56% 32s
EMNH 0.4299 0.07% 8s 0.4098 0.19% 12s 0.4072 0.17% 32s
PMOCO-Aug 0.4294 0.19% 13s 0.4080 0.63% 36s 0.3969 2.70% 2.7m
MDRL-Aug 0.4294 0.19% 11s 0.4092 0.34% 36s 0.4072 0.17% 2.8m
EMNH-Aug 0.4302 0.00% 11s 0.4106 0.00% 35s 0.4079 0.00% 2.8m

Bi-TSP-2 (n=20) Bi-TSP-2 (n=50) Bi-TSP-2 (n=100)
Method HV↑ Gap↓ Time HV↑ Gap↓ Time HV↑ Gap↓ Time

WS-LKH 0.6660 0.13% 11m 0.7390 -0.07% 1.8h 0.8055 -0.74% 6.1h
PPLS/D-C 0.6662 0.10% 27m 0.7300 1.15% 3.3h 0.7859 1.71% 10h

DRL-MOA 0.6657 0.18% 6s 0.7359 0.35% 8s 0.7965 0.39% 18s
PMOCO 0.6590 1.18% 5s 0.7347 0.51% 8s 0.7944 0.65% 17s
MDRL 0.6669 0.00% 5s 0.7361 0.32% 9s 0.7965 0.39% 15s
EMNH 0.6669 0.00% 5s 0.7361 0.32% 9s 0.7965 0.39% 15s
PMOCO-Aug 0.6653 0.24% 13s 0.7375 0.14% 33s 0.7988 0.10% 3.5m
MDRL-Aug 0.6669 0.00% 8s 0.7385 0.00% 22s 0.7996 0.00% 2.8m
EMNH-Aug 0.6669 0.00% 8s 0.7385 0.00% 22s 0.7996 0.00% 2.8m

Tri-TSP-2 (n=20) Tri-TSP-2 (n=50) Tri-TSP-2 (n=100)
Method HV↑ Gap↓ Time HV↑ Gap↓ Time HV↑ Gap↓ Time

WS-LKH 0.5035 0.00% 13m 0.5305 -0.49% 2.0h 0.5996 -1.70% 6.6h
PPLS/D-C 0.5035 0.00% 1.4h 0.5045 4.42% 4.1h 0.5306 10.01% 15h

DRL-MOA 0.5019 0.32% 6s 0.5101 3.37% 8s 0.5488 6.92% 19s
PMOCO 0.5020 0.30% 5s 0.5176 1.95% 8s 0.5777 2.02% 18s
MDRL 0.5024 0.22% 5s 0.5183 1.82% 9s 0.5806 1.53% 16s
EMNH 0.5024 0.22% 5s 0.5205 1.40% 9s 0.5813 1.41% 16s
PMOCO-Aug 0.5035 0.00% 55s 0.5258 0.40% 6.1m 0.5862 0.58% 32m
MDRL-Aug 0.5035 0.00% 37s 0.5267 0.23% 4.2m 0.5886 0.17% 30m
EMNH-Aug 0.5035 0.00% 37s 0.5279 0.00% 4.2m 0.5896 0.00% 30m

the effectiveness of the proposed scaled symmetric sampling method in tackling the imbalance of
objective domains. We further equip PMOCO with the same sampling method, which actually also
improved the solutions for those problems, but still performed inferior to EMNH (see Appendix H).

Generalization ability. We test the generalization ability of the model on 200 larger-scale random
instances (n=150/200) and 3 commonly used MOTSP benchmark instances (KroAB100/150/200) in
TSPLIB [52]. The zero-shot generalization performance of the model trained and fine-tuned both on
the instances with n=100 is reported in Appendix I. The results suggest that EMNH has a superior
generalization ability compared with MOEAs and other neural heuristics for larger problem sizes.

Hyper-parameter study. The results in Appendix J showed that the number of sampled weight
vectors Ñ = M is a more desirable setting and WS is a simple yet effective scalarization method.

5.3 Learning efficiency

As verified above, EMNH is able to produce superior solutions to the state-of-the-art neural heuristics,
especially demonstrating a significant advantage over PMOCO in terms of solution quality. Then we
further show that EMNH also has favorable learning efficiency against MDRL.

Training efficiency. EMNH, MDRL, and PMOCO only train one model to tackle all subproblems,
where EMNH and MDRL use the same amount of training instances, and PMOCO requires a few

9

1 2 3 4 5 6
1
2
3
4
5
6

1 . 0
2 . 0

2 . 9
3 . 8

4 . 7
5 . 6

1 . 0
2 . 0

3 . 0
4 . 0

5 . 0
6 . 0

Sp
eed

-up
 Ra

tio

N

 B i - T S P - 1
 B i - C V R P

(a)

0 6 0 0 1 2 0 0 1 8 0 0 2 4 0 0 3 0 0 0
0 . 3 8

0 . 3 9

0 . 4 0

0 . 4 1

0 . 4 2

0 . 4 3
B i - C V R P (n = 2 0)

HV

T m

 E M N H E M N H - S E M N H - R M D R L

(b)

1 5 1 0 1 5 2 00 . 6 4 0
0 . 6 4 5
0 . 6 5 0
0 . 6 5 5
0 . 6 6 0
0 . 6 6 5
0 . 6 7 0 B i - T S P - 2 (n = 2 0)

HV

K

 E M N H - A u g
 M D R L - A u g
 P M O C O - A u g
 E M N H
 M D R L
 P M O C O

(c)

Figure 4: Learning efficiency. (a) Training efficiency. (b) Training stability. (c) Fine-tuning efficiency.

more training instances according to its original setting. DRL-MOA needs to train multiple submodels
with more training instances. More details are presented in Appendix F. Figure 4(a) displays the
speed-up ratio, i.e., the ratio of the training time of MDRL to EMNH. Due to the multi-task based
training for (partial) architecture reuse, training time of EMNH is only about 1/Ñ of that of MDRL.

Training stability. Figure 4(b) shows the stability of the training process, where EMNH-S and
EMNH-R refer to EMNH with the symmetric sampling and the random sampling, respectively.
EMNH achieves the stablest and best training performance, compared to EMNH-S, EMNH-R,
and MDRL, as the proposed sampling method in EMNH considers symmetric weight vectors and
(imbalanced) objective domains. More details are presented in Appendix F.

Fine-tuning efficiency. Figure 4(c) compares the hierarchical fine-tuning in EMNH with the vanilla
fine-tuning method in MDRL, where the HV of EMNH with K fine-tuning steps at each level and the
HV of MDRL with approximately equal total fine-tuning steps are presented. The results demonstrate
that EMNH attains higher fine-tuning efficiency than MDRL, i.e., larger gaps with smaller fine-tuning
steps. Furthermore, PMOCO is also equipped with the hierarchical fine-tuning (for both versions)
for a fair comparison. It is worth noting that our fine-tuning process is performed individually for
each weight vector on dedicated fine-tuning instances. As can be seen, PMOCO could hardly get
improved by fine-tuning for zero-shot inference on test instances, since it has already converged
for the corresponding subproblems. This means that EMNH has favorable potential to derive more
desirable submodels to tackle specific tasks. Notably, EMNH with a few fine-tuning steps (e.g.,
K = 5) outperforms PMOCO in most cases, as demonstrated in Appendix F.

6 Conclusion

This paper proposes an efficient meta neural heuristic (EMNH) for MOCOPs. Specifically, EMNH
reduces training time, stabilizes the training process, and curtails total fine-tuning steps via (partial)
architecture-shared multi-task learning, scaled symmetric sampling (of weight vectors), and hierarchi-
cal fine-tuning, respectively. The experimental results on MOTSP, MOCVRP, and MOKP verified the
superiority of EMNH in learning efficiency and solution quality. A limitation is that our EMNH, as
the same as other neural heuristics, can not guarantee obtaining the exact Pareto front. In the future,
we will (1) extend EMNH to other MOCOPs with complex constraints; (2) investigate other advanced
meta-learning algorithms and neural solvers as the base model to further improve the performance.

Acknowledgments and disclosure of funding

This work is supported by the National Natural Science Foundation of China (62072483), and the
Guangdong Basic and Applied Basic Research Foundation (2022A1515011690, 2021A1515012298).

References
[1] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of multiobjective combina-

torial optimization. OR-spektrum, 22(4):425–460, 2000.

[2] Kostas Florios and George Mavrotas. Generation of the exact pareto set in multi-objective traveling
salesman and set covering problems. Applied Mathematics and Computation, 237:1–19, 2014.

10

[3] Arne Herzel, Stefan Ruzika, and Clemens Thielen. Approximation methods for multiobjective optimization
problems: A survey. INFORMS Journal on Computing, 33(4):1284–1299, 2021.

[4] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa,
William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter, and Jeff Dean. A
graph placement methodology for fast chip design. Nature, 594:207–212, 2021.

[5] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

[6] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

[7] Qi Wang and Chunlei Tang. Deep reinforcement learning for transportation network combinatorial
optimization: A survey. Knowledge-Based Systems, 233:107526, 2021.

[8] Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective optimization. IEEE
Transactions on Cybernetics, 51(6):3103–3114, 2021.

[9] Hong Wu, Jiahai Wang, and Zizhen Zhang. MODRL/D-AM: Multiobjective deep reinforcement learning
algorithm using decomposition and attention model for multiobjective optimization. In ISICA 2019, volume
CCIS 1205, pages 575–589, 2020.

[10] Yinan Shao, Jerry Chun-Wei Lin, Gautam Srivastava, Dongdong Guo, Hongchun Zhang, Hu Yi, and
Alireza Jolfaei. Multi-objective neural evolutionary algorithm for combinatorial optimization problems.
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[11] Yongxin Zhang, Jiahai Wang, Zizhen Zhang, and Yalan Zhou. MODRL/D-EL: Multiobjective deep
reinforcement learning with evolutionary learning for multiobjective optimization. In International Joint
Conference on Neural Networks, 2021.

[12] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinatorial
optimization. In International Conference on Learning Representations, 2022.

[13] Zizhen Zhang, Zhiyuan Wu, Hang Zhang, and Jiahai Wang. Meta-learning-based deep reinforcement
learning for multiobjective optimization problems. IEEE Transactions on Neural Networks and Learning
Systems, 34(10):7978–7991, 2023.

[14] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms, 2018.

[15] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. In International Conference on Learning Representations,
2020.

[16] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[17] Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

[18] Andrzej Jaszkiewicz. Genetic local search for multi-objective combinatorial optimization. European
Journal of Operational Research, 137(1):50–71, 2002.

[19] Jialong Shi, Qingfu Zhang, and Jianyong Sun. PPLS/D: Parallel pareto local search based on decomposition.
IEEE transactions on Cybernetics, 50(3):1060–1071, 2020.

[20] Jialong Shi, Jianyong Sun, Qingfu Zhang, Haotian Zhang, and Ye Fan. Improving pareto local search using
cooperative parallelism strategies for multiobjective combinatorial optimization. IEEE Transactions on
Cybernetics, 2022.

[21] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, 2015.

[22] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Learning Representations, 2017.

[23] Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V. Snyder. Reinforcement learning
for solving the vehicle routing problem. In Advances in Neural Information Processing Systems, 2018.

11

[24] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

[26] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. POMO:
Policy optimization with multiple optima for reinforcement learning. In Advances in Neural Information
Processing Systems, 2020.

[27] Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems. In
Advances in Neural Information Processing Systems, 2021.

[28] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
encoding networks for neural combinatorial optimization. In Advances in Neural Information Processing
Systems, 2021.

[29] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In AAAI Conference on Artificial Intelligence, pages
12042–12049, 2021.

[30] Bo Peng, Jiahai Wang, and Zizhen Zhang. A deep reinforcement learning algorithm using dynamic
attention model for vehicle routing problems. In ISICA 2019, volume CCIS 1205, pages 636–650, 2020.

[31] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Information Processing Systems, 2017.

[32] Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh. GCOMB:
Learning budget-constrained combinatorial algorithms over billion-sized graphs. In Advances in Neural
Information Processing Systems, 2020.

[33] Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu. Efficiently
solving the practical vehicle routing problem: A novel joint learning approach. In ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 3054–3063, 2020.

[34] Jinbiao Chen, Huanhuan Huang, Zizhen Zhang, and Jiahai Wang. Deep reinforcement learning with two-
stage training strategy for practical electric vehicle routing problem with time windows. In International
Conference on Parallel Problem Solving from Nature, 2022.

[35] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. In
Advances in Neural Information Processing Systems, 2019.

[36] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing
problems. In International Conference on Learning Representations, 2020.

[37] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. In European Conference on Artificial Intelligence, 2020.

[38] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics for
solving routing problems. IEEE Transactions on Neural Networks and Learning Systems, 33(9):5057–5069,
2022.

[39] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learning
to iteratively solve routing problems with dual-aspect collaborative transformer. In Advances in Neural
Information Processing Systems, 2021.

[40] Xiaoliang Ma, Qingfu Zhang, Guangdong Tian, Junshan Yang, and Zexuan Zhu. On tchebycheff decom-
position approaches for multiobjective evolutionary optimization. IEEE Transactions on Evolutionary
Computation, 22(2):226–244, 2017.

[41] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pages 1126–1135, 2017.

[42] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

[43] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

12

[44] I Das and JE Dennis. Normal-boundary intersection: A new method for generating pareto-optimal points
in multieriteria optimization problems. SIAM Journal on Optimization, 8(3):631–657, 1998.

[45] Thibaut Lust and Jacques Teghem. The multiobjective traveling salesman problem: A survey and a new
approach. In Advances in Multi-Objective Nature Inspired Computing, pages 119–141, 2010.

[46] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Multi-objective vehicle routing problems.
European Journal of Operational Research, 189(2):293–309, 2008.

[47] Cristina Bazgan, Hadrien Hugot, and Daniel Vanderpooten. Solving efficiently the 0–1 multi-objective
knapsack problem. Computers & Operations Research, 36(1):260–279, 2009.

[48] Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima. Behavior of multiobjective evolutionary algorithms
on many-objective knapsack problems. IEEE Transactions on Evolutionary Computation, 19(2):264–283,
2015.

[49] Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic. European
Journal of Operational Research, 126(1):106–130, 2000.

[50] Renato Tinós, Keld Helsgaun, and Darrell Whitley. Efficient recombination in the lin-kernighan-helsgaun
traveling salesman heuristic. In International Conference on Parallel Problem Solving from Nature, pages
95–107, 2018.

[51] Charles Audet, Jean Bigeon, Dominique Cartier, Sébastien Le Digabel, and Ludovic Salomon. Performance
indicators in multiobjective optimization. European Journal of Operational Research, 292(2):397–422,
2021.

[52] Gerhard Reinelt. TSPLIB—a traveling salesman problem library. ORSA Journal on Computing, 3(4):
376–384, 1991.

13

	Introduction
	Related works
	Preliminary
	MOCOP
	Decomposition
	Meta-learning

	Methodology
	Accelerated training
	Stabilized training
	Hierarchical fine-tuning

	Experimental results
	Experimental settings
	Solution quality
	Learning efficiency

	Conclusion

