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Abstract

Autoregressive neural networks within the temporal point process (TPP) framework
have become the standard for modeling continuous-time event data. Even though
these models can expressively capture event sequences in a one-step-ahead fashion,
they are inherently limited for long-term forecasting applications due to the accumu-
lation of errors caused by their sequential nature. To overcome these limitations, we
derive ADD-THIN, a principled probabilistic denoising diffusion model for TPPs
that operates on entire event sequences. Unlike existing diffusion approaches, ADD-
THIN naturally handles data with discrete and continuous components. In exper-
iments on synthetic and real-world datasets, our model matches the state-of-the-art
TPP models in density estimation and strongly outperforms them in forecasting.

1 Introduction

0 T

!(")~	$$%%

!(&)~	$'()(

!(*+,)

Noising Process Denoising Process

0 T

!(*)

$*+,(!|!(*), !(&))

t(n)

t(n−1) λn−1(t | t(0), t(n)) = λ(B)(t) + λ(C)(t) + λ(D)(t) + λ(E)(t)

t(0) ∼ λData

t(N) ∼ λHPP

Figure 1: Proposed noising and denoising process for
ADD-THIN. (Left) Going from step n− 1 to step n,
we add and remove some points at random. (Right)
Given t(n) and t(0) we know the intensity of points
at step n− 1. We approximate this intensity with our
model, which enables sampling new sequences.

Many machine learning applications involve
the analysis of continuous-time data, where
the number of events and their times are
random variables. This data type arises in
various domains, including healthcare, neu-
roscience, finance, social media, and seis-
mology. Temporal point processes (TPPs)
provide a sound mathematical framework to
model such event sequences, where the main
problem is finding a parametrization that can
capture the seasonality and complex interac-
tions (e.g., excitation and inhibition) within
point processes.

Traditional TPP models [17, 20] employ
simple parametric forms, limiting their
flexibility to capture the intricacies of
arbitrary TPPs. In recent years, various
neural TPPs have been proposed (see [43]
for an overview) that capture complex event
interactions in an autoregressive manner,
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often using recurrent neural networks (RNN) or transformer architectures. While autoregressive
models are expressive and have shown good performance for one-step-ahead prediction, their
suitability for forecasting remains limited due to the accumulation of errors in sequential sampling.

We propose to take a completely different approach: instead of autoregressive modeling, we apply
a generative diffusion model, which iteratively refines entire event sequences from noise. Diffusion
models [18, 45] have recently shown impressive results for different data domains, such as images
[15, 18, 25], point clouds [31, 32], text [27] and time-series [1, 3, 24, 46]. But how can we apply
diffusion models to TPPs? We cannot straightforwardly apply existing Gaussian diffusion models
to learn the mapping between TPPs due to the particular requirements that must be met, namely,
the randomness in the number of events and the strictly positive arrival times.

We present a novel diffusion-inspired model for TPPs that allows sampling entire event sequences
at once without relying on a specific choice of a parametric distribution. Instead, our model learns
the probabilistic mapping from complete noise, i.e., a homogeneous Poisson process (HPP), to data.
More specifically, we learn a model to reverse our noising process of adding (superposition) and
removing (thinning) points from the event sequence by matching the conditional inhomogeneous
denoising intensity λn−1(t | t(0), t(n)) as presented in Figure 1. Thereby, we achieve a natural way
to generate sequences with varying numbers of events and expressively model arbitrary TPPs. In
short, our contributions are as follows:

• We connect diffusion models with TPPs by introducing a novel model that naturally
handles the discrete and continuous nature of point processes.

• We propose a model that is flexible and permits parallel and closed-form sampling of
entire event sequences, overcoming common limitations of autoregressive models.

• We show that our model matches the performance of state-of-the-art TPP models in
density estimation and outperforms them in forecasting.

2 Background

2.1 Temporal point processes (TPPs)

Temporal point processes (TPPs) [8, 9] are stochastic processes that define a probability distribution
over event sequences whose number of points (events) K and their locations (arrival times) ti
are random. A realization of a TPP can be represented as a sequence of strictly increasing arrival
times: t = (t1, . . . , tK), 0 < t1 < · · · < tK ≤ T . Viewing a TPP as a counting process, we can
equivalently represent a TPP realization by a counting measure N(t) =

∑K
i I(ti ≤ t), for t ∈ [0, T ].

The intensity characterizing a TPP can be interpreted as the expected number of events per unit of
time and is defined as:

λ(t | Ht) = lim
∆t↓0

E[N(t+∆t)−N(t) | Ht]

∆t
, (1)

whereHt = {ti : ti < t} is the event history until time t, which acts as a filtration to the process.

TPPs have a number of convenient theoretical properties, two of which will be central to our derivation
of a noising process for TPPs later in the paper. The first property is superposition: If we combine
events generated by TPPs with intensities λ1(t) and λ2(t), the resulting event sequence will again
follow a TPP, but now with intensity λ1(t) + λ2(t). Conversely, randomly removing each event
generated by a TPP process with intensity λ(t) with probability p is known as independent thinning.
This is equivalent to sampling from a TPP with intensity (1− p)λ(t) [9].

Poisson process. A (in)homogeneous Poisson process is the simplest class of TPPs, where the rate
of event occurrence is independent of the history. Then the number of points on [0, T ] follows a
Poisson distribution with rate Λ(T ) =

∫ T

0
λ(t) dt. In the context of our model, the Poisson process

with a constant intensity on [0, T ], called homogeneous Poisson Process (HPP), represents the noise
distribution. Even though Poisson processes can model seasonality, i.e., time-varying rates of event
occurrence, they assume the events to be independent and do not capture the exciting or inhibiting
behavior present in the real world, e.g., a large earthquake increasing the likelihood of observing
other earthquakes soon after.
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Conditional intensity. Most TPP models leverage the conditional intensity function λ(t | Ht) or
equivalently the conditional density p(t | Ht) to overcome the independence of points limitation of
an inhomogeneous Poisson process. Historically, these intensity models were parameterized using
hand-crafted functions [17, 20], whereas now, it is more common to use neural networks for learning
intensities from data [12, 33, 41]. While the conditional intensity provides a general framework to
model TPPs, sampling from these models is inherently autoregressive.

2.2 Denoising diffusion probabilistic models

Diffusion models [18, 45] are a class of latent variable models that learn a generative model to
reverse a fixed probabilistic noising process x0 → x1 → · · · → xN , which gradually adds noise
to clean data x0 until no information remains, i.e., xN ∼ p(xN ). For continuous data, the forward
(noising) process is usually defined as a fixed Markov chain q(xn | xn−1) with Gaussian transitions.
Then the Markov chain of the reverse process is captured by approximating the true posterior
q(xn−1 | x0,xn) with a model pθ(xn−1 | xn). Ultimately, sampling new realizations x0 from
the modeled data distribution pθ(x0) =

∫
p(xN )

∏N
n=1 pθ(xn−1 | xn) dx1 . . .xN is performed by

starting with a sample from pure noise xN ∼ p(xN ) and gradually denoising it with the learned
model over N steps xN → xN−1 → · · · → x0.

3 ADD-THIN

In the following, we derive a diffusion-like model for TPPs—ADD-THIN. The two main components
of this model are the forward process, which converts data to noise (noising), and the reverse process,
which converts noise to data (denoising). We want to emphasize again that existing Gaussian diffusion
models [18, 45] are not suited to model entire event sequences, given that the number of events is
random and the arrival times are strictly positive. For this reason, we will derive a new noising and
denoising process (Sections 3.1 & 3.2), present a learnable parametrization and appropriate loss to
approximate the posterior (Section 3.3) and introduce a sampling procedure (Sections 3.4 & 3.5).

3.1 Forward process – Noising

Let t(0) = (t1, . . . , tK) denote an i.i.d. sample from a TPP (data process) with T = 1 specified by
the unknown (conditional) intensity λ0. We define a forward noising process as a sequence of TPPs
that start with the true intensity λ0 and converge to a standard HPP, i.e., λ0 → λ1 → · · · → λN :

λn(t) = αnλn−1(t)︸ ︷︷ ︸
(i) Thin

+(1− αn)λHPP︸ ︷︷ ︸
(ii) Add

, (2)

where 1 > α1 > α2 > · · · > αN > 0 and λHPP denotes the constant intensity of an HPP. Equation 2
corresponds to a superposition of (i) a process λn−1 thinned with probability 1− αn (removing old
points), and (ii) an HPP with intensity (1− αn)λHPP (adding new points).
Property (Stationary intensity). For any starting intensity λ0, the intensity function λN given by
Equation 2 converges towards λHPP. That is, the noised TPP will be an HPP with λHPP.

Proof. In Appendix B.1 we show that, given λ0 and Equation 2, λn is given by:

λn(t) = ᾱnλ0(t) + (1− ᾱn)λHPP, (3)

where ᾱn =
∏n

j αj . Since
∏N

j αj → 0 as N →∞, thus λN (t)→ λHPP.

If all αn are close to 1, each consecutive realization will be close to the one before because we do
not remove a lot of original points, nor do we add many new points. And if we have enough steps,
we will almost surely converge to the HPP. Both of these properties will be very useful in training a
generative model that iteratively reverses the forward noising process.

But how can we sample points from λn if we do not have access to λ0? Since we know the event
sequence t(0) comes from a true process which is specified with λ0, we can sample from a thinned
process ᾱnλ0(t), by thinning the points t(0) independently with probability 1 − ᾱn. This shows
that even though we cannot access λ0, we can sample from λn by simply thinning t(0) and adding
new points from an HPP.
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t(n)t(0)

t(n−1)

λ(B)(t) =
∑

ti∈t(0)∩t(n)

δti(t)

λ(D)(t) = (1 − ᾱn−1)(1 − αn)λHPP(t)

λ(E)(t) =
∑

ti∈t(n)\t(0)

(αn − ᾱn)

(1 − ᾱn)
δti(t)

λ(C)(t) =
∑

ti∈t(0)\t(n)

ᾱn−1 − ᾱn

1 − ᾱn
δti(t)

λn−1(t | t(0), t(n)) = λ(B)(t) + λ(C)(t) + λ(D)(t) + λ(E)(t)

λn−1(t | t(0), t(n)) = λ(B)(t) + λ(C)(t) + λ(D)(t) + λ(E)(t)

λ(E)(t) =
∑

ti∈t(n)\t(0)

αn − ᾱn

1 − ᾱn
δti(t)

Figure 2: (Left) Illustration of all possible disjoint sets that we can reach in our forward process
going from t(0) to t(n) through t(n−1). (Right) Posterior intensity describing the distribution of
t(n−1) | t(0), t(n), where each subset B-E can be generated by sampling from the intensity functions.

To recap, given a clean sequence t(0), we obtain progressively noisier samples t(n) by both removing
original points from t(0) and adding new points at random locations. After N steps, we reach a
sample corresponding to an HPP—containing no information about the original data.

3.2 Reverse process – Denoising

To sample realizations t ∼ λ0 starting from t(N) ∼ λHPP , we need to learn to reverse the Markov
chain of the forward process, i.e., λN → · · · → λ0, or equivalently t(N) → · · · → t(0). Conditioned
on t(0), the reverse process at step n is given by the posterior q(t(n−1) | t(0), t(n)), which is an
inhomogeneous Poisson process for the chosen forward process (Section 3.1). Therefore, the
posterior can be represented by a history-independent intensity function λn−1(t | t(0), t(n)).
As the forward process is defined by adding and thinning event sequences, the points in the random
sequence t(n−1) can be decomposed into disjoint sets of points based on whether they are also in t(0)

or t(n). We distinguish the following cases: points in t(n−1) that were kept from 0 to n (B), points in
t(n−1), that were kept from 0 to n− 1 but thinned at the n-th step (C), added points in t(n−1) that
are thinned in the n-th step (D) and added points in t(n−1) that are kept in the n-th step (E). Since
the sets B-E are disjoint, the posterior intensity is a superposition of the intensities of each subsets of
t(n−1): λn−1(t | t(0), t(n)) = λ(B)(t) + λ(C)(t) + λ(D)(t) + λ(E)(t).

To derive the intensity functions for cases B-E, we additionally define the following helper sets: A
the points t(0) \ t(n−1) that were thinned until n− 1 and F the points t(n) \ t(n−1) that have been
added at step n. The full case distinction and derived intensities are further illustrated in Figure 2. In
the following paragraphs, we derive the intensity functions for cases B-E:

Case B: The set t(B) can be formally defined as t(0) ∩ t(n) since (t(0) ∩ t(n)) \ t(n−1) = ∅ almost
surely. This is because adding points at any of the locations t ∈ t(0) ∩ t(n) carries zero measure at
every noising step. Hence, given t(0) ∩ t(n) the intensity can be written as a sum of Dirac measures:
λ(B)(t) =

∑
ti∈(t(0)∩t(n)) δti(t). Similar to how the forward process generated t(B) by preserving

some points from t(0), sampling from the reverse process preserves points from t(n).

Case C: Given t(A∪C) = t(0) \ t(n), t(C) can be found by thinning and consists of points that were
kept by step n − 1 and removed at step n. Using the thinning of Equations 2 and 3, we know the
probability of a point from t(0) being in t(C) and t(A∪C) is ᾱn−1(1− αn) and 1− ᾱn, respectively.
Since we already know t(B) we can consider the probability of finding a point in t(C), given t(A∪C),
which is equal to ᾱn−1−ᾱn

1−ᾱn
. Consequently, λ(C)(t) is given as a thinned sum of Dirac measures over

t(A∪C) (cf., Figure 2).

Case D: The set t(D) contains all points t /∈ (t(0) ∪ t(n)) that were added until step n−1 and thinned
at step n. Again using Equations 2 and 3, we can see that these points were added with intensity
(1− ᾱn−1)λHPP and then removed with probability αn at the next step. Equivalently, we can write
down the intensity that governs this process as λ(D)(t) = (1− ᾱn−1)(1− αn)λHPP , i.e., sample
points from an HPP and thin them to generate a sample t(D).
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Figure 3: Architecture of our model predicting t0 from tn.

Case E: The set t(E) can be found by thinning t(E∪F ) = t(n) \ t(0) and contains the points that
were added by step n − 1 and then kept at step n. The processes that generated t(E) and t(F ) are
two independent HPPs with intensities λ(E) = (1− ᾱn−1)αnλHPP and λ(F ) = (1− αn)λHPP ,
respectively, where λ(E)(t) is derived in a similar way to λ(D)(t). Since t(E) and t(F ) are independent
HPPs and we know t(E∪F ), the number of points in t(E) follows a Binomial distribution with
probability p = λ(E)

λ(E)+λ(F ) (see Appendix B.2 for details). That means we can sample t(E) given t(n)

and t(0) by simply thinning t(E∪F ) with probability 1− p and express the intensity as a thinned sum
of Dirac functions (cf., Figure 2).

For sequences of the training set, where t(0) is known, we can compute these intensities for all samples
t(n) and reverse the forward process. However, t(0) is unknown when sampling new sequences.
Therefore, similarly to the denoising diffusion approaches [18], in the next section, we show how to
approximate the posterior intensity, given only t(n). Further, in Section 3.4, we demonstrate how the
trained neural network can be leveraged to sample new sequences t ∼ λ0.

3.3 Parametrization and training

In the previous section we have derived the intensity λn−1(t | t(0), t(n)) of the posterior
q(t(n−1) | t(0), t(n)) for the reverse process, i.e., the intensity of points at step n − 1 given t(n)

and t(0). Now we want to approximate this posterior using a model pθ(t(n−1) | t(n), n) to learn to
sample points t(n−1) given only t(n). As we are only missing information about t(0) we will learn
to model λ(B)(t) and λ(A∪C)(t) to approximate t̂(0) ≈ t(0) (cf., Figure 3) for each n and then have
access to the full posterior intensity from Section 3.2 to reverse the noising process.

Sequence embedding. To condition our model on t(n) and n we propose the following embeddings.
We use a sinusoidal embedding [47] to embed the diffusion time n. Further, we encode each
arrival time ti ∈ t(n) and inter-event time τi = ti − ti−1, with t0 = 0, to produce a temporal event
embedding ei ∈ Rd by applying a sinusoidal embedding [47]. Then we leverage a three-layered
1D-Convolutional Neural Network (CNN) with circular padding, dilation, and residual connections to
compute a context embedding ci ∈ Rd. Compared to attention and RNN-based encoders, the CNN is
computationally more efficient and scales better with the length of event sequences while allowing us
to capture long-range dependencies between the events. Finally, a global sequence embedding c is
generated by a mean aggregation of the context embeddings.

Posterior approximation. The posterior defining t(D) is independent of t(0) and t(n) and can be
sampled from directly. The set t(B) corresponds to those points that were kept from t(0) until the
n-th step. Since all of these points are also included in t(n) we specify a classifier gθ(ei, ci, n) with
an MLP that predicts which points from t(n) belong to t(0). As t(0) is known during training, this
is a standard classification setting. We use the binary cross entropy (BCE) loss LBCE to train gθ.
Note that classifying t(B) from t(n) simultaneously predicts t(n) \ t(0) = t(E∪F ). Therefore we can
subsequently attain t(E) by thinning t(E∪F ) as explained in Section 3.2.

To sample points t(C) we have to specify the intensity function λ(A∪C)(t) that will be thinned to
attain t(C) (cf., Section 3.2). As λ(A∪C)(t) is a mixture of Dirac functions we use an unnormalized
mixture of H weighted and truncated Gaussian density functions f on [0, T ] to parameterize the
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inhomogeneous intensity:

λ
(A∪C)
θ (t) = K

H∑

j=1

wjf (t;µj , σj) , (4)

where wj = Softplus(MLPw([n, c])), µj = Sigmoid(MLPµ([n, c])) and σj =
exp(−|MLPσ([n, c])|) are parameterized by MLPs with two layers, a hidden dimension of
d and a ReLU activation. Note that the Gaussian function is the standard approximation of the Dirac
delta function and can, in the limit σ → 0, perfectly approximate it. We include K, the number
of points in t(n), in the intensity to more directly model the number of events. Then λ

(A∪C)
θ (t) is

trained to match samples t(A∪C) ∼ λ(A∪C) by minimizing the negative log-likelihood (NLL):

LNLL = − log p(t(A∪C)) = −
∑

ti∈t(A∪C)

log λ
(A∪C)
θ (ti) +

∫ T

0

λ
(A∪C)
θ (t) dt. (5)

Thanks to the chosen parametrization, the integral term in LNLL can be efficiently computed in any
deep-learning framework using the ‘erf‘ function, without relying on Monte Carlo approximation.
We present an overview of our model architecture to predict t(0) from t(n) in Figure 3.

Training objective. The full model is trained to minimize L = LNLL + LBCE. During training,
we do not have to evaluate the true posterior or sample events from any of the posterior distributions.
Instead, we can simply sample n and subsequently t(n) and minimize L for t(n). Interestingly, in
Appendix A, we show that L is equivalent to the Kullback-Leibler (KL) divergence between the
approximate posterior pθ(t(n−1) | t(n), n) and the true posterior q(t(n−1) | t(0), t(n)). Ultimately,
this shows that optimizing the evidence lower bound (ELBO) of the proposed model boils down
to simply learning a binary classification and fitting an inhomogeneous intensity.

3.4 Sampling

Algorithm 1: Sampling

t(n=N) ∼ λHPP;
for n ∈ {N, . . . , 1} do

sample t̂(B) ∼ ∑
ti∈t(n)

gθ(ti | ei, ci, n)δti(t);

sample t̂(C) ∼ ᾱn−1−ᾱn

1−ᾱn
λ
(A∪C)
θ (t | t(n), n);

sample t̂(D) ∼ (1− ᾱn−1)(1− αn)λHPP;
sample t̂(E) ∼ ∑

ti∈t(n)\t̂(B)

αn−ᾱn

1−ᾱn
δti(t);

t(n−1) ← t̂(B) ∪ t̂(C) ∪ t̂(D) ∪ t̂(E);
end
sample t̂(A∪C) ∼ λ

(A∪C)
θ (t | t(1), 1);

sample t̂(B) ∼ ∑
ti∈t(1)

gθ(ti | ei, ci, 1)δti(t);

t← t̂(B) ∪ t̂(A∪C);
return t

To sample an event sequence from
our model, we start by sampling t(N)

from an HPP with λHPP. Subsequently,
for each n ∈ [N, · · · , 1], t̂(0) is pre-
dicted by classifying t̂(B) and sampling
t̂(A∪C) from λ

(A∪C)
θ (t). Note that

the Poisson distribution with intensity
Λ(A∪C)(T ) =

∫ T

0
λ
(A∪C)
θ (t) dt param-

eterizes the number of points in A ∪ C.
Therefore, t̂(A∪C) can be sampled by first
sampling the number of events and then
sampling the event times from the nor-
malized intensity λ

(A∪C)
θ (t)/Λ(A∪C)(T ).

Given our predicted t̂(0) we can sample
t̂(n−1) from the posterior intensity defined
in Section 3.2. By repeating this process,
we produce a sequence of t(n−1)s. Finally,
we obtain a denoised sample t(0) by pre-
dicting it from t̂(1). We provide an overview of the sampling procedure as pseudo-code in Algorithm 1.

3.5 Conditional sampling

The above-described process defines an unconditional generative model for event sequences on an
interval [0, T ]. For many (multi-step) forecasting applications, such as earthquake forecasting [10],
we need to condition our samples on previous event sequences and turn our model into a conditional
one that can generate future event sequences in [H,H + T ] given the past observed events in [0, H].
To condition our generative model on a history, we apply a simple GRU encoder to encode the history
into a d-dimensional history embedding h, which subsequently conditions the classifier and intensity
model by being added to the diffusion time embedding.
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4 Related work

Autoregressive neural TPPs. Most neural TPPs model the intensity or density of each event con-
ditional on a history and consequently consist of two parts: a history encoder and an intensity/density
decoder. As history encoders, RNNs [12, 41] and attention-based set encoders [50, 52] have been
proposed. Attention-based encoders are postulated to better model long-range dependencies in the
event sequences, but at the cost of a more complex encoder structure [43]. To decode the intensity
λ(t|H), density p(t|H) or the cumulative hazard function from the history, uni-modal distributions
[12], mixture-distributions [41], a mixture of kernels [36, 44, 51], neural networks [37] and Gaussian
diffusion [29] have been proposed. Another branch of neural TPPs models the event times conditional
on a latent variable that follows a continuous-time evolution [5, 13, 16, 21], where, e.g., Hasan et al.
[16] relate inter-event times of a TPP to the excursion of a stochastic process. In general, most neural
TPPs are trained by maximizing the log-likelihood, but other training approaches have been proposed
[26, 29, 49]. We want to highlight the difference of our model to two related works. TriTPP [42]
learns a deterministic mapping between a latent HPP and a TPP using normalizing flows, which
allows for parallel sampling. However, it models the conditional hazard function, which forces a
conditional dependency of later arrival times and can still produce error accumulation. Lin et al. [29]
proposed an autoregressive TPP model leveraging Gaussian diffusion to approximate the conditional
density. Besides being autoregressive, the model does not directly model the number of points in
the TPP but instead is trained to maximize the ELBO of the next inter-event time.

Non-autoregressive neural TPPs. An alternative to the conditional (autoregressive) modeling of
TPPs is to apply a latent variable model that learns to relate entire point processes to latent variables.
The class of Cox processes [7, 11, 19] models point processes through a hierarchy of latent processes
under the assumption that higher-level latent variables trigger lower-level realizations. ADD-THIN
can be considered to be a non-autoregressive latent variable model.

Denoising diffusion models. Recently, denoising diffusion models on continuous state spaces
[18, 45] established the new state-of-the-art for many image applications [15, 18, 25]. Subsequently,
diffusion models for other application domains such as point clouds [31, 32], physical simulations
[23, 28, 30] and time-series [1, 3, 24, 46] emerged. While the majority of denoising diffusion models
are based on Gaussian transition kernels in continuous state spaces proposed in [18, 45], a variety
of diffusion models for discrete state spaces such as graphs [48], text [2, 27] and images [2, 6] have
been presented. Here, we highlight the similarity of our work to the concurrent work of Chen and
Zhou [6], who derived a diffusion process that models pixel values as a count distribution and thins
them to noise images. In contrast to the related work on continuous and discrete state space diffusion
models, ADD-THIN constitutes a novel diffusion model defined on a state space that captures both
the discrete and continuous components of point processes.

5 Experiments

We evaluate the proposed model in two settings: density estimation and forecasting. In density
estimation, the goal is to learn an unconditional model for event sequences. As for forecasting, the
objective is to accurately predict the entire future event sequence given the observed past events.

Data. ADD-THIN is evaluated on 7 real-world datasets proposed by Shchur et al. [42] and 6
synthethic datasets from Omi et al. [37]. The synthetic datasets consist of Hawkes1 and Hawkes2
[17], a self-correcting (SC) [20], inhomogeneous Poisson process (IPP) and a stationary and a non-
stationary renewal process (MRP, RP) [39, 11]. For the real-world datasets, we consider PUBG,
Reddit-Comments, Reddit-Submissions, Taxi, Twitter, and restaurant check-ins in Yelp1 and Yelp2.
We split each dataset into train, validation, and test set containing 60%, 20%, and 20% of the event
sequences, respectively. Further dataset details and statistics are reported in Appendix C.

Baselines. We apply the RNN-based intensity-free TPP model from Shchur et al. [41]. Similar to
Sharma et al. [40], we further combine the intensity-free model with an attention-based encoder from
Zuo et al. [52] as a Transformer baseline. Additionally, we compare our model to an autoregressive
TPP model with a continuous state Gaussian-diffusion [18] from Lin et al. [29], which we abbreviate
as GD. Lastly, TriTPP [42] is used as a model that provides parallel but autoregressive sampling.
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Table 1: MMD (↓) between the TPP distribution of sampled sequences and hold-out test set (bold
best, underline second best). The results with standard deviation are reported in Appendix E.

Hawkes1 Hawkes2 SC IPP RP MRP PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
RNN 0.02 0.01 0.08 0.05 0.01 0.03 0.04 0.01 0.02 0.04 0.03 0.07 0.03
Transformer 0.03 0.04 0.19 0.10 0.02 0.19 0.06 0.05 0.09 0.09 0.08 0.12 0.14
GD 0.06 0.06 0.13 0.08 0.05 0.14 0.11 0.03 0.03 0.10 0.15 0.12 0.10
TriTPP 0.03 0.04 0.23 0.04 0.02 0.05 0.06 0.09 0.12 0.07 0.04 0.06 0.06
ADD-THIN 0.02 0.02 0.19 0.03 0.02 0.10 0.03 0.01 0.02 0.04 0.04 0.08 0.04

Table 2: Wasserstein distance (↓) between the distribution of the number of events of sampled
sequences and hold-out test set (bold best, underline second best). The results with standard deviation
are reported in Appendix E.

Hawkes1 Hawkes2 SC IPP RP MRP PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
RNN 0.03 0.01 0.00 0.02 0.02 0.01 0.02 0.01 0.05 0.02 0.01 0.04 0.02
Transformer 0.06 0.04 0.06 0.07 0.04 0.11 0.04 0.08 0.11 0.13 0.05 0.11 0.21
GD 0.16 0.13 0.50 0.42 0.28 0.50 0.54 0.02 0.16 0.33 0.07 0.26 0.25
TriTPP 0.03 0.03 0.01 0.01 0.02 0.03 0.03 0.09 0.09 0.04 0.01 0.03 0.04
ADD-THIN 0.04 0.02 0.08 0.01 0.02 0.04 0.02 0.03 0.04 0.03 0.01 0.04 0.02

Training and model selection. We train each model by its proposed training loss using Adam
[22]. For our model, we set the number of diffusion steps to N = 100, apply the cosine beta-
schedule proposed in Glide [34], and set λHPP = 1 for the noising process. We apply early
stopping, hyperparameter tuning, and model selection on the validation set for each model. Further
hyperparameter and training details are reported in Appendix D.

5.1 Sampling – Density estimation

A good TPP model should be flexible enough to fit event sequences from various processes. We
evaluate the generative quality of the TPP models on 13 synthetic and real-world datasets by drawing
4000 TPP sequences from each model and computing distance metrics between the samples and event
sequences from a hold-out test set. In short, the goal of this experiment is to show that our proposed
model is a flexible TPP model that can generate event sequences that are ’close’ to the samples from
the data-generating distribution.

Metrics. In general, diffusion models cannot evaluate the exact likelihood. Instead, we evaluate
the quality of samples by comparing the distributions of samples from each model and the test
set with the maximum mean discrepancy measure (MMD) [14] as proposed by Shchur et al. [42].
Furthermore, we compute the Wasserstein distance [38] between the distribution of sequence lengths
of the sampled sequences and the test set. We report the results on the test set averaged over five runs
with different seeds.

Results. Table 1 presents the MMD results for all models and datasets. Among them, the RNN
baseline demonstrates a strong performance across all datasets and outperforms both Transformer and
GD. Notably, ADD-THIN exhibits competitive results with the autoregressive baseline, surpassing
or matching (±0.01) it on 11/13 datasets. Additionally, ADD-THIN consistently outperforms the
Transformer and GD model on all datasets except SC and RP. Lastly, TriTPP performs well on most
datasets but is outperformed or matched by our model on all but two datasets.

Table 2 shows the result for comparing the count distributions. Overall, the Wasserstein distance
results align closely with the MMD results. However, the GD model is an exception, displaying
considerably worse performance when focusing on the count distribution. This outcome is expected
since the training of the GD model only indirectly models the number of events by maximizing the
ELBO of each diffusion step to approximate the conditional density of the next event and not the
likelihood of whole event sequences. Again, ADD-THIN shows a very strong performance, further
emphasizing its expressiveness.

In summary, these results demonstrate the flexibility of our model, which can effectively capture
various complex TPP distributions and matches the state-of-the-art performance in density estimation.
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Table 3: Wasserstein distance between forecasted event sequence and ground truth reported for 50
random forecast windows on the test set (lower is better). The results with standard deviation are
reported in Appendix E.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
Average Seq. Length 76.5 295.7 1129.0 98.4 14.9 30.5 55.2
RNN 6.15 35.22 39.23 4.14 2.04 1.28 2.21
Transformer 2.45 38.77 27.52 3.12 2.09 1.29 2.64
GD 5.44 44.72 64.25 4.32 2.16 1.52 4.25
ADD-THIN (Ours) 2.03 17.18 21.32 2.42 1.48 1.00 1.54

Table 4: Count MAPE ×100% between forecasted event sequences and ground truth reported for 50
random forecast windows on the test set (lower is better). The results with standard deviation are
reported in Appendix E.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
Average Seq. Length 76.5 295.7 1129.0 98.4 14.9 30.5 55.2
RNN 1.72 5.47 0.68 0.54 0.95 0.59 0.72
Transformer 0.65 7.38 0.55 0.46 1.18 0.63 0.99
GD 1.66 10.49 1.33 0.71 1.43 0.78 1.65
ADD-THIN (Ours) 0.45 1.07 0.38 0.37 0.69 0.45 0.50

5.2 Conditional sampling – Forecasting

Forecasting event sequences from history is an important real-world application of TPP models.
In this experiment, we evaluate the forecasting capability of our model on all real-world datasets.
We evaluate each model’s performance in forecasting the events in a forecasting window ∆T , by
randomly drawing a starting point Ts ∈ [∆T, T −∆T ]. Then, the events in [0, Ts] are considered
the history, and [Ts, Ts +∆T ] is the forecasting time horizon.

In the experiment, we randomly sample 50 forecasting windows for each sequence from the test set,
compute history embedding with each model’s encoder, and then conditionally sample the forecast
from each model. Note that TriTPP does not allow for conditional sampling and is therefore not part
of the forecasting experiment.

Metrics. To evaluate the forecasting experiment, we will not compare distributions of TPPs but
rather TPP instances. We measure the distance between two event sequences, i.e., forecast and ground
truth data, by computing the distance between the count measures with the Wasserstein distance
between two TPPs, as introduced by Xiao et al. [49]. Additionally, we report the mean absolute
relative error (MAPE) between the predicted sequence length and ground truth sequence length in the
forecasting horizon. We report the results on the test set averaged over five runs with different seeds.
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Figure 4: 5%, 25%, 50%, 75%, and 95%
quantile of forecasts generated by ADD-THIN
for a Taxi event sequence (blue: history, black
ground truth future).

Results. Table 3 presents the average Wasserstein
distance between the predicted and ground truth
forecast sequences. The results unequivocally
demonstrate the superior performance of our model
by forecasting entire event sequences, surpassing all
autoregressive baselines on all datasets. Notably, the
disparity between ADD-THIN and the baselines is
more pronounced for datasets with a higher number
of events per sequence, indicating the accumulation
of prediction errors in the autoregressive models.
Further, the transformer baseline achieves better
forecasting results than the RNN baseline for some
datasets with more events. This suggests that
long-range attention can improve autoregressive
forecasting and mitigate some error accumulation.

Table 4 reports the MAPE between the forecasted and ground truth sequence length. The MAPE
results align consistently with the Wasserstein distance across all models and datasets. Figure 4
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depicts the quantiles for 1000 forecasts generated by ADD-THIN for one Taxi event sequence and
highlights the predictive capacity of our model. Overall, our model outperforms state-of-the-art TPP
models in forecasting real-world event sequences.

6 Discussion

ADD-THIN vs. autoregressive TPP models. On a conceptual level, ADD-THIN presents a different
trade-off compared to other TPP models: Instead of being autoregressive in event time, our model
gradually refines the entire event sequence in parallel at every diffusion step to produce a sample from
the learned data distribution. Thereby, we have found that our model is better suited for forecasting
and modeling very long event sequences than autoregressive TPP models. Furthermore, the iterative
refinement of the entire sequence allows us to leverage simple and shared layers to accurately model
the long-range interaction between events and results in nearly constant sampling times across
different sequence lengths (cf., Appendix E.3).

Limitations and future work. With ADD-THIN, we have derived a novel diffusion-inspired model
for TPPs. Thereby, we focused on modeling the arrival times of the events and did not model
continuous and discrete marks. However, we see this as an exciting extension to our framework,
which might incorporate Gaussian diffusion [18] for continuous marks and discrete diffusion [2]
for discrete marks. Further, while generative diffusion is known to produce high-quality samples,
it also can be expensive. Besides tuning the number of diffusion steps, future work could focus on
alternative and faster sampling routines [35]. Ultimately, we hope that by having connected diffusion
models with TPPs, we have opened a new direction to modeling TPPs and broadened the field of
diffusion-based models. Here, it would be especially interesting for us to see whether our framework
could benefit other application domains in machine learning that involve sets of varying sizes, such
as graph generation (molecules), point clouds, and spatial point processes.

7 Conclusion

By introducing ADD-THIN, we have connected the fields of diffusion models and TPPs and derived a
novel model that naturally handles the discrete and continuous nature of point processes. Our model
permits parallel and closed-form sampling of entire event sequences, overcoming common limitations
of autoregressive TPP models. In our experimental evaluation, we demonstrated the flexibility of
ADD-THIN, which can effectively capture complex TPP distributions and matches the state-of-the-art
performance in density estimation. Additionally, in a long-term forecasting task on real-world data,
our model distinctly outperforms the state-of-the-art TPP models by predicting entire forecasting
windows non-autoregressively.

Broader impact

We see the proposed model as a general framework to model continuous-time event data. As such,
our method can be applied to many fields, where common application domains include traffic, social
networks, and electronic health records. We do not find any use cases mentioned above raise ethical
concerns; however, it is essential to exercise caution when dealing with sensitive personal data.
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A On the relationship between the applied loss and the ELBO

In the following section, we investigate the relationship between our applied loss function and the
ELBO to the unknown data distribution derived for diffusion models. The ELBO of diffusion models
[18] is given as follows:

LELBO = Eq

[
DKL

(
q(t(N) | t(0)) ∥ p(t(N))

)

︸ ︷︷ ︸
LN

− log pθ(t
(0) | t(1))︸ ︷︷ ︸
L0

+

N∑

n=2

DKL

(
q(t(n−1) | t(0), t(n)) ∥ pθ(t(n−1) | t(n))

)

︸ ︷︷ ︸
Ln

]
.

(6)

Additionally, the Janossi density [8] of an event sequence t on [0, T ] allows us to represent each
element of the ELBO in terms of our derived inhomogeneous (approximate) posterior intensities
(Section 3.2 and Figure 2) as follows:

p(t) = exp

(
−
∫ T

0

λ(t) dt

)∏

ti∈t

λ(ti). (7)

LN : LN is constant as the intensity λHPP defining q(t(N) | t(0)) and p(t(N)) has no learnable
parameters.

L0: We directly train our model to optimize this likelihood term as described in Section 3.3.

Ln: The KL divergence between two densities is defined as:

DKL(q ∥ pθ) = Eq

[
log(q(t(n−1) | t(0), t(n)))− log(pθ(t

(n−1) | t(n)))
]
, (8)

where only the right-hand side relies on θ, letting us minimize the KL divergence by maximizing the
expectation over the log-likelihood log(pθ(t

(n−1) | t(n))).
To add some additional context to the KL divergence in Ln and similar to the derivation of the
posterior in Section 3.2, we will further distinguish three cases:

1. Case B & E: q(t(n−1) | t(0), t(n)) and pθ(t
(n−1) | t(n)) are defined by Bernoulli distribu-

tions over each element of t(n). By definition the cross-entropy H(q, p) of the distribution
p relative to q is given by H(q, p) = H(q) +DKL(q ∥ p), where H(q) is the entropy and
DKL the KL divergence. We can see that minimizing the (binary) cross-entropy is equivalent
to minimizing the KL divergence, as the entropy H(q) is constant for the data distribution.

2. Case C: Minimizing this KL divergence by maximizing the Eq

[
log(pθ(t

(n−1) | t(n)))
]

is proposed in Section 3.2 to learn λ
(A∪C)
θ (t). Note that q(t(n−1) | t(0), t(n)) is sampled

from by independently thinning t(0) \ t(n). Consequently, by minimizing the NLL of our
intensity λ

(A∪C)
θ (t) with regards to t(0) \ t(n), we optimize the expectation in closed form.

3. Case D: Our parametrization uses the same intensity function for q(t(n−1) | t(0), t(n)) and
pθ(t

(n−1) | t(n)), which does not rely on any learned parameters.

B Derivations

B.1 Direct forward sampling

Proof. We first repeat Equation 2:
λn(t) = αnλn−1(t) + (1− αn)λHPP. (2)

Then for the first step we can write:
λ1(t) = α1λ0(t) + (1− α1)λHPP

=




n=1∏

j=1

αj


λ0 +


1−

n=1∏

j=1

αj


λHPP.
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Assuming Equation 3 holds for step n− 1:

λn−1(t) =




n−1∏

j=1

αj


λ0(t) +


1−

n−1∏

j=1

αj


λHPP,

we can write for step n:

λn(t) = αnλn−1(t) + (1− αn)λHPP

= αn






n−1∏

j=1

αj


λ0(t) +


1−

n−1∏

j=1

αj


λHPP


+ (1− αn)λHPP

=




n∏

j=1

αj


λ0(t) +


αn −

n∏

j=1

αj


λHPP + (1− αn)λHPP

=




n∏

j=1

αj


λ0(t) +


1−

n∏

j=1

αj


λHPP

= ᾱnλ0(t) + (1− ᾱn)λHPP,

which completes the proof by induction.

B.2 Conditional distribution of Poisson variables

Proposition. Given two independent random variables X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2),
X1 | X1 +X2 = k is Binomial distributed, i.e., X1 | X1 +X2 = k ∼ Binomial(x1; k,

λ1

λ1+λ1
).

Proof. The Poisson distributed random variables X1 and X2 have the following joint probability
mass function:

P (X1 = x1, X2 = x2) = e−(λ1)
λx1
1

x1!
e−λ2

λx2
2

x2!
, (9)

which further defines the joint probability mass function of P (X1 = x1, X2 = x2, Y = k) if
x1 + x2 = k. Additionally, it is well know that Y = X1 +X2 is a Poisson random variable with
intensity λ1 + λ2 and therefore P (Y = k) = e−(λ1+λ2) (λ1+λ2)

k

k! . Then P (X1 = x1 | Y = k) is
given by the following:

P (X1 = x1 | Y = k) =
P (X1 = x1, X2 = x2, Y = k)

P (Y = k)
if x1 + x2 = k, (10)

=
e−λ1

λ
x1
1

x1!
e−λ2

λ
x2
2

x2!

e−(λ1+λ2) (λ1+λ2)k

k!

if x1 + x2 = k, (11)

=
k!

x1!x2!

λx1
1 λx2

2

(λ1 + λ2)k
if x1 + x2 = k, (12)

=
k!

x1!(k − x1)!

λx1
1

(λ1 + λ2)x1

λk−x1
2

(λ1 + λ2)k−x1
if x1 + x2 = k, (13)

=
k!
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where we have leveraged x2 = k−x1 and λ2

(λ1+λ2)
= 1− λ1

(λ1+λ2)
. As we have shown P (X1 = x1 |

Y = k) follows the Binomial distribution with p = λ1

(λ1+λ2)
.
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Table 5: Statistics for the synthetic datasets.
# Sequences T Average sequence length τ

Hawkes1 1000 100 95.4 1.01± 2.38
Hawkes2 1000 100 97.2 0.98± 2.56
SC 1000 100 100.2 0.99± 0.71
IPP 1000 100 100.3 0.99± 2.22
RP 1000 100 109.2 0.83± 2.76
MRP 1000 100 98.0 0.98± 1.83

Table 6: Statistics for the real-world datasets.
# Sequences T Unit of time Average sequence length τ ∆T

PUBG 3001 30 minutes 76.5 0.41± 0.56 5
Reddit-C 1356 24 hours 295.7 0.07± 0.28 4
Reddit-S 1094 24 hours 1129.0 0.02± 0.03 4
Taxi 182 24 hours 98.4 0.24± 0.40 4
Twitter 2019 24 hours 14.9 1.26± 2.80 4
Yelp1 319 24 hours 30.5 0.77± 1.10 4
Yelp2 319 24 hours 55.2 0.43± 0.96 4

C Datasets

Synthetic datasets. The six synthethic dataset were sampled by Shchur et al. [42] following the
procedure in Section 4.1 of Omi et al. [37] and consist of 1000 sequences on the interval [0, 100].

Real-world datasets. The seven real-world datasets were proposed by Shchur et al. [42] and
consist of PUBG, Reddit-Comments, Reddit-Submissions, Taxi, Twitter, Yelp1, and Yelp2. The event
sequences of PUBG represent the death of players in a game of Player Unknown’s Battleground
(PUBG). The event sequences of Reddit-Comments represent the comments on the askscience
subreddit within 24 hours after opening the discussion in the period from 01.01.2018 until 31.12.2019.
The event sequences of Reddit-Submissions represent the discussion submissions on the politics
subreddit within a day in the period from 01.01.2017 until 31.12.2019. The event sequences of
Taxi represent taxi pick-ups in the south of Manhattan, New York. The event sequences of Twitter
represent tweets by user 25073877. The event sequences of Yelp1 represent check-ins for the
McCarran International Airport recorded for 27 users in 2018. The event sequences of Yelp2
represent check-ins for all businesses in the city of Mississauga recorded for 27 users in 2018.

We report summary statistics on the datasets in Table 5 and 6. Lately, the validity of some of the
widely used real-world benchmark datasets was criticized [4]. In one-step-ahead prediction tasks
with teacher forcing, very simple architectures achieved similar results to some of the more advanced
ones. However, this seems to be more of a problem of the task than the datasets. In our work, we
consider different tasks (density estimation and long-term forecasting) and metrics and have found
significant empirical differences between the baselines on these datasets.

D Experimental set-up

All models but the transformer baseline were trained on an Intel Xeon E5-2630 v4 @ 2.20 GHz
CPU with 256GB RAM and an NVIDIA GeForce GTX 1080 Ti. Given its RAM requirement, the
transformer baseline had to be trained with batch size 32 on an NVIDIA A100-PCIE-40GB for the
Reddit-C and Reddit-S datasets.

Hyperparameter tuning. has been applied to all models. The hyperparameter tuning was done
on the MMD loss between 1000 samples from the model and the validation set. We use a hidden
dimension of 32 for all models. Further, we have tuned the learning rate in {0.01, 0.001} for
all models, the number of mixture components in {8, 16} for ADD-THIN, RNN and Transformer,
the number of knots in {10, 20} for TriTPP and the number of attention layers in {2, 3} for the
transformer baseline. The values of all other baseline hyperparameters were set to the recommended
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values given by the authors. Further, the GD baseline has been trained with a batch size of 16, as
recommended by the authors. For the forecasting task, we apply the optimal hyperparameters from
the density estimation experiment.

Early-stopping. Each model has been trained for up to 5000 epochs with early stopping on the
MMD metric on the validation set for the density estimation task and on the Wasserstein distance
metric on the validation set for the forecasting task.

E Additional results

E.1 Density estimation results with standard deviations

Table 7: Synthetic data: MMD (↓) between the TPP distribution of sampled sequences and hold-out
test set.

Hawkes1 Hawkes2 SC IPP RP MRP
RNN 0.02±0.003 0.01±0.002 0.08±0.053 0.05±0.009 0.01±0.001 0.03±0.005
Transformer 0.03±0.011 0.04±0.017 0.19±0.006 0.10±0.034 0.02±0.007 0.19±0.048
GD 0.06±0.004 0.06±0.002 0.13±0.004 0.08±0.002 0.05±0.002 0.14±0.008
TriTPP 0.03±0.002 0.04±0.001 0.23±0.003 0.04±0.003 0.02±0.002 0.05±0.004
ADD-THIN (Ours) 0.02±0.004 0.02±0.002 0.19±0.013 0.03±0.006 0.02±0.001 0.10±0.030

Table 8: Real-world data: MMD (↓) between the TPP distribution of sampled sequences and
hold-out test set.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
RNN 0.04±0.005 0.01±0.002 0.02±0.003 0.04±0.001 0.03±0.003 0.07±0.005 0.03±0.001
Transformer 0.06±0.014 0.05±0.025 0.09±0.06 0.09±0.014 0.08±0.02 0.12±0.026 0.14±0.048
GD 0.11±0.023 0.03±0.001 0.03±0.001 0.1±0.002 0.15±0.011 0.12±0.01 0.1±0.001
TriTPP 0.06±0.001 0.09±0.002 0.12±0.003 0.07±0.007 0.04±0.002 0.06±0.005 0.06±0.004
ADD-THIN (Ours) 0.03±0.015 0.01±0.005 0.02±0.001 0.04±0.006 0.04±0.006 0.08±0.01 0.04±0.005

Table 9: Synthetic data: Wasserstein distance (↓) between the distribution of the number of events
of sampled sequences and hold-out test set.

Hawkes1 Hawkes2 SC IPP RP MRP
RNN 0.03±0.007 0.01±0.002 0.00±0.003 0.02±0.006 0.02±0.002 0.01±0.004
Transformer 0.06±0.017 0.04±0.01 0.06±0.008 0.07±0.035 0.04±0.005 0.11±0.048
GD 0.16±0.016 0.13±0.012 0.5±0.025 0.42±0.009 0.28±0.039 0.5±0.035
TriTPP 0.03±0.003 0.03±0.001 0.01±0.0 0.01±0.001 0.02±0.003 0.03±0.001
ADD-THIN (Ours) 0.04±0.009 0.02±0.006 0.08±0.018 0.01±0.003 0.02±0.001 0.04±0.006

Table 10: Real-world data: Wasserstein distance (↓) between the distribution of the number of
events of sampled sequences and hold-out test set.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
RNN 0.02±0.004 0.01±0.004 0.05±0.013 0.02±0.002 0.01±0.001 0.04±0.004 0.02±0.002
Transformer 0.04±0.013 0.08±0.028 0.11±0.032 0.13±0.073 0.05±0.021 0.11±0.03 0.21±0.077
GD 0.54±0.054 0.02±0.004 0.16±0.013 0.33±0.007 0.07±0.062 0.26±0.012 0.25±0.007
TriTPP 0.03±0.003 0.09±0.001 0.09±0.001 0.04±0.001 0.01±0.001 0.03±0.006 0.04±0.002
ADD-THIN (Ours) 0.02±0.009 0.03±0.007 0.04±0.002 0.03±0.007 0.01±0.004 0.04±0.006 0.02±0.006
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E.2 Forecasting results with standard deviations

Table 11: Wasserstein distance (↓) between forecasted event sequence and ground truth reported for
50 random forecast windows on the test set.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
Average Seq. Length 76.5 295.7 1129.0 98.4 14.9 30.5 55.2
RNN 6.15±2.53 35.22±4.02 39.23±2.06 4.14±0.25 2.04±0.08 1.28±0.03 2.21±0.06
Transformer 2.45±0.21 38.77±10.68 27.52±5.24 3.12±0.1 2.09±0.07 1.29±0.1 2.64±0.24
GD 5.44±0.2 44.72±1.77 64.25±4.45 4.32±0.3 2.16±0.23 1.52±0.15 4.25±0.46
ADD-THIN (Ours) 2.03±0.01 17.18±1.18 21.32±0.42 2.42±0.03 1.48±0.03 1.0±0.02 1.54±0.04

Table 12: Count MAPE ×100% (↓) between forecasted event sequences and ground truth reported
for 50 random forecast windows on the test set.

PUBG Reddit-C Reddit-S Taxi Twitter Yelp1 Yelp2
Average Seq. Length 76.5 295.7 1129.0 98.4 14.9 30.5 55.2
RNN 1.72±0.65 5.47±0.92 0.68±0.07 0.54±0.02 0.95±0.08 0.59±0.02 0.72±0.03
Transformer 0.65±0.11 7.38±2.51 0.55±0.14 0.46±0.04 1.18±0.09 0.63±0.08 0.99±0.11
GD 1.66±0.06 10.49±0.42 1.33±0.12 0.71±0.05 1.43±0.2 0.78±0.1 1.65±0.2
ADD-THIN (Ours) 0.45±0.005 1.07±0.19 0.38±0.02 0.37±0.02 0.69±0.03 0.45±0.02 0.5±0.03

E.3 Sampling runtimes

We compare sampling runtimes on an NVIDIA GTX 1080 Ti across the different models in Fig-
ure 5. ADD-THIN maintains near-constant runtimes by refining the entire sequence in parallel. The
autoregressive baselines RNN and Transformer show increasing runtimes, with longer sequences
surpassing ADD-THIN’s runtime. TriTPP is a highly optimized baseline computing the autoregressive
interactions between event times in parallel by leveraging triangular maps, resulting in the fastest
runtimes. Lastly, GD is autoregressive in event time and gradually refines each event time over 100
diffusion steps, leading to the worst runtimes.
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Figure 5: Sampling runtime for a batch of 100 event sequences averaged over 100 runs. We report
the trained model’s sampling times for the real-world datasets with different sequence lengths (from
left to right: Twitter, Yelp 1, Yelp 2, PUBG, Taxi, Reddit-C, Reddit-A).
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