
Efficient Batched Algorithm for Contextual Linear
Bandits with Large Action Space via Soft Elimination

Osama A. Hanna
University of California, Los Angeles

ohanna@ucla.edu

Lin F. Yang
University of California, Los Angeles

linyang@ucla.edu

Christina Fragouli
University of California, Los Angeles
christina.fragouli@ucla.edu

Abstract

In this paper, we provide the first efficient batched algorithm for contextual linear
bandits with large action spaces. Unlike existing batched algorithms that rely
on action elimination, which are not implementable for large action sets, our
algorithm only uses a linear optimization oracle over the action set to design
the policy. The proposed algorithm achieves a regret upper bound Õ(

√
T) with

high probability, and uses O(log log T) batches, matching the lower bound on
the number of batches [13]. When specialized to linear bandits, our algorithm
can achieve a high probability gap-dependent regret bound of Õ(1/∆min) with
the optimal log T number of batches, where ∆min is the minimum reward gap
between a suboptimal arm and the optimal. Our result is achieved via a novel soft
elimination approach, that entails “shaping" the action sets at each batch so that we
can efficiently identify (near) optimal actions.

1 Introduction

In contextual linear bandits, a learner interacts with an environment over T rounds: in each round t
the learner observes a (possibly different due to context change) set of actions At ⊆ Rd, plays one
of them, and receives a reward that follows a noisy linear function parametrized by an unknown
vector in Rd. The objective of the learner is to minimize regret - how much reward it loses over the T
rounds by not always playing the “highest reward" (optimal) action. To achieve this, the learner at
each round updates its policy (its method to select what action to play) based on what it has learned
from all past actions played and rewards observed. Linear bandits form the special case where the
action set is always the same, i.e., At = A for all rounds t. Contextual linear and linear bandits have
been widely investigated due to their significance in both theory and practice (eg., see [24]).

Batched Setting. In numerous real-world use cases, the learner may be restricted to change the
policy a limited (small) number of times.This constraint may stem from factors such as computation
or communication considerations, or may be imposed by the nature of the application, as is the case
in multi-stage clinical trials or online marketing campaigns with high response rates, where it is not
feasible to update the policy after each response. Similarly, the use of crowdsourcing platforms or the
need to conduct time-consuming simulations in reinforcement learning may require policies with
limited adaptivity. As a result, there has been significant interest in designing algorithms that can
achieve the optimal regret with limited policy switches [30, 3, 31, 13, 12, 21, 32, 16]. This setup is
known as the batched contextual linear bandit problem: the T rounds are partitioned into batches, and
the learner can collect rewards and update the action selection policy only at the end of each batch.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Large Action Space. Contextual linear bandit applications frequently need to explore an extremely
large (even continuous) set of actions, e.g., millions of products to be recommended. As other
examples, in the classical bandit problem of clinical trials, each decision involves selecting a treatment
option from a potentially infinite set of mixed treatments [15]. In manufacturing problems, the goal is
often to maximize revenue by selecting from a very large set of decisions, with the revenue associated
with each decision being unknown [36]. Additionally, in applications where actions correspond to
images in a database or high-dimensional embeddings of complex documents like webpages, the set
of actions can be vast [26, 5]. As a result, there is a strong interest in algorithms that can be efficiently
implemented when the action space is large or infinite [11, 7, 19, 39, 41].

While computationally-efficient batched algorithms exist for contextual linear bandits with small
action sets, and efficient ones that are not batched exist for contextual linear bandits with large action
sets, to date, there are no efficient batched algorithms that can handle large action spaces. Existing
batched algorithms for contextual linear bandits [32, 16] rely on action elimination that requires a
linear scan of the action set; while efficient non-batched algorithms for large action spaces do not
extend to the batched setting [32, 16] (see related work in the following for more details).

Our Contributions. In this paper, we provide the first efficient batched algorithm for contextual
linear bandits with nearly optimal regret upper bound of Õ(d3/2

√
T) with high probability, while

using O(log log T) batches, which matches the lower bound on the number of batches required to
achieve

√
T -type regret bounds [13]. For linear bandits, our algorithm can attain a high probability

gap-dependent regret bound of Õ(d3/∆min) with the optimal log T number of batches [13], where
∆min represents the minimum reward gap between a suboptimal arm and the optimal.

Our algorithm for linear bandits, that we term SoftBatch, builds on a form of “soft elimination”.
Our observation is that, a good algorithm should be able to approximate the gap ∆(a) between each
action a ∈ A and the optimal one with O(∆(a)) accuracy; and if we can do that, then we can use this
knowledge to limit the number of times we play suboptimal actions, as well as use this knowledge to
select which actions we want to play at all. As essentially all batched algorithms do, at each batch we
select and play (a small number of) actions that enable to estimate well the unknown parameter vector
without incurring large regret. In particular, for each batch, we choose a set of well-behaved basis
actions (e.g., a barycentric spanner [7]), established by calling an optimization oracle polynomial
times. However, instead of selecting at batch m, vectors from the “true” action set A, we consider
virtual “weighted” sets Ãm, where each action’s magnitude is weighted inversely proportional to the
estimated gap ∆(a), and select vectors guided by these weighted action sets. Then we play each
basis action a a number of times inversely proportional to the square of the estimated gap ∆(a) to
preserve small regret. This in return provides us an accurate estimator for the optimal parameter by
the benign properties of the basis actions. Thus our approach implements a form of soft elimination
(shaping) of the action set, where the actions closest to the optimal become increasingly dominant. A
crucial part in our design is that we never actually calculate the gaps ∆(a) for all actions a ∈ A (only
for the basis actions). The exploration policy we propose uses solely a linear optimization oracle
applied to the original action set.

Our contextual bandit algorithm utilizes a recent reduction technique [18, 17] to transform the
problem into a linear bandit problem. We incorporate the reduction into our batched linear bandit
algorithm, by constructing an efficient linear optimization oracle for the exponentially large action
set in the reduced problem using a linear optimization oracle for the original action sets (contexts).

Our proof techniques may be of independent interest. We develop a novel approach to bound regret
in linear bandits, we design an efficient exploration policy using inverse squared gap weighting, and
a simple method to handle the case where the action set does not span Rd, where d is the problem
dimension. Our approach avoids the necessity of imposing assumptions, such as the one in [41],
which entails having a subset of d actions forming a matrix with determinant at least rd for a constant
r. These assumptions can be strong, particularly when dealing with changing action sets, and may
not hold after modifying the action set, for instance, by eliminating or weighting actions.

Related Work. Contextual linear and linear bandits have had significant impact both in theory and
practice [1, 11, 28, 27, 24, 26, 37, 4, 8, 10]). The best performing algorithms achieve a regret bound
Õ(d
√
T)1 [1, 11], matching the regret lower bound Ω(d

√
T)[24]. The same algorithms achieve a

1Õ hides log factors.

2

nearly optimal regret upper bound Õ(d2

∆min
) if the minimum gap of suboptimal arms is lower bounded

by ∆min. However, the resulting policies require updates at every time step and involve solving a
non-convex optimization problem, which is not practical for large action spaces [33, 11].
Batched algorithms. Existing batched algorithms for contextual linear bandits [32, 16, 18] have
achieved nearly optimal regret upper bounds of Õ(d

√
T). However, these algorithms rely on action

elimination, which involves either performing a linear scan on the action set or solving an optimization
problem over the non-convex set of good (not eliminated) actions to design and implement the policy
at each time step. Similarly, batched algorithms for linear bandits [25, 12] also rely on action
elimination. Although, unlike contextual bandits, the elimination constraint in linear bandits can
be linear, which can be exploited to efficiently compute the policy (under certain assumptions) [7],
resulting in an Õ(d3/2

√
T) regret upper bound, it requires solving an optimization problem over the

action set with an elimination constraint. This can be much harder than solving the optimization
problem over the action set without additional constraints for some sets, such as the non-convex set
resulting from the reduction of contextual to linear bandits [18].
Efficient algorithms for large action spaces. There is a long line of work on efficient algorithms
for linear bandits that only rely on a linear optimization oracle over the action set [7, 11, 9, 19, 20].
However, these algorithms cannot be extended to the batched setting without extra assumptions on
the action set, and more importantly, they do not extend to the batched contextual setting. Existing
efficient algorithms for contextual linear bandits [6, 41, 11] can achieve Õ(d3/2

√
T) regret bound,

but it remains unclear if they can be extended to the batched setting, particularly given the challenge
posed by changing action sets. Another line of work attempts to design efficient algorithms using
hashing-based methods to approximate the maximum inner product [39, 22], but these methods result
in complexity that is sublinear but still polynomial in the number of actions.
Table 2 in App. A summarizes how our results position w.r.t. related work.

2 Model and Notation

Notation. We use [n] for a natural number n to denote the set {1, · · · , n}; 1(E), for an event E, to
denote the indicator function which returns 1 if E holds and 0 otherwise; Br = {a ∈ Rd|∥a∥2 ≤ r}
to denote the ball of center 0 and radius r; Sr = {a ∈ Rd|∥a∥2 = r} to denote the sphere of center 0
and radius r; and ∥a∥V =

√
a⊤Va to denote the matrix norm of a vector a ∈ Rd with respect to a

positive semi-definite matrix V. Table 1 in App. A summarizes our notation.

Contextual Linear Bandits. We consider a contextual linear bandit problem over an horizon of
length T , where at each round t ∈ [T], the learner receives a set of actions At ⊆ Rd sampled from
an unknown distribution D independently from other rounds. The learner plays an action at ∈ At

and receives a reward rt = ⟨at, θ⋆⟩ + ηt, where θ⋆ is an unknown system parameter vector with
θ⋆ ∈ Rd, and ηt is noise that is zero mean conditioned on the filtration of historic information
(A1, a1, r1, · · · ,At, at). The learner adopts a policy that maps the history (A1, a1, r1, · · · ,At) to a
distribution over the action set At, with the objective of minimizing the pseudo regret defined as

RT =

T∑
t=1

sup
a∈At

⟨a− at, θ⋆⟩. (1)

For simplicity, we assume thatAt is compact for all t ∈ [T] almost surely, which ensures the existence
of an action aθ ∈ At that attains the supremum supa∈At

⟨a, θ⟩. Non-compact sets can be handled
using sufficiently small approximations. We also adopt the following standard assumption [24].
Assumption 1. (Boundedness.) θ⋆ ∈ B1, At ⊆ B1, and |rt| ≤ 1 almost surely ∀t ∈ [T].

Linear Bandits. Changing the action set over time enables to model contextual information. If the
action space is fixed, namely, At = A for for all t ∈ [T], the problem is known as Linear Bandits.
For Linear Bandits, we denote an optimal action by a⋆ = argmaxa∈A ⟨a, θ⋆⟩ and define the gap
∆a = ⟨a⋆ − a, θ⋆⟩ for all actions a ∈ A.

Batched Setting. In a batched setting, the learner is only allowed to change the policy at M pre-
chosen rounds, where M is the number of batches. Batch m includes Tm rounds, m ∈ [M], with∑M

m=1 Tm = T . In each batch, the learner adopts a policy π that takes as input the action set At

along with all the previous history except for rewards observed in the current batch, and outputs a

3

distribution over the action set At. In particular, the rewards of the actions pulled in the current batch
are utilized solely to update the policy at the end of the batch.

Regularized least squares. Let {ai, ri}ni=1 be a sequence of n pulled actions and observed rewards
over n rounds. The regularized least squares estimate θ̂ of θ⋆ based on this action-reward sequence
can be calculated as

θ̂ = V−1
n∑

i=1

riai, (2)

where V = λI+
∑n

i=1 aia
⊤
i , and λ is the regularization parameter.

Goal. Our goal is to design efficient batched algorithms for Contextual Linear and Linear Bandits
with large (even infinite) action spaces that achieve (nearly) optimal regret.

We will do so by making use of the linear optimization oracles defined next.
Definition 1. A linear optimization oracle for a set A is a function O(A; .) which takes as input
θ ∈ B1 and outputs O(A; θ) ∈ A with ⟨O(A; θ), θ⟩ = supa∈A ⟨a, θ⟩. An approximate linear
optimization oracle with additive error at most ϵ for the set A is a function O+

ϵ (A; .) : B1 → A
that satisfies ⟨O+

ϵ (A; θ), θ⟩ ≥ supa∈A ⟨a, θ⟩ − ϵ, ∀θ ∈ B1. An approximate linear optimization
oracle with multiplicative error 0 < α < 1 for the set A is a function O×

α (A; .) : B1 → A that
satisfies ⟨O×

α (A; θ), θ⟩ ≥ (1− α) supa∈A ⟨a, θ⟩, ∀θ ∈ B1.
Assumption 2. (Linear optimization oracle.) We assume that we can access a linear optimization
oracle O(At; .) for each set of actions At with running time at most Topt and space complexityMopt.

We note that assuming a linear optimization oracle over At is natural [7, 11, 9, 19, 20, 41] since
even if the learner perfectly learns the unknown parameter vector θ⋆, the learner still needs to solve
supa∈At

⟨a, θ⋆⟩ to minimize the regret in (1).

3 Efficient Soft Elimination Algorithm for Linear Bandits

In this section we propose and analyze an algorithm (which we call SoftBach and describe in
Algorithm 1) for linear bandits, that is, when At = A.

3.1 Main Result

The following two theorems, proved in App. D and E, respectively, formally state that Algorithm 1
achieves (nearly) optimal regret using M = ⌈log log T ⌉+1 batches with sample and time complexities
polynomial in d and linear in T . We provide the algorithm description in Section 3.2 and a proof
outline in Section 3.3.
Theorem 1. Consider a linear bandit instance with action set A ⊆ Rd and horizon T . There exists
a universal constant C and a choice for the batch lengths such that Algorithm 1 finishes in at most
M = ⌈log log T ⌉+ 1 batches with regret bounded as

RT ≤ Cγ
√
T log log T with probability at least 1− δ, (3)

where γ = 8d
√
CL(log(1/δ) + log T), CL = e8d and δ is a parameter. Moreover, if ∀a ∈ A with

∆a > 0 we have ∆a ≥ ∆min, then there exists a choice of batch lengths so that Algorithm 1 finishes
in at most M = log4 T batches with regret bounded as

RT ≤ C
γ2

∆min
log T with probability at least 1− δ. (4)

Our regret bounds achieve nearly optimal dependency on T , and match the best known regret bounds
of Õ(d3/2

√
T) for (unbatched) efficient contextual linear bandit algorithms [6, 41, 11], while losing

a
√
d factor when compared to the Ω(d

√
T) lower bound [24]. This extra

√
d factor is due to relying

on the best known method to design a notion of spanner of the set of actions (as we explain in
section 3.2) with radius

√
CL = O(

√
d) using linear optimization oracles. Any future improvement

that reduces the radius from O(
√
d) to O(1) will immediately result in nearly optimal regret bounds

for Algorithm 1. The following result upper bounds the time and space complexity.

4

Algorithm 1 [SoftBatch] A Batched Algorithm for Linear Bandits

1: Input: action setA ⊆ Rd, horizon T , number of batches M , batch lengths {Tm}Mm=1, confidence
parameter δ.

2: Let A′ = A ∪ B1/T , CL = e8d, γ = 8d
√
CL(log(1/δ) + log T).

3: Initialize: θ1 = 0, a⋆1 is a random action in A, ∆1(a) = 1 ∀a ∈ A′, and T0 = 1.
4: for m = 1 : M do
5: Calculate {a1, . . . , ad} = LWS(A′, ηm =

√
Tm−1/(8γ), a

⋆
m, θm).

6: For the set {a1, . . . , ad} assign π(i) = 1
d , ∀i ∈ [d].

7: for i = 1 : d do
8: If ai /∈ B1/T , calculate ∆m(ai) = ⟨a⋆m − ai, θm⟩ and pull it nm(i) =

⌈ π(i)Tm/8

(1+
√

Tm−1∆m(ai)/(8γ))2
⌉ times. go to step 10 if the number of pulls in the current batch

reaches Tm. Terminate Algorithm 1 if the total number of pulls reaches T .
9: Pull action a0 = a⋆m for max{0, Tm −

∑d
i=1 nm(i)} times.

10: Compute the regularized (with λ = 1) least squares estimator Vm = I +
∑Tm

i=1 ãiã
⊤
i and

θm+1 = V−1
m

∑Tm

i=1 riãi, and ãi is the action pulled in i-th round of the batch.
11: Update a⋆m+1 = O+

1
T

(A; θm+1).

Theorem 2. Algorithm 1 finishes in Õ(Td2 + d4M + Toptd
3M) runtime and uses Õ(d2 +Mopt)

memory, where Topt,Mopt are the time and space complexity of the linear optimization oracle.

We observe that unlike algorithms that require a linear scan on the action set, our space and time
complexities are polynomial in the parameters d, T , and Topt.

3.2 SoftBatch (Algorithm 1) Description

Intuition. The main intuition behind SoftBatch is that, we do not need to necessarily eliminate
suboptimal actions; it suffices to be able to select and play a small set of unique actions Cm in each
batch m, that allows to estimate increasingly well the parameter vector θ∗ and the best action a⋆

while playing suboptimal actions for a small number of times. Our algorithm proposes a novel way
to select such sets Cm efficiently, through a form of “action set shaping" that we will describe in this
section. Additionally, to learn θ∗ while achieving a (nearly) optimal regret, SoftBatch plays each
action a ∈ Cm a number of times ∝ 1/∆2

a, where ∆a = ⟨a⋆ − a, θ⋆⟩ is the gap for action a (i.e.,
we play the suboptimal actions in Cm for a small number of times so as not to accumulate regret).
SoftBatch enables to estimate the gap ∆a within a constant factor for any action a (yet only does so
for a limited number of actions in each batch), and essentially uses the gaps ∆a as a guide on which
actions to play and for how many rounds each.

Steps. SoftBatch (Algorithm 1) takes as input the action set A ⊆ Rd, the horizon T , the number of
batches M , and the batch lengths {Tm}Mm=1 , and operates as follows2.

In batch m, the algorithm starts with a current estimate of the parameter vector θ⋆, which we call
θm, and an estimate of the optimal action a⋆ which we call a⋆m; note that given these, we are able
to estimate for any action a ∈ A the gap ∆m(a) = ⟨a⋆m − a, θm⟩ (but we will only do so for the
actions the algorithm actually plays). The algorithm then calls LWS, a Linear Weighted Spanner
subroutine (described in Algorithm 2), that it feeds with an augmented action space A′ = A ∪ B1/T
for reasons we will explain later. LWS selects d actions Cm = {a1, · · · , ad} to play in batch m (note
that some of these may belong to B1/T and will in this case not be played). Each of these d actions ai
is pulled nm(i) ∝ π(i)

∆m(ai)2
times, where π(.) is a uniform exploration distribution with value 1/d for

all the d actions. We show in the proof of Theorem 1 that
∑d

i=1 nm(i) ≤ Tm, ∀m ∈ [M], with high
probability. To guarantee that the length of the batch is Tm, the algorithm pulls a⋆m for the remaining
rounds, if needed. At the end of the batch, the algorithm updates its estimate θm+1 of the unknown
parameter vector using regularized least squares.

2We discuss how to select M and {Tm} in App. D.

5

The remaining core part of the algorithm to discuss is the subroutine LWS, and we do so next. We
start by providing our reasoning behind the LWS design.

The LWS Algorithm. Recall that we want LWS at each batch m to select d vectors {ai} ⊆ A′ such
that, by playing each nm(i) times, we can create a least-squares estimate θm+1 of θ∗ that allows an
accurate estimate of the product ⟨a, θ⋆⟩ for all a ∈ A. It is well-known (see [24]) that the error in
estimating ⟨a, θ⋆⟩ is proportional to ∥a∥V−1

m
, where Vm = I+

∑Tm

i=1 aia
⊤
i is the least squares matrix

we used to estimate θm+1. Thus, essentially we want LWS to select d vectors {ai} that maintain a
small ∥a∥V−1

m
for all actions a ∈ A3. We can do so using what is called a G-optimal design [23].

Definition 2. (G-optimal design) For any set A ⊆ Rd, a subset S ⊆ A, together with a distribution
π over S is said to be a C-approximate optimal design for A if for any a ∈ A

∥a∥2
V−1

π
≤ Cd, (5)

where Vπ =
∑

ai∈S π(i)aia
⊤
i

4. When C = 1 this is referred to as a G-optimal design.

Notice that if we were to play each action ai for nπ(i) times, then Vπ would be (approximately) a
normalized least squares matrix since Vπ + I/n = V/n, and hence, ∥a∥2V−1 ≤ ∥a∥2V−1

π
/n.

It is well-known that for any compact set, there exists a 1-approximate optimal design [23] with
|S| = d. However, computing an 1-approximate optimal design is NP-hard in general [14, 35], even
for small action sets. Computing a 2-approximate optimal design can be done in polynomial time
[38], but the complexity scales linearly with the size of the action set. Instead, we adopt an approach
introduced in [7], which efficiently constructs an O(

√
d)-approximate optimal design using only a

linear optimization oracle. This relies on the concept of a barycentric spanner, which we define next.
Definition 3. (Barycentric spanner) For any set A ⊆ Rd, a subset S = {a1, · · · , ad} ⊆ A is said
to be a C-approximate barycentric spanner for A if any a ∈ A can be expressed as a linear
combination of vectors in S with coeficients in [−C,C].

It is easy to see that a C-approximate barycentric spanner together with a uniform distribution
π(i) = 1/d results in a C

√
d-approximate optimal design [19, 41]. And importantly, a C-approximate

barycentric spanner for a set A can be constructed using at most O(d2 logC d) calls of a linear
optimization oracle over the set A [19].

However, this is still not sufficient for us. Even though we can efficiently construct a
C
√
d-approximate optimal design for A, we do not want to pull these arms according to a

uniform distribution; we want to pull action ai with estimated gap ∆m(ai) for nm(i) =

⌈π(i)Tm/(1 +
√
Tm−1∆m(a)/(8γ))2⌉ times to control the regret (which can be thought of as

using a weighted distribution5). But if we do not use the uniform distribution, the resulting least
squares matrix Vm may not satisfy that ∥a∥V−1

m
is sufficiently small for all actions a.

To account for this, instead of finding a C-approximate barycentric spanner for the set A, at each
batch m we consider a virtual action set Ãm, which we define as

Ãm = {ϕm(a)|a ∈ A}, ϕm(a) =
a

1 + ηm∆m(a)
, (6)

where ηm =
√
Tm−1/(8γ) and find actions {a1, · · · , ad} ∈ A such that {ϕm(ai)}di=1 forms a

C-approximate barycentric spanner for Ãm. The least squares matrix at batch m can be bounded as

Vm = I+

d∑
i=0

ñm(i)aia
⊤
i ≥

d∑
i=1

π(i)Tm/8

(1 + ηm∆m(ai))2
aia

⊤
i =

d∑
i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤ (7)

with high probability6, where ñm(i) is the number of times action ai is played in batch m and
a0 = a⋆m. That is, playing actions {a1, · · · , ad} ∈ A for nm(i) times each, can equivalently

3Adding reward samples from the estimated best action a⋆
m can only improve the least squares estimator.

4This summation assumes finiteness of the set S which suffices for our application.
5The technique of inverse gap weighting was employed in [2, 41], albeit with a different weighting approach

using inverse gap instead of squared inverse gap, as utilized in our proposed schemes.
6We show in the proof of Theorem 1 that

∑d
i=1 nm(i) ≤ Tm∀m ∈ [M] with high probability, hence, all the

required nm(i) action pulls can be finished within the batch.

6

Algorithm 2 Linear Weighted Spanner (LWS) Algorithm

1: Input: set of actions A, parameter η, estimated best action â, estimated parameter θ̂.
2: Initialize: ãi = ei, where ei is the i-th basis vector of dimension d. Let A = [ã1, · · · , ãd].
3: Let C = exp(1), ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)).
4: for i = 1, · · · , d do
5: Find θ with ⟨θ, ã⟩ = det(ã,A−i), ∀ã ∈ Rd.
6: a+ = LW-ArgMax(A; θ

∥θ∥2
, η, â, θ̂), a− = LW-ArgMax(A; θ

∥θ∥2
, η, â,−θ̂).

7: ai = argmaxb∈{a+,a−} |⟨ϕ(b), θ⟩|, ãi = ϕ(ai).
8:
9: for i = 1, · · · , d do

10: Find θ with ⟨θ, ã⟩ = det(ã,A−i), ∀ã ∈ Rd.
11: a+ = LW-ArgMax(A; θ

∥θ∥2
, η, â, θ̂), a− = LW-ArgMax(A; θ

∥θ∥2
, η, â,−θ̂).

12: a = argmaxb∈{a+,a−} |⟨ϕ(b), θ⟩|.
13: if |det((ϕ(a),A−i))| ≥ C|det(A)| then
14: ai = a, ãi = ϕ(a).
15: go to line 8.
16: Return: a1, · · · , ad.

be thought of as playing actions {ϕ(a1), · · · , ϕ(ad)} ∈ Ãm for π(i)Tm times each; and since
{ϕ(a1), · · · , ϕ(ad)} form an approximate optimal design (through a barycentric spanner) for the set
Ãm, the resulting least squares matrix will lead to small ∥ϕm(a)∥V−1

m
values. In our proofs we show

that a small enough ∥ϕm(a)∥V−1
m

implies ∥a∥V−1
m

= O(∆a) as a result of the scaling in ϕ(a). We
prove in Lemma 5 in App. D that this allows to estimate ∆a within a constant factor, which is all we
need.

Intuitively, the virtual set Ãm weighs the actions inversely proportional to the estimated gap ∆m(a)

and batch length
√
Tm−1: the larger the gap and Tm−1, the smaller magnitude the corresponding

action has; this implements a form of soft elimination (shaping) of the action set, where the actions
closest to the optimal become increasingly dominant as the batch length increases while the remaining
fade out to zero. As a result, as m increases, the span of the optimal design focuses on the space
where actions have small gaps, allowing to better distinguish among them.

To complete SoftBach (Algorithm 1), one last step is missing. LWS (Algorithm 2) follows standard
steps (in Algorithm 2, see [7] for detailed explanation) to calculate the C-approximate barycentric
spanner for Ãm. But to follow these steps, it requires the ability to solve the non-linear optimization
problem supa∈A ⟨ϕm(a), θ⟩, since ϕm(a) = a/(1 +

√
Tm−1∆m(a)/(8γ)) is nonlinear in a. To do

so, we will use7 an approximate oracle with multiplicative error, that we term LW-ArgMax and
describe next.

LW-ArgMax Algorithm. LW-ArgMax (Algorithm 3) constructs an approximate oracle with (1−α)-
multiplicative error for the optimization supa∈A ⟨ϕm(a), θ⟩. This is sufficient: we show in Lemma 2
that Algorithm 2 can use LW-ArgMax to compute a C/α-approximate barycentric spanner for Ãm.

Recall that, before providing the action set A to Algorithm 2, SoftBatch extends to A′ = A ∪ B1/T 8.
This guarantees that: A′ spans Rd (required to find a barycentric spanner [7]), and supa∈A′ ⟨a, θ⟩ ≥
1/T for all θ with ∥θ∥2 = 1 which implies that any approximate optimization oracle with additive
error less than 1/(2T) has multiplicative error of at most 1/2. The extension of the set A results in
the barycentric spanner possibly containing points not in A. However, we show that removing these
points only affects supa∈A ∥a∥V−1 by a constant factor, since B1/T has a small radius. Extending the

7A related problem was faced in [41], but with a different function hence, the resulting strategy does not
apply in our case. Both [41] and our solution use the standard idea of line search, albeit with different steps and
different number of iterations. The proof that our line search provides an approximate optimization oracle turns
out to be much more involved than that of [41].

8The linear optimization problem maxa∈A′ ⟨a, θ⟩ can be solved by comparing maxa∈A ⟨a, θ⟩ and
maxa∈B1/T

⟨a, θ⟩ = 1/T .

7

Algorithm 3 LW-ArgMax Algorithm

1: Input: set of actions A, θ ∈ S1, parameter η, estimated best action â, estimate θ̂, horizon T.
2: Let ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)).
3: Let W = 3 log T , N = 36W log2(T), s = 1−1/6 log T , ϵ′ = (1− exp(−1))/(12T 7+12 log T).
4: Initialize z = 2W .
5: for i = 1, · · · , N + 1 do
6: θ̃ = (1 + 1/W)zθ + z1+1/W ηθ̂

7: ai = O+
ϵ′ (A; θ̃/∥θ̃∥2).

8: z ← zs.
9: Return: argmaxa∈{ai}N

i=1
⟨ϕ(a), θ⟩.

set A to A′ also handles the case where the span of A is smaller than Rd, that was typically handled
in literature by constructing a basis of A which can be complicated for some sets.

LW-ArgMax then builds on the following observation (proved as part of the proof of Lemma 1):

argmax
a∈A′

⟨ϕ(a), θ⟩(⟨a, θ⟩)1/W = argmax
a∈A′

sup
z≥0

Lz(a), (8)

where Lz(a) = z ·(1+1/W)·⟨a, θ⟩−z1+1/W (1+η∆(a)) and ∆(a) = supb∈A ⟨b− a, θ⋆⟩ ∀a ∈ A′.

By choosing W to be large enough, the left hand side of (8) becomes a good approximation for
⟨ϕ(a), θ⟩. For a fixed z, the supremum on the right hand side of (8) reduces to a linear optimization
over the set A′ (that we solve using an approximate linear optimization oracle). Although the
optimal value of z is not known, it can be bounded (see equation (25) in App. B); thus LW-ArgMax
scans between upper and lower bounds on the optimal z with a constant multiplicative step. The
pseudo-code is provided in Algorithm 3.

3.3 Proof Outline for Theorem 1

We start by proving that LW-ArgMax is an approximate linear optimization oracle for the set Ã with
1− exp(−3) multiplicative error. The result is stated in Lemma 1 and proved in App. B.

Lemma 1. Let T ≥ 3, η ∈ R, â ∈ Rd, θ̂ ∈ BT be given parameters, and A be a given set. Let
∆(a), ϕ(a) denote ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)). If B1/T ⊆ A ⊆ B1, |η| ≤ T and
1/2 ≤ 1 + η∆(a) ≤ T 2, ∀a ∈ A, then for any θ ∈ S1, LW-ArgMax outputs an element a ∈ A such
that

⟨ϕ(a), θ⟩ ≥ exp(−3) sup
b∈{ϕ(b′)|b′∈A}

⟨b, θ⟩. (9)

The conditions of Lemma 1 are easy to verify for all batches m; namely, B1/T ⊆ A ⊆ B1 holds as
we extend the set of actions by adding B1/T before feeding it into Algorithm 3 and the condition
1/2 ≤ 1 + η∆(a) ≤ T 2, ∀a ∈ A is proved in Theorem 1 for all the inputs fed into Algorithm 3.

Given the result of Lemma 1, we next show that Algorithm 2 finds a C/α-approximate barycentric
spanner of the set Ãm, ∀m ∈ [M]. This is done by slightly adapting the proof of Proposition 2.5 in
[7] to work with approximate linear optimization oracles instead of exact oracles. The result is stated
in the following theorem and the proof is provided in App. C for completeness.

Lemma 2. Let η ∈ R, â ∈ Rd, θ̂ ∈ Rd be given parameters, and A be a given set. Let ∆(a), ϕ(a)

denote ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)). Suppose that ⟨ϕ(LW-ArgMax(θ)), θ⟩ ≥
α supa∈A ⟨ϕ(a), θ⟩, then Algorithm 2 computes a C/α-approximate barycentric spanner for the set
Ã = {ϕ(a)|a ∈ A} with at most O(d2 logC(d/α)) calls to LW-ArgMax.

To build our regret bounds, we essentially prove that a number of pulls of ∝ π(i)
∆m(ai)2

for action ai
enables to estimate the gap ∆m(ai) within a constant factor of the real gap ∆ai . To do so, we start
by providing an error bound for estimating ⟨ϕm(a), θ⋆⟩ using standard sub-Gaussian concentration
inequalities. Then, through mathematical induction, we extend this bound to the error of the action
mean estimates ⟨a, θm⟩. Intuitively, if we believe that ⟨a, θm⟩ is a good estimate of ⟨a, θ⋆⟩ for all

8

actions, which implies ∆m(a) is a good estimate of ∆a at batch m, then even though the scale in
ϕm+1 by ∆m(a), this property will continue to hold at batch m + 1. The constants multiplying
∆m(a) in ϕm are carefully designed to enable this. Finally, we show that the inverse squared gap
weighting of the distribution enables to tightly upper bound the regret. □

4 Algorithm for Contextual Linear Bandits

Our algorithm for contextual linear bandits is based on a technique proposed in [18], which reduces
the contextual linear to a linear bandit setting. However, we cannot directly apply the reduction from
[18] in Algorithm 1, as the reduction is not necessarily computationally efficient. Instead, we build
a new algorithm (see Algorithm 4 in App. G) that incorporates reduction steps from [18] within
Algorithm 1. One challenge we encounter is the introduction of a large, non-convex action set through
the reduction process. To address this, we construct a linear optimization oracle over the new action
set in order to ensure the efficiency of Algorithm 4. Additionally, the reduction requires estimating
the expected value of a function (explained next and in App. G), and we carefully design the batch
lengths to perform this estimation effectively. The following theorem describes our main result.
Theorem 3. Consider a contextual linear bandit instance with At generated from an unknown
distributionD. There exists a universal constant C and choice for batch lengths such that Algorithm 4
finishes in O(log log T) batches with regret upper bounded as

RT ≤ Cγ
√
T log log T

with probability at least 1− δ, where γ = 10
√
CLd(log(16M/δ) + 57d log2(6T)). Moreover, the

running time and space complexity are Õ(d4 + Toptd
3T), Õ(d2 +Mopt) respectively.

We next briefly review the reduction and refer the reader to [18] for a detailed description. The
basic idea in [18] is to establish a linear bandit action for each possible parameter vector θ of the
contextual bandit instance. This is achieved through the use of the function g : Rd → Rd, which
computes the expected best action under the context distribution D with respect to the parameter
θ: g(θ) = EA∼D[O(A; θ)], where O is an optimization oracle (see Definition 1). A key insight, as
stated in Theorem 1 of [18], is that if at = O(At; θt) for some θt ∈ Rd, then the reward generated by
the contextual bandit instance can be expressed as rt = ⟨g(θt), θ⋆⟩+ η′t, where η′t is noise with zero
mean conditioned on the history. Consequently, the reward can be viewed as generated by pulling
action g(θt) in a linear bandit instance with an action set X = {g(θ)|θ ∈ Θ}. Moreover, the same
theorem demonstrates that if a linear bandit algorithm is employed to choose g(θt) ∈ X at round
t and thus play action at = O(At; θt), then |RT − RL

T | = Õ(
√
T) with high probability, where

RL
T =

∑T
t=1 supθ∈Θ⟨g(θ)− g(θt), θ⋆⟩ is the regret of the algorithm on the linear bandit instance.

To estimate g, which depends on the unknown context distribution D, [18] proposes using con-
texts observed in previous batches. Specifically, the function g is replaced by g(m+1)(θ) =

1
|Hm|

∑
t∈Hm

O(At; θ) for all θ ∈ Θ′, where Hm is the set of indices for rounds in batch m and

Θ′ = [θ]q|θ ∈ Θ is a discretization of Θ, [θ]q = q⌊θ
√
d/q⌋/

√
d and q is the discretization parameter.

The action set at batch m is correspondingly modified as Xm = {g(m)(θ)|θ ∈ Θ′}. It is also shown
in [18] that g(m) is a good estimate of g for all θ ∈ Θ′ with high probability.

To leverage this reduction, we modify Algorithm 1 by adapting the action set in each batch based
on the estimate of g, i.e., the set Xm (note that we do not need to explicitly calculate the sets
Xm). However, an issue arises where the estimate of θ⋆ at batch m depends on the approximate
optimal design from batch m− 1, which employs the action set Xm−1 estimated from the contexts
of batch m− 2. In the proof of Theorem 3, we demonstrate that this leads to regret proportional to
Tm/

√
Tm−2. If the batch lengths grow rapidly, significant regret may occur. To mitigate this, we

reduce the growth rate of batch lengths by allowing them to increase only when m is odd (a similar
technique was employed in [18]). The pseudo-code is in Algorithm 4.

To implement Algorithm 4 efficiently we need: (i) an approximate linear optimization oracle for
the set Xm with additive error at most ϵ = (1− exp(−1))/(12T 7+12 log T): we show in Lemma 8
in App. F that g(m)([θ]q) can be used as our approximate oracle for q ≤ ϵ/2; and (ii) an inverse of
the function g(m) to find θt associated with g(m)(θt) to play the action at = O(At; θt): we observe

9

that all actions played by our algorithms (Algorithm 1 and 4) are the output of the approximate
optimization oracle for some θ; namely, for Algorithm 4 any pulled action is of the form g(m)([θ]q)

for some input to the approximate oracle θ. Hence, the inversion of g(m) for the actions pulled by
Algorithm 4 can be performed by storing [θ]q whenever the action g(m)([θ]q) is stored. This increases
both the space and time complexity only by a constant factor.

Gap-dependent regret bounds for contextual linear bandits. The main difficulty in extending the
gap-dependent regret bounds in Theorem 1 to the contextual case is that a large minimum action gap in
the original action setsAt does not imply a large gap in the reduced action setX . As a simple example
consider d = 1, θ⋆ = 1, and two action sets A1 = {−1, 1}, and A2 = {−1}. At each iteration the
learner receives the action setA1 with probability p andA2 with probability 1−p independently from
other iterations. Recall that the action set in the reduced instance X = {g(θ)|θ ∈ [−1, 1]}, where
g(θ) = EA∼D[argmaxa∈A⟨a, θ⟩]. For θ ≥ 0 we have that g(θ) = p(1) + (1 − p)(−1) = 2p − 1,
while for θ < 0 we have g(θ) = p(−1)+(1−p)(−1) = −1. ThenX = {−1, 2p−1}. Therefore, the
suboptimality gap is ∆min = (2p− 1)(1)− (−1)(1) = 2p which can be arbitrarily small depending
on p. Note that in the original contextual bandit instance, the minimum gap is at least 2 for both
action sets.

While it may be possible to provide gap dependent regret bounds for our algorithm in the contextual
case, this will require more sophisticated regret analysis that does not only rely on the reduced linear
bandit instance.

Numerical results. In App. I, we provide a numerical example to compare the computational
complexity of computing the exploration policy of our algorithm versus the complexity of computing
the policy in [40].

5 Conclusion

In this paper, we proposed the first efficient batched algorithm for contextual linear bandits with
large action spaces. Our algorithm achieves a high-probability regret upper bound of Õ(

√
T), uses

O(log log T) batches, and has a computational complexity that is linear in T and polynomial in d.

Acknowledgments

This work was partially supported by the NSF grants #2007714 and #2221871, the DARPA grant
#HR00112190130, and by the Army Research Laboratory under the Cooperative Agreement
W911NF-17-2-0196.

References
[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.

Advances in neural information processing systems, 24, 2011.

[2] N. Abe and P. M. Long. Associative reinforcement learning using linear probabilistic concepts.
In ICML, pages 3–11. Citeseer, 1999.

[3] A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna. Learning with limited rounds of adaptivity:
Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In Conference on
Learning Theory, pages 39–75. PMLR, 2017.

[4] A. Agarwal, S. Bird, M. Cozowicz, L. Hoang, J. Langford, S. Lee, J. Li, D. Melamed,
G. Oshri, O. Ribas, et al. Making contextual decisions with low technical debt. arXiv preprint
arXiv:1606.03966, 2016.

[5] D. Agarwal, B.-C. Chen, P. Elango, N. Motgi, S.-T. Park, R. Ramakrishnan, S. Roy, and
J. Zachariah. Online models for content optimization. Advances in Neural Information Process-
ing Systems, 21, 2008.

[6] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International conference on machine learning, pages 127–135. PMLR, 2013.

10

[7] B. Awerbuch and R. Kleinberg. Online linear optimization and adaptive routing. Journal of
Computer and System Sciences, 74(1):97–114, 2008.

[8] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski. A contextual-bandit algorithm for mobile
context-aware recommender system. In Neural Information Processing: 19th International
Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part III 19,
pages 324–331. Springer, 2012.

[9] S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade. Towards minimax policies for online linear
optimization with bandit feedback. In Conference on Learning Theory, pages 41–1. JMLR
Workshop and Conference Proceedings, 2012.

[10] W. Cai, J. Grossman, Z. J. Lin, H. Sheng, J. T.-Z. Wei, J. J. Williams, and S. Goel. Bandit
algorithms to personalize educational chatbots. Machine Learning, 110(9):2389–2418, 2021.

[11] V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback.
2008.

[12] H. Esfandiari, A. Karbasi, A. Mehrabian, and V. Mirrokni. Regret bounds for batched bandits.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7340–7348,
2021.

[13] Z. Gao, Y. Han, Z. Ren, and Z. Zhou. Batched multi-armed bandits problem. Advances in
Neural Information Processing Systems, 32, 2019.

[14] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimiza-
tion, volume 2. Springer Science & Business Media, 2012.

[15] I. S. T. C. Group et al. The international stroke trial (ist): a randomised trial of aspirin,
subcutaneous heparin, both, or neither among 19 435 patients with acute ischaemic stroke. The
Lancet, 349(9065):1569–1581, 1997.

[16] Y. Han, Z. Zhou, Z. Zhou, J. Blanchet, P. W. Glynn, and Y. Ye. Sequential batch learning in
finite-action linear contextual bandits. arXiv preprint arXiv:2004.06321, 2020.

[17] O. Hanna, L. Yang, and C. Fragouli. Learning from distributed users in contextual linear
bandits without sharing the context. Advances in Neural Information Processing Systems,
35:11049–11062, 2022.

[18] O. A. Hanna, L. F. Yang, and C. Fragouli. Contexts can be cheap: Solving stochastic contextual
bandits with linear bandit algorithms. arXiv preprint arXiv:2211.05632, 2022.

[19] E. Hazan and Z. Karnin. Volumetric spanners: an efficient exploration basis for learning.
Journal of Machine Learning Research, 2016.

[20] S. Ito, D. Hatano, H. Sumita, K. Takemura, T. Fukunaga, N. Kakimura, and K.-I. Kawarabayashi.
Oracle-efficient algorithms for online linear optimization with bandit feedback. Advances in
Neural Information Processing Systems, 32, 2019.

[21] T. Jin, P. Xu, X. Xiao, and Q. Gu. Double explore-then-commit: Asymptotic optimality and
beyond. In Conference on Learning Theory, pages 2584–2633. PMLR, 2021.

[22] K.-S. Jun, A. Bhargava, R. Nowak, and R. Willett. Scalable generalized linear bandits: Online
computation and hashing. Advances in Neural Information Processing Systems, 30, 2017.

[23] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal of
Mathematics, 12:363–366, 1960.

[24] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[25] T. Lattimore, C. Szepesvari, and G. Weisz. Learning with good feature representations in
bandits and in rl with a generative model. In International Conference on Machine Learning,
pages 5662–5670. PMLR, 2020.

11

[26] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World
wide web, pages 661–670, 2010.

[27] Y. Li, Y. Wang, X. Chen, and Y. Zhou. Tight regret bounds for infinite-armed linear contextual
bandits. In International Conference on Artificial Intelligence and Statistics, pages 370–378.
PMLR, 2021.

[28] Y. Li, Y. Wang, and Y. Zhou. Nearly minimax-optimal regret for linearly parameterized bandits.
In Conference on Learning Theory, pages 2173–2174. PMLR, 2019.

[29] C. D. Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000.

[30] V. Perchet, P. Rigollet, S. Chassang, and E. Snowberg. Batched bandit problems. The Annals of
Statistics, pages 660–681, 2016.

[31] C. Pike-Burke, S. Agrawal, C. Szepesvari, and S. Grunewalder. Bandits with delayed, aggregated
anonymous feedback. In International Conference on Machine Learning, pages 4105–4113.
PMLR, 2018.

[32] Y. Ruan, J. Yang, and Y. Zhou. Linear bandits with limited adaptivity and learning distributional
optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 74–87, 2021.

[33] S. Sahni. Computationally related problems. SIAM Journal on computing, 3(4):262–279, 1974.

[34] J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to a change in
one element of a given matrix. The Annals of Mathematical Statistics, 21(1):124–127, 1950.

[35] M. D. Summa, F. Eisenbrand, Y. Faenza, and C. Moldenhauer. On largest volume simplices
and sub-determinants. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on
Discrete algorithms, pages 315–323. SIAM, 2014.

[36] K. T. Talluri, G. Van Ryzin, and G. Van Ryzin. The theory and practice of revenue management,
volume 1. Springer, 2004.

[37] A. Tewari and S. A. Murphy. From ads to interventions: Contextual bandits in mobile health.
Mobile Health: Sensors, Analytic Methods, and Applications, pages 495–517, 2017.

[38] M. J. Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

[39] S. Yang, T. Ren, S. Shakkottai, E. Price, I. S. Dhillon, and S. Sanghavi. Linear bandit algorithms
with sublinear time complexity. In International Conference on Machine Learning, pages
25241–25260. PMLR, 2022.

[40] Z. Zhang, X. Ji, and Y. Zhou. Almost optimal batch-regret tradeoff for batch linear contextual
bandits. arXiv preprint arXiv:2110.08057, 2021.

[41] Y. Zhu, D. J. Foster, J. Langford, and P. Mineiro. Contextual bandits with large action spaces:
Made practical. In International Conference on Machine Learning, pages 27428–27453. PMLR,
2022.

12

T time horizon
θ⋆ unknown parameter vector in Rd

A action set if fixed over time
d dimension of actions and unknown parameter
µa mean of arm a: ⟨a, θ⋆⟩
a⋆ best action: argmaxa∈A µa

∆a gap: µa⋆ − µa

∆min minimum gap: infa∈A:∆a>0 ∆a

O(A; .) linear optimization oracle for the set A
O+

ϵ (A; .) approximate linear optimization oracle with additive error ϵ for the set A
O×

α (A; .) approximate linear optimization oracle with multiplicative error α for the set A
Topt time complexity of optimization oracle O(A; .)
Mopt space complexity of optimization oracle O(A; .)
at pulled action at time t

RT regret:
∑T

t=1 ∆at

ηt noise at time t
rt reward at time t
M number of batches
Tm length of batch m
Hm set of time slots for batch m
λ least squares regularization parameter

Vm least squares matrix at batch m: λI+
∑

t∈Hm
ata

⊤
t

θm+1 least squares estimate at end of batch m: V−1
m

∑
t∈Hm

rtat
a⋆m estimates best action at batch m: O+

1/T (A; θm)

∆m(a) estimated gap at batch m: ⟨a⋆m − a, θm⟩
CL approximate optimal design parameter: e8d
γ 2d

√
CL(log(1/δ) + log T)

ϕm(a) scaled action at batch m: a

1+
√

Tm−1∆m(a)/(8γ)

A′ extended action set: A′ = A ∪ B1/T
Ãm weighted action set: {ϕm(a)|a ∈ A′}
δ confidence parameter
Cm set of size d such that {ϕm(a)|a ∈ Cm} is a barycentric spanner for Ãm

W parameter: 3 log T
C universal constant
Br {a ∈ Rd|∥a∥2 ≤ r}
Sr {a ∈ Rd|∥a∥2 = r}
∥a∥V

√
a⊤Va

1(E) indicator function: returns 1 if E holds and 0 otherwise
[n], n ∈ N {1, · · · , n}

Table 1: Table with notation for the linear bandit setting

Supplementary Material of the Paper: Efficient Batched Algorithm for
Contextual Linear Bandit with Large Action Space via Soft Action Elimination

A Tables: table of notations and comparison with related work

Our notation is collected in Table 1. Table 2 compares our results with state-of-the-art literature
results as discussed in Section 1.

B Proof of Lemma 1: approximate inverse gap weighted optimization

Lemma. Let T ≥ 3, η ∈ R, â ∈ Rd, θ̂ ∈ BT be given parameters, and A be a given set. Let
∆(a), ϕ(a) denote ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)). If B1/T ⊆ A ⊆ B1, |η| ≤ T and

13

Algorithm Regret Bound Context Efficient Number of batches

[25, 12] Õ(d
√
T) % requires assumptions O(log T)

[7, 11, 9, 19, 20] Õ(d
√
T) % ✓ T

[1, 11] Õ(d
√
T) ✓ % T

[32, 16, 18] Õ(d
√
T) ✓ % O(log log T)

[6, 41, 11] Õ(d3/2
√
T) ✓ ✓ T

This paper Õ(d3/2
√
T) ✓ ✓ O(log log T)

Table 2: Comparison with related work

1/2 ≤ 1 + η∆(a) ≤ T 2, ∀a ∈ A, then for any θ ∈ S1, LW-ArgMax (Algorithm 3) outputs an
element a ∈ A such that

⟨ϕ(a), θ⟩ ≥ exp(−3) sup
b∈{ϕ(b′)|b′∈A}

⟨b, θ⟩. (10)

Proof. To simplify notations we define the modified gap as

∆̃(a) := 1 + η∆(a). (11)

We also define the function Lz : A → R as

Lz(a) = (1 + 1/W)z⟨a, θ⟩ − z1+1/W ∆̃(a), (12)

where W is a parameter and we have set it to 3 log T . The main part of the proof shows that
the optimizer of Lz for some z is an optimizer of ⟨ϕ(a), θ⟩(⟨a, θ⟩)1/W , which, as we also prove,
is a good approximation of ⟨ϕ(a), θ⟩ for W = 3 log T . Towards that we first aim to show
supa∈A ⟨ϕ(a), θ⟩(⟨a, θ⟩)1/W = (W supa∈A,z≥0 Lz(a))

1/W . The following boundedness properties
will be repeatedly used in the proof

|⟨a, θ⟩| ≤ ∥a∥2∥θ∥2 ≤ 1 (13)

and by assumption we have that the modified gap can be bounded as

1/2 ≤ ∆̃(a) ≤ T 2. (14)

We start by proving the following property about the function Lz .

Claim 1.
sup
z≥0

Lz(a) =

{
1
W (⟨ϕ(a), θ⟩)W ⟨a, θ⟩ if ⟨a, θ⟩ ≥ 0
0 otherwise. (15)

Proof. We notice the following fact about the function Lz . For any a ∈ A with ⟨a, θ⟩ ≥ 0 we have
that Lz(a) is a concave function of z for z ≥ 0, hence, by setting the derivative to 0, we observe that

sup
z≥0

Lz(a) =
1

W

(
⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩, (16)

where the supremum is attained by

za =

(
⟨a, θ⟩
∆̃(a)

)W

. (17)

We also notice that for any a ∈ A with ⟨a, θ⟩ < 0, since for all a ∈ A, ∆̃(a) ≥ 0 we have that

sup
z≥0

Lz(a) = 0, (18)

where the supremum is attained by za = 0. The result follows by combining (16) and (18). ■

The following fact follows from Claim 1.

14

Claim 2.
sup
a∈A
⟨ϕ(a), θ⟩⟨a, θ⟩1/W = (W sup

a∈A,z≥0
Lz(a))

1/W . (19)

Proof. We notice that since ∥θ/T∥2 = 1/T since ∥θ∥2 = 1 by assumption. Then θ/T ∈ B1/T ⊆ A.
We also have that ⟨θ/T, θ⟩ = 1/T > 0, hence, from Claim 1 we have

sup
a∈A:⟨a,θ⟩≥0

sup
z≥0

Lz(a) ≥ sup
z≥0

Lz(θ/T)
(i)
=

1

W

(
⟨θ/T, θ⟩
∆̃(θ/T)

)W

⟨θ/T, θ⟩
(ii)

≥ 1

W

(
1/T

T 2

)W

/T>0,

(20)

where (i) follows from Claim 1 and (ii) uses ∆̃(a) ≤ T 2. It follows from (15) that

sup
a∈A,z≥0

Lz(a) = max

{
0, sup

a∈A:⟨a,θ⟩≥0

sup
z≥0

Lz(a)

}
= sup

a∈A:⟨a,θ⟩≥0

sup
z≥0

Lz(a)

= sup
a∈A:⟨a,θ⟩≥0

1

W

(
⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩. (21)

Moreover we have that 1
W

(
⟨a,θ⟩
∆̃(a)

)W
⟨a, θ⟩ ≤ 0 whenever ⟨a, θ⟩ ≤ 0. We can also see that

sup
a∈A:⟨a,θ⟩≥0

1

W

(
⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩ > 0 (22)

by noticing that θ/T ∈ A and has a positive objective value. Hence, we have that

sup
a∈A,z≥0

Lz(a) = sup
a∈A:⟨a,θ⟩≥0

1

W

(
⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩ = sup
a∈A

1

W

(
⟨a, θ⟩
∆̃(a)

)W

⟨a, θ⟩. (23)

It follows that
sup
a∈A
⟨ϕ(a), θ⟩⟨a, θ⟩1/W = (W sup

a∈A,z≥0
Lz(a))

1/W . (24)

■

In the following we assume that supa∈A ⟨ϕ(a), θ⟩⟨a, θ⟩
1/W is attained by some b⋆ ∈ A and also

that supa∈A ⟨ϕ(a), θ⟩ is attained by some a⋆ ∈ A. The proofs can be extended to the case where the
supremums are not attained by using sufficiently small approximation.

The proof continues as following

• We show that the algorithm uses zi that is close to zb⋆ = (⟨ϕ(b⋆), θ⟩)W (the optimizer of
Lz(b

⋆) in (17)) in some iteration i.

• We show that the solution of supa∈A Lzi(a), namely ã satisfying Lzi(ã) = supa∈A Lzi(a),
is an approximate optimizer of the function ⟨ϕ(a), θ⟩⟨a, θ⟩1/W .

• We finally show that an approximate optimizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W is also an approximate
optimizer of ⟨ϕ(a), θ⟩.

Towards the first step, we start by finding an upper and lower bound on zb⋆ = (⟨ϕ(b⋆), θ⟩)W . From
(13) and (14), we have that

2W ≥ zb⋆ = (⟨ϕ(b⋆), θ⟩)W
(i)

≥ (⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W)W

(ii)

≥ (⟨ϕ(θ/T), θ⟩⟨θ/T, θ⟩1/W)W

=
1/T 1+W

∆̃(θ/T)
≥ 1

T 3+W
, (25)

15

where (i) follows from |⟨b⋆, θ⟩| ≤ 1 and ⟨ϕ(b⋆), θ⟩ > 0 (see (22)), and (ii) follows by definition of
b⋆ as the maximizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W over the set A and the fact that θ/T ∈ B1/T ⊆ A.

Then, we find an upper and lower bound on the values of z used by the algorithm. Recall that
Algorithm 3 starts with z = 2W where W = 3 log T and decreases z with a factor of s = 1− 1

6 log T

for N = 36W log2 T iterations. We have that

2W sN = 2W (1− 1

6 log T
)N ≤ exp(W −N/(6 log T)) = exp(W (1− 6 log T))

≤ exp(−3W log(T)) =
1

T 3W
≤ 1

T 3+W
(26)

From (25), (26), the fact that Algorithm 3 starts with z = 2W and decreases z by a factor of
s = 1− 1

6 log T each step, it follows that there is an iteration i with

szb⋆ ≤ zi ≤ zb⋆ , (27)

where zi is the value of the variable z in iteration i. Now we consider the function Lzi . We aim to
show that an approximate optimizer of Lzi is an approximate optimizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W . This
is proved in the following lemma.

Lemma 3. Consider given η ∈ R, θ ∈ Rd, θ̂ ∈ Rd, â ∈ Rd and let W = 3 log T,∆(a) =

⟨â− a, θ̂⟩, ∆̃(a) = 1 + η∆(a), ϕ(a) = a/∆̃(a), Lz(a) = (1 + 1/W)z⟨a, θ⟩ − z1+1/W ∆̃(a).
Let i be an iteration of Algorithm 3 with szb⋆ ≤ zi ≤ zb⋆ . If B1/T ⊆ A ⊆ B1 and 1/2 ≤ ∆̃(a) ≤
T 2 ∀a ∈ A, then we have that

⟨ϕ(ai), θ⟩⟨ai, θ⟩1/W ≥ exp(−1) sup
b∈A
⟨ϕ(b), θ⟩⟨b, θ⟩1/W , (28)

where ai is the approximate optimizer defined in step 7 of Algorithm 3 at iteration i.

Proof. To utilize Claim 1 to relate the optimizer of Lzi to the optimizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W , we first
show that supa∈A Lzi(a) > 0. We have that (recall that b⋆ is the optimizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W)

Lzi(b
⋆) = (1 + 1/W)zi⟨b⋆, θ⟩ − z

1+1/W
i ∆̃(b⋆)

(i)

≥ (1 + 1/W)szb⋆⟨b⋆, θ⟩ − z
1+1/W
b⋆ ∆̃(b⋆)

(ii)
= (⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W)W ((1 + 1/W)s− 1), (29)

where (i) follows from ⟨b⋆, θ⟩ > 0 (see (22)) and ∆̃(b⋆) ≥ 0, and (ii) follows by substituting
zb⋆ = (⟨b⋆, θ⟩/∆̃(b⋆))W . We denote

β := (1 + 1/W)s− 1. (30)

We next lower bound β as follows (recall that T ≥ 3 and s = 1− 1/6 log T)

(Wβ)1/W = (1/2− 1/(6 log T))1/(3 log T) ≥ (1/4)1/(3 log T) ≥ exp(−0.5/ log T) ≥ exp(−0.5).
(31)

It follows that
β ≥ exp(−0.5W)/(W) ≥ 1/(3T 2), (32)

where the last inequality uses T ≥ 3, hence, log T ≤
√
T . Substituting in (29) we get that

sup
b∈A

Lzi(b) ≥ Lzi(b
⋆) ≥ (⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W)W

3T 2
≥ 1

3T 2+12 log T
, (33)

where the last inequality follows by definition of b⋆ as the maximizer of ⟨ϕ(a), θ⟩⟨a, θ⟩1/W over the
set A and the fact that θ/T ∈ B1/T ⊆ A. In the algorithm, we do not construct an optimizer for Lzi ;
instead we use an approximate optimizer ai of the linear function given in step 7 of Algorithm 3. In
the following we will use (33) to show that Lzi(ai) > 0. We notice that

Lzi(b) = (1 + 1/W)zi⟨b, θ⟩ − z
1+1/W
i (1 + η⟨â− b, θ̂⟩)

16

= ⟨b, (1 + 1/W)ziθ + z
1+1/W
i ηθ̂⟩ − z

1+1/W
i (1 + η⟨â, θ̂⟩)

= ⟨b, θ̃i⟩ − z
1+1/W
i (1 + η⟨â, θ̂⟩), (34)

where θ̃i = (1 + 1/W)ziθ + z
1+1/W
i ηθ̂. It follows that supb∈A Lzi(b) = (supb∈A ⟨b, θ̃i⟩) −

z
1+1/W
i (1 + η⟨â, θ̂⟩). Hence, by definition of ai in Algorithm 3 we get that

Lzi(ai) ≥ sup
b∈A

Lzi(b)−
1− exp(−1)
12T 7+12 log T

∥θ̃i∥2

(i)

≥ sup
b∈A

Lzi(b)−
1− exp(−1)
3T 2+12 log T

(ii)

≥ sup
b∈A

Lzi(b)− (1− exp(−1)) sup
b∈A

Lzi(b)

= exp(−1) sup
b∈A

Lzi(b), (35)

where (i) follows from ∥θ̃i∥2 ≤ (1 + 1/W)zi∥θ∥2 + |η|z1+1/W
i ∥θ̂∥2 ≤ 2T 22W+1 ≤ 4T 5 (recall

that |η| ≤ T, θ̂ ∈ BT and zi ≤ 2W , W = 3 log T) and (ii) follows from (33). It follows from (33)
that Lzi(ai) > 0. Hence, from (15) we get that ⟨ai, θ⟩ ≥ 0. From (15) again it follows that

1

W

(
⟨ai, θ⟩
∆̃(ai)

)W

⟨ai, θ⟩ = sup
z≥0

Lz(ai) ≥ Lzi(ai)

(i)

≥ exp(−1) sup
b∈A

Lzi(b)

≥ exp(−1)Lzi(b
⋆)

(ii)

≥ exp(−1)(⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W)Wβ (36)

where (i) follows from (35) and (ii) follows from (29). Hence, we have that

⟨ϕ(ai), θ⟩⟨ai, θ⟩1/W ≥ exp(−1/W)⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W (Wβ)1/W

≥ exp(−0.5)⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W (Wβ)1/W

(i)

≥ exp(−1)⟨ϕ(b⋆), θ⟩⟨b⋆, θ⟩1/W , (37)

where (i) follows from (31). ■

The last part of the proof shows that an approximate optimizer for ⟨ϕ(a), θ⟩⟨a, θ⟩1/W is also an
approximate optimizer for ⟨ϕ(a), θ⟩. We lower bound ⟨ϕ(ai), θ⟩ as follows (recall that a⋆ is the
optimizer of ⟨ϕ(a), θ⟩)

⟨ϕ(ai), θ⟩
⟨ϕ(a⋆), θ⟩

=
⟨ϕ(ai), θ⟩⟨ai, θ⟩1/W

⟨ϕ(a⋆), θ⟩⟨a⋆, θ⟩1/W
(
⟨a⋆, θ⟩
⟨ai, θ⟩

)1/W

(i)

≥ exp(−1) ⟨ϕ(b
⋆), θ⟩⟨b⋆, θ⟩1/W

⟨ϕ(a⋆), θ⟩⟨a⋆, θ⟩1/W
(
⟨a⋆, θ⟩
⟨ai, θ⟩

)1/W

(ii)

≥ exp(−1)(⟨a
⋆, θ⟩
⟨ai, θ⟩

)1/W

(iii)

≥ exp(−1)⟨a⋆, θ⟩1/W = exp(−1)⟨ϕ(a⋆), θ⟩1/W ∆̃(a⋆)1/W

(iv)

≥ exp(−1)⟨ϕ(a⋆), θ⟩1/W 0.51/W

≥ exp(−1.5)⟨ϕ(a⋆), θ⟩1/W

(v)

≥ exp(−1.5)⟨ϕ(θ/T), θ⟩1/W = exp(−1.5)(1/T

∆̃(θ/T)
)1/W

17

(vi)

≥ exp(−1.5)
(
1/T

T 2

)1/W

= exp(−1.5− 3 log T/W) = exp(−2.5). (38)

where (i) follows from Lemma 3, (ii) follows by definition of b⋆ as the maximizer of
⟨ϕ(a), θ⟩⟨a, θ⟩1/W , (iii) follows from ⟨a⋆, θ⟩ > 0, ⟨ai, θ⟩ > 0 and |⟨ai, θ⟩| ≤ 1, (iv) follows
from (14), (v) uses the fact that θ/T ∈ A and definition of a⋆ to attain the supremum of
⟨ϕ(a), θ⟩, and (vi) follows from (14). The proof is concluded by noticing that ai is one of the
candidates in the return statement of Algorithm 3, hence, if a is the output of Algorithm 3, then
⟨ϕ(a), θ⟩ ≥ ⟨ϕ(ai), θ⟩ ≥ exp(−3)⟨ϕ(a⋆), θ⟩, where the last inequality follows from (38). ■

C Proof of Lemma 2: barycentric spanner

We here prove that Algorithm 2 can efficiently find a barycentric spanner.
Lemma 2. Let η ∈ R, â ∈ Rd, θ̂ ∈ Rd be given parameters, and A be a given set. Let ∆(a), ϕ(a)

denote ∆(a) = ⟨â− a, θ̂⟩, ϕ(a) = a/(1 + η∆(a)). Suppose that for any θ ∈ S1, LW-ArgMax
(Algorithm 3) with inputs A, θ, η, â, θ̂, outputs aθ ∈ A with ⟨ϕ(aθ), θ⟩ ≥ α supa∈A ⟨ϕ(a), θ⟩, then
Algorithm 2 computes a C/α-approximate barycentric spanner for the set Ã = {ϕ(a)|a ∈ A} with
at most O(d2 logC(d/α)) calls to LW-ArgMax.

Proof. The proof is a simple modification of the proof of Proposition 2.5 in [7]; the difference is
that we replace exact linear optimization oracles with approximate ones, and show that the resulting
vectors still have the good properties we want.

We note that Lemma 2 holds for any generic action set A used to call Algorithm 2; however, since
Algorithm 1 calls Algorithm 2 (and Algorithm 3) with input action set A′, for consistency we will
use A′ as the input action set in the following, e.g., we interpret the lemma statement assumption as:

⟨ϕ(LW-ArgMax(θ)), θ⟩ ≥ α sup
a∈A′

⟨ϕ(a), θ⟩.

From this asumption and the fact that maxa∈Ã |⟨a, θ⟩| = max{maxa∈Ã ⟨a, θ⟩,maxa∈Ã ⟨a,−θ⟩},
we have that step 7 (and similarly step 12) in Algorithm 2 outputs a with

|⟨ϕ(a), θ⟩| ≥ α sup
ã∈Ã
|⟨ã, θ⟩|, for some 0 < α < 1. (39)

We next show that if Algorithm 2 terminates then {ϕ(a1), · · · , ϕ(ad)} is a C/α-approximate barycen-
tric spanner. We have that if there exists a′ ∈ A′ with |det((ϕ(a′),A−i))| ≥ C/α|det(A)| for some
i, then from (39), in step 12 we have an a with |det((ϕ(a),A−i))| ≥ C|det(A)|, hence, the algorithm
will continue. As a result when Algorithm 2 terminates we have that

sup
a∈Ã

|det((a,A−i))| ≤ C/α|det(A)|, ∀i ∈ [d]. (40)

In the proof of Lemma 1 we showed that supa∈Ã ⟨a, θ⟩ > 0, ∀θ ̸= 0. This shows that at every step
of Algorithm 2, the matrix A has non-zero determinent. Hence, {a1, · · · , ad} span Rd. As a result
for any ã ∈ Ã we have that ã =

∑d
i=1 wiai for some {wi}di=1. We have that

|det(ã,A−i)| = |det(
d∑

i=1

wiai,A−i)| = |wi||det(A)|. (41)

Hence, from (40) we get that
|wi| ≤ C/α. (42)

This implies that {ϕ(a1), · · · , ϕ(ad)} is a C/α-approximate barycentric spanner for Ã. It remains to
show that Algorithm 2 terminates in O(d2 logC d) iterations. The number of iterations of the first
for loop is d. To bound the number of iterations of the second for loop, we notice that for each
repetition of the for loop (which takes at most d iterations), det(A) increases by a factor of C. Let
Mi = [ã1, · · · , ãi, ei+1, · · · , ed] be the value of the matrix A at the end of the i-th iteration of the
first for loop. As the determinant of A increases by at least factor of C each repetition, then if N is
the number of repetitions of the second for loop, we have that CN ≤ |det(A)/det(Md)|, where A is

18

the matrix at the end of the N -th repetition of the second for loop. Hence, to prove the theorem it
suffices to show that |det(A)/det(Md)| ≤ (1/α)ddd/2. Let uT

i = e⊤i M
−1
i and define U to be the

matrix whose i-th row is ui. We observe that

⟨ui, a⟩ =
det(a,M′

−i)

det(Mi)
, ∀a ∈ Ã, (43)

by noticing that both sides are linear functions of a and equality holds for all columns of Mi which
form a basis for Rd. It follows from (39) that |u⊤

i a| ≤ 1/α. As each entry of UA is u⊤
i a for

some i ∈ [d], a ∈ Ã, all the entries of UA lie in [−1/α, 1/α]. Hence, det(UA) ≤ (1/α)ddd/2 as
the determinant of a matrix is upper bounded by the product of the L2-norms of its columns. We
also notice that if Md = [ã1, · · · , ãd], then by definition of ui we have ⟨ui, ãj⟩ is zero if j < i,
and ⟨ui, ãi⟩ = 1, ∀i ∈ [d]. Hence, UMd is upper triangular matrix with unit diagonal, implying
det(UMd) = 1. We have that

det(A)

det(Md)
=

det(UA)

det(UMd)
≤ (1/α)ddd/2. (44)

This conlcudes the proof. ■

D Proof of Theorem 1: regret analysis for linear bandits

Theorem 1. Consider a linear bandit instance with action set A ⊆ Rd and horizon T . There exists
a universal constant C and a choice for the batch lengths such that Algorithm 1 finishes in at most
M = ⌈log log T ⌉+ 1 batches with regret bounded as

RT ≤ Cγ
√
T log log T with probability at least 1− δ, (45)

where γ = 8d
√

CL(log(1/δ) + log T), CL = e8d and δ is a parameter. Moreover, if for any a ∈ A
with ∆a > 0 we have ∆a ≥ ∆min, then there exists a choice of batch lengths so that Algorithm 1
finishes in at most M = log4 T batches with regret bounded as

RT ≤ C
γ2

∆min
log T with probability at least 1− δ. (46)

Proof. Note that in Algorithm 1, we end batch m if the total number of pulls reaches Tm. Hence, it
is not guaranteed that the number of pulls for arm ai in batch m reaches nm(i), which complicates
the analysis of the concentration for the least squares estimate parameters. To handle this, we first
analyze a variant of Algorithm 1 that completes all nm(i) pulls for each action ai, i ∈ [d]. We bound
the regret of the variant algorithm when a good event G̃ (that we define later) holds, and show that
P[G̃] ≥ 1− δ. Then, we show that conditioned on G̃, it holds that

∑d
i=1 nm(i) ≤ Tm, for all batches

m ∈ [M] (see (77)), which implies that Algorithm 1 coincides with the variant algorithm on G̃ in
this case. In the following, we refer to the variant algorithm as Algorithm 1 for simplicity.

To invoke Lemma 1, and hence, Lemma 2, we first verify that the conditions of Lemma 1 hold for
all batches m. We note that as a result of using the definition of a⋆m = O+

1/T (A; θm), due to the
use of an approximate oracle and doing the maximization only over A (not the bigger set A′), the
value of ∆m(a) can be negative, however, by definition of ∆m = ⟨a⋆m − ai, θm⟩ and the fact that
A′ = A ∪ B1/T , we have that

∆m(a) ≥ −1/T, ∀a ∈ A′. (47)
Hence, we have that

1/2
(i)

≤ 1− ηm/T
(ii)

≤ 1 + ηm∆m(a)

(iii)

≤ 1 + 2ηmT
(iv)

≤ T 2 (48)

where (i) follows from ηm =
√
Tm−1/(8γ) ≤

√
T/(8γ), (ii) follows from (47), (iii) follows from

|θm| = |V−1
m−1

∑Tm−1

t=1 ãtrt| ≤
∑Tm−1

t=1 ∥ãtrt∥2 ≤ T since Vm ≥ I, |rt| ≤ 1, ∥ãt∥2 ≤ 1 (recall
that Vm = I+

∑d
i=0 nm−1(i)aia

⊤
i 1[ai /∈ B1/T], ãt is the pulled action at the t-th iteration of the

19

previous batch, nm−1(i) is the number of pulls for action ai in the previous batch, {ai}di=1 is the set
of actions for the approximate optimal design from previous batch), and (iv) uses ηm ≤

√
T/(8γ).

This shows that Lemma 1 applies to all calls to Algorithm 3, hence, Lemma 2; namely in each
batch m ≥ 2, Algorithm 2 finds an exp(4) (C = exp(1), α = exp(−3)) barycentric spanner of
the set {ϕm(a)|a ∈ A′}. For the first batch, we note that Algorithm 1 and Algorithm 2 do not use
the same action gaps. Algorithm 2 uses θ1 = 0 and thus uses ∆(a) = 0 and ϕ(a) = a. Hence, it
finds C1, an exp(4)-barycentric spanner of A′. Algorithm 1 sets ∆1(a) = 1, ∀a ∈ A′, and thus
Ã1 = {ca|a ∈ A′}, c = 1/(1 + 1/(8γ)) is a scaled version of A′. Hence, {ϕ1(a) = ca|a ∈ C1} is a
barycentric spanner for Ã1 as well. Thus we conclude that for m = 1 as well as all other m ∈ [M],
{ϕm(a)|a ∈ Cm} is a barycentric spanner for Ãm.

We next prove the following lemma that shows the concentration of the estimates
⟨ϕm(a), θm+1⟩, ∀a ∈ A′.

Lemma 4. Let T ≥ 2, and θm+1 be the regularized least squares estimate of θ⋆ at the end of batch
m in Algorithm 1. Let the event G be the event

G : |⟨ϕm(a), θm+1 − θ⋆⟩| ≤ γ/
√
Tm, ∀a ∈ A′,m ∈ [M], (49)

where γ = 8d
√
CL(log(1/δ) + log T). Then, we have that P[G] ≥ 1− δ.

Proof. We note that the regularized least squares matrix Vm+1 at the end of batch m can be bounded
as (recall that the considered variant of Algorithm 1 finishes all nm(i) pulls ∀i ∈ [d] and ∀m ∈ [M])

Vm+1 ≥ λI+

d∑
i=1

⌈ π(i)Tm/8

(1 +
√

Tm−1∆m(ai)/(8γ))2
⌉aia⊤i 1[ai /∈ B1/T]

≥ λI+

d∑
i=1

π(i)Tm/8

(1 +
√
Tm−1∆m(ai)/(8γ))2

aia
⊤
i 1[ai /∈ B1/T]

= λI+

d∑
i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤1[ai /∈ B1/T]

= λI+

d∑
i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤ −E, (50)

where E =
∑d

i=1 π(i)Tmϕm(ai)ϕm(ai)
⊤1[ai ∈ B1/T]. Hence, using (47), for any a ∈ B1/T , T ≥

2 we have that

∥ϕm(a)∥2 =
∥a∥2

1 + ∆m(a)
≤ 1/T

1− 1/T
≤ 2/T. (51)

As a result we have that for any T ≥ 2, a ∈ Rd with ∥a∥2 ≤ 1

a⊤Ea =

d∑
i=1

π(i)
Tm

8
a⊤ϕm(ai)ϕm(ai)

⊤a1[ai ∈ B1/T] ≤
d∑

i=1

π(i)
Tm

8
∥a∥22∥ϕm(ai)∥221[ai ∈ B1/T]

≤
d∑

i=1

π(i)/T ≤ 1/T. (52)

From (52) and (50) we get that for T ≥ 2

Vm+1 ≥ λI+

d∑
i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤ −E ≥ λI+

d∑
i=1

π(i)
Tm

8
ϕm(ai)ϕm(ai)

⊤ − 1/T I

(i)
= (1− 1/T)I+

Tm

8
Vπ,m ≥

Tm

8
Vπ,m, (53)

where (i) follows from λ = 1 and

Vπ,m =

d∑
i=1

π(i)ϕm(ai)ϕm(ai)
⊤. (54)

20

By Cauchy-Schwartz inequality we have that

|⟨ϕm(a), θm+1 − θ⋆⟩| ≤ ∥ϕm(a)∥V−1
m+1
∥θm+1 − θ⋆∥Vm+1

(i)

≤
∥ϕm(a)∥V−1

π,m√
Tm/8

∥θm+1 − θ⋆∥Vm+1

(ii)

≤ 2
√

2CLd/Tm∥θm+1 − θ⋆∥Vm+1
, (55)

where (i) follows from (53), and (ii) follows from the fact that {ϕm(ai), π(i)}di=1 is a CL-
approximate design for Ã. By Theorem 20.5 in [24], we have that with probability at least 1− δ it
holds that

∥θm+1 − θ⋆∥Vm+1
≤ 2
√
log(1/δ) + d log T , ∀m ∈ [M]. (56)

Combining with (55) we get that the next inequality holds with probability at least 1− δ

|⟨ϕm(a), θm+1 − θ⋆⟩| ≤ 4d
√
2CL(log(1/δ) + log T)/Tm, ∀m ∈ [M]. (57)

■

Corollary 1 follows from Lemma 4 and the fact that 1 + ηm∆m(a) ≥ 1− 1/
√
T > 0 for T > 1.

Corollary 1. Let T ≥ 2, and θm+1 be the regularized least squares estimate of θ⋆ at the end of batch
m in Algorithm 1. The following event holds with probability at least 1− δ

G′ : |⟨a, θm+1⟩ − µa| ≤
γ√
Tm

+
∆m(a)

8

√
Tm−1

Tm
, ∀a ∈ A′,m ∈ [M], (58)

where γ = 8d
√
CL(log(1/δ) + log T) and µa = ⟨a, θ∗⟩.

We introduce the definition of the gap ∆a on the set A′ as follows

∆a = sup
b∈A
⟨b, θ⋆⟩ − ⟨a, θ⋆⟩, ∀a ∈ A′. (59)

We note that with this definition ∆a may be negative for some a ∈ A′ as the supremum is taken over
the smaller set A. However, we have that ∀a ∈ A′

∆a ≥ min{0, sup
b∈A
⟨b, θ⋆⟩ − sup

u∈B1/T

⟨u, θ⋆⟩} ≥ −1/T. (60)

We also have that

∆a ≤ max{1, sup
b∈A
⟨b, θ⋆⟩ − inf

u∈B1/T

⟨u, θ⋆⟩} ≤ 1 + 1/T. (61)

We can now prove the following lemma about the concentration of ∆m(a).

Lemma 5. Suppose that G′ holds and assume Tm ≥ Tm−1, ∀m ∈ [M], then we have that the
following events hold

G̃m : −4 γ√
Tm−1

+
1

2
∆a ≤ ∆m(a) ≤ 2∆a + 4

γ√
Tm−1

, ∀a ∈ A′, ∀m ∈M. (62)

Proof. We prove the statement by induction on m. For m = 1 we have that for any a ∈ A′

−4 γ√
Tm−1

+
1

2
∆a

(i)
= −4γ +

1

2
∆a ≤

1

2
∆a

(ii)

≤ 1

2
(1 + 1/T)

(iii)

≤ ∆1(a)

(iv)

≤ 4γ − 2/T
(v)

≤ 4γ + 2∆a = 4
γ√
Tm−1

+ 2∆a

(63)

21

where (i) uses T0 = 1, (ii) follows from (61), (iii) follows from ∆1(a) = 1, (iv) uses γ ≥ 1, and
(v) follows from (60). Now suppose that G̃m holds. We need to show that G̃m+1 holds. We have that
for any a ∈ A′

∆m+1(a) = ⟨a⋆m+1 − a, θm+1⟩
(i)

≤ µa⋆
m+1
− µa + 2

γ√
Tm

+ (
∆m(a⋆m+1)

8
+

∆m(a)

8
)

√
Tm−1

Tm

= ∆a −∆a⋆
m+1

+ 2
γ√
Tm

+ (
∆m(a⋆m+1)

8
+

∆m(a)

8
)

√
Tm−1

Tm

(ii)

≤ ∆a −∆a⋆
m+1

+ 2
γ√
Tm

+ (
2∆a⋆

m+1
+ 4 γ√

Tm−1

8
+

2∆a + 4 γ√
Tm−1

8
)

√
Tm−1

Tm

= ∆a −∆a⋆
m+1

+ 3
γ√
Tm

+ (
∆a⋆

m+1

4
+

∆a

4
)

√
Tm−1

Tm

= 2∆a + 3
γ√
Tm

+∆a(1/4

√
Tm−1

Tm
− 1) + ∆a⋆

m+1
(1/4

√
Tm−1

Tm
− 1), (64)

where (i) follows from G′, and (ii) follows by the induction hypothesis. We have that if ∆a ≥ 0,
then

∆a(1/4

√
Tm−1

Tm
− 1)

(i)

≤ ∆a(1/4− 1) ≤ 0, (65)

where (i) uses the fact that Tm ≥ Tm−1. If ∆a < 0, then

∆a(1/4

√
Tm−1

Tm
− 1) ≤ −∆a

(i)

≤ 1/T, (66)

where (i) follows from (60). Hence, from (65) and (66) we get that

∆a(1/4

√
Tm−1

Tm
− 1) ≤ 1/T. (67)

Similarly, we have

∆a⋆
m+1

(1/4

√
Tm−1

Tm
− 1) ≤ 1/T. (68)

Substituting from (67) and (68) in (64) we get that

∆m+1(a) ≤ 2∆a + 3
γ√
Tm

+ 2/T ≤ 2∆a + 4
γ√
Tm

, (69)

where the last inequality uses Tm ≤ T and γ ≥ 2. We next prove a lower bound on ∆m+1(a). In the
following we assume that supa∈A µa is attained by a⋆ ∈ A, and supa∈A′ ⟨a, θm+1⟩ is attained by
ã⋆m+1 ∈ A′. The proof can be easily extended when the supremums are not attained by using a small
approximation and taking the limit. We have that for any a ∈ A′

∆m+1(a) = ⟨a⋆m+1 − a, θm+1⟩ ≥ ⟨ã⋆m+1 − a, θm+1⟩ − 1/T ≥ ⟨a⋆ − a, θm+1⟩ − 1/T

(i)

≥ µa⋆ − µa − 2
γ√
Tm

− (
∆m(a⋆)

8
+

∆m(a)

8
)

√
Tm−1

Tm
− 1/T

= ∆a − 2
γ√
Tm

− (
∆m(a⋆)

8
+

∆m(a)

8
)

√
Tm−1

Tm
− 1/T

(ii)

≥ ∆a − 2
γ√
Tm

− (
2∆a⋆ + 4 γ√

Tm−1

8
+

2∆a + 4 γ√
Tm−1

8
)

√
Tm−1

Tm
− 1/T

= ∆a − 3
γ√
Tm

− ∆a

4

√
Tm−1

Tm
− 1/T =

1

2
∆a − 3

γ√
Tm

+∆a(
1

2
− 1

4

√
Tm−1

Tm
)− 1/T.

(70)

22

where (i) follows from G′, and (ii) follows by the induction hypothesis. We have that if ∆a ≥ 0,
then

∆a(
1

2
− 1

4

√
Tm−1

Tm
)
(i)

≥ 1

4
∆a ≥ 0, (71)

where (i) follows from Tm ≥ Tm−1. If ∆a ≤ 0, then

∆a(
1

2
− 1

4

√
Tm−1

Tm
)≥1

2
∆a ≥ −

1

2
1/T. (72)

Substituting from (71) and (72) in (70) we get that

∆m+1(a) ≥
1

2
∆a − 3

γ√
Tm

− 2/T ≥ 1

2
∆a − 4

γ√
Tm

, (73)

where the last inequality uses Tm ≤ T and γ ≥ 2. Combining (69) and (73) we get that G̃m+1 holds.
We conclude by induction that G̃m holds for all m ∈ [M]. ■

We are now ready to prove the regret bound. We first upper bound the regret in batch m

R(m) =
∑

t∈Hm

sup
a∈A

µa − µat
, (74)

where Hm is the set of time slots for batch m, and at is the action pulled at time t. The following
lemma gives a bound on R(m).

Lemma 6. Suppose that G̃m holds, then we have that

R(m) ≤ d+ 1 +
68γTm√
Tm−1

. (75)

Moreover, if ∀a ∈ A with ∆a > 0 we have ∆a ≥ ∆min then

R(m) ≤ d+ 1 +
544γ2Tm

∆minTm−1
. (76)

If T1 ≥ 2d then
d∑

i=1

nm(i) ≤ Tm. (77)

Proof. Let {ϕm(ai), π(i)}di=1 be the CL-approximate design at batch m and a0 = a⋆m. The regret at
batch m can be bounded as

R(m) ≤ Tm∆a0 +

d∑
i=1

nm(ai)∆ai1[ai /∈ B1/T] (78)

We first modify the first term in (78) to put it in the same form of the terms inside the summation.
Towards that, we expand the definition of nm(i) to include a0 by letting π(0) = 16 (nm(0) and π(0)
are values used only for analysis and may not reflect the actual number of pulls for action a0) and

nm(0) = ⌈ π(0)Tm/8

(1 +
√
Tm−1∆m(a0)/(8γ))2

⌉. (79)

By definition of a0 = a⋆m we also have that ∆m(a0) ≤ 1/T . Hence, we have that

1

(1 +
√
Tm−1∆m(a0)/(8γ))2

≥ 1/2. (80)

Substituting in (78), and using π(0) = 16, we get that

R(m) ≤
d∑

i=0

nm(ai)∆ai
1[ai /∈ B1/T] (81)

23

We notice that on G̃m we have

nm(i) = ⌈ π(i)Tm/8

(1 +
√
Tm−1∆m(ai)/(8γ))2

⌉ ≤ 1 +
π(i)Tm/8

(1 +
√
Tm−1∆m(ai)/(8γ))2

≤ 1 +
π(i)Tm/8

(1 +
√

Tm−1(1/2∆ai
− 4γ/

√
Tm−1)/(8γ))2

= 1 +
π(i)Tm/8

(1/2 + 1/16
√

Tm−1∆ai/γ)
2

(82)

This implies that

nm(i) ≤ 1 + min{Tm/2,
32γ2Tm

Tm−1∆2
ai

}π(i) (83)

The last part of the lemma follows from (83) since
∑d

i=1 nm(i) ≤ d + Tm/2
∑d

i=1 π(i) = d +
Tm/2 ≤ Tm, where the last inequality follows from T1 ≥ 2d. Substituting in (81), we get that

R(m) ≤
d∑

i=0

nm(ai)∆ai
1[ai /∈ B1/T]

≤ d+ 1 +

d∑
i=0

π(i)min{∆ai
Tm/2,

32γ2Tm

∆ai
Tm−1

}1[ai /∈ B1/T] (84)

Hence, we have that

R(m) ≤ d+ 1 +

d∑
i=0

π(i) sup
∆ai

≥0
min{∆aiTm/2,

32γ2Tm

∆aiTm−1
}1[ai /∈ B1/T]

≤ d+ 1 + sup
∆≥0

min{∆Tm/2,
32γ2Tm

∆Tm−1
}

d∑
i=0

π(i)

= d+ 1 + 17 sup
∆≥0

min{∆Tm/2,
32γ2Tm

∆Tm−1
}. (85)

We have that min{∆Tm/2, 32γ2Tm

∆Tm−1
} is maximized when ∆Tm/2 = 32γ2Tm

∆Tm−1
, hence, when ∆ =

8γ√
Tm−1

. Substituting in (85) we get that

R(m) ≤ d+ 1 +
68γTm√
Tm−1

. (86)

To prove the gap dependent bound on R(m) we start from (84). We have that if ∆a ≥ ∆min∀a ∈ A :
∆a > 0, then

R(m) ≤ d+ 1 +

d∑
i=0

π(i)min{∆ai
Tm/2,

32γ2Tm

∆ai
Tm−1

}1[ai /∈ B1/T]

≤ d+ 1 +
32γ2Tm

∆minTm−1

d∑
i=0

π(i)

≤ d+ 1 +
544γ2Tm

∆minTm−1
(87)

This concludes the proof of the lemma. ■

To combine the regret across different batches we notice that since
∑M

m=1 Tm ≥ T , Algorithm 1 will
finish in at most M batches. The following result follows from Lemma 6.

24

Lemma 7. Suppose Tm ≥ Tm−1,∀m ∈ [M],
∑M

m=1 Tm ≥ T and T0 = 1, T1 ≥ 2d, then there
exists a universal constant C such that with probability at least 1 − δ the regret of Algorithm 1 is
bounded as

RT ≤ C

M∑
m=1

γTm√
Tm−1

, (88)

where γ = 8d
√

CL(log(1/δ) + log T). Moreover, if ∀a ∈ A with ∆a > 0 we have ∆a ≥ ∆min

then with probability at least 1− δ the regret of Algorithm 1 is bounded as

RT ≤ C

M∑
m=1

γ2Tm

∆minTm−1
. (89)

Finally, we use the two sets of batch lengths proposed in [13]. The first set of batch lengths is suitable
for worst case regret bounds. We choose the following batch lengths {Tm}:

Tm = max{⌊T 1−2−m

⌋, 2d},m ∈ [M − 1], TM = T,M = ⌈log log T ⌉+ 1. (90)

We note that
∑M

m=1 Tm ≥ T , however, Algorithm 1 finishes whenever the number of rounds reaches
T , hence, the number of batches is upper bounded by M . We also notice that T1 ≥ 2d, Tm ≥
Tm−1∀m ∈ [M]. To prove the first regret bound we observe that for T ≥ 2 and 2 ≤ m ≤M − 1 we
have

Tm√
Tm−1

≤ ⌊T 1−2−m⌋√
⌊T 1−2−m+1⌋

≤ T 1−2−m√
⌊T 1−2−m+1⌋

=

√
T
√
T 1−2−m+1√

⌊T 1−2−m+1⌋
≤ 2
√
T . (91)

We also have that
TM√
TM−1

=
T

⌊T 1−2− log log T ⌋
=

T

⌊T/2⌋
≤ 4. (92)

Hence, in all cases we have Tm√
Tm−1

≤ 4
√
T . The regret bound follows by noticing that the regret of

the first batch can be bounded by T1 ≤ max{2d,
√
T + 1} and substituting in (88).

The second set of batch lengths {Tm} is suitable for gap dependent regret bounds. We choose the
following batch lengths

Tm = d4m,m ∈ [M],M = ⌈log4 T ⌉. (93)

We notice T1 ≥ 2d, Tm ≥ Tm−1∀m ∈ [M],
∑M

m=1 Tm ≥ T (Algorithm 1 finishes whenever the
number of rounds reaches T , hence, the number of batches is upper bounded by M). The gap
dependent regret bound directly follows by substituting the batch lengths from (93) in (89). ■

E Proof of Theorem 2: complexity of Algorithm 1

Theorem. Algorithm 1 finishes in Õ(Td2 + d4M + Toptd
3M) runtime and uses Õ(d2 +Mopt)

memory, where Topt,Mopt are the time and space complexity of the linear optimzation oracle for the
action set A.

Proof. We notice that the runtime and space complexity of LW-ArgMax is

TLW-ArgMax = O((d+ Topt) log
3 T),MLW-ArgMax = O(d log3 T +Mopt). (94)

We next upper bound the complexity of Algorithm 2. As the matrix A is invertible in all iterations,
we can use the rank-one update formula of the determinent [29] to perform steps 5 and 10 in O(d)
runtime and O(d2) space complexity. Namely

det(a,A−i) = det(A+ (a− ai)e
⊤
i) = det(A)(1 + e⊤i A

−1(a− ai))

= ⟨a,det(A)(A−1)⊤ei⟩+ det(A)(1− e⊤i A
−1ai)

= ⟨a,det(A)(A−1)⊤ei⟩, (95)

25

where the last step follows by noticing that the formula is valid for a = 0, ãi is the i-th column of A.
This requires the inverse of matrix A which can be computed using rank-one updates in O(d2) time
and O(d2) space [34]

(A+ (a− ãi)e
⊤
i)

−1 = A−1 − A−1(a− ãi)e
⊤
i A

−1

1 + eiA−1(a− ãi)
. (96)

We notice that for each repetition of the second for loop, A−1 is updated once while det(A) can be
updated at most d times. Hence, the time and space complexity of one repetition of the for loop in
Algorithm 2 is O(TLW-ArgMaxd+ d2), O(MLW-ArgMax + d2) respectively. By Lemma 2, the for loops
is repeated at most O(d2 log d) times. Hence, the time and space complexity of Algorithm 2 can be
bounded as

TLWS = O
(
(d4 + Toptd

3) log d log3 T
)
,MLWS = O

(
d2 log3 T +Mopt

)
. (97)

We next upper bound the time and space complexity of Algorithm 1.

• The time and space complexity of finding the barycentric spanner in step 5 is TLWS,MLWS
respectively.

• The computation of the least squares matrix requires O(Tmd2) time and O(d2) space, while
its inversion requires O(d3) runtime. Hence, θm can be computed in O(Tmd2 + d3) time
and O(d2) space.

• Computing the estimated best action in step 11 requires Topt,Mopt time and space respec-
tively.

Hence, in total Algorithm 1 runtime is O(Td2 + (d4 + Toptd
3)M log d log3 T) while the space

complexity is O
(
d2 log3 T +Mopt

)
. ■

F Approximate oracle over Xm

Lemma 8. Consider a given m ∈ [M] and let g(m)(θ) = 1
|Hm−1|

∑
t∈Hm−1

O(At; θ), Xm =

{g(m)(θ)|θ ∈ Θ′}, where Hm is the set of indices for rounds in batch m and Θ′ = [θ]q|θ ∈ Θ

is a discretization of Θ, [θ]q = q⌊θ
√
d/q⌋/

√
d and q is the discretization parameter. For any

θ ∈ S1, ϵ ∈ R+, if q ≤ ϵ/2, we have that

⟨g(m)([θ]q), θ⟩ ≥ sup
a∈Xm

⟨a, θ⟩ − ϵ. (98)

Proof. We first observe that

0 ≤ θ − [θ]q = θ − ⌊θ
√
d/q⌋√
d/q

≤ q/
√
d1. (99)

It follows that ∥θ − [θ]q∥2 ≤ q. We notice that

⟨g(m)(θ), θ⟩ = 1

|Hm−1|
∑

t∈Hm−1

⟨O(At; θ), θ⟩ ≥
1

|Hm−1|
∑

t∈Hm−1

⟨O(At; θ
′), θ⟩

= ⟨g(m)(θ′), θ⟩∀θ′ ∈ Θ. (100)

Hence,
⟨g(m)(θ), θ⟩ ≥ sup

θ′∈Θ′
⟨g(m)(θ′), θ⟩. (101)

We also have that

⟨g(m)([θ]q), θ⟩ = ⟨g(m)([θ]q), [θ]q⟩+ ⟨g(m)([θ]q), θ − [θ]q⟩
≥ ⟨g(m)([θ]q), [θ]q⟩ − ∥g(m)([θ]q)∥2∥θ − [θ]q∥2
≥ ⟨g(m)([θ]q), [θ]q⟩ − q

26

Algorithm 4 Efficient Batched Algorithm for contextual linear bandits

1: Input: number of batches M , batch lengths {Tm}Mm=1, horizon T , confidence parameter δ, set of
unknown parameters Θ ⊆ B1, discretization parameter q.

2: Select modified batch lengths {τm}2Mm=1 to τm = Tm//2, where // is the integer division.

3: Let CL = exp(8)d, γ = 10
√
CLd(log(8M/δ) + 57d log2(6T)), τ−1 = τ0 = 1, Θ′ =

{[θ]q = ⌊θ/(
√
dq)⌋
√
dq|θ ∈ Θ}.

4: Let g(1) : Θ′ → Rd be defined as g(1)(θ) = 0, ∀θ ∈ Θ′, and let X1 = {g(1)(θ)|θ ∈ Θ′},X ′
1 =

X1 ∪ B1/T , ∆1(a) = 1 ∀a ∈ X ′
1.

5: Initialize: θ1 = 0, a⋆1 to be a random action in X1.
6: for m = 1 : 2M do
7: Calculate {ai, θ(i)}di=1 = LWS(X ′

m, ηm =
√
τm−2/(8γ), a

⋆
m, θm), where ai = g(m)(θ(i)).9

8: Let π(i) = 1/d ∀i ∈ [d], a0 = a⋆m = g(m)(θ(0)), where θ(0) = [θm]q = q⌊θm
√
d/q⌋/

√
d.

9: for i = 1 : d do
10: If ai /∈ B1/T , calculate ∆m(ai) = ⟨a⋆m − ai, θm⟩ and play a = O(At; θ

(i)), nm(i) =

⌈ π(i)τm/4
(1+

√
τm−1∆m(ai)/(8γ))2

⌉ times. go to step 12 if the number of pulls in the current batch reaches
τm. Terminate Algorithm 1 if the total number of pulls reaches T .

11: play a = O(At; θ
(0)) for max{0, τm −

∑d
i=1 nm(i)} times.

12: Compute the regularized (with λ = 1) least squares estimator Vm = I +
∑τm

i=1 aia
⊤
i and

θm+1 = V−1
m

∑τm
i=1 riai.

13: Update a⋆m+1 = O+
1/T (Xm; θm+1).

14: Let g(m+1)(θ) = 1
τm

∑
t∈Hm

O(At; θ), Xm+1 = {g(m+1)(θ)|θ ∈ Θ′},X ′
m+1 = Xm+1 ∪

B1/T , where Hm is the set of indices of the rounds in batch m.

(i)

≥ ⟨g(m)(θ), [θ]q⟩ − q

≥ ⟨g(m)(θ), θ⟩ − ∥g(m)(θ)∥2∥θ − [θ]q∥2 − q

≥ ⟨g(m)(θ), θ⟩ − 2q
(ii)

≥ sup
θ′∈Θ′

⟨g(m)(θ′), θ⟩ − 2q = sup
a∈Xm

⟨a, θ⟩ − 2q, (102)

where (i) and (ii) follow from (101). ■

G Pseudo-code of efficient batched algorithm for contextual linear bandits

The pseudo-code for our algorithm for linear contextual bandits is provided in Algorithm 4. The
algorithm follows similar steps to Algorithm 1 with the following exceptions. The set of actions Xm

is updated (see step 14) in every batch using contexts observed in the previous batch. It is important to
note that these sets Xm (in steps 4 and 14) are never actually computed; the definitions are provided
for notation purposes. We only need an approximate optimizer for the set Xm to construct the
approximate barycentric spanner in Algorithm 2. As shown in App. F, g(m)([θ]q) for sufficiently
small q can serve as our approximate oracle. Furthermore, the computation of g(m)([θ]q) can be
performed using O(T) calls to the linear optimization oracle O(At; .), hence, with complexity of
O(TTopt).

Additionally, we assume that LW-ArgMax (and LWS) returns for each ai the value θ(i) = [θ̃i]q . Here,
θ̃i is the input to the approximate linear optimization oracle which yielded the output ai. The final
difference from Algorithm 1 is that we do not play action ai for nm(i) times (note that ai may not be
in At); instead we play policy O(At; θ

(i)) for nm(i) times, where θ(i) is the parameter associated
with ai returned by LWS (Algorithm 2) as described earlier.

9Recall that in the contextual setting we assume that LW-ArgMax (and LWS) returns for each ai the value
θ(i) = [θ̃i]q , where θ̃i is the input to the approximate linear optimization oracle that resulted in the output ai.

27

H Proof of Theorem 3: regret analysis for contextual bandits

Theorem 3. Consider a contextual linear bandit instance with At generated from an unknown
distribution D. There exists a universal constant C and a choice for batch lengths such that
Algorithm 4 , with q = (1− exp(−1))/(24T 7+12 log T), finishes in O(log log T) batches with regret
upper bounded as

RT ≤ Cγ
√
T log log T

with probability at least 1− 2δ, where γ = 10
√
CLd(log(8M/δ) + 57d log2(6T)). Moreover, the

running time and space complexity are Õ(d4 + Toptd
3T) and Õ(d2 +Mopt), respectively.

Proof. Recall that at each round t, Algorithm 4 pulls action at associated with a value θt (see step 7
in Algorithm 4). To upper bound the regret, we follow a technique proposed in [18] by first upper
bounding the quantity

RL
T =

T∑
t=1

sup
θ∈Θ
⟨g(θ)− g(θt), θ⋆⟩ (103)

which can be thought of as the regret of the algorithm on a reduced linear bandit instance [18]. Then
we can use Theorem 1 in [18] which states that |RT −RL

T | = Õ(
√
T) with high probability to upper

bound the regret RT .

As in the proof of Theorem 1 instead of analyzing Algorithm 4 which ends batch m if the total
number of pulls reaches Tm, we analyze a variant algorithm that completes all the required pulls of
the actions in the barycentric spanner. We bound the regret of the variant algorithm when a good
event G̃ (that we define later) holds, and show that P[G̃] ≥ 1− δ. Then, we show that conditioned
on G̃, it holds that

∑d
i=1 nm(i) ≤ τm, for all batches m ∈ [2M] (see (115)), which implies that

Algorithm 4 coincides with the variant algorithm on G̃ in this case. We also refer to the variant
algorithm as Algorithm 4 for simplicity.

Recall that

g(θ) = EA∼D[O(A; θ)], g(m)(θ) =
1

|Hm−1|
∑

t∈Hm−1

O(At; θ),Xm = {g(m)(θ)|θ ∈ Θ′}, (104)

where Hm is the set of indices for the rounds in batch m and Θ′ = {[θ]q|θ ∈ Θ} is a dis-
cretization of Θ, [θ]q = q⌊θ

√
d/q⌋/

√
d and q is the discretization parameter. Recall also that

Vm is the regularized least squares matrix in step 12 of Algorithm 4 with λ = 1, and de-
note ϵm = supθ′∈Θ′,θ∈Θ |⟨gm(θ′)− g(θ′), θ⟩| in the extended reals R ∪ {∞}. We also denote
ϵ(t) = ⟨g(θ(t))− g(m)(θ(t)), θ⋆⟩, where g(m)(θ(t)) ∈ Xm, rt are the action and reward at iteration t
of batch m. We first upper bound the error in estimating µg(θ′) = ⟨g(θ′), θ⋆⟩ for an action g(θ′) at
the end of batch m for θ′ ∈ Θ′. We have that for any a ∈ Rd, |⟨a, θm+1 − θ⋆⟩| can be decomposed
as

|⟨a, θm+1 − θ⋆⟩| = |⟨a,V−1
m

τm∑
t=1

rtat − θ⋆⟩|
(i)
= |⟨a,V−1

m

τm∑
t=1

(θ⊤⋆ g(θ
(t)) + η′t)g

(m)(θ(t))− θ⋆⟩|

= |⟨a,V−1
m

τm∑
t=1

(θ⊤⋆ g
(m)(θ(t)) + ϵ(t) + η′t)g

(m)(θ(t))− θ⋆⟩|

= |⟨a,V−1
m

(
(Vm − I)θ⋆ +

τm∑
t=1

(ϵ(t) + η′t)g
(m)(θ(t))

)
− θ⋆⟩|

= |⟨a,−V−1
m θ⋆ +V−1

m

τm∑
t=1

(ϵ(t) + η′t)g
(m)(θ(t))⟩|

≤ |⟨a,−V−1
m θ⋆⟩|+ |⟨a,V−1

m

τm∑
t=1

ϵ(t)g(m)(θ(t))⟩|

28

+ |⟨a,V−1
m

τm∑
t=1

η′tg
(m)(θ(t))⟩|

≤ ∥a∥V−1
m
∥θ⋆∥V−1

m
+ |⟨a,V−1

m

τm∑
t=1

ϵ(t)g(m)(θ(t))⟩|

+ |⟨a,V−1
m

τm∑
t=1

η′tg
(m)(θ(t))⟩|

(ii)

≤ ∥a∥V−1
m

+ |⟨a,V−1
m

τm∑
t=1

ϵ(t)g(m)(θ(t))⟩|+ |⟨a,V−1
m

τm∑
t=1

η′tg
(m)(θ(t))⟩|,

(105)

where (i) follows from Theorem 1 in [18], η′t is a zero mean noise conditioned on the filtration of
history and θ(t) and (ii) uses Vm ≥ I. We next bound the term |⟨a,V−1

m

∑
t∈Hm

ϵ(t)g(m)(θ(t))⟩|.
We have that

|⟨a,V−1
m

τm∑
t=1

ϵ(t)g(m)(θ(t))⟩| ≤

√√√√τm

τm∑
t=1

ϵ(t)2a⊤V−1
m g(m)(θ(t))g(m)(θ(t))⊤V−1

m a

(i)

≤ ϵm

√√√√τm

τm∑
t=1

a⊤V−1
m g(m)(θ(t))g(m)(θ(t))⊤V−1

m a

≤ ϵm

√
τma⊤V−1

m (Vm − I)V−1
m a

≤ ϵm
√
τm(∥a∥2

V−1
m
− ∥a∥2

V−2
m
) ≤ ϵm

√
τm(∥a∥2

V−1
m
− ∥a∥2

V−2
m
)

≤ ϵm
√

τm(∥a∥2
V−1

m
− ∥a∥2

V−2
m
) ≤ ϵm

√
τm∥a∥2V−1

m
, (106)

where (i) follows by the definition of ϵm = supθ′∈Θ′,θ∈Θ |⟨gm(θ′)− g(θ′), θ⟩| and ϵ(t) =

⟨g(θ(t))− g(m)(θ(t)), θ⋆⟩. We have from Theorem 2 in [18] that the following event holds with
probability at least 1− δ/(4M)

Gϵm : ϵm ≤ 2

√
log(8M |Θ′|/δ)

τm−1
. (107)

We also have that from eq. (20.2) of [24] the following event holds with probability at least 1−δ/(4M)

Gηm : |⟨a,V−1
m

τm∑
t=1

η′tg
(m)(θ(t))⟩ ≤

√√√√2

τm∑
t=1

(a⊤V−1
m g(m)(θ(t)))2 log(4M |Θ′|/δ)

(i)

≤
√
2∥a∥2

V−1
m

log(4M |Θ′|/δ)∀a ∈ X̃m, (108)

where (i) follows by expanding (a⊤V−1
m g(m)(θ(t)))2 as in (106). From Lemma 8 we have that

for q = (1 − e−1)/(24T 7+12 log T), the function g(m)([θ]q) is an approximate linear optimization
oracle with additive gap at most (1− e−1)/(12T 7+12 log T). Hence, using Lemma 110 and Lemma 2,
Algorithm 2 finds a set Cm such that {ϕm(a)|a ∈ Cm} is an e8 approximate spanner for X̃m.
By the properties of the CL-approximate design, similar to (53) we have that ∥ϕm(a)∥V−1

m
≤√

CLd/τm∀a ∈ X ′
m, where CL = e8d. Hence, substituting from (106), (107) and (108) in (105) we

get that the following holds on Gηm ∩ Gϵm

|⟨ϕm(a), θm+1 − θ⋆⟩| ≤
√
CLd/τm + 4

√
CLd log(8M |Θ′|/δ)

τm−1
≤ 5

√
CLd log(8M |Θ′|/δ)

τm−1
∀a ∈ X ′

m.

(109)

10The verification of the conditions stated in Lemma 1 is equivalent to the verification conducted at the
beginning of the proof of Theorem 1.

29

We notice that for q = (1 − e−1)/(24T 7+12 log T), we have that |Θ′| ≤ 6T 3d(7+12 log T). Hence,
log |Θ′| ≤ 57d log2(6T). Hence, CLd log(8M |Θ′|/δ) = CLd(log(8M/δ) + 57d log2(6T)). Sub-
stituting in (109) we get that the following holds on Gηm ∩ Gϵm

|⟨ϕm(a), θm+1 − θ⋆⟩| ≤ 5

√
CLd(log(8M/δ) + 57d log2(6T))/τm−1 ≤

γ/2
√
τm−1

. (110)

By definition of ϕm it follows that the following holds on Gηm ∩ Gϵm

|⟨a, θm+1 − θ⋆⟩| ≤
γ/2
√
τm−1

+
∆m(a)

8

√
τm−2

τm−1
∀a ∈ X ′

m. (111)

Hence, by definition of Gϵm in (107) the following holds on Gηm ∩ Gϵm
|⟨a, θm+1⟩ − µa| ≤ |⟨a, θm+1 − θ⋆⟩|+ |⟨a, θ⋆⟩ − µa|

≤ γ/2
√
τm−1

+
∆m(a)

8

√
τm−2

τm−1
+ ϵm

≤ γ
√
τm−1

+
∆m(a)

8

√
τm−2

τm−1
∀a ∈ X ′

m. (112)

We recall that P[Gϵm] ≥ 1− δ/(4M), P[Gηm] ≥ 1− δ/(4M). Hence, by the union bound we have that

P[G̃] ≥ 1− δ, G̃ = ∩m∈[2M](Gηm ∩ Gϵm) (113)

Then, following the proof of Lemma 5 by replacing every τm with τm−1 and every τm−1 with τm−2

we get that the following event hold on G̃

−4 γ
√
τm−2

+
1

2
∆a ≤ ∆m(a) ≤ 2∆a + 4

γ
√
τm−2

∀a ∈ A′∀m ∈M. (114)

Hence, following the same steps as in Lemma 6 we get that there is a universal constant C such that
the following holds on G̃

RL
T ≤ C

2M∑
m=1

γτm√
τm−2

= C

2M∑
m=1

γTm//2√
Tm//2−1

,

d∑
i=1

nm(i) ≤ τm, (115)

where RL
T is the regret of the algorithm on the linear bandit instance defined in (103). Using the batch

lengths in (90), we get, from (91), that the following holds on G̃

RL
T ≤ 8Cγ

√
TM (116)

From Theorem 1 in [18] we have that |RL
T − RT | ≤

√
T log(T/δ) with probability at least 1 − δ.

By the union bound and triangle inequality it follows that

RT ≤ 16Cγ
√
TM (117)

with probability at least 1− 2δ.

The complexity result follows from Theorem 2 by observing that computing g(m)([θ]q) (our ap-
proximate oracle) requires at most T calls to O(At; .). Hence, the time and space complexity of
Algorithm 4 are O((d4 + Toptd

3T)M log d log3 T) and O
(
d2 log3 T +Mopt

)
, respectively. ■

I Numerical comparison of complexity of our scheme

In this appendix we present a small experiment to compare the computational complexity of com-
puting the exploration policy of Algorithm 4 versus the complexity of computing the policy in [40]
(complexity of one batch). We do not consider other batched algorithms such as [32] since they are
not feasible to implement even for a small number of actions. We used d = 5 dimensions and a batch
of size 100 iterations. For simplicity we use a fixed action set (unit sphere), however, this knowledge

30

0.0 0.2 0.4 0.6 0.8 1.0
Number of arms 1e6

0.0

0.5

1.0

1.5

2.0

Ti
m

e
co

m
pl

ex
ity

 (s
ec

on
ds

)

1e3

[Zhang et al., 2021]
SoftBatch

Figure 1: Complexity of computing our exploration policy versus the state of the art complexity.

is not revealed to the algorithms, i.e., the algorithms assume that the action set may change over
time. As the policy of [40] requires to solve a non-convex optimization problem, it is not feasible to
implement it for infinite number of actions. Instead, we solve the optimization problem over a finite
subset of k actions sampled uniformly at random from the action set. In contrast, our algorithm can
be directly applied for the infinite action set, hence, the computational complexity will not depend
on k. In Fig. 1, we plot the time complexity versus the sampled number of actions (on Intel(R)
Xeon(R) CPU @ 2.20GHz, 56MB cache). We observe that for moderately large number of actions,
our algorithm achieves significant savings in computational complexity as compared to the scheme of
[40].

31

	Introduction
	Model and Notation
	Efficient Soft Elimination Algorithm for Linear Bandits
	Main Result
	SoftBatch (Algorithm 1) Description
	Proof Outline for Theorem 1

	Algorithm for Contextual Linear Bandits
	Conclusion
	Tables: table of notations and comparison with related work
	Proof of Lemma 1: approximate inverse gap weighted optimization
	Proof of Lemma 2: barycentric spanner
	Proof of Theorem 1: regret analysis for linear bandits
	Proof of Theorem 2: complexity of Algorithm 1
	Approximate oracle over Xm
	Pseudo-code of efficient batched algorithm for contextual linear bandits
	Proof of Theorem 3: regret analysis for contextual bandits
	Numerical comparison of complexity of our scheme

