Efficient Batched Algorithm for Contextual Linear Bandits with Large Action Space via Soft Elimination

Osama A. Hanna
University of California, Los Angeles
ohanna@ucla.edu

Lin F. Yang
University of California, Los Angeles
linyang@ucla.edu

Christina Fragouli
University of California, Los Angeles
christina.fragouli@ucla.edu

Abstract

In this paper, we provide the first efficient batched algorithm for contextual linear bandits with large action spaces. Unlike existing batched algorithms that rely on action elimination, which are not implementable for large action sets, our algorithm only uses a linear optimization oracle over the action set to design the policy. The proposed algorithm achieves a regret upper bound $\tilde{O}(\sqrt{T})$ with high probability, and uses $O(\log \log T)$ batches, matching the lower bound on the number of batches [13]. When specialized to linear bandits, our algorithm can achieve a high probability gap-dependent regret bound of $\tilde{O}\left(1 / \Delta_{\text {min }}\right)$ with the optimal $\log T$ number of batches, where $\Delta_{\text {min }}$ is the minimum reward gap between a suboptimal arm and the optimal. Our result is achieved via a novel soft elimination approach, that entails "shaping" the action sets at each batch so that we can efficiently identify (near) optimal actions.

1 Introduction

In contextual linear bandits, a learner interacts with an environment over T rounds: in each round t the learner observes a (possibly different due to context change) set of actions $\mathcal{A}_{t} \subseteq \mathbb{R}^{d}$, plays one of them, and receives a reward that follows a noisy linear function parametrized by an unknown vector in \mathbb{R}^{d}. The objective of the learner is to minimize regret - how much reward it loses over the T rounds by not always playing the "highest reward" (optimal) action. To achieve this, the learner at each round updates its policy (its method to select what action to play) based on what it has learned from all past actions played and rewards observed. Linear bandits form the special case where the action set is always the same, i.e., $\mathcal{A}_{t}=\mathcal{A}$ for all rounds t. Contextual linear and linear bandits have been widely investigated due to their significance in both theory and practice (eg., see [24]).

Batched Setting. In numerous real-world use cases, the learner may be restricted to change the policy a limited (small) number of times. This constraint may stem from factors such as computation or communication considerations, or may be imposed by the nature of the application, as is the case in multi-stage clinical trials or online marketing campaigns with high response rates, where it is not feasible to update the policy after each response. Similarly, the use of crowdsourcing platforms or the need to conduct time-consuming simulations in reinforcement learning may require policies with limited adaptivity. As a result, there has been significant interest in designing algorithms that can achieve the optimal regret with limited policy switches [30, 3, 31, 13, 12, 21, 32, 16]. This setup is known as the batched contextual linear bandit problem: the T rounds are partitioned into batches, and the learner can collect rewards and update the action selection policy only at the end of each batch.

Large Action Space. Contextual linear bandit applications frequently need to explore an extremely large (even continuous) set of actions, e.g., millions of products to be recommended. As other examples, in the classical bandit problem of clinical trials, each decision involves selecting a treatment option from a potentially infinite set of mixed treatments [15]. In manufacturing problems, the goal is often to maximize revenue by selecting from a very large set of decisions, with the revenue associated with each decision being unknown [36]. Additionally, in applications where actions correspond to images in a database or high-dimensional embeddings of complex documents like webpages, the set of actions can be vast [26, 5]. As a result, there is a strong interest in algorithms that can be efficiently implemented when the action space is large or infinite [11, 7, 19, 39, 41].
While computationally-efficient batched algorithms exist for contextual linear bandits with small action sets, and efficient ones that are not batched exist for contextual linear bandits with large action sets, to date, there are no efficient batched algorithms that can handle large action spaces. Existing batched algorithms for contextual linear bandits [32, 16] rely on action elimination that requires a linear scan of the action set; while efficient non-batched algorithms for large action spaces do not extend to the batched setting [32, 16] (see related work in the following for more details).

Our Contributions. In this paper, we provide the first efficient batched algorithm for contextual linear bandits with nearly optimal regret upper bound of $\tilde{O}\left(d^{3 / 2} \sqrt{T}\right)$ with high probability, while using $O(\log \log T)$ batches, which matches the lower bound on the number of batches required to achieve \sqrt{T}-type regret bounds [13]. For linear bandits, our algorithm can attain a high probability gap-dependent regret bound of $\tilde{O}\left(d^{3} / \Delta_{\text {min }}\right)$ with the optimal $\log T$ number of batches [13], where $\Delta_{\text {min }}$ represents the minimum reward gap between a suboptimal arm and the optimal.

Our algorithm for linear bandits, that we term SoftBatch, builds on a form of "soft elimination". Our observation is that, a good algorithm should be able to approximate the gap $\Delta(a)$ between each action $a \in \mathcal{A}$ and the optimal one with $O(\Delta(a))$ accuracy; and if we can do that, then we can use this knowledge to limit the number of times we play suboptimal actions, as well as use this knowledge to select which actions we want to play at all. As essentially all batched algorithms do, at each batch we select and play (a small number of) actions that enable to estimate well the unknown parameter vector without incurring large regret. In particular, for each batch, we choose a set of well-behaved basis actions (e.g., a barycentric spanner [7]), established by calling an optimization oracle polynomial times. However, instead of selecting at batch m, vectors from the "true" action set \mathcal{A}, we consider virtual "weighted" sets $\tilde{\mathcal{A}}_{m}$, where each action's magnitude is weighted inversely proportional to the estimated gap $\Delta(a)$, and select vectors guided by these weighted action sets. Then we play each basis action a a number of times inversely proportional to the square of the estimated gap $\Delta(a)$ to preserve small regret. This in return provides us an accurate estimator for the optimal parameter by the benign properties of the basis actions. Thus our approach implements a form of soft elimination (shaping) of the action set, where the actions closest to the optimal become increasingly dominant. A crucial part in our design is that we never actually calculate the gaps $\Delta(a)$ for all actions $a \in \mathcal{A}$ (only for the basis actions). The exploration policy we propose uses solely a linear optimization oracle applied to the original action set.

Our contextual bandit algorithm utilizes a recent reduction technique [18, 17] to transform the problem into a linear bandit problem. We incorporate the reduction into our batched linear bandit algorithm, by constructing an efficient linear optimization oracle for the exponentially large action set in the reduced problem using a linear optimization oracle for the original action sets (contexts).

Our proof techniques may be of independent interest. We develop a novel approach to bound regret in linear bandits, we design an efficient exploration policy using inverse squared gap weighting, and a simple method to handle the case where the action set does not span \mathbb{R}^{d}, where d is the problem dimension. Our approach avoids the necessity of imposing assumptions, such as the one in [41], which entails having a subset of d actions forming a matrix with determinant at least r^{d} for a constant r. These assumptions can be strong, particularly when dealing with changing action sets, and may not hold after modifying the action set, for instance, by eliminating or weighting actions.

Related Work. Contextual linear and linear bandits have had significant impact both in theory and practice [1, 11, 28, 27, 24, 26, 37, 4, 8, 10]). The best performing algorithms achieve a regret bound $\tilde{O}(d \sqrt{T})^{1}$ [1, 11], matching the regret lower bound $\Omega(d \sqrt{T})$ [24]. The same algorithms achieve a

[^0]nearly optimal regret upper bound $\tilde{O}\left(\frac{d^{2}}{\Delta_{\text {min }}}\right)$ if the minimum gap of suboptimal arms is lower bounded by $\Delta_{\text {min }}$. However, the resulting policies require updates at every time step and involve solving a non-convex optimization problem, which is not practical for large action spaces [33, 11].
Batched algorithms. Existing batched algorithms for contextual linear bandits [32, 16, 18] have achieved nearly optimal regret upper bounds of $\tilde{O}(d \sqrt{T})$. However, these algorithms rely on action elimination, which involves either performing a linear scan on the action set or solving an optimization problem over the non-convex set of good (not eliminated) actions to design and implement the policy at each time step. Similarly, batched algorithms for linear bandits [25, 12] also rely on action elimination. Although, unlike contextual bandits, the elimination constraint in linear bandits can be linear, which can be exploited to efficiently compute the policy (under certain assumptions) [7], resulting in an $\tilde{O}\left(d^{3 / 2} \sqrt{T}\right)$ regret upper bound, it requires solving an optimization problem over the action set with an elimination constraint. This can be much harder than solving the optimization problem over the action set without additional constraints for some sets, such as the non-convex set resulting from the reduction of contextual to linear bandits [18].
Efficient algorithms for large action spaces. There is a long line of work on efficient algorithms for linear bandits that only rely on a linear optimization oracle over the action set [7, 11, 9, 19, 20]. However, these algorithms cannot be extended to the batched setting without extra assumptions on the action set, and more importantly, they do not extend to the batched contextual setting. Existing efficient algorithms for contextual linear bandits [6, 41, 11] can achieve $\tilde{O}\left(d^{3 / 2} \sqrt{T}\right)$ regret bound, but it remains unclear if they can be extended to the batched setting, particularly given the challenge posed by changing action sets. Another line of work attempts to design efficient algorithms using hashing-based methods to approximate the maximum inner product [39, 22], but these methods result in complexity that is sublinear but still polynomial in the number of actions.
Table 2 in App. Asummarizes how our results position w.r.t. related work.

2 Model and Notation

Notation. We use $[n]$ for a natural number n to denote the set $\{1, \cdots, n\} ; \mathbf{1}(E)$, for an event E, to denote the indicator function which returns 1 if E holds and 0 otherwise; $\mathcal{B}_{r}=\left\{a \in \mathbb{R}^{d} \mid\|a\|_{2} \leq r\right\}$ to denote the ball of center 0 and radius $r ; \mathcal{S}_{r}=\left\{a \in \mathbb{R}^{d} \mid\|a\|_{2}=r\right\}$ to denote the sphere of center 0 and radius r; and $\|a\|_{\mathbf{V}}=\sqrt{a^{\top} \mathbf{V} a}$ to denote the matrix norm of a vector $a \in \mathbb{R}^{d}$ with respect to a positive semi-definite matrix V. Table 1 in App. Asummarizes our notation.

Contextual Linear Bandits. We consider a contextual linear bandit problem over an horizon of length T, where at each round $t \in[T]$, the learner receives a set of actions $\mathcal{A}_{t} \subseteq \mathbb{R}^{d}$ sampled from an unknown distribution \mathcal{D} independently from other rounds. The learner plays an action $a_{t} \in \mathcal{A}_{t}$ and receives a reward $r_{t}=\left\langle a_{t}, \theta_{\star}\right\rangle+\eta_{t}$, where θ_{\star} is an unknown system parameter vector with $\theta_{\star} \in \mathbb{R}^{d}$, and η_{t} is noise that is zero mean conditioned on the filtration of historic information $\left(\mathcal{A}_{1}, a_{1}, r_{1}, \cdots, \mathcal{A}_{t}, a_{t}\right)$. The learner adopts a policy that maps the history $\left(\mathcal{A}_{1}, a_{1}, r_{1}, \cdots, \mathcal{A}_{t}\right)$ to a distribution over the action set \mathcal{A}_{t}, with the objective of minimizing the pseudo regret defined as

$$
\begin{equation*}
R_{T}=\sum_{t=1}^{T} \sup _{a \in \mathcal{A}_{t}}\left\langle a-a_{t}, \theta_{\star}\right\rangle \tag{1}
\end{equation*}
$$

For simplicity, we assume that \mathcal{A}_{t} is compact for all $t \in[T]$ almost surely, which ensures the existence of an action $a_{\theta} \in \mathcal{A}_{t}$ that attains the supremum $\sup _{a \in \mathcal{A}_{t}}\langle a, \theta\rangle$. Non-compact sets can be handled using sufficiently small approximations. We also adopt the following standard assumption [24].
Assumption 1. (Boundedness.) $\theta_{\star} \in \mathcal{B}_{1}, \mathcal{A}_{t} \subseteq \mathcal{B}_{1}$, and $\left|r_{t}\right| \leq 1$ almost surely $\forall t \in[T]$.
Linear Bandits. Changing the action set over time enables to model contextual information. If the action space is fixed, namely, $\mathcal{A}_{t}=\mathcal{A}$ for for all $t \in[T]$, the problem is known as Linear Bandits. For Linear Bandits, we denote an optimal action by $a^{\star}=\arg \max _{a \in \mathcal{A}}\left\langle a, \theta_{\star}\right\rangle$ and define the gap $\Delta_{a}=\left\langle a^{\star}-a, \theta_{\star}\right\rangle$ for all actions $a \in \mathcal{A}$.
Batched Setting. In a batched setting, the learner is only allowed to change the policy at M prechosen rounds, where M is the number of batches. Batch m includes T_{m} rounds, $m \in[M]$, with $\sum_{m=1}^{M} T_{m}=T$. In each batch, the learner adopts a policy π that takes as input the action set \mathcal{A}_{t} along with all the previous history except for rewards observed in the current batch, and outputs a
distribution over the action set \mathcal{A}_{t}. In particular, the rewards of the actions pulled in the current batch are utilized solely to update the policy at the end of the batch.
Regularized least squares. Let $\left\{a_{i}, r_{i}\right\}_{i=1}^{n}$ be a sequence of n pulled actions and observed rewards over n rounds. The regularized least squares estimate $\hat{\theta}$ of θ_{\star} based on this action-reward sequence can be calculated as

$$
\begin{equation*}
\hat{\theta}=\mathbf{V}^{-1} \sum_{i=1}^{n} r_{i} a_{i} \tag{2}
\end{equation*}
$$

where $\mathbf{V}=\lambda \mathbf{I}+\sum_{i=1}^{n} a_{i} a_{i}^{\top}$, and λ is the regularization parameter.
Goal. Our goal is to design efficient batched algorithms for Contextual Linear and Linear Bandits with large (even infinite) action spaces that achieve (nearly) optimal regret.

We will do so by making use of the linear optimization oracles defined next.
Definition 1. A linear optimization oracle for a set \mathcal{A} is a function $\mathcal{O}(\mathcal{A} ;$.) which takes as input $\theta \in \mathcal{B}_{1}$ and outputs $\mathcal{O}(\mathcal{A} ; \theta) \in \mathcal{A}$ with $\langle\mathcal{O}(\mathcal{A} ; \theta), \theta\rangle=\sup _{a \in \mathcal{A}}\langle a, \theta\rangle$. An approximate linear optimization oracle with additive error at most ϵ for the set \mathcal{A} is a function $\mathcal{O}_{\epsilon}^{+}(\mathcal{A} ;):. \mathcal{B}_{1} \rightarrow \mathcal{A}$ that satisfies $\left\langle\mathcal{O}_{\epsilon}^{+}(\mathcal{A} ; \theta), \theta\right\rangle \geq \sup _{a \in \mathcal{A}}\langle a, \theta\rangle-\epsilon, \forall \theta \in \mathcal{B}_{1}$. An approximate linear optimization oracle with multiplicative error $0<\alpha<1$ for the set \mathcal{A} is a function $\mathcal{O}_{\alpha}^{\times}(\mathcal{A} ;):. \mathcal{B}_{1} \rightarrow \mathcal{A}$ that satisfies $\left\langle\mathcal{O}_{\alpha}^{\times}(\mathcal{A} ; \theta), \theta\right\rangle \geq(1-\alpha) \sup _{a \in \mathcal{A}}\langle a, \theta\rangle, \forall \theta \in \mathcal{B}_{1}$.
Assumption 2. (Linear optimization oracle.) We assume that we can access a linear optimization oracle $\mathcal{O}\left(\mathcal{A}_{t} ;.\right)$ for each set of actions \mathcal{A}_{t} with running time at most $\mathcal{T}_{\text {opt }}$ and space complexity $\mathcal{M}_{\text {opt }}$.

We note that assuming a linear optimization oracle over \mathcal{A}_{t} is natural [7, 11, 9, 19, 20, 41] since even if the learner perfectly learns the unknown parameter vector θ_{\star}, the learner still needs to solve $\sup _{a \in \mathcal{A}_{t}}\left\langle a, \theta_{\star}\right\rangle$ to minimize the regret in (1).

3 Efficient Soft Elimination Algorithm for Linear Bandits

In this section we propose and analyze an algorithm (which we call SoftBach and describe in Algorithm 1] for linear bandits, that is, when $\mathcal{A}_{t}=\mathcal{A}$.

3.1 Main Result

The following two theorems, proved in App. \square and E respectively, formally state that Algorithm 1 achieves (nearly) optimal regret using $M=\lceil\log \log T\rceil+1$ batches with sample and time complexities polynomial in d and linear in T. We provide the algorithm description in Section 3.2 and a proof outline in Section 3.3 .
Theorem 1. Consider a linear bandit instance with action set $\mathcal{A} \subseteq \mathbb{R}^{d}$ and horizon T. There exists a universal constant C and a choice for the batch lengths such that Algorithm 1 finishes in at most $M=\lceil\log \log T\rceil+1$ batches with regret bounded as

$$
\begin{equation*}
R_{T} \leq C \gamma \sqrt{T} \log \log T \text { with probability at least } 1-\delta \tag{3}
\end{equation*}
$$

where $\gamma=8 d \sqrt{C_{L}(\log (1 / \delta)+\log T)}, C_{L}=e^{8} d$ and δ is a parameter. Moreover, if $\forall a \in \mathcal{A}$ with $\Delta_{a}>0$ we have $\Delta_{a} \geq \Delta_{\min }$, then there exists a choice of batch lengths so that Algorithm 1 finishes in at most $M=\log _{4} T$ batches with regret bounded as

$$
\begin{equation*}
R_{T} \leq C \frac{\gamma^{2}}{\Delta_{\min }} \log T \text { with probability at least } 1-\delta \tag{4}
\end{equation*}
$$

Our regret bounds achieve nearly optimal dependency on T, and match the best known regret bounds of $\tilde{O}\left(d^{3 / 2} \sqrt{T}\right)$ for (unbatched) efficient contextual linear bandit algorithms [6, 41, 11], while losing a \sqrt{d} factor when compared to the $\Omega(d \sqrt{T})$ lower bound [24]. This extra \sqrt{d} factor is due to relying on the best known method to design a notion of spanner of the set of actions (as we explain in section 3.2 with radius $\sqrt{C_{L}}=O(\sqrt{d})$ using linear optimization oracles. Any future improvement that reduces the radius from $O(\sqrt{d})$ to $O(1)$ will immediately result in nearly optimal regret bounds for Algorithm 1 . The following result upper bounds the time and space complexity.

```
Algorithm 1 [SoftBatch] A Batched Algorithm for Linear Bandits
    Input: action set \(\mathcal{A} \subseteq \mathbb{R}^{d}\), horizon \(T\), number of batches \(M\), batch lengths \(\left\{T_{m}\right\}_{m=1}^{M}\), confidence
    parameter \(\delta\).
    Let \(\mathcal{A}^{\prime}=\mathcal{A} \cup \mathcal{B}_{1 / T}, \quad C_{L}=e^{8} d, \quad \gamma=8 d \sqrt{C_{L}(\log (1 / \delta)+\log T)}\).
    Initialize: \(\theta_{1}=0, a_{1}^{\star}\) is a random action in \(\mathcal{A}, \Delta_{1}(a)=1 \forall a \in \mathcal{A}^{\prime}\), and \(T_{0}=1\).
    for \(m=1: M\) do
            Calculate \(\left\{a_{1}, \ldots, a_{d}\right\}=\operatorname{LWS}\left(\mathcal{A}^{\prime}, \eta_{m}=\sqrt{T_{m-1}} /(8 \gamma), a_{m}^{\star}, \theta_{m}\right)\).
            For the set \(\left\{a_{1}, \ldots, a_{d}\right\}\) assign \(\pi(i)=\frac{1}{d}, \forall i \in[d]\).
            for \(i=1: d\) do
                    If \(a_{i} \notin \mathcal{B}_{1 / T}\), calculate \(\Delta_{m}\left(a_{i}\right)=\left\langle a_{m}^{\star}-a_{i}, \theta_{m}\right\rangle\) and pull it \(n_{m}(i)=\)
        \(\left\lceil\frac{\pi(i) T_{m} / 8}{\left(1+\sqrt{T_{m-1}} \Delta_{m}\left(a_{i}\right) /(8 \gamma)\right)^{2}}\right\rceil\) times. go to step 10 if the number of pulls in the current batch
    reaches \(T_{m}\). Terminate Algorithm 1 if the total number of pulls reaches \(T\).
            Pull action \(a_{0}=a_{m}^{\star}\) for \(\max \left\{0, T_{m}-\sum_{i=1}^{d} n_{m}(i)\right\}\) times.
            Compute the regularized (with \(\lambda=1\) ) least squares estimator \(\mathbf{V}_{m}=\mathbf{I}+\sum_{i=1}^{T_{m}} \tilde{a}_{i} \tilde{a}_{i}^{\top}\) and
    \(\theta_{m+1}=\mathbf{V}_{m}^{-1} \sum_{i=1}^{T_{m}} r_{i} \tilde{a}_{i}\), and \(\tilde{a}_{i}\) is the action pulled in \(i\)-th round of the batch.
            Update \(a_{m+1}^{\star}=\mathcal{O}_{\frac{1}{T}}^{+}\left(\mathcal{A} ; \theta_{m+1}\right)\).
```

Theorem 2. Algorithm 1 finishes in $\tilde{O}\left(T d^{2}+d^{4} M+\mathcal{T}_{\text {opt }} d^{3} M\right)$ runtime and uses $\tilde{O}\left(d^{2}+\mathcal{M}_{\text {opt }}\right)$ memory, where $\mathcal{T}_{\text {opt }}, \mathcal{M}_{\text {opt }}$ are the time and space complexity of the linear optimization oracle.

We observe that unlike algorithms that require a linear scan on the action set, our space and time complexities are polynomial in the parameters d, T, and $\mathcal{T}_{\text {opt }}$.

3.2 SoftBatch (Algorithm 1) Description

Intuition. The main intuition behind SoftBatch is that, we do not need to necessarily eliminate suboptimal actions; it suffices to be able to select and play a small set of unique actions \mathcal{C}_{m} in each batch m, that allows to estimate increasingly well the parameter vector θ_{*} and the best action a^{\star} while playing suboptimal actions for a small number of times. Our algorithm proposes a novel way to select such sets \mathcal{C}_{m} efficiently, through a form of "action set shaping" that we will describe in this section. Additionally, to learn θ_{*} while achieving a (nearly) optimal regret, SoftBatch plays each action $a \in \mathcal{C}_{m}$ a number of times $\propto 1 / \Delta_{a}^{2}$, where $\Delta_{a}=\left\langle a_{\star}-a, \theta_{\star}\right\rangle$ is the gap for action a (i.e., we play the suboptimal actions in \mathcal{C}_{m} for a small number of times so as not to accumulate regret). SoftBatch enables to estimate the gap Δ_{a} within a constant factor for any action a (yet only does so for a limited number of actions in each batch), and essentially uses the gaps Δ_{a} as a guide on which actions to play and for how many rounds each.
Steps. SoftBatch (Algorithm 1) takes as input the action set $\mathcal{A} \subseteq \mathbb{R}^{d}$, the horizon T, the number of batches M, and the batch lengths $\left\{T_{m}\right\}_{m=1}^{M}$, and operates as follows $\}^{2}$
In batch m, the algorithm starts with a current estimate of the parameter vector θ_{\star}, which we call θ_{m}, and an estimate of the optimal action a^{\star} which we call a_{m}^{\star}; note that given these, we are able to estimate for any action $a \in \mathcal{A}$ the gap $\Delta_{m}(a)=\left\langle a_{m}^{\star}-a, \theta_{m}\right\rangle$ (but we will only do so for the actions the algorithm actually plays). The algorithm then calls LWS, a Linear Weighted Spanner subroutine (described in Algorithm 2), that it feeds with an augmented action space $\mathcal{A}^{\prime}=\mathcal{A} \cup \mathcal{B}_{1 / T}$ for reasons we will explain later. LWS selects d actions $\mathcal{C}_{m}=\left\{a_{1}, \cdots, a_{d}\right\}$ to play in batch m (note that some of these may belong to $\mathcal{B}_{1 / T}$ and will in this case not be played). Each of these d actions a_{i} is pulled $n_{m}(i) \propto \frac{\pi(i)}{\Delta_{m}\left(a_{i}\right)^{2}}$ times, where $\pi($.$) is a uniform exploration distribution with value 1 / d$ for all the d actions. We show in the proof of Theorem 1 that $\sum_{i=1}^{d} n_{m}(i) \leq T_{m}, \forall m \in[M]$, with high probability. To guarantee that the length of the batch is T_{m}, the algorithm pulls a_{m}^{\star} for the remaining rounds, if needed. At the end of the batch, the algorithm updates its estimate θ_{m+1} of the unknown parameter vector using regularized least squares.

[^1]The remaining core part of the algorithm to discuss is the subroutine LWS, and we do so next. We start by providing our reasoning behind the LWS design.
The LWS Algorithm. Recall that we want LWS at each batch m to select d vectors $\left\{a_{i}\right\} \subseteq \mathcal{A}^{\prime}$ such that, by playing each $n_{m}(i)$ times, we can create a least-squares estimate θ_{m+1} of θ_{*} that allows an accurate estimate of the product $\left\langle a, \theta_{\star}\right\rangle$ for all $a \in \mathcal{A}$. It is well-known (see [24]) that the error in estimating $\left\langle a, \theta_{\star}\right\rangle$ is proportional to $\|a\|_{\mathbf{V}_{m}^{-1}}$, where $\mathbf{V}_{m}=\mathbf{I}+\sum_{i=1}^{T_{m}} a_{i} a_{i}^{\top}$ is the least squares matrix we used to estimate θ_{m+1}. Thus, essentially we want LWS to select d vectors $\left\{a_{i}\right\}$ that maintain a small $\|a\|_{\mathbf{V}_{m}^{-1}}$ for all actions $a \in \mathcal{A}^{3}$. We can do so using what is called a G-optimal design [23].
Definition 2. (G-optimal design) For any set $\mathcal{A} \subseteq \mathbb{R}^{d}$, a subset $\mathcal{S} \subseteq \mathcal{A}$, together with a distribution π over \mathcal{S} is said to be a C-approximate optimal design for \mathcal{A} if for any $a \in \mathcal{A}$

$$
\begin{equation*}
\|a\|_{\mathbf{V}_{\pi}^{-1}}^{2} \leq C d \tag{5}
\end{equation*}
$$

where $\mathbf{V}_{\pi}=\sum_{a_{i} \in \mathcal{S}} \pi(i) a_{i} a_{i}^{\top}{ }^{4}$ When $C=1$ this is referred to as a G-optimal design.
Notice that if we were to play each action a_{i} for $n \pi(i)$ times, then \mathbf{V}_{π} would be (approximately) a normalized least squares matrix since $\mathbf{V}_{\pi}+\mathbf{I} / n=\mathbf{V} / n$, and hence, $\|a\|_{\mathbf{V}^{-1}}^{2} \leq\|a\|_{\mathbf{V}_{\pi}^{-1}}^{2} / n$.
It is well-known that for any compact set, there exists a 1-approximate optimal design [23] with $|\mathcal{S}|=d$. However, computing an 1-approximate optimal design is NP-hard in general [14, 35], even for small action sets. Computing a 2-approximate optimal design can be done in polynomial time [38], but the complexity scales linearly with the size of the action set. Instead, we adopt an approach introduced in [7], which efficiently constructs an $O(\sqrt{d})$-approximate optimal design using only a linear optimization oracle. This relies on the concept of a barycentric spanner, which we define next.
Definition 3. (Barycentric spanner) For any set $\mathcal{A} \subseteq \mathbb{R}^{d}$, a subset $\mathcal{S}=\left\{a_{1}, \cdots, a_{d}\right\} \subseteq \mathcal{A}$ is said to be a C-approximate barycentric spanner for \mathcal{A} if any $a \in \mathcal{A}$ can be expressed as a linear combination of vectors in \mathcal{S} with coeficients in $[-C, C]$.

It is easy to see that a C-approximate barycentric spanner together with a uniform distribution $\pi(i)=1 / d$ results in a $C \sqrt{d}$-approximate optimal design [19, 41]. And importantly, a C-approximate barycentric spanner for a set \mathcal{A} can be constructed using at most $O\left(d^{2} \log _{C} d\right)$ calls of a linear optimization oracle over the set \mathcal{A} [19].

However, this is still not sufficient for us. Even though we can efficiently construct a $C \sqrt{d}$-approximate optimal design for \mathcal{A}, we do not want to pull these arms according to a uniform distribution; we want to pull action a_{i} with estimated gap $\Delta_{m}\left(a_{i}\right)$ for $n_{m}(i)=$ $\left\lceil\pi(i) T_{m} /\left(1+\sqrt{T_{m-1}} \Delta_{m}(a) /(8 \gamma)\right)^{2}\right\rceil$ times to control the regret (which can be thought of as using a weighted distribution ${ }^{5}$. But if we do not use the uniform distribution, the resulting least squares matrix \mathbf{V}_{m} may not satisfy that $\|a\|_{\mathbf{V}_{m}^{-1}}$ is sufficiently small for all actions a.
To account for this, instead of finding a C-approximate barycentric spanner for the set \mathcal{A}, at each batch m we consider a virtual action set $\tilde{\mathcal{A}}_{m}$, which we define as

$$
\begin{equation*}
\tilde{\mathcal{A}}_{m}=\left\{\phi_{m}(a) \mid a \in \mathcal{A}\right\}, \phi_{m}(a)=\frac{a}{1+\eta_{m} \Delta_{m}(a)}, \tag{6}
\end{equation*}
$$

where $\eta_{m}=\sqrt{T_{m-1}} /(8 \gamma)$ and find actions $\left\{a_{1}, \cdots, a_{d}\right\} \in \mathcal{A}$ such that $\left\{\phi_{m}\left(a_{i}\right)\right\}_{i=1}^{d}$ forms a C-approximate barycentric spanner for $\tilde{\mathcal{A}}_{m}$. The least squares matrix at batch m can be bounded as

$$
\begin{equation*}
\mathbf{V}_{m}=\mathbf{I}+\sum_{i=0}^{d} \tilde{n}_{m}(i) a_{i} a_{i}^{\top} \geq \sum_{i=1}^{d} \frac{\pi(i) T_{m} / 8}{\left(1+\eta_{m} \Delta_{m}\left(a_{i}\right)\right)^{2}} a_{i} a_{i}^{\top}=\sum_{i=1}^{d} \pi(i) \frac{T_{m}}{8} \phi_{m}\left(a_{i}\right) \phi_{m}\left(a_{i}\right)^{\top} \tag{7}
\end{equation*}
$$

with high probability $\sqrt{6}$, where $\tilde{n}_{m}(i)$ is the number of times action a_{i} is played in batch m and $a_{0}=a_{m}^{\star}$. That is, playing actions $\left\{a_{1}, \cdots, a_{d}\right\} \in \mathcal{A}$ for $n_{m}(i)$ times each, can equivalently

[^2]```
Algorithm 2 Linear Weighted Spanner (LWS) Algorithm
 Input: set of actions \(\mathcal{A}\), parameter \(\eta\), estimated best action \(\hat{a}\), estimated parameter \(\hat{\theta}\).
 Initialize: \(\tilde{a}_{i}=e_{i}\), where \(e_{i}\) is the \(i\)-th basis vector of dimension \(d\). Let \(\mathbf{A}=\left[\tilde{a}_{1}, \cdots, \tilde{a}_{d}\right]\).
 Let \(C=\exp (1), \Delta(a)=\langle\hat{a}-a, \hat{\theta}\rangle, \phi(a)=a /(1+\eta \Delta(a))\).
 for \(i=1, \cdots, d \mathbf{d o}\)
 Find \(\theta\) with \(\langle\theta, \tilde{a}\rangle=\operatorname{det}\left(\tilde{a}, \mathbf{A}_{-i}\right), \forall \tilde{a} \in \mathbb{R}^{d}\).
 \(a^{+}=\operatorname{LW}-\operatorname{ArgMax}\left(\mathcal{A} ; \frac{\theta}{\|\theta\|_{2}}, \eta, \hat{a}, \hat{\theta}\right), a^{-}=\operatorname{LW}-\operatorname{ArgMax}\left(\mathcal{A} ; \frac{\theta}{\|\theta\|_{2}}, \eta, \hat{a},-\hat{\theta}\right)\).
 \(a_{i}=\arg \max _{b \in\left\{a^{+}, a^{-}\right\}}|\langle\phi(b), \theta\rangle|, \tilde{a}_{i}=\phi\left(a_{i}\right)\).
 for \(i=1, \cdots, d \mathbf{d o}\)
 Find \(\theta\) with \(\langle\theta, \tilde{a}\rangle=\operatorname{det}\left(\tilde{a}, \mathbf{A}_{-i}\right), \forall \tilde{a} \in \mathbb{R}^{d}\).
 \(a^{+}=\mathrm{LW}-\operatorname{ArgMax}\left(\mathcal{A} ; \frac{\theta}{\|\theta\|_{2}}, \eta, \hat{a}, \hat{\theta}\right), a^{-}=\operatorname{LW}-\operatorname{ArgMax}\left(\mathcal{A} ; \frac{\theta}{\|\theta\|_{2}}, \eta, \hat{a},-\hat{\theta}\right)\).
 \(a=\arg \max _{b \in\left\{a^{+}, a^{-}\right\}}|\langle\phi(b), \theta\rangle|\).
 if \(\left|\operatorname{det}\left(\left(\phi(a), \mathbf{A}_{-i}\right)\right)\right| \geq C|\operatorname{det}(\mathbf{A})|\) then
 \(a_{i}=a, \tilde{a}_{i}=\phi(a)\).
 go to line 8 .
 Return: \(a_{1}, \cdots, a_{d}\).
```

be thought of as playing actions $\left\{\phi\left(a_{1}\right), \cdots, \phi\left(a_{d}\right)\right\} \in \tilde{\mathcal{A}}_{m}$ for $\pi(i) T_{m}$ times each; and since $\left\{\phi\left(a_{1}\right), \cdots, \phi\left(a_{d}\right)\right\}$ form an approximate optimal design (through a barycentric spanner) for the set $\tilde{\mathcal{A}}_{m}$, the resulting least squares matrix will lead to small $\left\|\phi_{m}(a)\right\|_{\mathbf{V}_{m}^{-1}}$ values. In our proofs we show that a small enough $\left\|\phi_{m}(a)\right\|_{\mathbf{V}_{m}^{-1}}$ implies $\|a\|_{\mathbf{V}_{m}^{-1}}=O\left(\Delta_{a}\right)$ as a result of the scaling in $\phi(a)$. We prove in Lemma 5 in App. Dthat this allows to estimate $\Delta_{a}$ within a constant factor, which is all we need.
Intuitively, the virtual set $\tilde{\mathcal{A}}_{m}$ weighs the actions inversely proportional to the estimated gap $\Delta_{m}(a)$ and batch length $\sqrt{T_{m-1}}$ : the larger the gap and $T_{m-1}$, the smaller magnitude the corresponding action has; this implements a form of soft elimination (shaping) of the action set, where the actions closest to the optimal become increasingly dominant as the batch length increases while the remaining fade out to zero. As a result, as $m$ increases, the span of the optimal design focuses on the space where actions have small gaps, allowing to better distinguish among them.

To complete SoftBach (Algorithm 1), one last step is missing. LWS (Algorithm 2) follows standard steps (in Algorithm 2, see [7] for detailed explanation) to calculate the C-approximate barycentric spanner for $\tilde{\mathcal{A}}_{m}$. But to follow these steps, it requires the ability to solve the non-linear optimization problem sup $\operatorname{sif}_{\mathcal{A}}\left\langle\phi_{m}(a), \theta\right\rangle$, since $\phi_{m}(a)=a /\left(1+\sqrt{T_{m-1}} \Delta_{m}(a) /(8 \gamma)\right)$ is nonlinear in $a$. To do so, we will use ${ }_{7}^{7}$ an approximate oracle with multiplicative error, that we term LW-ArgMax and describe next.

LW-ArgMax Algorithm. LW-ArgMax (Algorithm 3) constructs an approximate oracle with ( $1-\alpha$ )multiplicative error for the optimization $\sup _{a \in \mathcal{A}}\left\langle\phi_{m}(a), \theta\right\rangle$. This is sufficient: we show in Lemma 2 that Algorithm 2 can use LW-ArgMax to compute a $C / \alpha$-approximate barycentric spanner for $\tilde{\mathcal{A}}_{m}$. Recall that, before providing the action set $\mathcal{A}$ to Algorithm 2 . SoftBatch extends to $\mathcal{A}^{\prime}=\mathcal{A} \cup \mathcal{B}_{1 / T}{ }^{8}$ This guarantees that: $\mathcal{A}^{\prime}$ spans $\mathbb{R}^{d}$ (required to find a barycentric spanner [7]), and $\sup _{a \in \mathcal{A}^{\prime}}\langle a, \theta\rangle \geq$ $1 / T$ for all $\theta$ with $\|\theta\|_{2}=1$ which implies that any approximate optimization oracle with additive error less than $1 /(2 T)$ has multiplicative error of at most $1 / 2$. The extension of the set $\mathcal{A}$ results in the barycentric spanner possibly containing points not in $\mathcal{A}$. However, we show that removing these points only affects $\sup _{a \in \mathcal{A}}\|a\|_{\mathbf{V}^{-1}}$ by a constant factor, since $\mathcal{B}_{1 / T}$ has a small radius. Extending the

[^3]```
Algorithm 3 LW-ArgMax Algorithm
    Input: set of actions \(\mathcal{A}, \theta \in \mathcal{S}_{1}\), parameter \(\eta\), estimated best action \(\hat{a}\), estimate \(\hat{\theta}\), horizon T.
    Let \(\Delta(a)=\langle\hat{a}-a, \hat{\theta}\rangle, \phi(a)=a /(1+\eta \Delta(a))\).
    Let \(W=3 \log T, N=36 W \log ^{2}(T), s=1-1 / 6 \log T, \epsilon^{\prime}=(1-\exp (-1)) /\left(12 T^{7+12 \log T}\right)\).
    Initialize \(z=2^{W}\).
    for \(i=1, \cdots, N+1\) do
        \(\tilde{\theta}=(1+1 / W) z \theta+z^{1+1 / W} \eta \hat{\theta}\)
        \(a_{i}=\mathcal{O}_{\epsilon^{\prime}}^{+}\left(\mathcal{A} ; \tilde{\theta} /\|\tilde{\theta}\|_{2}\right)\).
        \(z \leftarrow z s\).
    Return: \(\arg \max _{a \in\left\{a_{i}\right\}_{i=1}^{N}}\langle\phi(a), \theta\rangle\).
```

set \mathcal{A} to \mathcal{A}^{\prime} also handles the case where the span of \mathcal{A} is smaller than \mathbb{R}^{d}, that was typically handled in literature by constructing a basis of \mathcal{A} which can be complicated for some sets.
LW-ArgMax then builds on the following observation (proved as part of the proof of Lemma 1):

$$
\begin{equation*}
\arg \max _{a \in \mathcal{A}^{\prime}}\langle\phi(a), \theta\rangle(\langle a, \theta\rangle)^{1 / W}=\arg \max _{a \in \mathcal{A}^{\prime}} \sup _{z \geq 0} L_{z}(a), \tag{8}
\end{equation*}
$$

where $L_{z}(a)=z \cdot(1+1 / W) \cdot\langle a, \theta\rangle-z^{1+1 / W}(1+\eta \Delta(a))$ and $\Delta(a)=\sup _{b \in \mathcal{A}}\left\langle b-a, \theta_{\star}\right\rangle \forall a \in \mathcal{A}^{\prime}$. By choosing W to be large enough, the left hand side of (8) becomes a good approximation for $\langle\phi(a), \theta\rangle$. For a fixed z, the supremum on the right hand side of (8) reduces to a linear optimization over the set \mathcal{A}^{\prime} (that we solve using an approximate linear optimization oracle). Although the optimal value of z is not known, it can be bounded (see equation (25) in App. B); thus LW-ArgMax scans between upper and lower bounds on the optimal z with a constant multiplicative step. The pseudo-code is provided in Algorithm 3

3.3 Proof Outline for Theorem 1

We start by proving that LW-ArgMax is an approximate linear optimization oracle for the set $\tilde{\mathcal{A}}$ with $1-\exp (-3)$ multiplicative error. The result is stated in Lemma 1 and proved in App. B
Lemma 1. Let $T \geq 3, \eta \in \mathbb{R}, \hat{a} \in \mathbb{R}^{d}, \hat{\theta} \in \mathcal{B}_{T}$ be given parameters, and \mathcal{A} be a given set. Let $\Delta(a), \phi(a)$ denote $\Delta(a)=\langle\hat{a}-a, \hat{\theta}\rangle, \phi(a)=a /(1+\eta \Delta(a))$. If $\mathcal{B}_{1 / T} \subseteq \mathcal{A} \subseteq \mathcal{B}_{1},|\eta| \leq T$ and $1 / 2 \leq 1+\eta \Delta(a) \leq T^{2}, \forall a \in \mathcal{A}$, then for any $\theta \in \mathcal{S}_{1}$, LW-ArgMax outputs an element $a \in \mathcal{A}$ such that

$$
\begin{equation*}
\langle\phi(a), \theta\rangle \geq \exp (-3) \sup _{b \in\left\{\phi\left(b^{\prime}\right) \mid b^{\prime} \in \mathcal{A}\right\}}\langle b, \theta\rangle \tag{9}
\end{equation*}
$$

The conditions of Lemma 1 are easy to verify for all batches m; namely, $\mathcal{B}_{1 / T} \subseteq \mathcal{A} \subseteq \mathcal{B}_{1}$ holds as we extend the set of actions by adding $\mathcal{B}_{1 / T}$ before feeding it into Algorithm 3 and the condition $1 / 2 \leq 1+\eta \Delta(a) \leq T^{2}, \forall a \in \mathcal{A}$ is proved in Theorem 1 for all the inputs fed into Algorithm 3

Given the result of Lemma 1 , we next show that Algorithm 2 finds a C / α-approximate barycentric spanner of the set $\tilde{\mathcal{A}}_{m}, \forall m \in[M]$. This is done by slightly adapting the proof of Proposition 2.5 in [7] to work with approximate linear optimization oracles instead of exact oracles. The result is stated in the following theorem and the proof is provided in App. Cfor completeness.
Lemma 2. Let $\eta \in \mathbb{R}, \hat{a} \in \mathbb{R}^{d}, \hat{\theta} \in \mathbb{R}^{d}$ be given parameters, and \mathcal{A} be a given set. Let $\Delta(a), \phi(a)$ denote $\Delta(a)=\langle\hat{a}-a, \hat{\theta}\rangle, \phi(a)=a /(1+\eta \Delta(a))$. Suppose that $\langle\phi(L W-\operatorname{ArgMax}(\theta)), \theta\rangle \geq$ $\alpha \sup _{a \in \mathcal{A}}\langle\phi(a), \theta\rangle$, then Algorithm 2 computes a C / α-approximate barycentric spanner for the set $\tilde{\mathcal{A}}=\{\phi(a) \mid a \in \mathcal{A}\}$ with at most $O\left(d^{2} \log _{C}(d / \alpha)\right)$ calls to LW-ArgMax.

To build our regret bounds, we essentially prove that a number of pulls of $\propto \frac{\pi(i)}{\Delta_{m}\left(a_{i}\right)^{2}}$ for action a_{i} enables to estimate the gap $\Delta_{m}\left(a_{i}\right)$ within a constant factor of the real gap $\Delta_{a_{i}}$. To do so, we start by providing an error bound for estimating $\left\langle\phi_{m}(a), \theta_{\star}\right\rangle$ using standard sub-Gaussian concentration inequalities. Then, through mathematical induction, we extend this bound to the error of the action mean estimates $\left\langle a, \theta_{m}\right\rangle$. Intuitively, if we believe that $\left\langle a, \theta_{m}\right\rangle$ is a good estimate of $\left\langle a, \theta_{\star}\right\rangle$ for all
actions, which implies $\Delta_{m}(a)$ is a good estimate of Δ_{a} at batch m, then even though the scale in ϕ_{m+1} by $\Delta_{m}(a)$, this property will continue to hold at batch $m+1$. The constants multiplying $\Delta_{m}(a)$ in ϕ_{m} are carefully designed to enable this. Finally, we show that the inverse squared gap weighting of the distribution enables to tightly upper bound the regret.

4 Algorithm for Contextual Linear Bandits

Our algorithm for contextual linear bandits is based on a technique proposed in [18], which reduces the contextual linear to a linear bandit setting. However, we cannot directly apply the reduction from [18] in Algorithm 1, as the reduction is not necessarily computationally efficient. Instead, we build a new algorithm (see Algorithm 4 in App. Gp that incorporates reduction steps from [18] within Algorithm 1 One challenge we encounter is the introduction of a large, non-convex action set through the reduction process. To address this, we construct a linear optimization oracle over the new action set in order to ensure the efficiency of Algorithm4. Additionally, the reduction requires estimating the expected value of a function (explained next and in App. G), and we carefully design the batch lengths to perform this estimation effectively. The following theorem describes our main result.
Theorem 3. Consider a contextual linear bandit instance with \mathcal{A}_{t} generated from an unknown distribution \mathcal{D}. There exists a universal constant C and choice for batch lengths such that Algorithm 4 finishes in $O(\log \log T)$ batches with regret upper bounded as

$$
R_{T} \leq C \gamma \sqrt{T} \log \log T
$$

with probability at least $1-\delta$, where $\gamma=10 \sqrt{C_{L} d\left(\log (16 M / \delta)+57 d \log ^{2}(6 T)\right)}$. Moreover, the running time and space complexity are $\tilde{O}\left(d^{4}+\mathcal{T}_{\text {opt }} d^{3} T\right), \tilde{O}\left(d^{2}+\mathcal{M}_{\text {opt }}\right)$ respectively.

We next briefly review the reduction and refer the reader to [18] for a detailed description. The basic idea in [18] is to establish a linear bandit action for each possible parameter vector θ of the contextual bandit instance. This is achieved through the use of the function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, which computes the expected best action under the context distribution \mathcal{D} with respect to the parameter $\theta: g(\theta)=\mathbb{E}_{\mathcal{A} \sim \mathcal{D}}[\mathcal{O}(\mathcal{A} ; \theta)]$, where \mathcal{O} is an optimization oracle (see Definition 11 . A key insight, as stated in Theorem 1 of [18], is that if $a_{t}=\mathcal{O}\left(\mathcal{A}_{t} ; \theta_{t}\right)$ for some $\theta_{t} \in \mathbb{R}^{d}$, then the reward generated by the contextual bandit instance can be expressed as $r_{t}=\left\langle g\left(\theta_{t}\right), \theta_{\star}\right\rangle+\eta_{t}^{\prime}$, where η_{t}^{\prime} is noise with zero mean conditioned on the history. Consequently, the reward can be viewed as generated by pulling action $g\left(\theta_{t}\right)$ in a linear bandit instance with an action set $\mathcal{X}=\{g(\theta) \mid \theta \in \Theta\}$. Moreover, the same theorem demonstrates that if a linear bandit algorithm is employed to choose $g\left(\theta_{t}\right) \in \mathcal{X}$ at round t and thus play action $a_{t}=\mathcal{O}\left(\mathcal{A}_{t} ; \theta_{t}\right)$, then $\left|R_{T}-R_{T}^{L}\right|=\tilde{O}(\sqrt{T})$ with high probability, where $R_{T}^{L}=\sum_{t=1}^{T} \sup _{\theta \in \Theta}\left\langle g(\theta)-g\left(\theta_{t}\right), \theta_{\star}\right\rangle$ is the regret of the algorithm on the linear bandit instance.
To estimate g, which depends on the unknown context distribution \mathcal{D}, [18] proposes using contexts observed in previous batches. Specifically, the function g is replaced by $g^{(m+1)}(\theta)=$ $\frac{1}{\left|H_{m}\right|} \sum_{t \in H_{m}} \mathcal{O}\left(\mathcal{A}_{t} ; \theta\right)$ for all $\theta \in \Theta^{\prime}$, where H_{m} is the set of indices for rounds in batch m and $\Theta^{\prime}=[\theta]_{q} \mid \theta \in \Theta$ is a discretization of $\Theta,[\theta]_{q}=q\lfloor\theta \sqrt{d} / q\rfloor / \sqrt{d}$ and q is the discretization parameter. The action set at batch m is correspondingly modified as $\mathcal{X}_{m}=\left\{g^{(m)}(\theta) \mid \theta \in \Theta^{\prime}\right\}$. It is also shown in [18] that $g^{(m)}$ is a good estimate of g for all $\theta \in \Theta^{\prime}$ with high probability.
To leverage this reduction, we modify Algorithm 1 by adapting the action set in each batch based on the estimate of g, i.e., the set \mathcal{X}_{m} (note that we do not need to explicitly calculate the sets \mathcal{X}_{m}). However, an issue arises where the estimate of θ_{\star} at batch m depends on the approximate optimal design from batch $m-1$, which employs the action set \mathcal{X}_{m-1} estimated from the contexts of batch $m-2$. In the proof of Theorem 3, we demonstrate that this leads to regret proportional to $T_{m} / \sqrt{T_{m-2}}$. If the batch lengths grow rapidly, significant regret may occur. To mitigate this, we reduce the growth rate of batch lengths by allowing them to increase only when m is odd (a similar technique was employed in [18]). The pseudo-code is in Algorithm 4
To implement Algorithm 4 efficiently we need: (i) an approximate linear optimization oracle for the set \mathcal{X}_{m} with additive error at most $\epsilon=(1-\exp (-1)) /\left(12 T^{7+12 \log T}\right)$: we show in Lemma 8 in App. F that $g^{(m)}\left([\theta]_{q}\right)$ can be used as our approximate oracle for $q \leq \epsilon / 2$; and (ii) an inverse of the function $g^{(m)}$ to find θ_{t} associated with $g^{(m)}\left(\theta_{t}\right)$ to play the action $a_{t}=\mathcal{O}\left(\mathcal{A}_{t} ; \theta_{t}\right)$: we observe
that all actions played by our algorithms (Algorithm 1 and 4) are the output of the approximate optimization oracle for some θ; namely, for Algorithm 4 any pulled action is of the form $g^{(m)}\left([\theta]_{q}\right)$ for some input to the approximate oracle θ. Hence, the inversion of $g^{(m)}$ for the actions pulled by Algorithm 4 can be performed by storing $[\theta]_{q}$ whenever the action $g^{(m)}\left([\theta]_{q}\right)$ is stored. This increases both the space and time complexity only by a constant factor.

Gap-dependent regret bounds for contextual linear bandits. The main difficulty in extending the gap-dependent regret bounds in Theorem 1 to the contextual case is that a large minimum action gap in the original action sets \mathcal{A}_{t} does not imply a large gap in the reduced action set \mathcal{X}. As a simple example consider $d=1, \theta_{\star}=1$, and two action sets $\mathcal{A}_{1}=\{-1,1\}$, and $\mathcal{A}_{2}=\{-1\}$. At each iteration the learner receives the action set \mathcal{A}_{1} with probability p and \mathcal{A}_{2} with probability $1-p$ independently from other iterations. Recall that the action set in the reduced instance $\mathcal{X}=\{g(\theta) \mid \theta \in[-1,1]\}$, where $g(\theta)=\mathbb{E}_{\mathcal{A} \sim \mathcal{D}}\left[\arg \max _{a \in \mathcal{A}}\langle a, \theta\rangle\right]$. For $\theta \geq 0$ we have that $g(\theta)=p(1)+(1-p)(-1)=2 p-1$, while for $\theta<0$ we have $g(\theta)=p(-1)+(1-p)(-1)=-1$. Then $\mathcal{X}=\{-1,2 p-1\}$. Therefore, the suboptimality gap is $\Delta_{\min }=(2 p-1)(1)-(-1)(1)=2 p$ which can be arbitrarily small depending on p. Note that in the original contextual bandit instance, the minimum gap is at least 2 for both action sets.

While it may be possible to provide gap dependent regret bounds for our algorithm in the contextual case, this will require more sophisticated regret analysis that does not only rely on the reduced linear bandit instance.

Numerical results. In App. I we provide a numerical example to compare the computational complexity of computing the exploration policy of our algorithm versus the complexity of computing the policy in [40].

5 Conclusion

In this paper, we proposed the first efficient batched algorithm for contextual linear bandits with large action spaces. Our algorithm achieves a high-probability regret upper bound of $\tilde{O}(\sqrt{T})$, uses $O(\log \log T)$ batches, and has a computational complexity that is linear in T and polynomial in d.

Acknowledgments

This work was partially supported by the NSF grants \#2007714 and \#2221871, the DARPA grant \#HR00112190130, and by the Army Research Laboratory under the Cooperative Agreement W911NF-17-2-0196.

References

[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits. Advances in neural information processing systems, 24, 2011.
[2] N. Abe and P. M. Long. Associative reinforcement learning using linear probabilistic concepts. In ICML, pages 3-11. Citeseer, 1999.
[3] A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna. Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In Conference on Learning Theory, pages 39-75. PMLR, 2017.
[4] A. Agarwal, S. Bird, M. Cozowicz, L. Hoang, J. Langford, S. Lee, J. Li, D. Melamed, G. Oshri, O. Ribas, et al. Making contextual decisions with low technical debt. arXiv preprint arXiv:1606.03966, 2016.
[5] D. Agarwal, B.-C. Chen, P. Elango, N. Motgi, S.-T. Park, R. Ramakrishnan, S. Roy, and J. Zachariah. Online models for content optimization. Advances in Neural Information Processing Systems, 21, 2008.
[6] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In International conference on machine learning, pages 127-135. PMLR, 2013.
[7] B. Awerbuch and R. Kleinberg. Online linear optimization and adaptive routing. Journal of Computer and System Sciences, 74(1):97-114, 2008.
[8] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski. A contextual-bandit algorithm for mobile context-aware recommender system. In Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part III 19, pages 324-331. Springer, 2012.
[9] S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade. Towards minimax policies for online linear optimization with bandit feedback. In Conference on Learning Theory, pages 41-1. JMLR Workshop and Conference Proceedings, 2012.
[10] W. Cai, J. Grossman, Z. J. Lin, H. Sheng, J. T.-Z. Wei, J. J. Williams, and S. Goel. Bandit algorithms to personalize educational chatbots. Machine Learning, 110(9):2389-2418, 2021.
[11] V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback. 2008.
[12] H. Esfandiari, A. Karbasi, A. Mehrabian, and V. Mirrokni. Regret bounds for batched bandits. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7340-7348, 2021.
[13] Z. Gao, Y. Han, Z. Ren, and Z. Zhou. Batched multi-armed bandits problem. Advances in Neural Information Processing Systems, 32, 2019.
[14] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization, volume 2. Springer Science \& Business Media, 2012.
[15] I. S. T. C. Group et al. The international stroke trial (ist): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. The Lancet, 349(9065):1569-1581, 1997.
[16] Y. Han, Z. Zhou, Z. Zhou, J. Blanchet, P. W. Glynn, and Y. Ye. Sequential batch learning in finite-action linear contextual bandits. arXiv preprint arXiv:2004.06321, 2020.
[17] O. Hanna, L. Yang, and C. Fragouli. Learning from distributed users in contextual linear bandits without sharing the context. Advances in Neural Information Processing Systems, 35:11049-11062, 2022.
[18] O. A. Hanna, L. F. Yang, and C. Fragouli. Contexts can be cheap: Solving stochastic contextual bandits with linear bandit algorithms. arXiv preprint arXiv:2211.05632, 2022.
[19] E. Hazan and Z. Karnin. Volumetric spanners: an efficient exploration basis for learning. Journal of Machine Learning Research, 2016.
[20] S. Ito, D. Hatano, H. Sumita, K. Takemura, T. Fukunaga, N. Kakimura, and K.-I. Kawarabayashi. Oracle-efficient algorithms for online linear optimization with bandit feedback. Advances in Neural Information Processing Systems, 32, 2019.
[21] T. Jin, P. Xu, X. Xiao, and Q. Gu. Double explore-then-commit: Asymptotic optimality and beyond. In Conference on Learning Theory, pages 2584-2633. PMLR, 2021.
[22] K.-S. Jun, A. Bhargava, R. Nowak, and R. Willett. Scalable generalized linear bandits: Online computation and hashing. Advances in Neural Information Processing Systems, 30, 2017.
[23] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal of Mathematics, 12:363-366, 1960.
[24] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
[25] T. Lattimore, C. Szepesvari, and G. Weisz. Learning with good feature representations in bandits and in rl with a generative model. In International Conference on Machine Learning, pages 5662-5670. PMLR, 2020.
[26] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web, pages 661-670, 2010.
[27] Y. Li, Y. Wang, X. Chen, and Y. Zhou. Tight regret bounds for infinite-armed linear contextual bandits. In International Conference on Artificial Intelligence and Statistics, pages 370-378. PMLR, 2021.
[28] Y. Li, Y. Wang, and Y. Zhou. Nearly minimax-optimal regret for linearly parameterized bandits. In Conference on Learning Theory, pages 2173-2174. PMLR, 2019.
[29] C. D. Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000.
[30] V. Perchet, P. Rigollet, S. Chassang, and E. Snowberg. Batched bandit problems. The Annals of Statistics, pages 660-681, 2016.
[31] C. Pike-Burke, S. Agrawal, C. Szepesvari, and S. Grunewalder. Bandits with delayed, aggregated anonymous feedback. In International Conference on Machine Learning, pages 4105-4113. PMLR, 2018.
[32] Y. Ruan, J. Yang, and Y. Zhou. Linear bandits with limited adaptivity and learning distributional optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 74-87, 2021.
[33] S. Sahni. Computationally related problems. SIAM Journal on computing, 3(4):262-279, 1974.
[34] J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics, 21(1):124-127, 1950.
[35] M. D. Summa, F. Eisenbrand, Y. Faenza, and C. Moldenhauer. On largest volume simplices and sub-determinants. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 315-323. SIAM, 2014.
[36] K. T. Talluri, G. Van Ryzin, and G. Van Ryzin. The theory and practice of revenue management, volume 1. Springer, 2004.
[37] A. Tewari and S. A. Murphy. From ads to interventions: Contextual bandits in mobile health. Mobile Health: Sensors, Analytic Methods, and Applications, pages 495-517, 2017.
[38] M. J. Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.
[39] S. Yang, T. Ren, S. Shakkottai, E. Price, I. S. Dhillon, and S. Sanghavi. Linear bandit algorithms with sublinear time complexity. In International Conference on Machine Learning, pages 25241-25260. PMLR, 2022.
[40] Z. Zhang, X. Ji, and Y. Zhou. Almost optimal batch-regret tradeoff for batch linear contextual bandits. arXiv preprint arXiv:2110.08057, 2021.
[41] Y. Zhu, D. J. Foster, J. Langford, and P. Mineiro. Contextual bandits with large action spaces: Made practical. In International Conference on Machine Learning, pages 27428-27453. PMLR, 2022.

T	time horizon		
θ_{\star}	unknown parameter vector in \mathbb{R}^{d}		
\mathcal{A}	action set if fixed over time		
d	dimension of actions and unknown parameter		
μ_{a}	mean of arm $a:\left\langle a, \theta_{\star}\right\rangle$		
a^{\star}	best action: $\arg \max _{a \in \mathcal{A}} \mu_{a}$		
Δ_{a}	gap: $\mu_{a^{\star}}-\mu_{a}$		
$\Delta_{\text {min }}$	minimum gap: $\inf _{a \in \mathcal{A}: \Delta_{a}>0} \Delta_{a}$		
$\mathcal{O}(\mathcal{A} ;$.	linear optimization oracle for the set \mathcal{A}		
$\mathcal{O}_{\epsilon}^{+}(\mathcal{A} ;$.	approximate linear optimization oracle with additive error ϵ for the set \mathcal{A}		
$\mathcal{O}_{\alpha}^{\times}(\mathcal{A} ;$.	approximate linear optimization oracle with multiplicative error α for the set \mathcal{A}		
$\mathcal{T}_{\text {opt }}$	time complexity of optimization oracle $\mathcal{O}(\mathcal{A} ;$.		
$\mathcal{M}_{\text {opt }}$	space complexity of optimization oracle $\mathcal{O}(\mathcal{A} ;$.		
a_{t}	pulled action at time t		
R_{T}	regret: $\sum_{t=1}^{T} \Delta_{a_{t}}$		
η_{t}	noise at time t		
r_{t}	reward at time t		
M	number of batches		
T_{m}	length of batch m		
H_{m}	set of time slots for batch m		
λ	least squares regularization parameter		
\mathbf{V}_{m}	least squares matrix at batch $m: \lambda \mathbf{I}+\sum_{t \in H_{m}} a_{t} a_{t}^{\top}$		
$\begin{gathered} \theta_{m+1} \\ a_{m}^{\star} \end{gathered}$	least squares estimate at end of batch $m: \mathbf{V}_{m}^{-1} \sum_{t \in H_{m}} r_{t} a_{t}$ estimates best action at batch $m: \mathcal{O}_{1 / T}^{+}\left(\mathcal{A} ; \theta_{m}\right)$		
$\Delta_{m}(a)$	estimated gap at batch m : $\left\langle a_{m}^{\star}-a, \theta_{m}\right\rangle$		
C_{L}	approximate optimal design parameter: $e^{8} d$		
	$2 d \sqrt{C_{L}(\log (1 / \delta)+\log T)}$		
$\phi_{m}(a)$	scaled action at batch $m: \frac{a}{1+\sqrt{T_{m-1}} \Delta_{m}(a) /(8 \gamma)}$		
\mathcal{A}^{\prime}	extended action set: $\mathcal{A}^{\prime}=\mathcal{A} \cup \mathcal{B}_{1 / T}$		
$\tilde{\mathcal{A}}_{m}$	weighted action set: $\left\{\phi_{m}(a) \mid a \in \mathcal{A}^{\prime}\right\}$		
δ	confidence parameter		
\mathcal{C}_{m}	set of size d such that $\left\{\phi_{m}(a) \mid a \in \mathcal{C}_{m}\right\}$ is a barycentric spanner for $\tilde{\mathcal{A}}_{m}$		
W	parameter: $3 \log T$		
C	universal constant		
\mathcal{B}_{r}	$\left\{a \in \mathbb{R}^{d} \mid\\|a\\|_{2} \leq r\right\}$		
\mathcal{S}_{r}	$\left\{a \in \mathbb{R}^{d} \mid\\|a\\|_{2}=r\right\}$		
$\\|a\\|_{\mathbf{V}}$	$\sqrt{a^{\top} \mathbf{V} a}$		
$1(E)$	indicator function: returns 1 if E holds and 0 otherwise		
$[n], n \in \mathbb{N}$	$\{1, \cdots, n\}$		

Table 1: Table with notation for the linear bandit setting

Supplementary Material of the Paper: Efficient Batched Algorithm for Contextual Linear Bandit with Large Action Space via Soft Action Elimination

A Tables: table of notations and comparison with related work

Our notation is collected in Table 1. Table 2 compares our results with state-of-the-art literature results as discussed in Section 1

B Proof of Lemma 1: approximate inverse gap weighted optimization

Lemma. Let $T \geq 3, \eta \in \mathbb{R}, \hat{a} \in \mathbb{R}^{d}, \hat{\theta} \in \mathcal{B}_{T}$ be given parameters, and \mathcal{A} be a given set. Let $\Delta(a), \phi(a)$ denote $\Delta(a)=\langle\hat{a}-a, \hat{\theta}\rangle, \phi(a)=a /(1+\eta \Delta(a))$. If $\mathcal{B}_{1 / T} \subseteq \mathcal{A} \subseteq \mathcal{B}_{1},|\eta| \leq T$ and

Algorithm	Regret Bound	Context	Efficient	Number of batches
[25, 12]	$\tilde{O}(d \sqrt{T})$	\boldsymbol{X}	requires assumptions	$O(\log T)$
[7, 11, 9, 19, 20]	$\tilde{O}(d \sqrt{T})$	\boldsymbol{x}	\checkmark	T
$[1,11]$	$\tilde{O}(d \sqrt{T})$	\checkmark	\boldsymbol{x}	T
$[32,16,18]$	$\tilde{O}(d \sqrt{T})$	\checkmark	\boldsymbol{x}	$O(\log \log T)$
[6, 41, 11]	$\tilde{O}\left(d^{3 / 2} \sqrt{T}\right)$	\checkmark	\checkmark	T
This paper	$\tilde{O}\left(d^{3 / 2} \sqrt{T}\right)$	\checkmark	\checkmark	$O(\log \log T)$

Table 2: Comparison with related work
$1 / 2 \leq 1+\eta \Delta(a) \leq T^{2}, \forall a \in \mathcal{A}$, then for any $\theta \in \mathcal{S}_{1}, L W$-ArgMax (Algorithm 3) outputs an element $a \in \mathcal{A}$ such that

$$
\begin{equation*}
\langle\phi(a), \theta\rangle \geq \exp (-3) \sup _{b \in\left\{\phi\left(b^{\prime}\right) \mid b^{\prime} \in \mathcal{A}\right\}}\langle b, \theta\rangle \tag{10}
\end{equation*}
$$

Proof. To simplify notations we define the modified gap as

$$
\begin{equation*}
\tilde{\Delta}(a):=1+\eta \Delta(a) . \tag{11}
\end{equation*}
$$

We also define the function $L_{z}: \mathcal{A} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
L_{z}(a)=(1+1 / W) z\langle a, \theta\rangle-z^{1+1 / W} \tilde{\Delta}(a) \tag{12}
\end{equation*}
$$

where W is a parameter and we have set it to $3 \log T$. The main part of the proof shows that the optimizer of L_{z} for some z is an optimizer of $\langle\phi(a), \theta\rangle(\langle a, \theta\rangle)^{1 / W}$, which, as we also prove, is a good approximation of $\langle\phi(a), \theta\rangle$ for $W=3 \log T$. Towards that we first aim to show $\sup _{a \in \mathcal{A}}\langle\phi(a), \theta\rangle(\langle a, \theta\rangle)^{1 / W}=\left(W \sup _{a \in \mathcal{A}, z \geq 0} L_{z}(a)\right)^{1 / W}$. The following boundedness properties will be repeatedly used in the proof

$$
\begin{equation*}
|\langle a, \theta\rangle| \leq\|a\|_{2}\|\theta\|_{2} \leq 1 \tag{13}
\end{equation*}
$$

and by assumption we have that the modified gap can be bounded as

$$
\begin{equation*}
1 / 2 \leq \tilde{\Delta}(a) \leq T^{2} . \tag{14}
\end{equation*}
$$

We start by proving the following property about the function L_{z}.
Claim 1.

$$
\sup _{z \geq 0} L_{z}(a)= \begin{cases}\frac{1}{W}(\langle\phi(a), \theta\rangle)^{W}\langle a, \theta\rangle & \text { if }\langle a, \theta\rangle \geq 0 \tag{15}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. We notice the following fact about the function L_{z}. For any $a \in \mathcal{A}$ with $\langle a, \theta\rangle \geq 0$ we have that $L_{z}(a)$ is a concave function of z for $z \geq 0$, hence, by setting the derivative to 0 , we observe that

$$
\begin{equation*}
\sup _{z \geq 0} L_{z}(a)=\frac{1}{W}\left(\frac{\langle a, \theta\rangle}{\tilde{\Delta}(a)}\right)^{W}\langle a, \theta\rangle \tag{16}
\end{equation*}
$$

where the supremum is attained by

$$
\begin{equation*}
z_{a}=\left(\frac{\langle a, \theta\rangle}{\tilde{\Delta}(a)}\right)^{W} \tag{17}
\end{equation*}
$$

We also notice that for any $a \in \mathcal{A}$ with $\langle a, \theta\rangle<0$, since for all $a \in \mathcal{A}, \tilde{\Delta}(a) \geq 0$ we have that

$$
\begin{equation*}
\sup _{z \geq 0} L_{z}(a)=0 \tag{18}
\end{equation*}
$$

where the supremum is attained by $z_{a}=0$. The result follows by combining 16 and 18 .

The following fact follows from Claim 1 .

Claim 2.

$$
\begin{equation*}
\sup _{a \in \mathcal{A}}\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}=\left(W \sup _{a \in \mathcal{A}, z \geq 0} L_{z}(a)\right)^{1 / W} \tag{19}
\end{equation*}
$$

Proof. We notice that since $\|\theta / T\|_{2}=1 / T$ since $\|\theta\|_{2}=1$ by assumption. Then $\theta / T \in \mathcal{B}_{1 / T} \subseteq \mathcal{A}$. We also have that $\langle\theta / T, \theta\rangle=1 / T>0$, hence, from Claim 1 we have

$$
\begin{equation*}
\sup _{a \in \mathcal{A}:\langle a, \theta\rangle \geq 0} \sup _{z \geq 0} L_{z}(a) \geq \sup _{z \geq 0} L_{z}(\theta / T) \stackrel{(i)}{=} \frac{1}{W}\left(\frac{\langle\theta / T, \theta\rangle}{\tilde{\Delta}(\theta / T)}\right)^{W}\langle\theta / T, \theta\rangle \stackrel{(i i)}{\geq} \frac{1}{W}\left(\frac{1 / T}{T^{2}}\right)^{W} / T>0 \tag{20}
\end{equation*}
$$

where (i) follows from Claim 1 and $(i i)$ uses $\tilde{\Delta}(a) \leq T^{2}$. It follows from (15) that

$$
\begin{align*}
\sup _{a \in \mathcal{A}, z \geq 0} L_{z}(a)=\max \left\{0, \sup _{a \in \mathcal{A}:\langle a, \theta\rangle \geq 0} \sup _{z \geq 0} L_{z}(a)\right\} & =\sup _{a \in \mathcal{A}:\langle a, \theta\rangle \geq 0} \sup _{z \geq 0} L_{z}(a) \\
& =\sup _{a \in \mathcal{A}:\langle a, \theta\rangle \geq 0} \frac{1}{W}\left(\frac{\langle a, \theta\rangle}{\tilde{\Delta}(a)}\right)^{W}\langle a, \theta\rangle \tag{21}
\end{align*}
$$

Moreover we have that $\frac{1}{W}\left(\frac{\langle a, \theta\rangle}{\Delta(a)}\right)^{W}\langle a, \theta\rangle \leq 0$ whenever $\langle a, \theta\rangle \leq 0$. We can also see that

$$
\begin{equation*}
\sup _{a \in \mathcal{A}:\langle a, \theta\rangle \geq 0} \frac{1}{W}\left(\frac{\langle a, \theta\rangle}{\tilde{\Delta}(a)}\right)^{W}\langle a, \theta\rangle>0 \tag{22}
\end{equation*}
$$

by noticing that $\theta / T \in \mathcal{A}$ and has a positive objective value. Hence, we have that

$$
\begin{equation*}
\sup _{a \in \mathcal{A}, z \geq 0} L_{z}(a)=\sup _{a \in \mathcal{A}:\langle a, \theta\rangle \geq 0} \frac{1}{W}\left(\frac{\langle a, \theta\rangle}{\tilde{\Delta}(a)}\right)^{W}\langle a, \theta\rangle=\sup _{a \in \mathcal{A}} \frac{1}{W}\left(\frac{\langle a, \theta\rangle}{\tilde{\Delta}(a)}\right)^{W}\langle a, \theta\rangle . \tag{23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\sup _{a \in \mathcal{A}}\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}=\left(W \sup _{a \in \mathcal{A}, z \geq 0} L_{z}(a)\right)^{1 / W} \tag{24}
\end{equation*}
$$

In the following we assume that $\sup _{a \in \mathcal{A}}\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$ is attained by some $b^{\star} \in \mathcal{A}$ and also that $\sup _{a \in \mathcal{A}}\langle\phi(a), \theta\rangle$ is attained by some $a^{\star} \in \mathcal{A}$. The proofs can be extended to the case where the supremums are not attained by using sufficiently small approximation.
The proof continues as following

- We show that the algorithm uses z_{i} that is close to $z_{b^{\star}}=\left(\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\right)^{W}$ (the optimizer of $L_{z}\left(b^{\star}\right)$ in (17p) in some iteration i.
- We show that the solution of $\sup _{a \in \mathcal{A}} L_{z_{i}}(a)$, namely \tilde{a} satisfying $L_{z_{i}}(\tilde{a})=\sup _{a \in \mathcal{A}} L_{z_{i}}(a)$, is an approximate optimizer of the function $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$.
- We finally show that an approximate optimizer of $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$ is also an approximate optimizer of $\langle\phi(a), \theta\rangle$.

Towards the first step, we start by finding an upper and lower bound on $z_{b^{\star}}=\left(\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\right)^{W}$. From (13) and (14), we have that

$$
\begin{align*}
2^{W} & \geq z_{b^{\star}}=\left(\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\right)^{W} \stackrel{(i)}{\geq}\left(\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\left\langle b^{\star}, \theta\right\rangle^{1 / W}\right)^{W} \\
& \stackrel{(i i)}{\geq}\left(\langle\phi(\theta / T), \theta\rangle\langle\theta / T, \theta\rangle^{1 / W}\right)^{W} \\
& =\frac{1 / T^{1+W}}{\tilde{\Delta}(\theta / T)} \geq \frac{1}{T^{3+W}} \tag{25}
\end{align*}
$$

where (i) follows from $\left|\left\langle b^{\star}, \theta\right\rangle\right| \leq 1$ and $\left\langle\phi\left(b^{\star}\right), \theta\right\rangle>0$ (see 22), and (ii) follows by definition of b^{\star} as the maximizer of $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$ over the set \mathcal{A} and the fact that $\theta / T \in \mathcal{B}_{1 / T} \subseteq \mathcal{A}$.

Then, we find an upper and lower bound on the values of z used by the algorithm. Recall that Algorithm 3 starts with $z=2^{W}$ where $W=3 \log T$ and decreases z with a factor of $s=1-\frac{1}{6 \log T}$ for $N=36 W \log ^{2} T$ iterations. We have that

$$
\begin{align*}
2^{W} s^{N} & =2^{W}\left(1-\frac{1}{6 \log T}\right)^{N} \leq \exp (W-N /(6 \log T))=\exp (W(1-6 \log T)) \\
& \leq \exp (-3 W \log (T))=\frac{1}{T^{3 W}} \leq \frac{1}{T^{3+W}} \tag{26}
\end{align*}
$$

From (25), 26), the fact that Algorithm 3 starts with $z=2^{W}$ and decreases z by a factor of $s=1-\frac{1}{6 \log T}$ each step, it follows that there is an iteration i with

$$
\begin{equation*}
s z_{b^{\star}} \leq z_{i} \leq z_{b^{\star}} \tag{27}
\end{equation*}
$$

where z_{i} is the value of the variable z in iteration i. Now we consider the function $L_{z_{i}}$. We aim to show that an approximate optimizer of $L_{z_{i}}$ is an approximate optimizer of $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$. This is proved in the following lemma.

Lemma 3. Consider given $\eta \in \mathbb{R}, \theta \in \mathbb{R}^{d}, \hat{\theta} \in \mathbb{R}^{d}, \hat{a} \in \mathbb{R}^{d}$ and let $W=3 \log T, \Delta(a)=$ $\langle\hat{a}-a, \hat{\theta}\rangle, \tilde{\Delta}(a)=1+\eta \Delta(a), \phi(a)=a / \tilde{\Delta}(a), L_{z}(a)=(1+1 / W) z\langle a, \theta\rangle-z^{1+1 / W} \tilde{\Delta}(a)$.
Let i be an iteration of Algorithm 3 with $s z_{b^{\star}} \leq z_{i} \leq z_{b^{\star}}$. If $\mathcal{B}_{1 / T} \subseteq \mathcal{A} \subseteq \mathcal{B}_{1}$ and $1 / 2 \leq \tilde{\Delta}(a) \leq$ $T^{2} \forall a \in \mathcal{A}$, then we have that

$$
\begin{equation*}
\left\langle\phi\left(a_{i}\right), \theta\right\rangle\left\langle a_{i}, \theta\right\rangle^{1 / W} \geq \exp (-1) \sup _{b \in \mathcal{A}}\langle\phi(b), \theta\rangle\langle b, \theta\rangle^{1 / W}, \tag{28}
\end{equation*}
$$

where a_{i} is the approximate optimizer defined in step 7 of Algorithm 3 at iteration i.
Proof. To utilize Claim 1 to relate the optimizer of $L_{z_{i}}$ to the optimizer of $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$, we first show that $\sup _{a \in \mathcal{A}} L_{z_{i}}(a)>0$. We have that (recall that b^{\star} is the optimizer of $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$)

$$
\begin{align*}
L_{z_{i}}\left(b^{\star}\right) & =(1+1 / W) z_{i}\left\langle b^{\star}, \theta\right\rangle-z_{i}^{1+1 / W} \tilde{\Delta}\left(b^{\star}\right) \\
& \stackrel{(i)}{\geq}(1+1 / W) s z_{b^{\star}}\left\langle b^{\star}, \theta\right\rangle-z_{b^{\star}}^{1+1 / W} \tilde{\Delta}\left(b^{\star}\right) \\
& \stackrel{(i i)}{=}\left(\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\left\langle b^{\star}, \theta\right\rangle^{1 / W}\right)^{W}((1+1 / W) s-1), \tag{29}
\end{align*}
$$

where (i) follows from $\left\langle b^{\star}, \theta\right\rangle>0$ (see $\left.(22\}\right)$ and $\tilde{\Delta}\left(b^{\star}\right) \geq 0$, and (ii) follows by substituting $z_{b^{\star}}=\left(\left\langle b^{\star}, \theta\right\rangle / \tilde{\Delta}\left(b^{\star}\right)\right)^{W}$. We denote

$$
\begin{equation*}
\beta:=(1+1 / W) s-1 \tag{30}
\end{equation*}
$$

We next lower bound β as follows (recall that $T \geq 3$ and $s=1-1 / 6 \log T$)

$$
\begin{equation*}
(W \beta)^{1 / W}=(1 / 2-1 /(6 \log T))^{1 /(3 \log T)} \geq(1 / 4)^{1 /(3 \log T)} \geq \exp (-0.5 / \log T) \geq \exp (-0.5) \tag{31}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\beta \geq \exp (-0.5 W) /(W) \geq 1 /\left(3 T^{2}\right) \tag{32}
\end{equation*}
$$

where the last inequality uses $T \geq 3$, hence, $\log T \leq \sqrt{T}$. Substituting in 29) we get that

$$
\begin{equation*}
\sup _{b \in \mathcal{A}} L_{z_{i}}(b) \geq L_{z_{i}}\left(b^{\star}\right) \geq \frac{\left(\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\left\langle b^{\star}, \theta\right\rangle^{1 / W}\right)^{W}}{3 T^{2}} \geq \frac{1}{3 T^{2+12 \log T}} \tag{33}
\end{equation*}
$$

where the last inequality follows by definition of b^{\star} as the maximizer of $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$ over the set \mathcal{A} and the fact that $\theta / T \in \mathcal{B}_{1 / T} \subseteq \mathcal{A}$. In the algorithm, we do not construct an optimizer for $L_{z_{i}}$; instead we use an approximate optimizer a_{i} of the linear function given in step 7 of Algorithm 3 . In the following we will use (33) to show that $L_{z_{i}}\left(a_{i}\right)>0$. We notice that

$$
L_{z_{i}}(b)=(1+1 / W) z_{i}\langle b, \theta\rangle-z_{i}^{1+1 / W}(1+\eta\langle\hat{a}-b, \hat{\theta}\rangle)
$$

$$
\begin{align*}
& =\left\langle b,(1+1 / W) z_{i} \theta+z_{i}^{1+1 / W} \eta \hat{\theta}\right\rangle-z_{i}^{1+1 / W}(1+\eta\langle\hat{a}, \hat{\theta}\rangle) \\
& =\left\langle b, \tilde{\theta}_{i}\right\rangle-z_{i}^{1+1 / W}(1+\eta\langle\hat{a}, \hat{\theta}\rangle) \tag{34}
\end{align*}
$$

where $\tilde{\theta}_{i}=(1+1 / W) z_{i} \theta+z_{i}^{1+1 / W} \eta \hat{\theta}$. It follows that $\sup _{b \in \mathcal{A}} L_{z_{i}}(b)=\left(\sup _{b \in \mathcal{A}}\left\langle b, \tilde{\theta}_{i}\right\rangle\right)-$ $z_{i}^{1+1 / W}(1+\eta\langle\hat{a}, \hat{\theta}\rangle)$. Hence, by definition of a_{i} in Algorithm 3 we get that

$$
\begin{align*}
L_{z_{i}}\left(a_{i}\right) & \geq \sup _{b \in \mathcal{A}} L_{z_{i}}(b)-\frac{1-\exp (-1)}{12 T^{7+12 \log T}}\left\|\tilde{\theta}_{i}\right\|_{2} \\
& \stackrel{(i)}{\geq} \sup _{b \in \mathcal{A}} L_{z_{i}}(b)-\frac{1-\exp (-1)}{3 T^{2+12 \log T}} \\
& \stackrel{(i i)}{\geq} \sup _{b \in \mathcal{A}} L_{z_{i}}(b)-(1-\exp (-1)) \sup _{b \in \mathcal{A}} L_{z_{i}}(b) \\
& =\exp (-1) \sup _{b \in \mathcal{A}} L_{z_{i}}(b), \tag{35}
\end{align*}
$$

where (i) follows from $\left\|\tilde{\theta}_{i}\right\|_{2} \leq(1+1 / W) z_{i}\|\theta\|_{2}+|\eta| z_{i}^{1+1 / W}\|\hat{\theta}\|_{2} \leq 2 T^{2} 2^{W+1} \leq 4 T^{5}$ (recall that $|\eta| \leq T, \hat{\theta} \in \mathcal{B}_{T}$ and $z_{i} \leq 2^{W}, W=3 \log T$) and (ii) follows from (33). It follows from (33) that $L_{z_{i}}\left(a_{i}\right)>0$. Hence, from (15) we get that $\left\langle a_{i}, \theta\right\rangle \geq 0$. From 15) again it follows that

$$
\begin{align*}
\frac{1}{W}\left(\frac{\left\langle a_{i}, \theta\right\rangle}{\tilde{\Delta}\left(a_{i}\right)}\right)^{W}\left\langle a_{i}, \theta\right\rangle & =\sup _{z \geq 0} L_{z}\left(a_{i}\right) \geq L_{z_{i}}\left(a_{i}\right) \\
& \xrightarrow[(i)]{\geq} \exp (-1) \sup _{b \in \mathcal{A}} L_{z_{i}}(b) \\
& \geq \exp (-1) L_{z_{i}}\left(b^{\star}\right) \stackrel{(i i)}{\geq} \exp (-1)\left(\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\left\langle b^{\star}, \theta\right\rangle^{1 / W}\right)^{W} \beta \tag{36}
\end{align*}
$$

where (i) follows from (35) and (ii) follows from (29). Hence, we have that

$$
\begin{align*}
\left\langle\phi\left(a_{i}\right), \theta\right\rangle\left\langle a_{i}, \theta\right\rangle^{1 / W} & \geq \exp (-1 / W)\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\left\langle b^{\star}, \theta\right\rangle^{1 / W}(W \beta)^{1 / W} \\
& \geq \exp (-0.5)\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\left\langle b^{\star}, \theta\right\rangle^{1 / W}(W \beta)^{1 / W} \\
& \stackrel{(i)}{\geq} \exp (-1)\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\left\langle b^{\star}, \theta\right\rangle^{1 / W} \tag{37}
\end{align*}
$$

where (i) follows from 31.

The last part of the proof shows that an approximate optimizer for $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$ is also an approximate optimizer for $\langle\phi(a), \theta\rangle$. We lower bound $\left\langle\phi\left(a_{i}\right), \theta\right\rangle$ as follows (recall that a^{\star} is the optimizer of $\langle\phi(a), \theta\rangle)$

$$
\begin{aligned}
\frac{\left\langle\phi\left(a_{i}\right), \theta\right\rangle}{\left\langle\phi\left(a^{\star}\right), \theta\right\rangle} & =\frac{\left\langle\phi\left(a_{i}\right), \theta\right\rangle\left\langle a_{i}, \theta\right\rangle^{1 / W}}{\left\langle\phi\left(a^{\star}\right), \theta\right\rangle\left\langle a^{\star}, \theta\right\rangle^{1 / W}}\left(\frac{\left\langle a^{\star}, \theta\right\rangle}{\left\langle a_{i}, \theta\right\rangle}\right)^{1 / W} \\
& \stackrel{(i)}{\geq} \exp (-1) \frac{\left\langle\phi\left(b^{\star}\right), \theta\right\rangle\left\langle b^{\star}, \theta\right\rangle^{1 / W}}{\left\langle\phi\left(a^{\star}\right), \theta\right\rangle\left\langle a^{\star}, \theta\right\rangle^{1 / W}}\left(\frac{\left\langle a^{\star}, \theta\right\rangle}{\left\langle a_{i}, \theta\right\rangle}\right)^{1 / W} \\
& \stackrel{(i i)}{\geq} \exp (-1)\left(\frac{\left\langle a^{\star}, \theta\right\rangle}{\left\langle a_{i}, \theta\right\rangle}\right)^{1 / W} \\
& \stackrel{(i i i)}{\geq} \exp (-1)\left\langle a^{\star}, \theta\right\rangle^{1 / W}=\exp (-1)\left\langle\phi\left(a^{\star}\right), \theta\right\rangle^{1 / W} \tilde{\Delta}\left(a^{\star}\right)^{1 / W} \\
& \stackrel{(i v)}{\geq} \exp (-1)\left\langle\phi\left(a^{\star}\right), \theta\right\rangle^{1 / W} 0.5^{1 / W} \\
& \geq \exp (-1.5)\left\langle\phi\left(a^{\star}\right), \theta\right\rangle^{1 / W} \\
& \stackrel{(v)}{\geq} \exp (-1.5)\langle\phi(\theta / T), \theta\rangle^{1 / W}=\exp (-1.5)\left(\frac{1 / T}{\tilde{\Delta}(\theta / T)}\right)^{1 / W}
\end{aligned}
$$

$$
\begin{equation*}
\stackrel{(v i)}{\geq} \exp (-1.5)\left(\frac{1 / T}{T^{2}}\right)^{1 / W}=\exp (-1.5-3 \log T / W)=\exp (-2.5) \tag{38}
\end{equation*}
$$

where (i) follows from Lemma 3. (ii) follows by definition of b^{\star} as the maximizer of $\langle\phi(a), \theta\rangle\langle a, \theta\rangle^{1 / W}$, (iii) follows from $\left\langle a^{\star}, \theta\right\rangle>0,\left\langle a_{i}, \theta\right\rangle>0$ and $\left|\left\langle a_{i}, \theta\right\rangle\right| \leq 1$, (iv) follows from (14), (v) uses the fact that $\theta / T \in \mathcal{A}$ and definition of a^{\star} to attain the supremum of $\langle\phi(a), \theta\rangle$, and (vi) follows from (14). The proof is concluded by noticing that a_{i} is one of the candidates in the return statement of Algorithm 3, hence, if a is the output of Algorithm 3 then $\langle\phi(a), \theta\rangle \geq\left\langle\phi\left(a_{i}\right), \theta\right\rangle \geq \exp (-3)\left\langle\phi\left(a^{\star}\right), \theta\right\rangle$, where the last inequality follows from (38).

C Proof of Lemma 2; barycentric spanner

We here prove that Algorithm 2 can efficiently find a barycentric spanner.
Lemma 2. Let $\eta \in \mathbb{R}, \hat{a} \in \mathbb{R}^{d}, \hat{\theta} \in \mathbb{R}^{d}$ be given parameters, and \mathcal{A} be a given set. Let $\Delta(a), \phi(a)$ denote $\Delta(a)=\langle\hat{a}-a, \hat{\theta}\rangle, \phi(a)=a /(1+\eta \Delta(a))$. Suppose that for any $\theta \in \mathcal{S}_{1}, L W$-ArgMax (Algorithm 3) with inputs $\mathcal{A}, \theta, \eta, \hat{a}, \hat{\theta}$, outputs $a_{\theta} \in \mathcal{A}$ with $\left\langle\phi\left(a_{\theta}\right), \theta\right\rangle \geq \alpha \sup _{a \in \mathcal{A}}\langle\phi(a), \theta\rangle$, then Algorithm 2 computes a C / α-approximate barycentric spanner for the set $\tilde{\mathcal{A}}=\{\phi(a) \mid a \in \mathcal{A}\}$ with at most $O\left(d^{2} \log _{C}(d / \alpha)\right)$ calls to LW-ArgMax.

Proof. The proof is a simple modification of the proof of Proposition 2.5 in [7]; the difference is that we replace exact linear optimization oracles with approximate ones, and show that the resulting vectors still have the good properties we want.
We note that Lemma 2 holds for any generic action set \mathcal{A} used to call Algorithm 2; however, since Algorithm 1 calls Algorithm 2 (and Algorithm 3) with input action set \mathcal{A}^{\prime}, for consistency we will use \mathcal{A}^{\prime} as the input action set in the following, e.g., we interpret the lemma statement assumption as:

$$
\langle\phi(\operatorname{LW}-\operatorname{ArgMax}(\theta)), \theta\rangle \geq \alpha \sup _{a \in \mathcal{A}^{\prime}}\langle\phi(a), \theta\rangle .
$$

From this asumption and the fact that $\max _{a \in \tilde{\mathcal{A}}}|\langle a, \theta\rangle|=\max \left\{\max _{a \in \tilde{\mathcal{A}}}\langle a, \theta\rangle, \max _{a \in \tilde{\mathcal{A}}}\langle a,-\theta\rangle\right\}$, we have that step 7 (and similarly step 12) in Algorithm 2 outputs a with

$$
\begin{equation*}
|\langle\phi(a), \theta\rangle| \geq \alpha \sup _{\tilde{a} \in \tilde{\mathcal{A}}}|\langle\tilde{a}, \theta\rangle|, \text { for some } 0<\alpha<1 . \tag{39}
\end{equation*}
$$

We next show that if Algorithm 2 terminates then $\left\{\phi\left(a_{1}\right), \cdots, \phi\left(a_{d}\right)\right\}$ is a C / α-approximate barycentric spanner. We have that if there exists $a^{\prime} \in \mathcal{A}^{\prime}$ with $\left|\operatorname{det}\left(\left(\phi\left(a^{\prime}\right), \mathbf{A}_{-i}\right)\right)\right| \geq C / \alpha|\operatorname{det}(\mathbf{A})|$ for some i, then from (39), in step 12 we have an a with $\left|\operatorname{det}\left(\left(\phi(a), \mathbf{A}_{-i}\right)\right)\right| \geq C|\operatorname{det}(\mathbf{A})|$, hence, the algorithm will continue. As a result when Algorithm 2 terminates we have that

$$
\begin{equation*}
\sup _{a \in \tilde{\mathbf{A}}}\left|\operatorname{det}\left(\left(a, \mathbf{A}_{-i}\right)\right)\right| \leq C / \alpha|\operatorname{det}(\mathbf{A})|, \quad \forall i \in[d] \tag{40}
\end{equation*}
$$

In the proof of Lemma 1 we showed that $\sup _{a \in \tilde{\mathcal{A}}}\langle a, \theta\rangle>0, \forall \theta \neq 0$. This shows that at every step of Algorithm 2, the matrix \mathbf{A} has non-zero determinent. Hence, $\left\{a_{1}, \cdots, a_{d}\right\}$ span \mathbb{R}^{d}. As a result for any $\tilde{a} \in \mathcal{A}$ we have that $\tilde{a}=\sum_{i=1}^{d} w_{i} a_{i}$ for some $\left\{w_{i}\right\}_{i=1}^{d}$. We have that

$$
\begin{equation*}
\left|\operatorname{det}\left(\tilde{a}, \mathbf{A}_{-i}\right)\right|=\left|\operatorname{det}\left(\sum_{i=1}^{d} w_{i} a_{i}, \mathbf{A}_{-i}\right)\right|=\left|w_{i}\right||\operatorname{det}(\mathbf{A})| \tag{41}
\end{equation*}
$$

Hence, from (40) we get that

$$
\begin{equation*}
\left|w_{i}\right| \leq C / \alpha \tag{42}
\end{equation*}
$$

This implies that $\left\{\phi\left(a_{1}\right), \cdots, \phi\left(a_{d}\right)\right\}$ is a C / α-approximate barycentric spanner for $\tilde{\mathcal{A}}$. It remains to show that Algorithm 2 terminates in $O\left(d^{2} \log _{C} d\right)$ iterations. The number of iterations of the first for loop is d. To bound the number of iterations of the second for loop, we notice that for each repetition of the for loop (which takes at most d iterations), $\operatorname{det}(\mathbf{A})$ increases by a factor of C. Let $\mathbf{M}_{i}=\left[\tilde{a}_{1}, \cdots, \tilde{a}_{i}, e_{i+1}, \cdots, e_{d}\right]$ be the value of the matrix \mathbf{A} at the end of the i-th iteration of the first for loop. As the determinant of \mathbf{A} increases by at least factor of C each repetition, then if N is the number of repetitions of the second for loop, we have that $C^{N} \leq\left|\operatorname{det}(\mathbf{A}) / \operatorname{det}\left(\mathbf{M}_{d}\right)\right|$, where \mathbf{A} is
the matrix at the end of the N-th repetition of the second for loop. Hence, to prove the theorem it suffices to show that $\left|\operatorname{det}(\mathbf{A}) / \operatorname{det}\left(\mathbf{M}_{d}\right)\right| \leq(1 / \alpha)^{d} d^{d / 2}$. Let $u_{i}^{T}=e_{i}^{T} \mathbf{M}_{i}^{-1}$ and define \mathbf{U} to be the matrix whose i-th row is u_{i}. We observe that

$$
\begin{equation*}
\left\langle u_{i}, a\right\rangle=\frac{\operatorname{det}\left(a, \mathbf{M}_{-i}^{\prime}\right)}{\operatorname{det}\left(\mathbf{M}_{i}\right)}, \quad \forall a \in \tilde{\mathcal{A}} \tag{43}
\end{equation*}
$$

by noticing that both sides are linear functions of a and equality holds for all columns of \mathbf{M}_{i} which form a basis for \mathbb{R}^{d}. It follows from (39) that $\left|u_{i}^{\top} a\right| \leq 1 / \alpha$. As each entry of UA is $u_{i}^{\top} a$ for some $i \in[d], a \in \tilde{\mathcal{A}}$, all the entries of UA lie in $[-1 / \alpha, 1 / \alpha]$. Hence, $\operatorname{det}(\mathbf{U A}) \leq(1 / \alpha)^{d} d^{d / 2}$ as the determinant of a matrix is upper bounded by the product of the L^{2}-norms of its columns. We also notice that if $\mathbf{M}_{d}=\left[\tilde{a}_{1}, \cdots, \tilde{a}_{d}\right]$, then by definition of u_{i} we have $\left\langle u_{i}, \tilde{a}_{j}\right\rangle$ is zero if $j<i$, and $\left\langle u_{i}, \tilde{a}_{i}\right\rangle=1, \forall i \in[d]$. Hence, $\mathbf{U M}_{d}$ is upper triangular matrix with unit diagonal, implying $\operatorname{det}\left(\mathbf{U M}_{d}\right)=1$. We have that

$$
\begin{equation*}
\frac{\operatorname{det}(\mathbf{A})}{\operatorname{det}\left(\mathbf{M}_{d}\right)}=\frac{\operatorname{det}(\mathbf{U A})}{\operatorname{det}\left(\mathbf{U M}_{d}\right)} \leq(1 / \alpha)^{d} d^{d / 2} \tag{44}
\end{equation*}
$$

This conlcudes the proof.

D Proof of Theorem 1; regret analysis for linear bandits

Theorem 1. Consider a linear bandit instance with action set $\mathcal{A} \subseteq \mathbb{R}^{d}$ and horizon T. There exists a universal constant C and a choice for the batch lengths such that Algorithm 1 finishes in at most $M=\lceil\log \log T\rceil+1$ batches with regret bounded as

$$
\begin{equation*}
R_{T} \leq C \gamma \sqrt{T} \log \log T \text { with probability at least } 1-\delta \tag{45}
\end{equation*}
$$

where $\gamma=8 d \sqrt{C_{L}(\log (1 / \delta)+\log T)}, C_{L}=e^{8} d$ and δ is a parameter. Moreover, if for any a $\in \mathcal{A}$ with $\Delta_{a}>0$ we have $\Delta_{a} \geq \Delta_{\min }$, then there exists a choice of batch lengths so that Algorithm 1 finishes in at most $M=\log _{4} T$ batches with regret bounded as

$$
\begin{equation*}
R_{T} \leq C \frac{\gamma^{2}}{\Delta_{\min }} \log T \text { with probability at least } 1-\delta \tag{46}
\end{equation*}
$$

Proof. Note that in Algorithm 1, we end batch m if the total number of pulls reaches T_{m}. Hence, it is not guaranteed that the number of pulls for arm a_{i} in batch m reaches $n_{m}(i)$, which complicates the analysis of the concentration for the least squares estimate parameters. To handle this, we first analyze a variant of Algorithm 1 that completes all $n_{m}(i)$ pulls for each action $a_{i}, i \in[d]$. We bound the regret of the variant algorithm when a good event \tilde{G} (that we define later) holds, and show that $\mathbb{P}[\tilde{G}] \geq 1-\delta$. Then, we show that conditioned on \tilde{G}, it holds that $\sum_{i=1}^{d} n_{m}(i) \leq T_{m}$, for all batches $m \in[M]$ (see (77)), which implies that Algorithm 1 coincides with the variant algorithm on \tilde{G} in this case. In the following, we refer to the variant algorithm as Algorithm 1 for simplicity.
To invoke Lemma 1, and hence, Lemma 2, we first verify that the conditions of Lemma 1 hold for all batches m. We note that as a result of using the definition of $a_{m}^{\star}=\mathcal{O}_{1 / T}^{+}\left(\mathcal{A} ; \theta_{m}\right)$, due to the use of an approximate oracle and doing the maximization only over \mathcal{A} (not the bigger set \mathcal{A}^{\prime}), the value of $\Delta_{m}(a)$ can be negative, however, by definition of $\Delta_{m}=\left\langle a_{m}^{\star}-a_{i}, \theta_{m}\right\rangle$ and the fact that $\mathcal{A}^{\prime}=\mathcal{A} \cup \mathcal{B}_{1 / T}$, we have that

$$
\begin{equation*}
\Delta_{m}(a) \geq-1 / T, \quad \forall a \in \mathcal{A}^{\prime} \tag{47}
\end{equation*}
$$

Hence, we have that

$$
\begin{align*}
1 / 2 \stackrel{(i)}{\leq} 1-\eta_{m} / T & \stackrel{(i i)}{\leq} 1+\eta_{m} \Delta_{m}(a) \\
& \stackrel{(i i i)}{\leq} 1+2 \eta_{m} T \stackrel{(i v)}{\leq} T^{2} \tag{48}
\end{align*}
$$

where (i) follows from $\eta_{m}=\sqrt{T_{m-1}} /(8 \gamma) \leq \sqrt{T} /(8 \gamma)$, (ii) follows from 47), (iii) follows from $\left|\theta_{m}\right|=\left|\mathbf{V}_{m-1}^{-1} \sum_{t=1}^{T_{m-1}} \tilde{a}_{t} r_{t}\right| \leq \sum_{t=1}^{T_{m-1}}\left\|\tilde{a}_{t} r_{t}\right\|_{2} \leq T$ since $\mathbf{V}_{m} \geq \mathbf{I},\left|r_{t}\right| \leq 1,\left\|\tilde{a}_{t}\right\|_{2} \leq 1$ (recall that $\mathbf{V}_{m}=\mathbf{I}+\sum_{i=0}^{d} n_{m-1}(i) a_{i} a_{i}^{\top} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right], \tilde{a}_{t}$ is the pulled action at the t-th iteration of the
previous batch, $n_{m-1}(i)$ is the number of pulls for action a_{i} in the previous batch, $\left\{a_{i}\right\}_{i=1}^{d}$ is the set of actions for the approximate optimal design from previous batch), and (iv) uses $\eta_{m} \leq \sqrt{T} /(8 \gamma)$. This shows that Lemma 1 applies to all calls to Algorithm 3, hence, Lemma 2, namely in each batch $m \geq 2$, Algorithm 2 finds an $\exp (4)(C=\exp (1), \alpha=\exp (-3))$ barycentric spanner of the set $\left\{\phi_{m}(a) \mid a \in \mathcal{A}^{\prime}\right\}$. For the first batch, we note that Algorithm 1 and Algorithm 2 do not use the same action gaps. Algorithm 2 uses $\theta_{1}=0$ and thus uses $\Delta(a)=0$ and $\phi(a)=a$. Hence, it finds \mathcal{C}_{1}, an $\exp (4)$-barycentric spanner of \mathcal{A}^{\prime}. Algorithm 1 sets $\Delta_{1}(a)=1, \forall a \in \mathcal{A}^{\prime}$, and thus $\tilde{\mathcal{A}}_{1}=\left\{c a \mid a \in \mathcal{A}^{\prime}\right\}, c=1 /(1+1 /(8 \gamma))$ is a scaled version of \mathcal{A}^{\prime}. Hence, $\left\{\phi_{1}(a)=c a \mid a \in \mathcal{C}_{1}\right\}$ is a barycentric spanner for $\tilde{\mathcal{A}}_{1}$ as well. Thus we conclude that for $m=1$ as well as all other $m \in[M]$, $\left\{\phi_{m}(a) \mid a \in \mathcal{C}_{m}\right\}$ is a barycentric spanner for $\tilde{\mathcal{A}}_{m}$.
We next prove the following lemma that shows the concentration of the estimates $\left\langle\phi_{m}(a), \theta_{m+1}\right\rangle, \forall a \in \mathcal{A}^{\prime}$.
Lemma 4. Let $T \geq 2$, and θ_{m+1} be the regularized least squares estimate of θ_{\star} at the end of batch m in Algorithm 1. Let the event \mathcal{G} be the event

$$
\begin{equation*}
\mathcal{G}:\left|\left\langle\phi_{m}(a), \theta_{m+1}-\theta_{\star}\right\rangle\right| \leq \gamma / \sqrt{T_{m}}, \quad \forall a \in \mathcal{A}^{\prime}, m \in[M] \tag{49}
\end{equation*}
$$

where $\gamma=8 d \sqrt{C_{L}(\log (1 / \delta)+\log T)}$. Then, we have that $\mathbb{P}[\mathcal{G}] \geq 1-\delta$.
Proof. We note that the regularized least squares matrix \mathbf{V}_{m+1} at the end of batch m can be bounded as (recall that the considered variant of Algorithm 1 finishes all $n_{m}(i)$ pulls $\forall i \in[d]$ and $\forall m \in[M]$)

$$
\begin{align*}
\mathbf{V}_{m+1} & \geq \lambda \mathbf{I}+\sum_{i=1}^{d}\left\lceil\frac{\pi(i) T_{m} / 8}{\left(1+\sqrt{T_{m-1}} \Delta_{m}\left(a_{i}\right) /(8 \gamma)\right)^{2}}\right\rceil a_{i} a_{i}^{\top} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \\
& \geq \lambda \mathbf{I}+\sum_{i=1}^{d} \frac{\pi(i) T_{m} / 8}{\left(1+\sqrt{T_{m-1}} \Delta_{m}\left(a_{i}\right) /(8 \gamma)\right)^{2}} a_{i} a_{i}^{\top} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \\
& =\lambda \mathbf{I}+\sum_{i=1}^{d} \pi(i) \frac{T_{m}}{8} \phi_{m}\left(a_{i}\right) \phi_{m}\left(a_{i}\right)^{\top} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \\
& =\lambda \mathbf{I}+\sum_{i=1}^{d} \pi(i) \frac{T_{m}}{8} \phi_{m}\left(a_{i}\right) \phi_{m}\left(a_{i}\right)^{\top}-\mathbf{E} \tag{50}
\end{align*}
$$

where $\mathbf{E}=\sum_{i=1}^{d} \pi(i) T_{m} \phi_{m}\left(a_{i}\right) \phi_{m}\left(a_{i}\right)^{\top} \mathbf{1}\left[a_{i} \in \mathcal{B}_{1 / T}\right]$. Hence, using 47, for any $a \in \mathcal{B}_{1 / T}, T \geq$ 2 we have that

$$
\begin{equation*}
\left\|\phi_{m}(a)\right\|_{2}=\frac{\|a\|_{2}}{1+\Delta_{m}(a)} \leq \frac{1 / T}{1-1 / T} \leq 2 / T \tag{51}
\end{equation*}
$$

As a result we have that for any $T \geq 2, a \in \mathbb{R}^{d}$ with $\|a\|_{2} \leq 1$

$$
\begin{align*}
a^{\top} \mathbf{E} a & =\sum_{i=1}^{d} \pi(i) \frac{T_{m}}{8} a^{\top} \phi_{m}\left(a_{i}\right) \phi_{m}\left(a_{i}\right)^{\top} a \mathbf{1}\left[a_{i} \in \mathcal{B}_{1 / T}\right] \leq \sum_{i=1}^{d} \pi(i) \frac{T_{m}}{8}\|a\|_{2}^{2}\left\|\phi_{m}\left(a_{i}\right)\right\|_{2}^{2} \mathbf{1}\left[a_{i} \in \mathcal{B}_{1 / T}\right] \\
& \leq \sum_{i=1}^{d} \pi(i) / T \leq 1 / T . \tag{52}
\end{align*}
$$

From (52) and (50) we get that for $T \geq 2$

$$
\begin{align*}
\mathbf{V}_{m+1} & \geq \lambda \mathbf{I}+\sum_{i=1}^{d} \pi(i) \frac{T_{m}}{8} \phi_{m}\left(a_{i}\right) \phi_{m}\left(a_{i}\right)^{\top}-\mathbf{E} \geq \lambda \mathbf{I}+\sum_{i=1}^{d} \pi(i) \frac{T_{m}}{8} \phi_{m}\left(a_{i}\right) \phi_{m}\left(a_{i}\right)^{\top}-1 / T \mathbf{I} \\
& \stackrel{(i)}{=}(1-1 / T) \mathbf{I}+\frac{T_{m}}{8} \mathbf{V}_{\pi, m} \geq \frac{T_{m}}{8} \mathbf{V}_{\pi, m} \tag{53}
\end{align*}
$$

where (i) follows from $\lambda=1$ and

$$
\begin{equation*}
\mathbf{V}_{\pi, m}=\sum_{i=1}^{d} \pi(i) \phi_{m}\left(a_{i}\right) \phi_{m}\left(a_{i}\right)^{\top} \tag{54}
\end{equation*}
$$

By Cauchy-Schwartz inequality we have that

$$
\begin{align*}
\mid\left\langle\phi_{m}(a), \theta_{m+1}-\theta_{\star}\right\rangle & \left\lvert\, \leq\left\|\phi_{m}(a)\right\|_{\mathbf{v}_{m+1}^{-1}}\left\|\theta_{m+1}-\theta_{\star}\right\|_{\mathbf{v}_{m+1}} \stackrel{(i)}{\leq} \frac{\left\|\phi_{m}(a)\right\|_{\mathbf{V}_{\pi, m}^{-1}}}{\sqrt{T_{m} / 8}}\left\|\theta_{m+1}-\theta_{\star}\right\|_{\mathbf{v}_{m+1}}\right. \\
& \stackrel{(i i)}{\leq} 2 \sqrt{2 C_{L} d / T_{m}}\left\|\theta_{m+1}-\theta_{\star}\right\|_{\mathbf{V}_{m+1}} \tag{55}
\end{align*}
$$

where (i) follows from (53), and (ii) follows from the fact that $\left\{\phi_{m}\left(a_{i}\right), \pi(i)\right\}_{i=1}^{d}$ is a $C_{L^{-}}$ approximate design for $\tilde{\mathcal{A}}$. By Theorem 20.5 in [24], we have that with probability at least $1-\delta$ it holds that

$$
\begin{equation*}
\left\|\theta_{m+1}-\theta_{\star}\right\|_{\mathbf{v}_{m+1}} \leq 2 \sqrt{\log (1 / \delta)+d \log T}, \quad \forall m \in[M] \tag{56}
\end{equation*}
$$

Combining with (55] we get that the next inequality holds with probability at least $1-\delta$

$$
\begin{equation*}
\left|\left\langle\phi_{m}(a), \theta_{m+1}-\theta_{\star}\right\rangle\right| \leq 4 d \sqrt{2 C_{L}(\log (1 / \delta)+\log T) / T_{m}}, \quad \forall m \in[M] \tag{57}
\end{equation*}
$$

Corollary 1 follows from Lemma 4 and the fact that $1+\eta_{m} \Delta_{m}(a) \geq 1-1 / \sqrt{T}>0$ for $T>1$.
Corollary 1. Let $T \geq 2$, and θ_{m+1} be the regularized least squares estimate of θ_{\star} at the end of batch m in Algorithm 1. The following event holds with probability at least $1-\delta$

$$
\begin{equation*}
\mathcal{G}^{\prime}:\left|\left\langle a, \theta_{m+1}\right\rangle-\mu_{a}\right| \leq \frac{\gamma}{\sqrt{T_{m}}}+\frac{\Delta_{m}(a)}{8} \sqrt{\frac{T_{m-1}}{T_{m}}}, \quad \forall a \in \mathcal{A}^{\prime}, m \in[M] \tag{58}
\end{equation*}
$$

where $\gamma=8 d \sqrt{C_{L}(\log (1 / \delta)+\log T)}$ and $\mu_{a}=\left\langle a, \theta_{*}\right\rangle$.
We introduce the definition of the gap Δ_{a} on the set \mathcal{A}^{\prime} as follows

$$
\begin{equation*}
\Delta_{a}=\sup _{b \in \mathcal{A}}\left\langle b, \theta_{\star}\right\rangle-\left\langle a, \theta_{\star}\right\rangle, \quad \forall a \in \mathcal{A}^{\prime} \tag{59}
\end{equation*}
$$

We note that with this definition Δ_{a} may be negative for some $a \in \mathcal{A}^{\prime}$ as the supremum is taken over the smaller set \mathcal{A}. However, we have that $\forall a \in \mathcal{A}^{\prime}$

$$
\begin{equation*}
\Delta_{a} \geq \min \left\{0, \sup _{b \in \mathcal{A}}\left\langle b, \theta_{\star}\right\rangle-\sup _{u \in \mathcal{B}_{1 / T}}\left\langle u, \theta_{\star}\right\rangle\right\} \geq-1 / T . \tag{60}
\end{equation*}
$$

We also have that

$$
\begin{equation*}
\Delta_{a} \leq \max \left\{1, \sup _{b \in \mathcal{A}}\left\langle b, \theta_{\star}\right\rangle-\inf _{u \in \mathcal{B}_{1 / T}}\left\langle u, \theta_{\star}\right\rangle\right\} \leq 1+1 / T \tag{61}
\end{equation*}
$$

We can now prove the following lemma about the concentration of $\Delta_{m}(a)$.
Lemma 5. Suppose that \mathcal{G}^{\prime} holds and assume $T_{m} \geq T_{m-1}, \forall m \in[M]$, then we have that the following events hold

$$
\begin{equation*}
\tilde{\mathcal{G}}_{m}:-4 \frac{\gamma}{\sqrt{T_{m-1}}}+\frac{1}{2} \Delta_{a} \leq \Delta_{m}(a) \leq 2 \Delta_{a}+4 \frac{\gamma}{\sqrt{T_{m-1}}}, \quad \forall a \in \mathcal{A}^{\prime}, \quad \forall m \in M \tag{62}
\end{equation*}
$$

Proof. We prove the statement by induction on m. For $m=1$ we have that for any $a \in \mathcal{A}^{\prime}$

$$
\begin{align*}
-4 \frac{\gamma}{\sqrt{T_{m-1}}}+\frac{1}{2} \Delta_{a} \stackrel{(i)}{=}-4 \gamma+\frac{1}{2} \Delta_{a} \leq \frac{1}{2} \Delta_{a} & \stackrel{(i i)}{\leq} \frac{1}{2}(1+1 / T) \\
& \stackrel{(i i i)}{\leq} \Delta_{1}(a) \\
& \stackrel{(i v)}{\leq} 4 \gamma-2 / T \stackrel{(v)}{\leq} 4 \gamma+2 \Delta_{a}=4 \frac{\gamma}{\sqrt{T_{m-1}}}+2 \Delta_{a} \tag{63}
\end{align*}
$$

where (i) uses $T_{0}=1$, (ii) follows from (61), (iii) follows from $\Delta_{1}(a)=1,(i v)$ uses $\gamma \geq 1$, and (v) follows from (60). Now suppose that $\tilde{\mathcal{G}}_{m}$ holds. We need to show that $\tilde{\mathcal{G}}_{m+1}$ holds. We have that for any $a \in \mathcal{A}^{\prime}$

$$
\begin{align*}
\Delta_{m+1}(a) & =\left\langle a_{m+1}^{\star}-a, \theta_{m+1}\right\rangle \\
& \stackrel{(i)}{\leq} \mu_{a_{m+1}^{\star}}-\mu_{a}+2 \frac{\gamma}{\sqrt{T_{m}}}+\left(\frac{\Delta_{m}\left(a_{m+1}^{\star}\right)}{8}+\frac{\Delta_{m}(a)}{8}\right) \sqrt{\frac{T_{m-1}}{T_{m}}} \\
& =\Delta_{a}-\Delta_{a_{m+1}^{\star}}+2 \frac{\gamma}{\sqrt{T_{m}}}+\left(\frac{\Delta_{m}\left(a_{m+1}^{\star}\right)}{8}+\frac{\Delta_{m}(a)}{8}\right) \sqrt{\frac{T_{m-1}}{T_{m}}} \\
& \stackrel{(i i)}{\leq} \Delta_{a}-\Delta_{a_{m+1}^{\star}}+2 \frac{\gamma}{\sqrt{T_{m}}}+\left(\frac{2 \Delta_{a_{m+1}^{\star}}+4 \frac{\gamma}{\sqrt{T_{m-1}}}}{8}+\frac{2 \Delta_{a}+4 \frac{\gamma}{\sqrt{T_{m-1}}}}{8}\right) \sqrt{\frac{T_{m-1}}{T_{m}}} \\
& =\Delta_{a}-\Delta_{a_{m+1}^{\star}}+3 \frac{\gamma}{\sqrt{T_{m}}}+\left(\frac{\Delta_{a_{m+1}^{\star}}}{4}+\frac{\Delta_{a}}{4}\right) \sqrt{\frac{T_{m-1}}{T_{m}}} \\
& =2 \Delta_{a}+3 \frac{\gamma}{\sqrt{T_{m}}}+\Delta_{a}\left(1 / 4 \sqrt{\frac{T_{m-1}}{T_{m}}}-1\right)+\Delta_{a_{m+1}^{\star}}\left(1 / 4 \sqrt{\frac{T_{m-1}}{T_{m}}}-1\right), \tag{64}
\end{align*}
$$

where (i) follows from \mathcal{G}^{\prime}, and (ii) follows by the induction hypothesis. We have that if $\Delta_{a} \geq 0$, then

$$
\begin{equation*}
\Delta_{a}\left(1 / 4 \sqrt{\frac{T_{m-1}}{T_{m}}}-1\right) \stackrel{(i)}{\leq} \Delta_{a}(1 / 4-1) \leq 0 \tag{65}
\end{equation*}
$$

where (i) uses the fact that $T_{m} \geq T_{m-1}$. If $\Delta_{a}<0$, then

$$
\begin{equation*}
\Delta_{a}\left(1 / 4 \sqrt{\frac{T_{m-1}}{T_{m}}}-1\right) \leq-\Delta_{a} \stackrel{(i)}{\leq} 1 / T \tag{66}
\end{equation*}
$$

where (i) follows from (60). Hence, from (65) and (66) we get that

$$
\begin{equation*}
\Delta_{a}\left(1 / 4 \sqrt{\frac{T_{m-1}}{T_{m}}}-1\right) \leq 1 / T \tag{67}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\Delta_{a_{m+1}^{\star}}\left(1 / 4 \sqrt{\frac{T_{m-1}}{T_{m}}}-1\right) \leq 1 / T \tag{68}
\end{equation*}
$$

Substituting from (67) and 68) in (64) we get that

$$
\begin{equation*}
\Delta_{m+1}(a) \leq 2 \Delta_{a}+3 \frac{\gamma}{\sqrt{T_{m}}}+2 / T \leq 2 \Delta_{a}+4 \frac{\gamma}{\sqrt{T_{m}}} \tag{69}
\end{equation*}
$$

where the last inequality uses $T_{m} \leq T$ and $\gamma \geq 2$. We next prove a lower bound on $\Delta_{m+1}(a)$. In the following we assume that $\sup _{a \in \mathcal{A}} \mu_{a}$ is attained by $a^{\star} \in \mathcal{A}$, and $\sup _{a \in \mathcal{A}^{\prime}}\left\langle a, \theta_{m+1}\right\rangle$ is attained by $\tilde{a}_{m+1}^{\star} \in \mathcal{A}^{\prime}$. The proof can be easily extended when the supremums are not attained by using a small approximation and taking the limit. We have that for any $a \in \mathcal{A}^{\prime}$

$$
\Delta_{m+1}(a)=\left\langle a_{m+1}^{\star}-a, \theta_{m+1}\right\rangle \geq\left\langle\tilde{a}_{m+1}^{\star}-a, \theta_{m+1}\right\rangle-1 / T \geq\left\langle a^{\star}-a, \theta_{m+1}\right\rangle-1 / T
$$

$$
\begin{align*}
& \stackrel{(i)}{\geq} \mu_{a^{\star}}-\mu_{a}-2 \frac{\gamma}{\sqrt{T_{m}}}-\left(\frac{\Delta_{m}\left(a^{\star}\right)}{8}+\frac{\Delta_{m}(a)}{8}\right) \sqrt{\frac{T_{m-1}}{T_{m}}}-1 / T \\
& =\Delta_{a}-2 \frac{\gamma}{\sqrt{T_{m}}}-\left(\frac{\Delta_{m}\left(a^{\star}\right)}{8}+\frac{\Delta_{m}(a)}{8}\right) \sqrt{\frac{T_{m-1}}{T_{m}}-1 / T} \\
& \stackrel{(i i)}{\geq} \Delta_{a}-2 \frac{\gamma}{\sqrt{T_{m}}}-\left(\frac{2 \Delta_{a^{\star}}+4 \frac{\gamma}{\sqrt{T_{m-1}}}}{8}+\frac{2 \Delta_{a}+4 \frac{\gamma}{\sqrt{T_{m-1}}}}{8}\right) \sqrt{\frac{T_{m-1}}{T_{m}}}-1 / T \\
& =\Delta_{a}-3 \frac{\gamma}{\sqrt{T_{m}}}-\frac{\Delta_{a}}{4} \sqrt{\frac{T_{m-1}}{T_{m}}}-1 / T=\frac{1}{2} \Delta_{a}-3 \frac{\gamma}{\sqrt{T_{m}}}+\Delta_{a}\left(\frac{1}{2}-\frac{1}{4} \sqrt{\frac{T_{m-1}}{T_{m}}}\right)-1 / T . \tag{70}
\end{align*}
$$

where (i) follows from \mathcal{G}^{\prime}, and (ii) follows by the induction hypothesis. We have that if $\Delta_{a} \geq 0$, then

$$
\begin{equation*}
\Delta_{a}\left(\frac{1}{2}-\frac{1}{4} \sqrt{\frac{T_{m-1}}{T_{m}}}\right) \stackrel{(i)}{\geq} \frac{1}{4} \Delta_{a} \geq 0 \tag{71}
\end{equation*}
$$

where (i) follows from $T_{m} \geq T_{m-1}$. If $\Delta_{a} \leq 0$, then

$$
\begin{equation*}
\Delta_{a}\left(\frac{1}{2}-\frac{1}{4} \sqrt{\frac{T_{m-1}}{T_{m}}}\right) \geq \frac{1}{2} \Delta_{a} \geq-\frac{1}{2} 1 / T \tag{72}
\end{equation*}
$$

Substituting from (71) and (72) in 70) we get that

$$
\begin{equation*}
\Delta_{m+1}(a) \geq \frac{1}{2} \Delta_{a}-3 \frac{\gamma}{\sqrt{T_{m}}}-2 / T \geq \frac{1}{2} \Delta_{a}-4 \frac{\gamma}{\sqrt{T_{m}}} \tag{73}
\end{equation*}
$$

where the last inequality uses $T_{m} \leq T$ and $\gamma \geq 2$. Combining (69) and (73) we get that $\tilde{\mathcal{G}}_{m+1}$ holds. We conclude by induction that $\tilde{\mathcal{G}}_{m}$ holds for all $m \in[M]$.

We are now ready to prove the regret bound. We first upper bound the regret in batch m

$$
\begin{equation*}
R^{(m)}=\sum_{t \in H_{m}} \sup _{a \in \mathcal{A}} \mu_{a}-\mu_{a_{t}} \tag{74}
\end{equation*}
$$

where H_{m} is the set of time slots for batch m, and a_{t} is the action pulled at time t. The following lemma gives a bound on $R^{(m)}$.

Lemma 6. Suppose that $\tilde{\mathcal{G}}_{m}$ holds, then we have that

$$
\begin{equation*}
R^{(m)} \leq d+1+\frac{68 \gamma T_{m}}{\sqrt{T_{m-1}}} \tag{75}
\end{equation*}
$$

Moreover, if $\forall a \in \mathcal{A}$ with $\Delta_{a}>0$ we have $\Delta_{a} \geq \Delta_{\min }$ then

$$
\begin{equation*}
R^{(m)} \leq d+1+\frac{544 \gamma^{2} T_{m}}{\Delta_{\min } T_{m-1}} \tag{76}
\end{equation*}
$$

If $T_{1} \geq 2 d$ then

$$
\begin{equation*}
\sum_{i=1}^{d} n_{m}(i) \leq T_{m} \tag{77}
\end{equation*}
$$

Proof. Let $\left\{\phi_{m}\left(a_{i}\right), \pi(i)\right\}_{i=1}^{d}$ be the C_{L}-approximate design at batch m and $a_{0}=a_{m}^{\star}$. The regret at batch m can be bounded as

$$
\begin{equation*}
R^{(m)} \leq T_{m} \Delta_{a_{0}}+\sum_{i=1}^{d} n_{m}\left(a_{i}\right) \Delta_{a_{i}} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \tag{78}
\end{equation*}
$$

We first modify the first term in (78) to put it in the same form of the terms inside the summation. Towards that, we expand the definition of $n_{m}(i)$ to include a_{0} by letting $\pi(0)=16\left(n_{m}(0)\right.$ and $\pi(0)$ are values used only for analysis and may not reflect the actual number of pulls for action a_{0}) and

$$
\begin{equation*}
n_{m}(0)=\left\lceil\frac{\pi(0) T_{m} / 8}{\left(1+\sqrt{T_{m-1}} \Delta_{m}\left(a_{0}\right) /(8 \gamma)\right)^{2}}\right\rceil \tag{79}
\end{equation*}
$$

By definition of $a_{0}=a_{m}^{\star}$ we also have that $\Delta_{m}\left(a_{0}\right) \leq 1 / T$. Hence, we have that

$$
\begin{equation*}
\frac{1}{\left(1+\sqrt{T_{m-1}} \Delta_{m}\left(a_{0}\right) /(8 \gamma)\right)^{2}} \geq 1 / 2 \tag{80}
\end{equation*}
$$

Substituting in (78), and using $\pi(0)=16$, we get that

$$
\begin{equation*}
R^{(m)} \leq \sum_{i=0}^{d} n_{m}\left(a_{i}\right) \Delta_{a_{i}} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \tag{81}
\end{equation*}
$$

We notice that on \tilde{G}_{m} we have

$$
\begin{align*}
n_{m}(i) & =\left\lceil\frac{\pi(i) T_{m} / 8}{\left(1+\sqrt{T_{m-1}} \Delta_{m}\left(a_{i}\right) /(8 \gamma)\right)^{2}}\right\rceil \leq 1+\frac{\pi(i) T_{m} / 8}{\left(1+\sqrt{T_{m-1}} \Delta_{m}\left(a_{i}\right) /(8 \gamma)\right)^{2}} \\
& \leq 1+\frac{\pi(i) T_{m} / 8}{\left(1+\sqrt{T_{m-1}}\left(1 / 2 \Delta_{a_{i}}-4 \gamma / \sqrt{T_{m-1}}\right) /(8 \gamma)\right)^{2}} \\
& =1+\frac{\pi(i) T_{m} / 8}{\left(1 / 2+1 / 16 \sqrt{T_{m-1}} \Delta_{a_{i}} / \gamma\right)^{2}} \tag{82}
\end{align*}
$$

This implies that

$$
\begin{equation*}
n_{m}(i) \leq 1+\min \left\{T_{m} / 2, \frac{32 \gamma^{2} T_{m}}{T_{m-1} \Delta_{a_{i}}^{2}}\right\} \pi(i) \tag{83}
\end{equation*}
$$

The last part of the lemma follows from (83) since $\sum_{i=1}^{d} n_{m}(i) \leq d+T_{m} / 2 \sum_{i=1}^{d} \pi(i)=d+$ $T_{m} / 2 \leq T_{m}$, where the last inequality follows from $T_{1} \geq 2 d$. Substituting in 81, we get that

$$
\begin{align*}
R^{(m)} & \leq \sum_{i=0}^{d} n_{m}\left(a_{i}\right) \Delta_{a_{i}} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \\
& \leq d+1+\sum_{i=0}^{d} \pi(i) \min \left\{\Delta_{a_{i}} T_{m} / 2, \frac{32 \gamma^{2} T_{m}}{\Delta_{a_{i}} T_{m-1}}\right\} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \tag{84}
\end{align*}
$$

Hence, we have that

$$
\begin{align*}
R^{(m)} & \leq d+1+\sum_{i=0}^{d} \pi(i) \sup _{\Delta_{a_{i}} \geq 0} \min \left\{\Delta_{a_{i}} T_{m} / 2, \frac{32 \gamma^{2} T_{m}}{\Delta_{a_{i}} T_{m-1}}\right\} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \\
& \leq d+1+\sup _{\Delta \geq 0} \min \left\{\Delta T_{m} / 2, \frac{32 \gamma^{2} T_{m}}{\Delta T_{m-1}}\right\} \sum_{i=0}^{d} \pi(i) \\
& =d+1+17 \sup _{\Delta \geq 0} \min \left\{\Delta T_{m} / 2, \frac{32 \gamma^{2} T_{m}}{\Delta T_{m-1}}\right\} \tag{85}
\end{align*}
$$

We have that $\min \left\{\Delta T_{m} / 2, \frac{32 \gamma^{2} T_{m}}{\Delta T_{m-1}}\right\}$ is maximized when $\Delta T_{m} / 2=\frac{32 \gamma^{2} T_{m}}{\Delta T_{m-1}}$, hence, when $\Delta=$ $\frac{8 \gamma}{\sqrt{T_{m-1}}}$. Substituting in (85) we get that

$$
\begin{equation*}
R^{(m)} \leq d+1+\frac{68 \gamma T_{m}}{\sqrt{T_{m-1}}} \tag{86}
\end{equation*}
$$

To prove the gap dependent bound on $R^{(m)}$ we start from (84). We have that if $\Delta_{a} \geq \Delta_{\min } \forall a \in \mathcal{A}$: $\Delta_{a}>0$, then

$$
\begin{align*}
R^{(m)} & \leq d+1+\sum_{i=0}^{d} \pi(i) \min \left\{\Delta_{a_{i}} T_{m} / 2, \frac{32 \gamma^{2} T_{m}}{\Delta_{a_{i}} T_{m-1}}\right\} \mathbf{1}\left[a_{i} \notin \mathcal{B}_{1 / T}\right] \\
& \leq d+1+\frac{32 \gamma^{2} T_{m}}{\Delta_{\min } T_{m-1}} \sum_{i=0}^{d} \pi(i) \\
& \leq d+1+\frac{544 \gamma^{2} T_{m}}{\Delta_{\min } T_{m-1}} \tag{87}
\end{align*}
$$

This concludes the proof of the lemma.

To combine the regret across different batches we notice that since $\sum_{m=1}^{M} T_{m} \geq T$, Algorithm 1 will finish in at most M batches. The following result follows from Lemma 6 .

Lemma 7. Suppose $T_{m} \geq T_{m-1}, \forall m \in[M], \sum_{m=1}^{M} T_{m} \geq T$ and $T_{0}=1, T_{1} \geq 2 d$, then there exists a universal constant C such that with probability at least $1-\delta$ the regret of Algorithm 1 is bounded as

$$
\begin{equation*}
R_{T} \leq C \sum_{m=1}^{M} \frac{\gamma T_{m}}{\sqrt{T_{m-1}}} \tag{88}
\end{equation*}
$$

where $\gamma=8 d \sqrt{C_{L}(\log (1 / \delta)+\log T)}$. Moreover, if $\forall a \in \mathcal{A}$ with $\Delta_{a}>0$ we have $\Delta_{a} \geq \Delta_{\min }$ then with probability at least $1-\delta$ the regret of Algorithm 1 is bounded as

$$
\begin{equation*}
R_{T} \leq C \sum_{m=1}^{M} \frac{\gamma^{2} T_{m}}{\Delta_{\min } T_{m-1}} \tag{89}
\end{equation*}
$$

Finally, we use the two sets of batch lengths proposed in [13]. The first set of batch lengths is suitable for worst case regret bounds. We choose the following batch lengths $\left\{T_{m}\right\}$:

$$
\begin{equation*}
T_{m}=\max \left\{\left\lfloor T^{1-2^{-m}}\right\rfloor, 2 d\right\}, m \in[M-1], T_{M}=T, M=\lceil\log \log T\rceil+1 \tag{90}
\end{equation*}
$$

We note that $\sum_{m=1}^{M} T_{m} \geq T$, however, Algorithm 1 finishes whenever the number of rounds reaches T, hence, the number of batches is upper bounded by M. We also notice that $T_{1} \geq 2 d, T_{m} \geq$ $T_{m-1} \forall m \in[M]$. To prove the first regret bound we observe that for $T \geq 2$ and $2 \leq m \leq M-1$ we have

$$
\begin{equation*}
\frac{T_{m}}{\sqrt{T_{m-1}}} \leq \frac{\left\lfloor T^{1-2^{-m}}\right\rfloor}{\sqrt{\left\lfloor T^{\left.1-2^{-m+1}\right\rfloor}\right.} \leq \frac{T^{1-2^{-m}}}{\sqrt{\left\lfloor T^{\left.1-2^{-m+1}\right\rfloor}\right.}}=\frac{\sqrt{T} \sqrt{T^{1-2^{-m+1}}}}{\sqrt{\left\lfloor T^{1-2^{-m+1}}\right\rfloor}} \leq 2 \sqrt{T}} \tag{91}
\end{equation*}
$$

We also have that

$$
\begin{equation*}
\frac{T_{M}}{\sqrt{T_{M-1}}}=\frac{T}{\left\lfloor T^{\left.1-2^{-\log \log T}\right\rfloor}\right.}=\frac{T}{\lfloor T / 2\rfloor} \leq 4 . \tag{92}
\end{equation*}
$$

Hence, in all cases we have $\frac{T_{m}}{\sqrt{T_{m-1}}} \leq 4 \sqrt{T}$. The regret bound follows by noticing that the regret of the first batch can be bounded by $T_{1} \leq \max \{2 d, \sqrt{T}+1\}$ and substituting in (88).
The second set of batch lengths $\left\{T_{m}\right\}$ is suitable for gap dependent regret bounds. We choose the following batch lengths

$$
\begin{equation*}
T_{m}=d 4^{m}, m \in[M], M=\left\lceil\log _{4} T\right\rceil \tag{93}
\end{equation*}
$$

We notice $T_{1} \geq 2 d, T_{m} \geq T_{m-1} \forall m \in[M], \sum_{m=1}^{M} T_{m} \geq T$ (Algorithm 1 finishes whenever the number of rounds reaches T, hence, the number of batches is upper bounded by M). The gap dependent regret bound directly follows by substituting the batch lengths from (93) in (89).

E Proof of Theorem 2; complexity of Algorithm 1

Theorem. Algorithm 1 finishes in $\tilde{O}\left(T d^{2}+d^{4} M+\mathcal{T}_{\text {opt }} d^{3} M\right)$ runtime and uses $\tilde{O}\left(d^{2}+\mathcal{M}_{\text {opt }}\right)$ memory, where $\mathcal{T}_{\text {opt }}, \mathcal{M}_{\text {opt }}$ are the time and space complexity of the linear optimzation oracle for the action set \mathcal{A}.

Proof. We notice that the runtime and space complexity of LW-ArgMax is

$$
\begin{equation*}
\mathcal{T}_{\mathrm{LW}-\operatorname{ArgMax}}=O\left(\left(d+\mathcal{T}_{\mathrm{opt}}\right) \log ^{3} T\right), \mathcal{M}_{\mathrm{LW}-\operatorname{ArgMax}}=O\left(d \log ^{3} T+\mathcal{M}_{\mathrm{opt}}\right) \tag{94}
\end{equation*}
$$

We next upper bound the complexity of Algorithm 2 As the matrix \mathbf{A} is invertible in all iterations, we can use the rank-one update formula of the determinent [29] to perform steps 5 and 10 in $O(d)$ runtime and $O\left(d^{2}\right)$ space complexity. Namely

$$
\begin{align*}
\operatorname{det}\left(a, \mathbf{A}_{-i}\right) & =\operatorname{det}\left(\mathbf{A}+\left(a-a_{i}\right) e_{i}^{\top}\right)=\operatorname{det}(A)\left(1+e_{i}^{\top} \mathbf{A}^{-1}\left(a-a_{i}\right)\right) \\
& =\left\langle a, \operatorname{det}(\mathbf{A})\left(\mathbf{A}^{-1}\right)^{\top} e_{i}\right\rangle+\operatorname{det}(\mathbf{A})\left(1-e_{i}^{\top} \mathbf{A}^{-1} a_{i}\right) \\
& =\left\langle a, \operatorname{det}(\mathbf{A})\left(\mathbf{A}^{-1}\right)^{\top} e_{i}\right\rangle \tag{95}
\end{align*}
$$

where the last step follows by noticing that the formula is valid for $a=0, \tilde{a}_{i}$ is the i-th column of \mathbf{A}. This requires the inverse of matrix \mathbf{A} which can be computed using rank-one updates in $O\left(d^{2}\right)$ time and $O\left(d^{2}\right)$ space [34]

$$
\begin{equation*}
\left(\mathbf{A}+\left(a-\tilde{a}_{i}\right) e_{i}^{\top}\right)^{-1}=\mathbf{A}^{-1}-\frac{\mathbf{A}^{-1}\left(a-\tilde{a}_{i}\right) e_{i}^{\top} \mathbf{A}^{-1}}{1+e_{i} \mathbf{A}^{-1}\left(a-\tilde{a}_{i}\right)} \tag{96}
\end{equation*}
$$

We notice that for each repetition of the second for loop, \mathbf{A}^{-1} is updated once while $\operatorname{det}(\mathbf{A})$ can be updated at most d times. Hence, the time and space complexity of one repetition of the for loop in Algorithm 2 is $O\left(\mathcal{T}_{\text {LW-ArgMax }} d+d^{2}\right), O\left(\mathcal{M}_{\text {LW-ArgMax }}+d^{2}\right)$ respectively. By Lemma 2 , the for loops is repeated at most $O\left(d^{2} \log d\right)$ times. Hence, the time and space complexity of Algorithm 2 can be bounded as

$$
\begin{equation*}
\mathcal{T}_{\mathrm{LWS}}=O\left(\left(d^{4}+\mathcal{T}_{\mathrm{opt}} d^{3}\right) \log d \log ^{3} T\right), \mathcal{M}_{\mathrm{LWS}}=O\left(d^{2} \log ^{3} T+\mathcal{M}_{\mathrm{opt}}\right) \tag{97}
\end{equation*}
$$

We next upper bound the time and space complexity of Algorithm 1

- The time and space complexity of finding the barycentric spanner in step 5 is $\mathcal{T}_{\text {Lws }}, \mathcal{M}_{\text {LWS }}$ respectively.
- The computation of the least squares matrix requires $O\left(T_{m} d^{2}\right)$ time and $O\left(d^{2}\right)$ space, while its inversion requires $O\left(d^{3}\right)$ runtime. Hence, θ_{m} can be computed in $O\left(T_{m} d^{2}+d^{3}\right)$ time and $O\left(d^{2}\right)$ space.
- Computing the estimated best action in step 11 requires $\mathcal{T}_{\text {opt }}, \mathcal{M}_{\text {opt }}$ time and space respectively.

Hence, in total Algorithm 1 runtime is $O\left(T d^{2}+\left(d^{4}+\mathcal{T}_{\text {opt }} d^{3}\right) M \log d \log ^{3} T\right)$ while the space complexity is $O\left(d^{2} \log ^{3} T+\mathcal{M}_{\mathrm{opt}}\right)$.

F Approximate oracle over \mathcal{X}_{m}

Lemma 8. Consider a given $m \in[M]$ and let $g^{(m)}(\theta)=\frac{1}{\mid H_{m-1}} \sum_{t \in H_{m-1}} \mathcal{O}\left(\mathcal{A}_{t} ; \theta\right), \mathcal{X}_{m}=$ $\left\{g^{(m)}(\theta) \mid \theta \in \Theta^{\prime}\right\}$, where H_{m} is the set of indices for rounds in batch m and $\Theta^{\prime}=[\theta]_{q} \mid \theta \in \Theta$ is a discretization of $\Theta,[\theta]_{q}=q\lfloor\theta \sqrt{d} / q\rfloor / \sqrt{d}$ and q is the discretization parameter. For any $\theta \in \mathcal{S}_{1}, \epsilon \in \mathbb{R}^{+}$, if $q \leq \epsilon / 2$, we have that

$$
\begin{equation*}
\left\langle g^{(m)}\left([\theta]_{q}\right), \theta\right\rangle \geq \sup _{a \in \mathcal{X}_{m}}\langle a, \theta\rangle-\epsilon . \tag{98}
\end{equation*}
$$

Proof. We first observe that

$$
\begin{equation*}
0 \leq \theta-[\theta]_{q}=\theta-\frac{\lfloor\theta \sqrt{d} / q\rfloor}{\sqrt{d} / q} \leq q / \sqrt{d} \mathbf{1} \tag{99}
\end{equation*}
$$

It follows that $\left\|\theta-[\theta]_{q}\right\|_{2} \leq q$. We notice that

$$
\begin{align*}
\left\langle g^{(m)}(\theta), \theta\right\rangle=\frac{1}{\left|H_{m-1}\right|} \sum_{t \in H_{m-1}}\left\langle\mathcal{O}\left(\mathcal{A}_{t} ; \theta\right), \theta\right\rangle & \geq \frac{1}{\left|H_{m-1}\right|} \sum_{t \in H_{m-1}}\left\langle\mathcal{O}\left(\mathcal{A}_{t} ; \theta^{\prime}\right), \theta\right\rangle \\
& =\left\langle g^{(m)}\left(\theta^{\prime}\right), \theta\right\rangle \forall \theta^{\prime} \in \Theta . \tag{100}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\left\langle g^{(m)}(\theta), \theta\right\rangle \geq \sup _{\theta^{\prime} \in \Theta^{\prime}}\left\langle g^{(m)}\left(\theta^{\prime}\right), \theta\right\rangle . \tag{101}
\end{equation*}
$$

We also have that

$$
\begin{aligned}
\left\langle g^{(m)}\left([\theta]_{q}\right), \theta\right\rangle & =\left\langle g^{(m)}\left([\theta]_{q}\right),[\theta]_{q}\right\rangle+\left\langle g^{(m)}\left([\theta]_{q}\right), \theta-[\theta]_{q}\right\rangle \\
& \geq\left\langle g^{(m)}\left([\theta]_{q}\right),[\theta]_{q}\right\rangle-\left\|g^{(m)}\left([\theta]_{q}\right)\right\|_{2}\left\|\theta-[\theta]_{q}\right\|_{2} \\
& \geq\left\langle g^{(m)}\left([\theta]_{q}\right),[\theta]_{q}\right\rangle-q
\end{aligned}
$$

```
Algorithm 4 Efficient Batched Algorithm for contextual linear bandits
    Input: number of batches \(M\), batch lengths \(\left\{T_{m}\right\}_{m=1}^{M}\), horizon \(T\), confidence parameter \(\delta\), set of
    unknown parameters \(\Theta \subseteq \mathcal{B}_{1}\), discretization parameter \(q\).
    Select modified batch lengths \(\left\{\tau_{m}\right\}_{m=1}^{2 M}\) to \(\tau_{m}=T_{m / / 2}\), where \(/ /\) is the integer division.
    Let \(C_{L}=\exp (8) d, \quad \gamma=10 \sqrt{C_{L} d\left(\log (8 M / \delta)+57 d \log ^{2}(6 T)\right)}, \tau_{-1}=\tau_{0}=1, \Theta^{\prime}=\)
    \(\left\{[\theta]_{q}=\lfloor\theta /(\sqrt{d} q)\rfloor \sqrt{d} q \mid \theta \in \Theta\right\}\).
    Let \(g^{(1)}: \Theta^{\prime} \rightarrow \mathbb{R}^{d}\) be defined as \(g^{(1)}(\theta)=0, \forall \theta \in \Theta^{\prime}\), and let \(\mathcal{X}_{1}=\left\{g^{(1)}(\theta) \mid \theta \in \Theta^{\prime}\right\}, \mathcal{X}_{1}^{\prime}=\)
    \(\mathcal{X}_{1} \cup \mathcal{B}_{1 / T}, \Delta_{1}(a)=1 \forall a \in \mathcal{X}_{1}^{\prime}\).
    Initialize: \(\theta_{1}=0, a_{1}^{\star}\) to be a random action in \(\mathcal{X}_{1}\).
    for \(m=1: 2 M\) do
        Calculate \(\left\{a_{i}, \theta^{(i)}\right\}_{i=1}^{d}=\operatorname{LWS}\left(\mathcal{X}_{m}^{\prime}, \eta_{m}=\sqrt{\tau_{m-2}} /(8 \gamma), a_{m}^{\star}, \theta_{m}\right)\), where \(a_{i}=g^{(m)}\left(\theta^{(i)}\right){ }^{9}\)
        Let \(\pi(i)=1 / d \quad \forall i \in[d], a_{0}=a_{m}^{\star}=g^{(m)}\left(\theta^{(0)}\right)\), where \(\theta^{(0)}=\left[\theta_{m}\right]_{q}=q\left\lfloor\theta_{m} \sqrt{d} / q\right\rfloor / \sqrt{d}\).
        for \(i=1: d\) do
            If \(a_{i} \notin \mathcal{B}_{1 / T}\), calculate \(\Delta_{m}\left(a_{i}\right)=\left\langle a_{m}^{\star}-a_{i}, \theta_{m}\right\rangle\) and play \(a=\mathcal{O}\left(\mathcal{A}_{t} ; \theta^{(i)}\right), n_{m}(i)=\)
        \(\left\lceil\frac{\pi(i) \tau_{m} / 4}{\left(1+\sqrt{\tau_{m-1}} \Delta_{m}\left(a_{i}\right) /(8 \gamma)\right)^{2}}\right\rceil\) times. go to step 12 if the number of pulls in the current batch reaches
    \(\tau_{m}\). Terminate Algorithm 1 if the total number of pulls reaches \(T\).
        play \(a=\mathcal{O}\left(\mathcal{A}_{t} ; \theta^{(0)}\right)\) for \(\max \left\{0, \tau_{m}-\sum_{i=1}^{d} n_{m}(i)\right\}\) times.
        Compute the regularized (with \(\lambda=1\) ) least squares estimator \(\mathbf{V}_{m}=\mathbf{I}+\sum_{i=1}^{\tau_{m}} a_{i} a_{i}^{\top}\) and
    \(\theta_{m+1}=\mathbf{V}_{m}^{-1} \sum_{i=1}^{\tau_{m}} r_{i} a_{i}\).
            Update \(a_{m+1}^{\star}=\mathcal{O}_{1 / T}^{+}\left(\mathcal{X}_{m} ; \theta_{m+1}\right)\).
            Let \(g^{(m+1)}(\theta)=\frac{1}{\tau_{m}} \sum_{t \in H_{m}} \mathcal{O}\left(\mathcal{A}_{t} ; \theta\right), \mathcal{X}_{m+1}=\left\{g^{(m+1)}(\theta) \mid \theta \in \Theta^{\prime}\right\}, \mathcal{X}_{m+1}^{\prime}=\mathcal{X}_{m+1} \cup\)
    \(\mathcal{B}_{1 / T}\), where \(H_{m}\) is the set of indices of the rounds in batch \(m\).
```

$$
\begin{align*}
& \stackrel{(i)}{\geq}\left\langle g^{(m)}(\theta),[\theta]_{q}\right\rangle-q \\
& \geq\left\langle g^{(m)}(\theta), \theta\right\rangle-\left\|g^{(m)}(\theta)\right\|_{2}\left\|\theta-[\theta]_{q}\right\|_{2}-q \\
& \geq\left\langle g^{(m)}(\theta), \theta\right\rangle-2 q \stackrel{(i i)}{\geq} \sup _{\theta^{\prime} \in \Theta^{\prime}}\left\langle g^{(m)}\left(\theta^{\prime}\right), \theta\right\rangle-2 q=\sup _{a \in \mathcal{X}_{m}}\langle a, \theta\rangle-2 q, \tag{102}
\end{align*}
$$

where (i) and (ii) follow from 101).

G Pseudo-code of efficient batched algorithm for contextual linear bandits

The pseudo-code for our algorithm for linear contextual bandits is provided in Algorithm 4 . The algorithm follows similar steps to Algorithm 1 with the following exceptions. The set of actions \mathcal{X}_{m} is updated (see step 14) in every batch using contexts observed in the previous batch. It is important to note that these sets \mathcal{X}_{m} (in steps 4 and 14 are never actually computed; the definitions are provided for notation purposes. We only need an approximate optimizer for the set \mathcal{X}_{m} to construct the approximate barycentric spanner in Algorithm 2 As shown in App. F, $g^{(m)}\left([\theta]_{q}\right)$ for sufficiently small q can serve as our approximate oracle. Furthermore, the computation of $g^{(m)}\left([\theta]_{q}\right)$ can be performed using $O(T)$ calls to the linear optimization oracle $\mathcal{O}\left(\mathcal{A}_{t} ;\right.$.), hence, with complexity of $O\left(T \mathcal{T}_{\text {opt }}\right)$.
Additionally, we assume that LW-ArgMax (and LWS) returns for each a_{i} the value $\theta^{(i)}=\left[\tilde{\theta}_{i}\right]_{q}$. Here, $\tilde{\theta}_{i}$ is the input to the approximate linear optimization oracle which yielded the output a_{i}. The final difference from Algorithm 1 is that we do not play action a_{i} for $n_{m}(i)$ times (note that a_{i} may not be in \mathcal{A}_{t}); instead we play policy $\mathcal{O}\left(\mathcal{A}_{t} ; \theta^{(i)}\right)$ for $n_{m}(i)$ times, where $\theta^{(i)}$ is the parameter associated with a_{i} returned by LWS (Algorithm 2) as described earlier.

[^4]
H Proof of Theorem 3: regret analysis for contextual bandits

Theorem 3. Consider a contextual linear bandit instance with \mathcal{A}_{t} generated from an unknown distribution \mathcal{D}. There exists a universal constant C and a choice for batch lengths such that Algorithm 4, with $q=(1-\exp (-1)) /\left(24 T^{7+12 \log T}\right)$, finishes in $O(\log \log T)$ batches with regret upper bounded as

$$
R_{T} \leq C \gamma \sqrt{T} \log \log T
$$

with probability at least $1-2 \delta$, where $\gamma=10 \sqrt{C_{L} d\left(\log (8 M / \delta)+57 d \log ^{2}(6 T)\right)}$. Moreover, the running time and space complexity are $\tilde{O}\left(d^{4}+\mathcal{T}_{\text {opt }} d^{3} T\right)$ and $\tilde{O}\left(d^{2}+\mathcal{M}_{\text {opt }}\right)$, respectively.

Proof. Recall that at each round t, Algorithm 4 pulls action a_{t} associated with a value θ_{t} (see step 7 in Algorithm (4). To upper bound the regret, we follow a technique proposed in [18] by first upper bounding the quantity

$$
\begin{equation*}
R_{T}^{L}=\sum_{t=1}^{T} \sup _{\theta \in \Theta}\left\langle g(\theta)-g\left(\theta_{t}\right), \theta_{\star}\right\rangle \tag{103}
\end{equation*}
$$

which can be thought of as the regret of the algorithm on a reduced linear bandit instance [18]. Then we can use Theorem 1 in [18] which states that $\left|R_{T}-R_{T}^{L}\right|=\tilde{O}(\sqrt{T})$ with high probability to upper bound the regret R_{T}.
As in the proof of Theorem 1 instead of analyzing Algorithm 4 which ends batch m if the total number of pulls reaches T_{m}, we analyze a variant algorithm that completes all the required pulls of the actions in the barycentric spanner. We bound the regret of the variant algorithm when a good event \tilde{G} (that we define later) holds, and show that $\mathbb{P}[\tilde{G}] \geq 1-\delta$. Then, we show that conditioned on \tilde{G}, it holds that $\sum_{i=1}^{d} n_{m}(i) \leq \tau_{m}$, for all batches $m \in[2 M]$ (see 115), which implies that Algorithm 4 coincides with the variant algorithm on \tilde{G} in this case. We also refer to the variant algorithm as Algorithm 4 for simplicity.
Recall that

$$
\begin{equation*}
g(\theta)=\mathbb{E}_{\mathcal{A} \sim \mathcal{D}}[\mathcal{O}(\mathcal{A} ; \theta)], g^{(m)}(\theta)=\frac{1}{\left|H_{m-1}\right|} \sum_{t \in H_{m-1}} \mathcal{O}\left(\mathcal{A}_{t} ; \theta\right), \mathcal{X}_{m}=\left\{g^{(m)}(\theta) \mid \theta \in \Theta^{\prime}\right\} \tag{104}
\end{equation*}
$$

where H_{m} is the set of indices for the rounds in batch m and $\Theta^{\prime}=\left\{[\theta]_{q} \mid \theta \in \Theta\right\}$ is a discretization of $\Theta,[\theta]_{q}=q\lfloor\theta \sqrt{d} / q\rfloor / \sqrt{d}$ and q is the discretization parameter. Recall also that \mathbf{V}_{m} is the regularized least squares matrix in step 12 of Algorithm 4 with $\lambda=1$, and denote $\epsilon_{m}=\sup _{\theta^{\prime} \in \Theta^{\prime}, \theta \in \Theta}\left|\left\langle g^{m}\left(\theta^{\prime}\right)-g\left(\theta^{\prime}\right), \theta\right\rangle\right|$ in the extended reals $\mathbb{R} \cup\{\infty\}$. We also denote $\epsilon(t)=\left\langle g\left(\theta^{(t)}\right)-g^{(m)}\left(\theta^{(t)}\right), \theta_{\star}\right\rangle$, where $g^{(m)}\left(\theta^{(t)}\right) \in \mathcal{X}_{m}, r_{t}$ are the action and reward at iteration t of batch m. We first upper bound the error in estimating $\mu_{g\left(\theta^{\prime}\right)}=\left\langle g\left(\theta^{\prime}\right), \theta_{\star}\right\rangle$ for an action $g\left(\theta^{\prime}\right)$ at the end of batch m for $\theta^{\prime} \in \Theta^{\prime}$. We have that for any $a \in \mathbb{R}^{d},\left|\left\langle a, \theta_{m+1}-\theta_{\star}\right\rangle\right|$ can be decomposed as

$$
\begin{aligned}
\left|\left\langle a, \theta_{m+1}-\theta_{\star}\right\rangle\right| & =\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} r_{t} a_{t}-\theta_{\star}\right\rangle\right| \stackrel{(i)}{=}\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}}\left(\theta_{\star}^{\top} g\left(\theta^{(t)}\right)+\eta_{t}^{\prime}\right) g^{(m)}\left(\theta^{(t)}\right)-\theta_{\star}\right\rangle\right| \\
& =\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}}\left(\theta_{\star}^{\top} g^{(m)}\left(\theta^{(t)}\right)+\epsilon(t)+\eta_{t}^{\prime}\right) g^{(m)}\left(\theta^{(t)}\right)-\theta_{\star}\right\rangle\right| \\
& =\left|\left\langle a, \mathbf{V}_{m}^{-1}\left(\left(\mathbf{V}_{m}-\mathbf{I}\right) \theta_{\star}+\sum_{t=1}^{\tau_{m}}\left(\epsilon(t)+\eta_{t}^{\prime}\right) g^{(m)}\left(\theta^{(t)}\right)\right)-\theta_{\star}\right\rangle\right| \\
& =\left|\left\langle a,-\mathbf{V}_{m}^{-1} \theta_{\star}+\mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}}\left(\epsilon(t)+\eta_{t}^{\prime}\right) g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right| \\
& \leq\left|\left\langle a,-\mathbf{V}_{m}^{-1} \theta_{\star}\right\rangle\right|+\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} \epsilon(t) g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right|
\end{aligned}
$$

$$
\begin{align*}
& \quad+\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} \eta_{t}^{\prime} g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right| \\
& \leq\|a\|_{\mathbf{V}_{m}^{-1}}\left\|\theta_{\star}\right\|_{\mathbf{V}_{m}^{-1}}+\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} \epsilon(t) g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right| \\
& \quad+\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} \eta_{t}^{\prime} g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right| \\
& \tag{105}\\
& \stackrel{(i i)}{\leq}\|a\|_{\mathbf{V}_{m}^{-1}}+\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} \epsilon(t) g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right|+\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} \eta_{t}^{\prime} g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right|,
\end{align*}
$$

where (i) follows from Theorem 1 in [18], η_{t}^{\prime} is a zero mean noise conditioned on the filtration of history and $\theta^{(t)}$ and (ii) uses $\mathbf{V}_{m} \geq \mathbf{I}$. We next bound the term $\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t \in H_{m}} \epsilon(t) g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right|$. We have that

$$
\begin{align*}
\left|\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} \epsilon(t) g^{(m)}\left(\theta^{(t)}\right)\right\rangle\right| & \leq \sqrt{\tau_{m} \sum_{t=1}^{\tau_{m}} \epsilon(t)^{2} a^{\top} \mathbf{V}_{m}^{-1} g^{(m)}\left(\theta^{(t)}\right) g^{(m)}\left(\theta^{(t)}\right)^{\top} \mathbf{V}_{m}^{-1} a} \\
& \stackrel{(i)}{\leq} \epsilon_{m} \sqrt{\tau_{m} \sum_{t=1}^{\tau_{m}} a^{\top} \mathbf{V}_{m}^{-1} g^{(m)}\left(\theta^{(t)}\right) g^{(m)}\left(\theta^{(t)}\right)^{\top} \mathbf{V}_{m}^{-1} a} \\
& \leq \epsilon_{m} \sqrt{\tau_{m} a^{\top} \mathbf{V}_{m}^{-1}\left(\mathbf{V}_{m}-\mathbf{I}\right) \mathbf{V}_{m}^{-1} a} \\
& \left.\leq \epsilon_{m} \sqrt{\tau_{m}\left(\|a\|_{\mathbf{V}_{m}^{-1}}^{2}-\|a\|_{\mathbf{V}_{m}^{-2}}^{2}\right.}\right) \leq \epsilon_{m} \sqrt{\tau_{m}\left(\|a\|_{\mathbf{V}_{m}^{-1}}^{2}-\|a\|_{\mathbf{V}_{m}^{-2}}^{2}\right)} \\
& \leq \epsilon_{m} \sqrt{\tau_{m}\left(\|a\|_{\mathbf{V}_{m}^{-1}}^{2}-\|a\|_{\mathbf{V}_{m}^{-2}}^{2}\right)} \leq \epsilon_{m} \sqrt{\tau_{m}\|a\|_{\mathbf{V}_{m}^{-1}}^{2}}, \tag{106}
\end{align*}
$$

where (i) follows by the definition of $\epsilon_{m}=\sup _{\theta^{\prime} \in \Theta^{\prime}, \theta \in \Theta}\left|\left\langle g^{m}\left(\theta^{\prime}\right)-g\left(\theta^{\prime}\right), \theta\right\rangle\right|$ and $\epsilon(t)=$ $\left\langle g\left(\theta^{(t)}\right)-g^{(m)}\left(\theta^{(t)}\right), \theta_{\star}\right\rangle$. We have from Theorem 2 in [18] that the following event holds with probability at least $1-\delta /(4 M)$

$$
\begin{equation*}
\mathcal{G}_{m}^{\epsilon}: \epsilon_{m} \leq 2 \sqrt{\frac{\log \left(8 M\left|\Theta^{\prime}\right| / \delta\right)}{\tau_{m-1}}} \tag{107}
\end{equation*}
$$

We also have that from eq. (20.2) of [24] the following event holds with probability at least $1-\delta /(4 M)$

$$
\begin{align*}
\mathcal{G}_{m}^{\eta}: \mid\left\langle a, \mathbf{V}_{m}^{-1} \sum_{t=1}^{\tau_{m}} \eta_{t}^{\prime} g^{(m)}\left(\theta^{(t)}\right)\right\rangle & \leq \sqrt{2 \sum_{t=1}^{\tau_{m}}\left(a^{\top} \mathbf{V}_{m}^{-1} g^{(m)}\left(\theta^{(t)}\right)\right)^{2} \log \left(4 M\left|\Theta^{\prime}\right| / \delta\right)} \\
& \leq \sqrt{2\|a\|_{\mathbf{V}_{m}^{-1}}^{2} \log \left(4 M\left|\Theta^{\prime}\right| / \delta\right)} \forall a \in \tilde{\mathcal{X}}_{m}, \tag{108}
\end{align*}
$$

where (i) follows by expanding $\left(a^{\top} \mathbf{V}_{m}^{-1} g^{(m)}\left(\theta^{(t)}\right)\right)^{2}$ as in 106. From Lemma 8 we have that for $q=\left(1-e^{-1}\right) /\left(24 T^{7+12} \log T\right)$, the function $g^{(m)}\left([\theta]_{q}\right)$ is an approximate linear optimization oracle with additive gap at most $\left(1-e^{-1}\right) /\left(12 T^{7+12 \log T}\right)$. Hence, using Lemma $1 \|^{0}$ and Lemma 2 Algorithm 2 finds a set \mathcal{C}_{m} such that $\left\{\phi_{m}(a) \mid a \in \mathcal{C}_{m}\right\}$ is an e^{8} approximate spanner for $\tilde{\mathcal{X}}_{m}$. By the properties of the C_{L}-approximate design, similar to 53) we have that $\left\|\phi_{m}(a)\right\|_{\mathbf{V}_{m}^{-1}} \leq$ $\sqrt{C_{L} d / \tau_{m}} \forall a \in \mathcal{X}_{m}^{\prime}$, where $C_{L}=e^{8} d$. Hence, substituting from (106), (107) and (108) in (105) we get that the following holds on $\mathcal{G}_{m}^{\eta} \cap \mathcal{G}_{m}^{\epsilon}$
$\left|\left\langle\phi_{m}(a), \theta_{m+1}-\theta_{\star}\right\rangle\right| \leq \sqrt{C_{L} d / \tau_{m}}+4 \sqrt{\frac{C_{L} d \log \left(8 M\left|\Theta^{\prime}\right| / \delta\right)}{\tau_{m-1}}} \leq 5 \sqrt{\frac{C_{L} d \log \left(8 M\left|\Theta^{\prime}\right| / \delta\right)}{\tau_{m-1}}} \forall a \in \mathcal{X}_{m}^{\prime}$.

[^5]We notice that for $q=\left(1-e^{-1}\right) /\left(24 T^{7+12 \log T}\right)$, we have that $\left|\Theta^{\prime}\right| \leq 6 T^{3 d(7+12 \log T)}$. Hence, $\log \left|\Theta^{\prime}\right| \leq 57 d \log ^{2}(6 T)$. Hence, $C_{L} d \log \left(8 M\left|\Theta^{\prime}\right| / \delta\right)=C_{L} d\left(\log (8 M / \delta)+57 d \log ^{2}(6 T)\right)$. Substituting in 109) we get that the following holds on $\mathcal{G}_{m}^{\eta} \cap \mathcal{G}_{m}^{\epsilon}$

$$
\begin{equation*}
\left|\left\langle\phi_{m}(a), \theta_{m+1}-\theta_{\star}\right\rangle\right| \leq 5 \sqrt{C_{L} d\left(\log (8 M / \delta)+57 d \log ^{2}(6 T)\right) / \tau_{m-1}} \leq \frac{\gamma / 2}{\sqrt{\tau_{m-1}}} \tag{110}
\end{equation*}
$$

By definition of ϕ_{m} it follows that the following holds on $\mathcal{G}_{m}^{\eta} \cap \mathcal{G}_{m}^{\epsilon}$

$$
\begin{equation*}
\left|\left\langle a, \theta_{m+1}-\theta_{\star}\right\rangle\right| \leq \frac{\gamma / 2}{\sqrt{\tau_{m-1}}}+\frac{\Delta_{m}(a)}{8} \sqrt{\frac{\tau_{m-2}}{\tau_{m-1}}} \forall a \in \mathcal{X}_{m}^{\prime} \tag{111}
\end{equation*}
$$

Hence, by definition of $\mathcal{G}_{m}^{\epsilon}$ in (107) the following holds on $\mathcal{G}_{m}^{\eta} \cap \mathcal{G}_{m}^{\epsilon}$

$$
\begin{align*}
\left|\left\langle a, \theta_{m+1}\right\rangle-\mu_{a}\right| & \leq\left|\left\langle a, \theta_{m+1}-\theta_{\star}\right\rangle\right|+\left|\left\langle a, \theta_{\star}\right\rangle-\mu_{a}\right| \\
& \leq \frac{\gamma / 2}{\sqrt{\tau_{m-1}}}+\frac{\Delta_{m}(a)}{8} \sqrt{\frac{\tau_{m-2}}{\tau_{m-1}}}+\epsilon_{m} \\
& \leq \frac{\gamma}{\sqrt{\tau_{m-1}}}+\frac{\Delta_{m}(a)}{8} \sqrt{\frac{\tau_{m-2}}{\tau_{m-1}}} \forall a \in \mathcal{X}_{m}^{\prime} \tag{112}
\end{align*}
$$

We recall that $\mathbb{P}\left[\mathcal{G}_{m}^{\epsilon}\right] \geq 1-\delta /(4 M), \mathbb{P}\left[\mathcal{G}_{m}^{\eta}\right] \geq 1-\delta /(4 M)$. Hence, by the union bound we have that

$$
\begin{equation*}
\mathbb{P}[\tilde{\mathcal{G}}] \geq 1-\delta, \tilde{\mathcal{G}}=\cap_{m \in[2 M]}\left(\mathcal{G}_{m}^{\eta} \cap \mathcal{G}_{m}^{\epsilon}\right) \tag{113}
\end{equation*}
$$

Then, following the proof of Lemma 5 by replacing every τ_{m} with τ_{m-1} and every τ_{m-1} with τ_{m-2} we get that the following event hold on $\tilde{\mathcal{G}}$

$$
\begin{equation*}
-4 \frac{\gamma}{\sqrt{\tau_{m-2}}}+\frac{1}{2} \Delta_{a} \leq \Delta_{m}(a) \leq 2 \Delta_{a}+4 \frac{\gamma}{\sqrt{\tau_{m-2}}} \forall a \in \mathcal{A}^{\prime} \forall m \in M \tag{114}
\end{equation*}
$$

Hence, following the same steps as in Lemma6we get that there is a universal constant C such that the following holds on $\tilde{\mathcal{G}}$

$$
\begin{equation*}
R_{T}^{L} \leq C \sum_{m=1}^{2 M} \frac{\gamma \tau_{m}}{\sqrt{\tau_{m-2}}}=C \sum_{m=1}^{2 M} \frac{\gamma T_{m / / 2}}{\sqrt{T_{m / / 2-1}}}, \sum_{i=1}^{d} n_{m}(i) \leq \tau_{m} \tag{115}
\end{equation*}
$$

where R_{T}^{L} is the regret of the algorithm on the linear bandit instance defined in 103). Using the batch lengths in (90), we get, from (91), that the following holds on $\tilde{\mathcal{G}}$

$$
\begin{equation*}
R_{T}^{L} \leq 8 C \gamma \sqrt{T} M \tag{116}
\end{equation*}
$$

From Theorem 1 in [18] we have that $\left|R_{T}^{L}-R_{T}\right| \leq \sqrt{T \log (T / \delta)}$ with probability at least $1-\delta$. By the union bound and triangle inequality it follows that

$$
\begin{equation*}
R_{T} \leq 16 C \gamma \sqrt{T} M \tag{117}
\end{equation*}
$$

with probability at least $1-2 \delta$.
The complexity result follows from Theorem 2 by observing that computing $g^{(m)}\left([\theta]_{q}\right)$ (our approximate oracle) requires at most T calls to $\mathcal{O}\left(\mathcal{A}_{t} ;\right.$.). Hence, the time and space complexity of Algorithm 4 are $O\left(\left(d^{4}+\mathcal{T}_{\text {opt }} d^{3} T\right) M \log d \log ^{3} T\right)$ and $O\left(d^{2} \log ^{3} T+\mathcal{M}_{\text {opt }}\right)$, respectively.

I Numerical comparison of complexity of our scheme

In this appendix we present a small experiment to compare the computational complexity of computing the exploration policy of Algorithm 4 versus the complexity of computing the policy in [40] (complexity of one batch). We do not consider other batched algorithms such as [32] since they are not feasible to implement even for a small number of actions. We used $d=5$ dimensions and a batch of size 100 iterations. For simplicity we use a fixed action set (unit sphere), however, this knowledge

Figure 1: Complexity of computing our exploration policy versus the state of the art complexity.
is not revealed to the algorithms, i.e., the algorithms assume that the action set may change over time. As the policy of [40] requires to solve a non-convex optimization problem, it is not feasible to implement it for infinite number of actions. Instead, we solve the optimization problem over a finite subset of k actions sampled uniformly at random from the action set. In contrast, our algorithm can be directly applied for the infinite action set, hence, the computational complexity will not depend on k. In Fig. 1, we plot the time complexity versus the sampled number of actions (on $\operatorname{Intel}(\mathrm{R})$ Xeon(R) CPU @ $2.20 \mathrm{GHz}, 56 \mathrm{MB}$ cache). We observe that for moderately large number of actions, our algorithm achieves significant savings in computational complexity as compared to the scheme of [40].

[^0]: ${ }^{1} \tilde{O}$ hides \log factors.

[^1]: ${ }^{2}$ We discuss how to select M and $\left\{T_{m}\right\}$ in App.D

[^2]: ${ }^{3}$ Adding reward samples from the estimated best action a_{m}^{\star} can only improve the least squares estimator.
 ${ }^{4}$ This summation assumes finiteness of the set \mathcal{S} which suffices for our application.
 ${ }^{5}$ The technique of inverse gap weighting was employed in [2, 41], albeit with a different weighting approach using inverse gap instead of squared inverse gap, as utilized in our proposed schemes.
 ${ }^{6}$ We show in the proof of Theorem 1 that $\sum_{i=1}^{d} n_{m}(i) \leq T_{m} \forall m \in[M]$ with high probability, hence, all the required $n_{m}(i)$ action pulls can be finished within the batch.

[^3]: ${ }^{7}$ A related problem was faced in [41], but with a different function hence, the resulting strategy does not apply in our case. Both [41] and our solution use the standard idea of line search, albeit with different steps and different number of iterations. The proof that our line search provides an approximate optimization oracle turns out to be much more involved than that of [41].
 ${ }^{8}$ The linear optimization problem $\max _{a \in \mathcal{A}^{\prime}}\langle a, \theta\rangle$ can be solved by comparing $\max _{a \in \mathcal{A}}\langle a, \theta\rangle$ and $\max _{a \in \mathcal{B}_{1 / T}}\langle a, \theta\rangle=1 / T$.

[^4]: ${ }^{9}$ Recall that in the contextual setting we assume that LW-ArgMax (and LWS) returns for each a_{i} the value $\theta^{(i)}=\left[\tilde{\theta}_{i}\right]_{q}$, where $\tilde{\theta}_{i}$ is the input to the approximate linear optimization oracle that resulted in the output a_{i}.

[^5]: ${ }^{10}$ The verification of the conditions stated in Lemma 1 is equivalent to the verification conducted at the beginning of the proof of Theorem 1

