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Abstract

In many real-world tasks, the concerned objects can be represented as a multi-
instance bag associated with a candidate label set, which consists of one ground-
truth label and several false positive labels. Multi-instance partial-label learning
(MIPL) is a learning paradigm to deal with such tasks and has achieved favorable
performances. Existing MIPL approach follows the instance-space paradigm by
assigning augmented candidate label sets of bags to each instance and aggregating
bag-level labels from instance-level labels. However, this scheme may be subopti-
mal as global bag-level information is ignored and the predicted labels of bags are
sensitive to predictions of negative instances. In this paper, we study an alternative
scheme where a multi-instance bag is embedded into a single vector representation.
Accordingly, an intuitive algorithm named DEMIPL, i.e., Disambiguated attention
Embedding for Multi-Instance Partial-Label learning, is proposed. DEMIPL em-
ploys a disambiguation attention mechanism to aggregate a multi-instance bag into
a single vector representation, followed by a momentum-based disambiguation
strategy to identify the ground-truth label from the candidate label set. Further-
more, we introduce a real-world MIPL dataset for colorectal cancer classification.
Experimental results on benchmark and real-world datasets validate the superiority
of DEMIPL against the compared MIPL and partial-label learning approaches.

1 Introduction

Significant advancements in supervised machine learning algorithms have been achieved by utilizing
large amounts of labeled training data. However, in numerous tasks, training data is weakly-supervised
due to the substantial costs associated with data labeling [1–6]. Weak supervision can be broadly
categorized into three types: incomplete, inexact, and inaccurate supervision [7]. Multi-instance
learning (MIL) and partial-label learning (PLL) are typical weakly-supervised learning frameworks
based on inexact supervision. In MIL, samples are represented by collections of features called
bags, where each bag contains multiple instances [8–19]. Only bag-level labels are accessible during
training, while instance-level labels are unknown. Consequently, the instance space in MIL contains
inexact supervision, signifying that the number and location of positive instances within a positive
bag remain undetermined. PLL associates each instance with a candidate label set that contains
one ground-truth label and several false positive labels [20–35]. As a result, the label space in PLL
embodies inexact supervision, indicating that the ground-truth label of an instance is uncertain.
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Figure 1: A brief illustration of DEMIPL, where S and Ŷ are candidate label sets and predicted labels,
respectively. The ground-truth labels are shown in red.

However, inexact supervision can exist in instance and label space simultaneously, i.e., dual inexact
supervision [36]. This phenomenon can be observed in histopathological image classification, where
an image is typically partitioned into a multi-instance bag [37–40], and labeling ground-truth labels
incurs high costs due to the need for specialized expertise. Consequently, utilizing crowd-sourced
candidate label sets will significantly reduce the labeling cost [41]. For this purpose, a learning
paradigm called multi-instance partial-label learning (MIPL) has been proposed to work with dual
inexact supervision. In MIPL, a training sample is represented as a multi-instance bag associated with
a bag-level candidate label set, which comprises a ground-truth label along with several false positive
labels. It is noteworthy that the multi-instance bag includes at least one instance that is affiliated with
the ground-truth label, while none of the instances belong to any of the false positive labels.

Due to the difficulty in handling dual inexact supervision, to the best of our knowledge, MIPLGP
[36] is the only viable MIPL approach. MIPLGP learns from MIPL data at the instance-level by
utilizing a label augmentation strategy to assign an augmented candidate label set to each instance,
and integrating a Dirichlet disambiguation strategy with the Gaussian processes regression model [42].
Consequently, the learned features of MIPLGP primarily capture local instance-level information,
neglecting global bag-level information. This characteristic renders MIPLGP susceptible to negative
instance predictions when aggregating bag-level labels from instance-level labels. As illustrated in
Figure 1(a), identical or similar negative instances can simultaneously occur in multiple multi-instance
bags with diverse candidate label sets, thereby intensifying the challenge of disambiguation.

In this paper, we overcome the limitations of MIPLGP by introducing a novel algorithm, named
DEMIPL, i.e., Disambiguated attention Embedding for Multi-Instance Partial-Label learning, based
on the embedded-space paradigm. Figure 1(b) illustrates that DEMIPL aggregates each multi-instance
bag into a single vector representation, encompassing all instance-level features within the bag.
Furthermore, DEMIPL effectively identifies the ground-truth label from the candidate label set.

Our contributions can be summarized as follows: First, we propose a disambiguation attention
mechanism for learning attention scores in multi-instance bags. This is in contrast to existing
attention-based MIL approaches that are limited to handling classifications with exact bag-level labels
[13, 14, 43]. Second, we propose an attention loss function that encourages the attention scores
of positive instances to approach one, and those of negative instances to approach zero, ensuring
consistency between attention scores and unknown instance-level labels. Third, we leverage the
multi-class attention scores to map the multi-instance bags into an embedded space, and propose a
momentum-based disambiguation strategy to identify the ground-truth labels of the multi-instance
bags from the candidate label sets. In addition, we introduce a real-world MIPL dataset for colorectal
cancer classification comprising 7000 images distributed across seven categories. The candidate
labels of this dataset are provided by trained crowdsourcing workers.

Experiments are conducted on the benchmark as well as real-world datasets. The experimental results
demonstrate that: (a) DEMIPL achieves higher classification accuracy on both benchmark and real-
world datasets. (b) The attention loss effectively enhances the disambiguation attention mechanism,
accurately discerning the significance of positive and negative instances. (c) The momentum-based
disambiguation strategy successfully identifies the ground-truth labels from candidate label sets,
especially in scenarios with an increasing number of false positive labels.

The remainder of the paper is structured as follows. First, we introduce DEMIPL in Section 2 and
present the experimental results in Section 3. Finally, we conclude the paper in Section 4.
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Figure 2: The framework of DEMIPL, where La and Lm are the attention loss and momentum-based
disambiguation loss, respectively.

2 Methodology

2.1 Notations and Framework of DEMIPL

Let X = Rd represent the instance space, and let Y = {l1, l2, · · · , lk} represent the label
space containing k class labels. The objective of MIPL is to derive a classifier f : 2X → Y .
D = {(Xi,Si) | 1 ≤ i ≤ m} is a training dataset that consists of m bags and their associated
candidate label sets. Particularly, (Xi,Si) is the i-th multi-instance partial-label sample, where
Xi = {xi,1,xi,2, · · · ,xi,ni} constitutes a bag with ni instances, and each instance xi,j ∈ X for
∀j ∈ {1, 2, · · · , ni}. Si ⊆ Y is the candidate label set that conceals the ground-truth label Yi,
i.e., Yi ∈ Si. It is worth noting that the ground-truth label is unknown during the training process.
Assume the latent instance-level labels within Xi is yi = {yi,1, yi,2, · · · , yi,ni

}, then ∃yi,j = Yi
and ∀yi,j /∈ Y \ {Yi} hold. In the context of MIPL, an instance is considered a positive instance if
its label is identical to the ground-truth label of the bag; otherwise, it is deemed a negative instance.
Moreover, the class labels of negative instances do not belong to the label space.

The framework of the proposed DEMIPL is illustrated in Figure 2. It consists of three main steps.
First, we extract instances in the multi-instance bag Xi and obtain instance-level feature Hi. Next,
we employ the disambiguation attention mechanism to integrate the multi-instance bag into a single
feature vector zi. Finally, we use a classifier to predict the classification confidences P i of the
multi-instance bag. To enhance classification performance, we introduce two loss functions for model
training: the attention loss La and the momentum-based disambiguation loss Lm. During the training
process, the attention mechanism and the classifier work collaboratively.

2.2 Disambiguation Attention Mechanism

Based on the embedded-space paradigm, a key component of DEMIPL is the disambiguation attention
mechanism. The attention mechanisms are common models [44–46], which can calculate attention
scores to determine the contribution of each instance to the multi-instance bag [13, 14]. The attention
scores are then utilized to aggregate the instance-level features into a single vector representation.

For a multi-instance bag Xi = {xi,1,xi,2, · · · ,xi,ni}, we employ a neural network-based function
parameterized by h to extract its feature information:

Hi = h(Xi) = {hi,1,hi,2, · · · ,hi,ni
}, (1)

where hi,j = h(xi,j) ∈ Rd′ is the feature of the j-th instance within i-th bag. For the MIPL problems,
we propose a multi-class attention mechanism. First, we calculate the relevance of each instance to
all classes, and then transform the relevance into the contribution of each instance to the bag-level
feature by a learnable linear model. The attention score ai,j of xi,j is calculated as follows:

ai,j =
1

1 + exp
{
−W>

(
tanh

(
W>

v hi,j + bv

)
� sigm

(
W>

u hi,j + bu

))} , (2)

3



where W> ∈ R1×k, W>
v , W

>
u ∈ Rk×d′ , and bv, bu ∈ Rk are parameters of the attention mecha-

nism. tanh(·) and sigm(·) are the hyperbolic tangent and sigmoid functions to generate non-linear
outputs for the models, respectively. � represents an element-wise multiplication. Consequently, the
bag-level feature is aggregated by weighted sums of instance-level features:

zi =
1∑ni

j=1 ai,j

ni∑
j=1

ai,jhi,j , (3)

where zi is the bag-level feature of Xi. To ensure that the aggregated features accurately represent
the multi-instance bag, it is necessary to maintain the consistency between attention scores and
instance-level labels, that is, the attention scores of positive instances should be significantly higher
than those of negative instances. To achieve this, the proposed attention loss is shown below:

La = − 1

m

m∑
i=1

ni∑
j=1

ai,j log ai,j . (4)

Different from existing attention-based MIL approaches where most of them can only handle binary
classification, DEMIPL produces multi-class attention scores using Equation (2). Furthermore, unlike
loss-based attention [14] that extends binary attention score to multi-class using a naive softmax
function, DEMIPL utilizes a learnable model with the attention loss to encourage attention scores
of negative and positive instances to approach 0 and 1, respectively. The ambiguity in attention
scores is reduced since the differences in attention scores between positive and negative instances are
amplified. As a result, the disambiguated attention scores can make bag-level vector representations
discriminative, thereby enabling the classifier to accurately identify ground-truth labels.

2.3 Momentum-based Disambiguation Strategy

After obtaining the bag-level feature, the goal is to accurately identify the ground-truth label from
the candidate label set. Therefore, we propose a novel disambiguation strategy, namely using the
momentum-based disambiguation loss to compute the weighted sum of losses for each category.
Specifically, the proposed momentum-based disambiguation loss is defined as follows:

Lm =
1

m

m∑
i=1

k∑
c=1

w
(t)
i,c `

(
f (t)
c (z

(t)
i ),Si

)
, (5)

where (t) refers to the t-th epoch. z(t)
i is the bag-level feature of multi-instance bag Xi and f (t)

c (·)
is the model output on the c-th class at the t-th epoch. `(·) is the cross-entropy loss, and w(t)

i,c weights
the loss value on the c-th class at the t-th epoch.

Following the principle of the identification-based disambiguation strategy [47], the label with the
minimal loss value on the candidate label set can be considered the ground-truth label. We aim to
assign a weight of 1 to the single ground-truth label and a weight of 0 to the rest of the candidate
labels. However, the ground-truth label is unknown during the training process. To overcome this
issue, we allocate weights based on the magnitude of class probabilities, ensuring that larger class
probabilities are associated with higher weights. Specifically, we initialize the weights by:

w
(0)
i,c =

{
1
|Si| if Yi,c ∈ Si,
0 otherwise,

(6)

where 1
|Si| is the cardinality of the candidate label set Si. The weights are updated as follows:

w
(t)
i,c =

{
λ(t)w

(t−1)
i,c + (1− λ(t))

f(t)
c (z

(t)
i )∑

j∈Si
f
(t)
j (z

(t)
j )

if Yi,c ∈ Si,
0 otherwise,

(7)

where the momentum parameter λ(t) = T−t
T is a trade-off between the weights at the last epoch and

the outputs at the current epoch. T is the maximum training epoch.

It is worth noting that the momentum-based disambiguation strategy is a general form of the pro-
gressive disambiguation strategy. Specifically, when λ(t) = 0, the momentum-based disambigua-
tion strategy degenerates into the progressive disambiguation strategy [47]. When λ(t) = 1, the
momentum-based disambiguation strategy degenerates into the averaging-based disambiguation
strategy [21], which equally treats every candidate label.
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2.4 Synergy between Attention Mechanism and Disambiguation Strategy

Combining the attention loss and disambiguation loss, the full loss function is derived as follows:

L = Lm + λaLa, (8)

where λa serves as a constant weight for the attention loss. In each iteration, the disambiguation
attention mechanism aggregates a discriminative vector representation for each multi-instance bag.
Subsequently, the momentum-based disambiguation strategy takes that feature as input and yields
the disambiguated candidate label set, i.e., class probabilities. Meanwhile, the attention mechanism
relies on the disambiguated candidate label set to derive attention scores. Thus, the disambiguation
attention mechanism and the momentum-based disambiguation strategy work collaboratively.

3 Experiments

3.1 Experimental Setup

Benchmark Datasets We utilize four benchmark MIPL datasets stemming from MIPLGP literature
[36], i.e., MNIST-MIPL, FMNIST-MIPL, Birdsong-MIPL, and SIVAL-MIPL from domains of image and
biology [48–51]. Table 1 summarizes the characteristics of both the benchmark and real-world
datasets. We use #bags, #ins, #dim, avg. #ins, #class, and avg. #CLs to denote the number of bags,
number of instances, dimension of each instance, average number of instances in all bags, number of
class labels, and the average size of candidate label set in each dataset.

Real-World Dataset We introduce CRC-MIPL, the first real-world MIPL dataset for colorectal
cancer classification (CRC). It comprises 7000 hematoxylin and eosin (H&E) staining images taken
from colorectal cancer and normal tissues. Each image has dimensions of 224× 224 pixels and is
categorized into one of the seven classes based on the tissue cell types. CRC-MIPL is derived from a
larger dataset used for colorectal cancer classification, which originally contains 100000 images with
nine classes [52]. The adipose and background classes exhibit significant dissimilarities compared
to the other categories. Therefore, we choose the remaining seven classes to sample 1000 images
per class. These classes include debris, lymphocytes, mucus, smooth muscle, normal colon mucosa,
cancer-associated stroma, and colorectal adenocarcinoma epithelium.

We employ four image bag generators [53]: Row [54], single blob with neighbors (SBN) [54],
k-means segmentation (KMeansSeg) [55], and scale-invariant feature transform (SIFT) [56], to obtain
a bag of instances from each image, respectively. The candidate label sets of CRC-MIPL are provided
by three crowdsourcing workers without expert pathologists. Each of the workers annotates all 7000
images, and each worker assigned candidate labels with non-zero probabilities to form a label set per
image. A higher probability indicates a higher likelihood of being the ground-truth label, while a
probability of zero implies the label is a non-candidate label. After obtaining three label sets for each
image, we distill a final candidate label set as follows. A label present in two or three label sets is
selected as a member of the final candidate label set. If the final candidate label set consists of only
one or no label, we pick the labels corresponding to the highest probability in each label set. The
average length of the final candidate label set per image is 2.08. More detailed information on the
MIPL datasets can be found in the Appendix.

Compared Algorithms For comparative studies, we consider one MIPL algorithm MIPLGP [36]
and four PLL algorithms, containing one feature-aware disambiguation algorithm PL-AGGD [32] and
three deep learning-based algorithms, namely PRODEN [47], RC [57], and LWS [58].

Table 1: Characteristics of the Benchmark and Real-World MIPL Datasets.
Dataset #bags #ins #dim avg. #ins #class avg. #CLs domain
MNIST-MIPL 500 20664 784 41.33 5 2, 3, 4 image
FMNIST-MIPL 500 20810 784 41.62 5 2, 3, 4 image
Birdsong-MIPL 1300 48425 38 37.25 13 2, 3, 4, 5, 6, 7 biology
SIVAL-MIPL 1500 47414 30 31.61 25 2, 3, 4 image
CRC-MIPL-Row 7000 56000 9 8 7 2.08 image
CRC-MIPL-SBN 7000 63000 15 9 7 2.08 image
CRC-MIPL-KMeansSeg 7000 30178 6 4.311 7 2.08 image
CRC-MIPL-SIFT 7000 175000 128 25 7 2.08 image
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Implementation DEMIPL is implemented using PyTorch [59] on a single Nvidia Tesla V100
GPU. We employ the stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and
weight decay of 0.0001. The initial learning rate is chosen from a set of {0.01, 0.05} and is decayed
using a cosine annealing method [60]. The number of epochs is set to 200 for the SIVAL-MIPL and
CRC-MIPL datasets, and 100 for the remaining three datasets. The value of λa is selected from a set
of {0.0001, 0.001}. For the MNIST-MIPL and FMNIST-MIPL datasets, we utilize a two-layer CNN
in work of Ilse et al. [13] as a feature extraction network, whereas for the remaining datasets, no
feature extraction network is employed. To ensure the reliability of the results, we conduct ten runs
of random train/test splits with a ratio of 7 : 3 for all datasets. The mean accuracies and standard
deviations are recorded for each algorithm. Subsequently, we perform pairwise t-test at a significance
level of 0.05.

To map MIPL data into PLL data, we employ the Mean strategy and the MaxMin strategy as described
in the MIPLGP literature [36]. The Mean strategy calculates the average values of each feature
dimension for all instances within a multi-instance bag to yield a bag-level vector representation. The
MaxMin strategy involves computing the maximum and minimum values of each feature dimension
for all instances within a multi-instance bag and concatenating them to construct bag-level features.
In the subsequent section, we report the results of PRODEN, RC, and LWS using linear models, while
the results with multi-layer perceptrons are provided in the Appendix.

3.2 Experimental Results on the Benchmark Datasets

Table 2 presents the classification results achieved by DEMIPL and the compared algorithms on the
benchmark datasets with varying numbers of false positive labels r. Compared to MIPLGP, DEMIPL
demonstrates superior performance in 8 out of 12 cases, with no significant difference observed in
the remaining 1 out of 12 cases. MIPLGP performs better than DEMIPL on the SIVAL-MIPL dataset,
primarily due to the unique characteristics of the SIVAL-MIPL dataset. The dataset encompasses
25 highly diverse categories, such as apples, medals, books, and shoes, resulting in distinctive and
discriminative features within multi-instance bags. Each instance’s feature includes color and texture
information derived from the instance itself as well as its four cardinal neighbors, which enhances the
distinctiveness of instance-level features. This suggests that instances with similar features are rarely
found across different multi-instance bags. Therefore, by following the instance-space paradigm,
MIPLGP effectively leverages these distinctive attributes of the dataset.

Compared to PLL algorithms, DEMIPL outperforms them on all benchmark datasets. This superiority
can be attributed to two main factors. First, PLL algorithms cannot directly handle multi-instance
bags, whereas the original multi-instance features possess better discriminative power than the
degenerated features obtained through the Mean and MaxMin strategies. Second, the proposed
momentum-based disambiguation strategy is more robust than the disambiguation strategies of the
compared algorithms. It should be noted that although these PLL algorithms achieve satisfactory
results in PLL tasks, their performance in addressing MIPL problems is inferior to dedicated MIPL
algorithms, namely DEMIPL and MIPLGP. This observation emphasizes the greater challenges posed
by MIPL problems, which involve increased ambiguity in supervision compared to PLL problems,
and highlights the necessity of developing specialized algorithms for MIPL.

Additionally, we experiment with another extension of applying PLL algorithms to MIPL data by
directly assigning a bag-level candidate label set as the candidate label set for each instance within the
bag. However, all of them perform worse than MIPL. Moreover, the majority of the compared PLL
algorithms fail to produce satisfactory results. This is likely caused by the fact that the ground-truth
labels for most instances are absent from their respective candidate label sets. Consequently, the
absences of ground-truth labels impede the disambiguation ability of MIPL algorithms.

3.3 Experimental Results on the Real-World Dataset

The classification accuracy of DEMIPL and the compared algorithms on the CRC-MIPL dataset is
presented in Table 3, where the symbol – indicates that MIPLGP encounters memory overflow issues
on our V100 GPUs. DEMIPL demonstrates superior performance compared to MIPLGP on the CRC-
MIPL-SBN and CRC-MIPL-KMeansSeg datasets, while only falling behind MIPLGP on the CRC-MIPL-Row

dataset. When compared to the PLL algorithms, DEMIPL achieves better results in 28 out of 32 cases,
and only underperforms against PL-AGGD in 2 cases on CRC-MIPL-Row and CRC-MIPL-SBN.
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Table 2: Classification accuracy (mean±std) of each comparing algorithm on the benchmark datasets
in terms of the different number of false positive labels [r ∈ {1, 2, 3}]. •/◦ indicates whether the
performance of DEMIPL is statistically superior/inferior to the compared algorithm on each dataset.

Algorithm r MNIST-MIPL FMNIST-MIPL Birdsong-MIPL SIVAL-MIPL

DEMIPL

1 0.976±0.008 0.881±0.021 0.744±0.016 0.635±0.041
2 0.943±0.027 0.823±0.028 0.701±0.024 0.554±0.051
3 0.709±0.088 0.657±0.025 0.696±0.024 0.503±0.018

MIPLGP

1 0.949±0.016• 0.847±0.030• 0.716±0.026• 0.669±0.019◦
2 0.817±0.030• 0.791±0.027• 0.672±0.015• 0.613±0.026◦
3 0.621±0.064• 0.670±0.052 0.625±0.015• 0.569±0.032◦

Mean

PRODEN

1 0.605±0.023• 0.697±0.042• 0.296±0.014• 0.219±0.014•
2 0.481±0.036• 0.573±0.026• 0.272±0.019• 0.184±0.014•
3 0.283±0.028• 0.345±0.027• 0.211±0.013• 0.166±0.017•

RC

1 0.658±0.031• 0.753±0.042• 0.362±0.015• 0.279±0.011•
2 0.598±0.033• 0.649±0.028• 0.335±0.011• 0.258±0.017•
3 0.392±0.033• 0.401±0.063• 0.298±0.009• 0.237±0.020•

LWS

1 0.463±0.048• 0.726±0.031• 0.265±0.010• 0.240±0.014•
2 0.209±0.028• 0.720±0.025• 0.254±0.010• 0.223±0.008•
3 0.205±0.013• 0.579±0.041• 0.237±0.005• 0.194±0.026•

PL-AGGD

1 0.671±0.027• 0.743±0.026• 0.353±0.019• 0.355±0.015•
2 0.595±0.036• 0.677±0.028• 0.314±0.018• 0.315±0.019•
3 0.380±0.032• 0.474±0.057• 0.296±0.015• 0.286±0.018•

MaxMin

PRODEN

1 0.508±0.024• 0.424±0.045• 0.387±0.014• 0.316±0.019•
2 0.400±0.037• 0.377±0.040• 0.357±0.012• 0.287±0.024•
3 0.345±0.048• 0.309±0.058• 0.336±0.012• 0.250±0.018•

RC

1 0.519±0.028• 0.731±0.027• 0.390±0.014• 0.306±0.023•
2 0.469±0.035• 0.666±0.027• 0.371±0.013• 0.288±0.021•
3 0.380±0.048• 0.524±0.034• 0.363±0.010• 0.267±0.020•

LWS

1 0.242±0.042• 0.435±0.049• 0.225±0.038• 0.289±0.017•
2 0.239±0.048• 0.406±0.040• 0.207±0.034• 0.271±0.014•
3 0.218±0.017• 0.318±0.064• 0.216±0.029• 0.244±0.023•

PL-AGGD

1 0.527±0.035• 0.391±0.040• 0.383±0.014• 0.397±0.028•
2 0.439±0.020• 0.371±0.037• 0.372±0.020• 0.360±0.029•
3 0.321±0.043• 0.327±0.028• 0.344±0.011• 0.328±0.023•

Table 3: Classification accuracy (mean±std) of each comparing algorithm on the CRC-MIPL dataset.
Algorithm CRC-MIPL-Row CRC-MIPL-SBN CRC-MIPL-KMeansSeg CRC-MIPL-SIFT
DEMIPL 0.408±0.010 0.486±0.014 0.521±0.012 0.532±0.013
MIPLGP 0.432±0.005◦ 0.335±0.006• 0.329±0.012• –

Mean
PRODEN 0.365±0.009• 0.392±0.008• 0.233±0.018• 0.334±0.029•
RC 0.214±0.011• 0.242±0.012• 0.226±0.009• 0.209±0.007•
LWS 0.291±0.010• 0.310±0.006• 0.237±0.008• 0.270±0.007•
PL-AGGD 0.412±0.008 0.480±0.005• 0.358±0.008• 0.363±0.012•

MaxMin
PRODEN 0.401±0.007 0.447±0.011• 0.265±0.027• 0.291±0.011•
RC 0.227±0.012• 0.338±0.010• 0.208±0.007• 0.246±0.008•
LWS 0.299±0.008• 0.382±0.009• 0.247±0.005• 0.230±0.007•
PL-AGGD 0.460±0.008◦ 0.524±0.008◦ 0.434±0.009• 0.285±0.009•

The above results indicate that DEMIPL achieves the best performance when combined with stronger
bag generators such as CRC-MIPL-KMeansSeg and CRC-MIPL-SIFT. This combination enables the dis-
ambiguation attention mechanism to learn meaningful embeddings. This aligns with the fact that
CRC-MIPL-Row and CRC-MIPL-SBN use classic multi-instance bag generators that only consider pixel
colors, and lack the ability to extract any of the content information. In contrast, CRC-MIPL-KMeansSeg

and CRC-MIPL-SIFT are content-aware generators that are capable of producing semantically meaning-
ful features. Both CRC-MIPL-Row and CRC-MIPL-SBN segment images using fixed grids, and represents
instances based on their pixel-level colors and the colors of their adjacent rows or grids. Consequently,

7



Table 4: Classification accuracy (mean±std) of DEMIPL-MD and DEMIPL.

Algorithm
FMNIST-MIPL SIVAL-MIPL

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3
DEMIPL-MD 0.744±0.273 0.784±0.018 0.586±0.101 0.607±0.024 0.530±0.021 0.499±0.035
DEMIPL 0.881±0.021 0.823±0.028 0.657±0.025 0.635±0.041 0.554±0.051 0.503±0.018
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Figure 3: The frequency distribution of attention scores on MNIST-MIPL dataset (r = 1).

instances in CRC-MIPL-Row and CRC-MIPL-SBN exhibit similar feature representations, and possess lim-
ited discriminative power when distinguishing positive and negative instances. With more powerful
bag generators such as CRC-MIPL-KMeansSeg and CRC-MIPL-SIFT, which generate content-aware features
that are more informative and discriminative, the disambiguation power of DEMIPL can be fully
utilized as demonstrated by the significant performance advantages against all compared baselines.

Furthermore, the CRC-MIPL dataset exhibits distinct differences between tissue cells and the back-
ground in each image. The Mean strategy diminishes the disparities and discriminations, leading to
superior outcomes for the Maxmin strategy in most cases when compared to the Mean strategy.

3.4 Further Analysis

Effectiveness of the Attention Loss To validate the effectiveness of the attention loss, we introduce
a degenerated variant named DEMIPL-MD, which excludes the attention loss from DEMIPL. Table 4
verifies that DEMIPL achieves superior accuracy compared to DEMIPL-MD on both the FMNIST-MIPL

and SIVAL-MIPL datasets. Notably, the difference is more pronounced on the FMNIST-MIPL dataset
than that on the SIVAL-MIPL dataset. This can be attributed to the fact that the feature representation
of each instance in the FMNIST-MIPL dataset solely comprises self-contained information, enabling
clear differentiation between positive and negative instances. Conversely, the feature representation of
each instance in the SIVAL-MIPL dataset encompasses both self and neighboring information, leading
to couplings between the feature information of positive instances and negative instances.

To further investigate the scores learned by the attention loss, we visualize the frequency distribution of
attention scores throughout the training process. As illuminated in Figure 3, the top row corresponds
to DEMIPL-MD, while the bottom row corresponds to DEMIPL. At epoch=10, attention scores
generated by DEMIPL show higher dispersion, suggesting that DEMIPL trains faster than DEMIPL-
MD. At epoch=50 and 100, attention scores computed by DEMIPL tend to converge towards two
extremes: attention scores for negative instances gravitate towards zero, while attention scores
for positive instances approach one. In conclusion, the attention loss is conducive to calculating
appropriate attention scores for positive and negative instances, thereby improving accuracy.

Effectiveness of the Momentum-based Disambiguation Strategy To further investigate the
momentum-based disambiguation strategy, the performance of DEMIPL is compared with its two
degenerated versions denoted as DEMIPL-PR and DEMIPL-AV. DEMIPL-PR is obtained by setting
the momentum parameter λ(t) = 0 in Equation (7), which corresponds to progressively updating the
weights based on the current output of the classifier. In contrast, DEMIPL-AV is obtained by setting
the momentum parameter λ(t) = 1, resulting in uniform weights throughout the training process.

Figure 4 illustrates the performance comparison among DEMIPL, DEMIPL-PR, and DEMIPL-AV on
the MNIST-MIPL, FMNIST-MIPL, and Birdsong-MIPL datasets. When the number of false positive labels
is small, DEMIPL-PR and DEMIPL-AV demonstrate similar performance to DEMIPL. However,
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as the number of false positive labels increases, DEMIPL consistently outperforms DEMIPL-PR
and DEMIPL-AV by a significant margin. This observation suggests that the momentum-based
disambiguation strategy is more robust in handling higher levels of disambiguation complexity.
Furthermore, it can be observed that DEMIPL-PR generally outperforms DEMIPL-AV across various
scenarios. However, when r = 3 in the MNIST-MIPL and FMNIST-MIPL datasets, DEMIPL-AV
surpasses DEMIPL-PR. We believe this can be attributed to the following reason: having three
false positive labels within the context of five classifications represents an extreme case. DEMIPL-
PR likely assigns higher weights to false positive labels, whereas DEMIPL-AV uniformly assigns
weights to each candidate label, adopting a more conservative approach to avoid assigning excessive
weights to false positive labels. In a nutshell, the proposed momentum-based disambiguation strategy
demonstrates superior robustness compared to existing methods for disambiguation.

Parameter Sensitivity Analysis The weight λa in Equation (8) is the primary hyperparameter in
DEMIPL. Figure 5 illustrates the sensitivity analysis of the weight λa on the MNIST-MIPL and CRC-
MIPL-SIFT datasets. The learning rates on the MNIST-MIPL dataset are set to 0.01, 0.01, 0.05 for r = 1,
2, 3, respectively, while on the CRC-MIPL-SIFT dataset, the learning rate is set to 0.01. As illuminated
in Figure 5, DEMIPL demonstrates insensitivity to changes in the weight λa. In the experiments
involving DEMIPL and its variants, the weight λa is chosen from a set of {0.0001, 0.001}.

4 Conclusion

In this paper, we propose DEMIPL, the first deep learning-based algorithm for multi-instance partial-
label learning, accompanied by a real-world dataset. Specifically, DEMIPL utilizes the disambiguation
attention mechanism to aggregate each multi-instance bag into a single vector representation, which
is further used in conjunction with the momentum-based disambiguation strategy to determine
the ground-truth label from the candidate label set. The disambiguation attention mechanism
and momentum-based strategy synergistically facilitate disambiguation in both the instance space
and label space. Extensive experimental results indicate that DEMIPL outperforms the compared
algorithms in 96.3% of cases on benchmark datasets and 85.7% of cases on the real-world dataset.

Despite DEMIPL’s superior performance compared to the well-established MIPL and PLL approaches,
it exhibits certain limitations and there are several unexplored research avenues. For example,
DEMIPL assumes independence among instances within each bag. A promising avenue for future
research involves considering dependencies between instances. Moreover, akin to MIL algorithms
grounded in the embedded-space paradigm [13], accurately predicting instance-level labels poses a
challenging endeavor. One possible approach entails the introduction of an instance-level classifier.
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A Appendix

A.1 Pseudo-Code of DEMIPL

Given an unseen multi-instance bag X∗ = [x∗,1,x∗,2, · · · , x∗,n∗ ] with n∗ instances, DEMIPL
initially utilizes the feature extractor to obtain the instance-level representation as follows:

H∗ = h(X∗) = {h∗,1,h∗,2, · · · ,h∗,n∗}. (9)

Subsequently, DEMIPL maps the instance-level representation H∗ into a vector representation z∗
using the disambiguation attention mechanism, which is described as follows:

a∗,j =
1

1 + exp
{
−W>

(
tanh

(
W>

v h∗,j + bv

)
� sigm

(
W>

u h∗,j + bu

))} , (10)

z∗ =
1∑n∗

j=1 a∗,j

n∗∑
j=1

a∗,jh∗,j . (11)

Finally, we employ the trained classifier f to predict the label of X∗ by:

Y∗ = arg max
c∈Y

fc(z∗), (12)

where fc(·) is the c-th element of f(·), and the normalized function fc(·) represents the probability of
class label c being the ground-truth label.

Algorithm 1 summarizes the complete procedure of DEMIPL. First, the algorithm uniformly initializes
the weights of the momentum-based disambiguation loss (Step 1). Next, the model training can be
divided into two sub-steps (Steps 2-13). The initial sub-step involves extracting features for each
mini-batch and aggregating them into bag-level vector representations (Steps 5-7). The subsequent
sub-step encompasses calculating the loss function and updating the model (Steps 8-11). Finally, for
an unseen multi-instance bag, instance-level features are extracted and aggregated into a bag-level
vector representation, which is used to predict the label (Steps 14-16).

Algorithm 1 Y∗ = DEMIPL (D, λa, T , X∗)
Inputs:
D : the multi-instance partial-label training set {(Xi,Si) | 1 ≤ i ≤ m}, where Xi =
{xi,1,xi,2, · · · ,xi,ni

}, xi,j ∈ X , X = Rd, Si ⊂ Y , Y = {l1, l2, · · · , lq}
λa : the weight for the attention loss
T : the number of iterations
X∗: the unseen multi-instance bag with n∗ instances
Outputs:
Y ∗ : the predicted label for X∗
Process:

1: Initialize uniform weights w(0) as stated by Equation (6)
2: for t = 1 to T do
3: Shuffle training set D into B mini-batches
4: for b = 1 to B do
5: Extract the instance-level features of X according to Equation (1)
6: Calculate the attention scores as stated by Equation (2)
7: Map the instance-level features into a single vector representation according to Equation (3)
8: Update weights w(t) according to Equation (7)
9: Calculate L according to Equation (8)

10: Set gradient −5Φ L
11: Update Φ by the optimizer
12: end for
13: end for
14: Extract the instance-level features of X∗ according to Equation (9)
15: Calculate the attention scores and map the instance-level features into a single vector representa-

tion according to Equations (10) and (11)
16: Return Y∗ according to Equation (12)
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A.2 Additional Experiment Results

Table 5: Classification accuracy (mean±std) of each comparing algorithm on the benchmark datasets
in terms of the different number of false positive labels [r ∈ {1, 2, 3}]. •/◦ indicates whether the
performance of DEMIPL is statistically superior/inferior to the compared algorithm on each dataset
(pairwise t-test at a significance level of 0.05).

Algorithm r MNIST-MIPL FMNIST-MIPL Birdsong-MIPL SIVAL-MIPL

DEMIPL

1 0.976±0.008 0.881±0.021 0.744±0.016 0.635±0.041
2 0.943±0.027 0.823±0.028 0.701±0.024 0.554±0.051
3 0.709±0.088 0.657±0.025 0.696±0.024 0.503±0.018

Mean

PRODEN

1 0.555±0.033• 0.652±0.033• 0.303±0.016• 0.303±0.020•
2 0.372±0.038• 0.463±0.067• 0.287±0.017• 0.274±0.022•
3 0.285±0.032• 0.288±0.039• 0.278±0.006• 0.242±0.009•

RC

1 0.660±0.031• 0.697±0.166• 0.329±0.014• 0.344±0.014•
2 0.577±0.039• 0.684±0.029• 0.301±0.014• 0.299±0.015•
3 0.362±0.029• 0.414±0.050• 0.288±0.019• 0.256±0.013•

LWS

1 0.605±0.030• 0.702±0.033• 0.344±0.018• 0.346±0.014•
2 0.431±0.024• 0.547±0.040• 0.310±0.014• 0.312±0.015•
3 0.335±0.029• 0.411±0.033• 0.289±0.021• 0.286±0.018•

MaxMin

PRODEN

1 0.465±0.023• 0.358±0.019• 0.339±0.010• 0.322±0.018•
2 0.338±0.031• 0.315±0.023• 0.329±0.016• 0.295±0.021•
3 0.260±0.037• 0.265±0.031• 0.305±0.015• 0.244±0.018•

RC

1 0.518±0.022• 0.421±0.016• 0.379±0.014• 0.304±0.015•
2 0.462±0.028• 0.363±0.018• 0.359±0.015• 0.268±0.023•
3 0.366±0.039• 0.294±0.053• 0.332±0.024• 0.244±0.014•

LWS

1 0.457±0.028• 0.346±0.033• 0.349±0.013• 0.345±0.013•
2 0.351±0.043• 0.323±0.031• 0.336±0.013• 0.314±0.019•
3 0.274±0.037• 0.267±0.034• 0.307±0.016• 0.268±0.019•

Table 6: Classification accuracy (mean±std) of each comparing algorithm on the real-world dataset.

Algorithm CRC-MIPL-Row CRC-MIPL-SBN CRC-MIPL-KMeansSeg CRC-MIPL-SIFT
DEMIPL 0.408±0.010 0.486±0.014 0.521±0.012 0.532±0.013

Mean
PRODEN 0.405±0.012 0.515±0.010◦ 0.512±0.014• 0.352±0.015•
RC 0.290±0.010• 0.394±0.010• 0.304±0.017• 0.248±0.008•
LWS 0.360±0.008• 0.440±0.009• 0.422±0.035• 0.338±0.009•

MaxMin
PRODEN 0.453±0.009◦ 0.529±0.010◦ 0.563±0.011◦ 0.294±0.008•
RC 0.347±0.013• 0.432±0.008• 0.366±0.010• 0.204±0.008•
LWS 0.381±0.011• 0.442±0.009• 0.335±0.049• 0.287±0.009•

In Section 3.2 and Section 3.3, we report the results of PRODEN, RC, and LWS using linear models. In
this section, we supplement the results of the compared PLL algorithms with multi-layer perceptrons
(MLPs) as described in the respective literature. Table 5 and Table 6 present the experimental results
of DEMIPL compared to PLL algorithms on the benchmark and real-world datasets, respectively. It is
noteworthy that DEMIPL employs a two-layer CNN network for feature extraction on the MNIST-MIPL

and FMNIST-MIPL datasets, while on the remaining datasets, DEMIPL only utilizes linear models.

On the benchmark datasets, DEMIPL consistently outperforms the compared algorithms in almost
all cases. Moreover, the compared algorithms using MLPs do not consistently yield superior results
compared to those using linear models, especially when the benchmark datasets exhibit relatively
simple features. This suggests that linear models are sufficient to achieve satisfactory results given
the benchmark datasets, while MLPs might introduce unnecessary complexity.

On the real-world dataset, DEMIPL outperforms the compared algorithms in 19 out of 24 cases.
When combined with complex image bag generators such as CRC-MIPL-KMeansSeg and CRC-MIPL-SIFT,
DEMIPL outperforms the compared algorithms in 11 out of 12 cases. In the majority of cases, the
compared algorithms using MLPs demonstrate better performance than those using linear models.
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However, on the CRC-MIPL-SIFT dataset, the improvement provided by MLPs is not particularly
evident and sometimes even leads to a decline in performance. Therefore, when dealing with complex
multi-instance features, the bag features obtained through the Mean or MaxMin strategies do not
accurately reflect the characteristics of multi-instance bags. This highlights the need for specialized
MIPL algorithms to accurately capture the features of multi-instance bags.

A.3 Theoretical Analysis

Theorem 1. In a multi-instance bag Xi, when the normalized attention score of an instance xi,j′

approaches 1, e.g., ai,j′∑ni
j=1 ai,j

→ 1, the probability of the multi-instance bag Xi being classified as

the c-th class is approximately equal to that of the instance xi,j′ belonging to the c-th class.

Proof. Equation (2) demonstrates that the attention score for each instance ranges between 0 and
1. After normalizing by 1∑ni

j=1 ai,j
, the sum of attention scores for all instances within a multi-

instance bag becomes equal to 1. When the normalized attention score of an instance xi,j′ is
approach 1, the normalized attention scores of the remaining instances {xi,1,xi,2, · · · ,xi,ni

} \
{xi,j′} approach 0. Based on Equation (3), the aggregated bag-level vector representation zi =

1∑ni
j=1 ai,j

∑ni

j=1 ai,jhi,j ≈ hi,j′ = h(xi,j′). Therefore, it is confirmed that instances with higher

attention scores contribute significantly to the bag-level predictions, underlining the significance of
attention mechanisms in multi-instance partial-label learning.

Theorem 1 suggests that high attention scores of individual instances can play a crucial role in
determining the bag-level class prediction, emphasizing the significance of accurately capturing and
interpreting attention scores in multi-instance partial-label learning scenarios.

A.4 Image Bag Generator

We utilize four image bag generators to extract multi-instance features from the CRC-MIPL dataset.
The detailed descriptions of these image bag generators are provided below:

• Row Generator: It treats each row of the image as an individual instance. To extract the
feature for each instance, the Row generator computes the average RGB color value of the
row and the color differences in the rows above and below it.

• SBN Generator: It considers each 2 × 2 blob within the image and includes the RGB
color values of the blob itself and its four neighboring blobs as features for each instance.
It generates instances by iteratively moving one pixel at a time. However, it should be
noted that the SBN generator ignores the feature information at the four corners of the image.

• KMeansSeg Generator: It divides the image into K segments or partition blocks. For each
segment, it generates a 6-dimensional feature. The first three dimensions represent color
values in the YCbCr color space, while the last three dimensions represent values obtained
by applying the wavelet transform to the luminance (Y) component of the image.

• SIFT Generator: It applies the scale-invariant feature transform (SIFT) algorithm to extract
features, which partitions each instance into multiple 4 × 4 subregions and assigns the
gradients of the pixels within these subregions to 8 bins. Consequently, the SIFT generator
produces a 128-dimensional feature vector for each instance.

The implementations of the four image bag generators are available at http://www.lamda.nju.
edu.cn/code_MIL-BG.ashx.

A.5 Data and Code Availability

The implementations of the compared algorithms are publicly available. MIPLGP and PL-
AGGD are implemented at http://palm.seu.edu.cn/zhangml/. PRODEN is implemented
at https://github.com/Lvcrezia77/PRODEN. RC is implemented at https://lfeng-ntu.
github.io/codedata.html. LWS is implemented at https://github.com/hongwei-wen/
LW-loss-for-partial-label. Additionally, the code of DEMIPL, the benchmark datasets, and
the real-world dataset are publicly available at http://palm.seu.edu.cn/zhangml/.
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