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Abstract

Many applications seek to recover low-rank approximations of noisy tensor data.
We consider several practical and effective matricization strategies which construct
specific matrices from such tensors and then apply spectral methods; the strategies
include tensor unfolding, partial tracing, power iteration, and recursive unfolding.
We settle the behaviors of unfolding and partial tracing, identifying sharp thresholds
in signal-to-noise ratio above which the signal is partially recovered. In particular,
we extend previous results to a much larger class of tensor shapes where axis
lengths may be different. For power iteration and recursive unfolding, we prove
that under conditions where previous algorithms partially recovery the signal, these
methods achieve (asymptotically) exact recovery. Our analysis deploys random
matrix theory to obtain sharp thresholds which elude perturbation and concentration
bounds. Specifically, we rely upon recent disproportionate random matrix results,
which describe sequences of matrices with diverging aspect ratio.

1 Introduction

Tensors—multi-way arrays—and tensor methods are fundamental to modern data analysis. Data
given by three or more indices are increasingly the focus in diverse areas including signal and image
processing [9, 19, 22], while high-order moments represented by tensors are of interest in problems
such as community detection and learning latent variable models [1, 2, 8].

The spiked tensor model, introduced by Montanari and Richard [20], is a simple statistical model of
tensor data with latent low-rank structure. Observed data X of dimensions n1 × n2 × · · · × nk are
the sum of a low-rank tensor and noise:

Xi1,i2,...,ik = λv1,i1v2,i2 · · · vk,ik + Zi1,i2,...,ik , j ∈ [k], ij ∈ [nj ] , (1)

where k ≥ 2 is the tensor order, λ is a signal strength, vj ∈ Snj−1, j ∈ [k], are unit vectors, and Z is
a noise tensor. Noise entries are assumed to be independent standard Gaussians:

Zi1,i2,...,ik
i.i.d∼ N (0, 1) , j ∈ [k], ij ∈ [nj ] .

Estimation of v1, . . . , vk and the low-rank component of X generalizes to tensors the problem of
low-rank matrix approximation—principal component analysis (PCA)—and is therefore known as
tensor PCA.

This model reduces for k = 2 to the spiked matrix model, with maximum likelihood estimators of
v1 and v2 given by the first left and right singular vectors v̂1 and v̂2 of X , respectively. For k ≥ 3,
however, computation of the maximum likelihood estimators of the low rank component amounts to
solving an NP hard problem (Hillar and Lim [14]),

sup
j∈[k],uj∈Sj−1

∑
i1,...,ik

Xi1,i2,...,iku1,i1 · · ·uk,ik , (2)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



necessitating alternate, efficient algorithms.

1.1 Contributions

This paper studies matricization-based approaches, which convert tensors to matrices (by reshaping or
by contracting constructions to be described) and then apply spectral methods. We assume the spiked
tensor model in a high-dimensional asymptotic framework in which each array dimension n1, . . . , nk

tends to infinity; we make no assumptions on their relative rates. While previous analyses of tensor
PCA algorithms have assumed order k = 3, supersymmetry v1 = v2 = · · · = vk, or hypercubical
format n1 = n2 = · · · = nk, we permit tensors of diverse dimensions nj and unrelated vj .

In this setting, we fully analyze tensor unfolding or reshaping, a widespread technique [12, 19].
Additionally, we analyze the partial tracing approach of Hopkins et al. [16], discovering its asymptotic
equivalence to unfolding in performance—an improvement over previous analysis. We identify sharp
thresholds in signal-to-noise ratio above which these algorithms partially recover the signal, and
provide exact formulas for their limiting performance. Finally, we study generalizations of the power
iteration and recursive unfolding algorithms of [20]. Above the same thresholds characterizing partial
recovery of unfolding and partial tracing, these algorithms achieve (asymptotically) exact signal
recovery. In other words, for signal-to-noise ratios such that unfolding or partial tracing partially
recover the signal, power iteration and recursive unfolding exactly recover the signal.

Our approach relies upon fundamental and penetrating random matrix theoretic (RMT) results. Precise
analysis of tensor PCA algorithms, including pinpointing of phase transitions and sharp performance
quantification as provided here, is not possible purely via more standard tools in theoretical machine
learning, such as matrix concentration and vector perturbation bounds. Specifically, we rely upon
recent disproportionate random matrix results (introduced in Section 1.3), which describe sequences
of matrices with diverging aspect ratio.

This work concisely demonstrates in the context of tensor PCA the advantages of an RMT-backed
approach. Indeed, application of spiked matrix results yields simple and elegant theorems and proofs
which are easily read. For example, the analysis of the partial tracing in [16], involving challenging
matrix concentration and perturbation calculations, is reduced to a few careful lines. Though our
results are admittedly purely asymptotic, there are no hidden constants or logarithmic factors. Even
for modest-sized tensors, simulations demonstrate close agreement with theory.

1.2 Assumptions and Notation

Without loss of generality, we assume λ ≥ 0 and n1 ≤ n2 ≤ · · · ≤ nk, taking n1 to be the
“fundamental” problem index; that is nj = nj(n1), j ∈ [k]. We say an estimator v̂j partially recovers
vj if almost surely,

lim inf
n1→∞

|⟨vj , v̂j⟩| > 0 ,

and v̂j exactly recovers vj if |⟨vj , v̂j⟩|
a.s.−−→ 1. In words, partial recovery demands a positive limit for

the cosine similarity, while exact recovery requires asymptotically perfect cosine similarity.

We make the rank-one signal assumption in model (1) purely for expository efficiency; the spectral
algorithms in this paper naturally generalize to rank-r spiked tensors of the form

Xi1,i2,...,ik =

r∑
i=1

λrv
(i)
1,i1

v
(i)
2,i2
· · · v(i)k,ik

+ Zi1,i2,...,ik , j ∈ [k], ij ∈ [nj ] (3)

where r ≥ 1 is the rank and {v(1)j , . . . , v
(r)
j } ⊂ Snj−1 are orthonormal sets, j ∈ [k]. Such tensor

decompositions are unique by Kruskal’s theorem [18]. Where we estimate v
(1)
j by the first right

singular vector of an appropriate matrix Mj , v(2)j , . . . , v
(r)
j may be estimated by the subsequent right

singular vectors, with analogous theoretical guarantees holding (that is, v(i)j is the right singular
vector associated with the i-th largest singular value of Mj).

We denote by ⊗ both the tensor outer product and Kronecker product (the latter is simply a vectoriza-
tion of the former); it is clear from context which is meant. Let ×j denote multiplication between
a tensor along the j-th axis and a vector of conformable dimension. The notation a(n1) ≲ b(n1)
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means a(n1) ≤ Cb(n1) for a constant C > 0 and all sufficiently large n1, and a(n1) ≍ b(n1) means
a(n1) ≲ b(n1) ≲ a(n1).

Finally, we introduce tensor slices. Let T ∈ Rn1×···×nk and fix ℓ ∈ [k]. The set {Ti1,...,il : j ∈
[l], ij ∈ [nj ]} contains the slices of X of order k − ℓ. Slices satisfy Ti1,...,iℓ ∈ ⊗k

j=ℓ+1Rnj and have
entries

(Ti1,...iℓ)il+1,...,ik = Ti1,...,ik , j ∈ {ℓ+ 1, . . . , k}, ij ∈ [nj ] .

1.3 Spiked Matrix Model

The behavior of matricization-based algorithms fundamentally derives from spectral properties of the
spiked matrix model,

Xi1,i2 = λv1,i1v2,i2 + Zi1,i2 , i1 ∈ [n1], i2 ∈ [n2] . (4)

This model is extensively studied in random matrix theory, particularly under proportional growth,
where n1 and n2 are of comparable magnitude:

n1, n2 →∞ , γn1
=

n1

n2
→ γ > 0 .

Under proportional growth, the sample covariance matrix XX⊤/n2 does not converge to the identity
(its expectation), and the leading left and right singular vectors v̂1 and v̂2 of X are inconsistent
estimators of v1 and v2, respectively. We highlight the following results of Benaych-Georges and
Rao Nadakuditi [7], who establish formulas for the limiting misalignment of v̂1 and v̂2:
Lemma 1.1. Let v̂1 and v̂2 denote the leading left and right singular vectors of X , respectively, and
define

c2(τ, γ) =

1− γ(1 + τ2)

τ2(τ2 + γ)
τ > γ1/4

0 τ ≤ γ1/4

.

Under λ = τ(1 + o(1))
√
n2, where τ ≥ 0 is fixed, and γn1

→ γ ∈ (0, 1],

|⟨v1, v̂1⟩|2
a.s.−−→ c2(τ, γ) , |⟨v2, v̂2⟩|2

a.s.−−→ c2(τγ−1/2, γ−1) . (5)

Recently, Ben Arous et al. [5] and Feldman [13] independently studied the spiked matrix model under
disproportional growth, where γn1 → 0 or γn1 →∞. Transposing X in case γn1 →∞, we assume
without loss of generality that γn1 → 0. Phase transitions for the left and right singular vectors no
longer coincide; v1 is reliably estimated at signal strengths much weaker than λ ≳

√
n2. Drawing

upon results in [5], [13], and [7], we have the following disproportionate analogs of Lemma 1.1:
Lemma 1.2. Let v̂1 and v̂2 denote the leading left and right singular vectors of X , respectively, and
define

↼
c 2(τ) = (1− τ−4)+ ,

⇀
c 2(τ) =

τ2

1 + τ2
.

Under λ = τ(1 + o(1))(n1n2)
1/4, where τ ≥ 0 is fixed, and γn1

→ 0,

|⟨v1, v̂1⟩|2
a.s.−−→ ↼

c 2(τ) , |⟨v2, v̂2⟩|2
a.s.−−→ 0 , (6)

while under λ = τ(1 + o(1))
√
n2,

|⟨v1, v̂1⟩|2
a.s.−−→ 1 , |⟨v2, v̂2⟩|2

a.s.−−→ ⇀
c 2(τ) . (7)

Limits (7) are corollaries of Theorems 2.9 and 2.10 of [7]. We note that [5] requires n2 is polynomially
bounded in n1. This assumption, however, is necessary only to establish non-asymptotic bounds; the
almost-sure results in Lemma 1.2 hold as γn1

→ 0 arbitrarily rapidly. While not explicitly stated in
these references, it is easily verified that under proportional growth, lim inf λ/

√
n2 > γ1/4 implies

partial recovery of v1 and v2. Analogous statements hold for disproportional growth.
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2 Tensor Unfolding

We study a general unfolding procedure that permits (1) tensors of general, unequal axis lengths and
(2) unfolding along arbitrary sets of axes.

Let Nj =
∏k

ℓ=j nℓ, j ∈ [k], and for S ⊂ [k], S ̸= ∅, let N(S) =
∏

ℓ∈S nℓ. We define a map
MatS : Rn1×···×nk → R(N1/N(S))×N(S) as follows: for indices ij ∈ [nj ], j ∈ [k],

a = 1 +
∑

j∈[k]\S

(ij − 1)
∏

ℓ∈[k]\S: j<ℓ

nℓ , b = 1 +
∑
j∈S

(ij − 1)
∏

ℓ∈S: j<ℓ

nℓ (8)

and

[MatS(T )]a,b = Ti1,i2,...,ik . (9)

When unfolding along a single axis, we write Matj = Mat{j}. In this case, (8) reduces to

a = 1 +

j−1∑
ℓ=1

(iℓ − 1)
Nℓ+1

nj
+

k∑
ℓ=j+1

(iℓ − 1)Nℓ+1 (10)

(taking Nk+1 = 1) and b = ij . The unfolded matrix Matj(X) is a spiked matrix with aspect ratio
n2
j/N1:

Matj(X) = λ(v1 ⊗ · · · ⊗ vj−1 ⊗ vj+1 ⊗ · · · ⊗ vk)v
⊤
j + Matj(Z) .

Similarly, MatS(X) is a spiked matrix with aspect ratio N(S)2/N1:

MatS(X) = λ(⊗j∈[k]\Svj)(⊗j∈Svj)
⊤ + MatS(Z) . (11)

We now review prior results on unfolding. For v1 = · · · = vk, Montanari and Richard consider the
unfolding S = {1, . . . , ⌊k/2⌋}, estimating ⊗⌊k/2⌋v1 by the first right singular vector of MatS(X).
They prove that ⊗⌊k/2⌋v1 is (partially) recovered for λ ≳ n

⌈k/2⌉/2
1 , and conjecture sufficiency of

λ ≳ n
k/4
1 (note that these bounds differ only for odd k). Theorem 5.8 of Hopkins et al. [15] completes

this conjecture for k = 3, establishing sufficiency of λ ≥ (1 + ε)n
3/4
1 .

Complete analysis of unfolding—handling tensors of arbitrary order and asymmetric dimensions—
relies on results in Section 1.3, which reveal (1) necessary and sufficient thresholds for recovery and (2)
the exact limiting performance of estimates. In addition, spiked matrix results yield the exact limiting
cosine similarity of unfolding procedures, not obtained in [20] or [15]. The recent disproportional
results summarized in Lemma 1.2 are crucial as unfoldings such as Matj(X), j ∈ [k − 1], have
limiting aspect ratio zero (recall that n1 ≤ · · · ≤ nk). Depending on the relative growth rates of
n1, . . . , nk, unfoldings such as Matk(X) may fall under disproportional “tall” growth (n2

k/N1 → 0),
proportional growth (n2

k/N1 ≍ 1), or disproportional “wide” growth (n2
k/N1 →∞). Our analysis is

similar to that of Ben Arous et al. [5], which permits arbitrary order k yet assumes n1 = · · · = nk.
Theorem 2.1. Let S ⊂ [k]. If N(S)2/N1 → 0, the first right singular vector w of the unfolding
MatS(X) partially recovers ⊗j∈Svj if and only if lim inf λ/N

1/4
1 > 1. In particular, for λ =

τ(1 + o(1))N
1/4
1 with τ ≥ 0 fixed,

|⟨⊗j∈Svj , w⟩|2
a.s.−−→ ↼

c 2(τ) . (12)

If N(S)2/N1 ≍ 1, ⊗j∈Svj is partially recovered if and only if lim inf λ/N
1/4
1 > 1. For γn1

→ γ

and λ = τ(1 + o(1))N
1/4
1 ,

|⟨⊗j∈Svj , w⟩|2
a.s.−−→ c2(τγ1/4, γ) . (13)

Finally, if N(S)2/N1 →∞, ⊗j∈Svj is partially recovered if and only if lim inf λ/
√

N(S) > 0. For
λ = τ(1 + o(1))

√
N(S),

|⟨⊗j∈Svj , w⟩|2
a.s.−−→ ⇀

c 2(τ) . (14)
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All proofs are deferred to the supplement. As the recovery threshold is identical across all unfoldings
S such that N(S)2/N1 ≲ 1, we propose the following simple algorithm to estimate vj , which may
be iterated for j ∈ [k]:

Algorithm 1 Tensor unfolding

Input: X, j
return first right singular vector of Matj(X)

Corollary 2.1.1. Algorithm 1 partially recovers v1, . . . , vk−1 if and only if lim inf λ/N
1/4
1 > 1.

Vector vk, corresponding to the largest dimension, is partially recovered as well if n2
k/N1 ≲ 1. On

the other hand, if n2
k/N1 →∞, vk is recovered if and only if lim inf λ/

√
nk > 0.

Figure 1: Simulations of tensor unfolding with k = 3, supersymmetric signal v1 = v2 = v3, and
n1 ∈ {400, 800, 1200}. Solid lines display empirical cosine similarities (each point is the average
of 50 realizations). The dashed line is the theoretical limit ↼

c(τ), which agrees closely. Below the
phase transition located at τ = 1, v̂1 is approximately uniformly distributed on the surface of the unit
sphere, so |⟨v1, v̂1⟩| = O(n−1/2).

Figure 2: Simulations of tensor unfolding with k = 3, n1 = n2 = 50, and n3 = 10000 (left) or
n3 = 20000 (right). Solid lines display empirical cosine similarities (each point is the average
of 50 realizations). The dashed lines are theoretical limits based on Theorem 2.1, which agree
closely. As n3/(n1n2) = O(1), we compare |⟨v1, v̂1⟩| and |⟨v2, v̂2⟩| to ↼

c(τ) and |⟨v3, v̂3⟩| to
c(τ(N1/n

2
3)

1/4, N1/n
2
3) = c(λ/

√
n3, N1/n

2
3).

3 Partial Tracing

Hopkins et al. [16] propose the partial tracing method for tensors of order k = 3 as an alternative to
unfolding. Their approach generalizes to orders k ≥ 3, although it inherently relies on supersymmetry
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of the signal, v1 = · · · = vk. The partial tracing operator Trk : ⊗kRn 7→ Rn×n constructs a matrix
by linearly combining tensor slices with partial trace weights:

Trk(T ) =
∑

i1,...,ik−2∈[n]

tr(Ti1,...,ik−2
)Ti1,...,ik−2

. (15)

This operation of reducing the order of a tensor by linear combinations of slices is called contraction
in tensor analysis.

Algorithm 2 Partial tracing

Input: X
return first right singular vector of Trk(X)

For k = 3, the runtime of Algorithm 2 is O(n3), while that of unfolding is O(n3 log n) (see Table 3
of [16]). Hopkins et al. established a bound on the recovery threshold of partial tracing which is worse
than that of unfolding by a logarithmic factor: λ ≳ n3/4(log n)1/2. We eliminate the logarithmic
factor here: while delivering improvements in runtime, Algorithm 2 is asymptotically equivalent to
unfolding in recovery performance.
Theorem 3.1. The first right singular vector v̂1 of the partial trace matrix Trk(X) partially recovers
v1 if and only if lim inf λ/n

k/4
1 > 1. For λ = τ(1 + o(1))n

k/4
1 , where τ is fixed,

|⟨v1, v̂1⟩|2
a.s.−−→ ↼

c 2(τ) . (16)

Under n1 = · · · = nk, the behavior of unfolding is given by (12), matching (16) exactly. Thus,
unfolding and partial tracing are asymptotically equivalent in performance.

Figure 3: Simulations of partial tracing with k = 3, supersymmetric signal v1 = v2 = v3, and
n1 ∈ {400, 800, 1200}. Solid lines display empirical cosine similarities (each point is the average
of 50 realizations). The dashed line is the theoretical limit ↼

c(τ), which agrees closely. Note the
similarity to Figure 1.

4 Exact Recovery

Montanari and Richard [20] consider a two-step recursive unfolding procedure that remarkably
exactly recovers v1 above the threshold of unfolding, assuming even order k, hypercubical shape
n1 = · · · = nk, and a supersymmetric signal, v1 = · · · = vk. In this section, we prove that
exact recovery is possible for tensors of arbitrary axis lengths. We consider generalizations of the
power iteration and recursive unfolding algorithms of [20] (initialized via tensor unfolding). Tensor
power iteration is previously studied in [17] (assuming a supersymmetric signal) and [21] (assuming
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n1 ≍ n2 ≍ · · · ≍ nk), though these works assume the initial iterate is independent of X , precluding
initialization via unfolding.

In our more general setting, we find that unfolding-initialized power iteration achieves exact recovery
above the partial recovery threshold of unfolding, established in Corollary 2.1.1 (assuming n2

k/N1 →
0). Recursive unfolding exactly recovers v1, . . . , vk−1 with no limitation on the growth rate of nk.
Power iteration, which requires initial “warm” estimates of v1, . . . , vk, may fail when n2

k and N1 are
comparable. Recursive unfolding, on the other hand, does not rely upon an initial estimate of vk to
recover v1, . . . vk−1 exactly.

Algorithm 3 Power iteration

Input: X , initial estimates v̂1, . . . , v̂k from Algorithm 1
Iterate until convergence:

for j from 1 to k:
wj ← X ×1 v̂1 · · · ×j−1 v̂j−1 ×j+1 v̂j+1 · · · ×k v̂k
v̂j ← wj/∥wj∥2

end for
return v̂1, . . . , v̂k

We prove that exact recovery is achieved in a single iteration of the outer loop. In practice, iterating
until estimates converge is beneficial.

Theorem 4.1. If lim inf λ/N
1/4
1 > 1 and n2

k/N1 → 0, Algorithm 3 recovers v1, . . . , vk exactly:
denoting by v̂1, . . . , v̂k the estimates after a single iteration of the outer loop,

|⟨vj , v̂j⟩|
a.s.−−→ 1 , j ∈ [k] . (17)

Estimating the signal strength λ by λ̂ = ⟨X, v̂1 ⊗ · · · ⊗ v̂k⟩, we have

λ−1∥λ̂v̂1 ⊗ · · · ⊗ v̂k − λv1 ⊗ · · · ⊗ vk∥F
a.s.−−→ 0 . (18)

We next consider a recursive unfolding procedure. As stated above, recursive unfolding is guaranteed
to recover v1, . . . , vk−1 exactly if lim inf λ/N

1/4
1 > 1; no bound is needed on the growth rate of nk

as in Theorem 4.1. In practice, it is beneficial to iterate Algorithm 4.

Algorithm 4 Recursive unfolding

Input: X , initial estimates v̂1, . . . , v̂k from Algorithm 1
for j from 2 to k:

v̂j ← first right singular vector of Matj−1(X ×1 v̂1)
end for
v̂1 ← first right singular vector of Mat1(X ×2 v̂2)
return v̂1, . . . , v̂k

Theorem 4.2. Under lim inf λ/N
1/4
1 > 1, Algorithm 4 recovers v1, . . . , vk−1 exactly. Moreover, vk

is recovered exactly if n2
k/N1 ≲ 1.

The analysis of Algorithm 4 entails careful application of spiked matrix model results. By the linearity
of the unfolding operator,

Matj−1(X ×1 v̂1) = λ⟨v1, v̂1⟩(⊗ℓ∈[k]\{1,j}vℓ)v
⊤
j + Matj−1(Z ×1 v̂1) . (19)

Observe that Z ×1 v̂1 is a reshaping of the vector Mat1(Z)v̂1. As v̂1 and Z are dependent, the
second term on the right-hand side is not a matrix of i.i.d. entries. Despite dependencies, we claim
that appropriately scaled, Mat1(Z)v̂1 is distributed as Gaussian noise, in which case exact recovery
thresholds are a consequence of spiked matrix model results of Section 1.3 applied to (19).

Below, we display simulation results for power iteration and recursive unfolding and compare to
tensor unfolding and partial tracing.
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Figure 4: Simulations of power iteration with k = 3, supersymmetric signal v1 = v2 = v3, and
n1 ∈ {400, 800, 1200}. Solid lines display empirical cosine similarities (each point is the average of
50 realizations). The dashed line is the theoretical prediction 1(τ > 1). Power iteration typically
converges within five iterations.

Figure 5: Simulations of power iteration with k = 3, n1 = n2 = 50, and n3 = 10000 (left) or
n3 = 20000 (right). Solid lines display empirical cosine similarities (each point is the average of 50
realizations). Vector v3, corresponding to the longest tensor axis, is estimated less well than v1, v2.

Figure 6: Simulations of a unfolding, partial tracing, and power iteration with k = 3, supersymmetric
signal v1 = v2 = v3, and n1 = 1200. Solid lines display empirical cosine similarities (each point
is the average of 50 realizations). The dashed line is the theoretical limit of unfolding and partial
tracing, ↼

c(τ). Near the phase transition located at τ = 1, the cosine similarity of power iteration is
over twice that of unfolding.
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Figure 7: Simulations of recursive unfolding with k = 3, n1 = n2 = 50, and n3 = 10000 (left) or
n3 = 50000 (right). Solid lines display empirical cosine similarities (each point is the average of 50
realizations). The performance of recursive unfolding is quite similar to that of power iteration.
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Appendix

proof of Theorem (2.1). By (11), MatS(X) is a spiked matrix with aspect ratio N(S)2/N1 and signal
strength λ (as ⊗j∈Svj is unit norm). There are four cases to consider:

• Let N(S)2/N1 → 0; by the first point of (6), the recovery threshold lies at (N1/N(S) ·
N(S))1/4 = N

1/4
1 .

• Let N(S)2/N1 → γ ∈ (0, 1]; by the first point of (5), partial recovery occurs for
lim inf λ/

√
N1/N(S) > γ1/4. Equivalently, lim inf λ/N

1/4
1 > 1. Under λ = τ(1 +

o(1))N
1/4
1 , limλ/

√
N1/N(S) = τγ1/4, implying |⟨⊗j∈Svj , w⟩|2

a.s.−−→ c2(τγ1/4, γ).

• Let N(S)2/N1 → γ ∈ (1,∞]; by the second point of (5), partial recovery occurs
for lim inf λ/

√
N(S) > γ−1/4. Equivalently, lim inf λ/N

1/4
1 > 1. Under λ =

τ(1 + o(1))N
1/4
1 , limλ/

√
N(S) = τγ−1/4, implying |⟨⊗j∈Svj , w⟩|2

a.s.−−→ c2(τγ−1/4 ·
γ1/2, γ) = c2(τγ1/4, γ).

• Let N(S)2/N1 →∞; by the second point of (7), the recovery threshold lies at
√

N(S).

Proof of Theorem 3.1. We provide proof for k = 3; the proof for higher orders is similar and omitted.
For notational simplicity, we suppress the subscripts of n1 and v1.

Let wi = tr(Zi), i ∈ [n], and w = (w1, . . . , wn)
⊤. Expanding the partial trace matrix,

Trk(X) =

n∑
i=1

(λvi + wi)Xi =

n∑
i=1

[
(λ2v2i + λviwi)vv

⊤ + (λvi + wi)Zi

]
=

n∑
i=1

[
(λ2v2i + λviwi)vv

⊤ + (λvi + wi)(Zi − diag(Zi − Z̃i)) + (λvi + wi)diag(Zi − Z̃i)
]
,

(20)
where Z̃ is an independent copy of Z.
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Let M = ∥λv + w∥−1
2

∑n
i=1(λvi + wi)(Zi − diag(Zi − Z̃i)). As wi and Zi − diag(Zi − Z̃i) are

independent and the Gaussian distribution is rotationally invariant, M d
= Z1. Hence, we have

∥λv + w∥−1
2 Trk(X) = αvv⊤ +M + ∥λv + w∥−1

2

n∑
i=1

(λvi + wi)diag(Zi − Z̃i) , (21)

where α = ∥λv+w∥−1
2 (λ2+λ⟨v, w⟩). The partial trace matrix is thus proportional to a perturbation

of a spiked matrix with aspect ratio γ = 1.

Let E denote the third term on the right-hand side of (21); we shall prove n−1/2∥E∥2
a.s.−−→ 0. Denoting

u = (λv+w)/∥λv+w∥2, the diagonal entries of
∑n

i=1 uidiag(Z̃i) are i.i.d. Gaussians with variance
one, implying ∥

∑n
i=1 uidiag(Z̃i)∥2 ≲

√
log n, almost surely. Similarly, since w ∼ N (0, nIn) and

∥λv + w∥2 = Θa.s.(λ+ n),

λ∥λv + w∥−1
2

∥∥∥ n∑
i=1

vidiag(Zi)
∥∥∥
2
≲

√
log n

(
1 +

λ

n

)
. (22)

To bound the remaining term of E , let Z ∈ Rn×n denote the matrix with entries Zij = Zijj ,
i, j ∈ [n], in which case we may write∥∥∥ n∑

i=1

widiag(Zi)
∥∥∥
2
= sup

1≤j≤n

∣∣∣ n∑
i=1

wiZijj

∣∣∣ = sup
1≤j≤n

|e⊤j Z⊤Z1n| , (23)

where 1n is the length-n vector of ones. As e⊤j Z⊤Zej ∼ χ2
n and

e⊤j Z⊤Z(1n − ej)
d
=
√
n− 1e⊤j Z⊤Z̃ej ∼

√
n− 1 · N (0, 1) ·

√
χ2
n ,

standard bounds such as (2.19) in [24] yield

P
(

sup
1≤j≤n

∣∣e⊤j Z⊤Z1n − n
∣∣ > c · n

)
≲ ne−Cn , (24)

where c, C > 0 are constants. As the right-hand side is summable, the Borel-Cantelli lemma implies

sup
1≤j≤n

|e⊤j Z⊤Z1n| ≲ n , (25)

almost surely. Collecting the above bounds, we have that n−1/2∥E∥2
a.s.−−→ 0.

By Weyl’s inequality, the limiting spectral distribution of n−1/2(M + E) equals that of n−1/2M ,
the quarter circle law. The limits (5) from Lemma 1.1 therefore apply to αvv⊤ +M + E as well
(see [7]). Basic calculations yield (1) lim inf α/

√
n > 1 if and only if lim inf λ/n3/4 > 1, and (2)

under λ = τ(1 + o(1))n3/4, α = τ2(1 + oa.s.(1))
√
n. Therefore, v̂ partially recovers v if and only

if lim inf λ/n3/4 > 1, and under λ = τ(1 + o(1))n3/4,

|⟨v, v̂⟩|2 a.s.−−→ c2(τ2, 1) =
↼
c2(τ) , (26)

completing the proof.

Proof of Theorem 4.1. By the linearity of the operators ×1, . . . ,×k,

wj = λ
∏

ℓ∈[k]\{j}

⟨vℓ, v̂ℓ⟩ · vj + Z ×1 v̂1 · · · ×j−1 v̂j−1 ×j+1 v̂j+1 · · · ×k v̂k , (27)

⟨vj , wj⟩ = λ
∏

ℓ∈[k]\{j}

⟨vℓ, v̂ℓ⟩+
〈
Z, v̂1 ⊗ · · · ⊗ v̂j−1 ⊗ vj ⊗ v̂j+1 · · · ⊗ v̂k

〉
. (28)

Assume that (17) holds for ℓ ∈ [j − 1]. For ℓ ∈ {j + 1, . . . , k}, Corollary 2.1.1 implies |⟨vℓ, v̂ℓ⟩| is
bounded away from zero. The first term on the right-hand side of (28) is therefore Θa.s.(λ). The
second term is bounded by the spectral norm of Z: using Theorem 1 of [23],〈

Z, v̂1 ⊗ · · · ⊗ v̂j−1 ⊗ vj ⊗ v̂j+1 ⊗ · · · ⊗ v̂k
〉
≤ sup

uj∈Sj−1,j∈[k]

⟨Z, u1 ⊗ · · · ⊗ uk⟩ ≲
√
nk , (29)
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almost surely. Thus, as (
√
nk/λ)

4 ≲ n2
k/N1 → 0,

|⟨vj , v̂j⟩| = 1 +Oa.s.

(√nk

λ

)
a.s.−−→ 1 , (30)

from which (17) follows inductively.

Equation (18) follows from (17) and (29), which imply ∥v1⊗ · · · ⊗ vk − v̂1⊗ · · · ⊗ v̂k∥F
a.s.−−→ 0 and

λ−1|λ̂| =
∣∣∣∣ k∏
j=1

⟨vj , v̂j⟩+ λ−1⟨Z, v̂1 ⊗ · · · v̂k⟩
∣∣∣∣ a.s.−−→ 1 . (31)

Proof of Theorem 4.2. We shall prove v2, . . . , vk are recovered exactly; proofs for the first and last
axes are similar and omitted. By the linearity of the unfolding operator,

Matj−1(X ×1 v̂1) = λ⟨v1, v̂1⟩(⊗ℓ∈[k]\{1,j}vℓ)v
⊤
j + Matj−1(Z ×1 v̂1) . (32)

Observe that Z ×1 v̂1 is a reshaping of the vector Mat1(Z)v̂1. As v̂1 and Z are dependent, the second
term on the right-hand side is not a matrix of i.i.d. entries. Despite dependencies, we claim that
appropriately scaled, Mat1(Z)v̂1 is Gaussian noise, in which case exact recovery thresholds are a
consequence of spiked matrix model results of Section 1.3 applied to (32).

By definition, v̂1 is the first eigenvector of the symmetric matrix

Mat1(X)⊤Mat1(X) = λ2v1v
⊤
1 + Mat1(Z)⊤Mat1(Z) + E , (33)

where E is a rank-two matrix given by

E = λv1(⊗ℓ∈[k]\{1}vℓ)
⊤Mat1(Z) + λMat1(Z)⊤(⊗ℓ∈[k]\{1}vℓ)v

⊤
1 .

Let ṽ1 denote the first eigenvector of Mat1(X)⊤Mat1(X)−E ; without loss of generality, we assume
v̂⊤1 ṽ1 ≥ 0. Since Mat1(Z)⊤(⊗ℓ∈[k]\{1}vℓ) ∼ N (0, In1

), we have ∥E∥2 ≲ λ
√
n1 almost surely. By

Theorem 1.1 of [13], the spectral gap of Mat1(X)⊤Mat1(X) is Θ(λ2). Thus, using the Davis-Kahan
theorem (see Corollary 3 of [25]), we have

∥v̂1 − ṽ1∥2 ≲
∥E∥2
λ2

a.s.−−→ 0 . (34)

Let Mat1(Z) = UΛV ⊤ be a singular value decomposition. As Z contains i.i.d. Gaussian entries,
(1) U , Λ, and V are independent, (2) U and V are Haar-distributed. Moreover, as ṽ1 is the first
eigenvector of λ2v1v

⊤
1 + Mat1(Z)⊤Mat1(Z) = λ2v1v

⊤
1 + V Λ2V ⊤, ṽ1 is independent of U . Thus,

UΛV ⊤ṽ1/∥ΛV ⊤ṽ1∥2 is uniform on SN2−1. Generating ξ ∼ χ2
N2

independent of Z, it follows that

ξ√
N2

· Mat1(Z)ṽ1
∥ΛV ⊤ṽ1∥2

∼ N (0, IN2
) . (35)

Defining the constant α = ξ/(
√
N2∥ΛV ⊤ṽ1∥2), we deduce that αZ ×1 ṽ1 (which is a reshaping of

the left-hand side of (35)) is distributed as a tensor with i.i.d. Gaussian entries—despite dependencies
between Z and ṽ1. Additionally, since Λ11/

√
N2

a.s.−−→ 1 and Λn1n1
/
√
N2

a.s.−−→ 1, we have
∥ΛV ⊤ṽ1∥2/

√
N2

a.s.−−→ 1 and α
a.s.−−→ 1.

Thus, we conclude that

αMatj−1(X ×1 ṽ1) = λ(1 + oa.s.(1))⟨v1, ṽ1⟩(⊗ℓ∈[k]\{1,j}vℓ)v
⊤
j + Z̃ , j ∈ {2, . . . , k − 1} ,

(36)

where Z̃ ∈ Rnj×(N2/nj) contains i.i.d. Gaussian entries, enabling us to apply spiked matrix results.
Let ṽj denote the first right singular vector of Matj−1(X×1 ṽ1) (equivalently, that of αMatj−1(X×1

ṽ1)); without loss of generality, we assume v̂⊤1 ṽ1 ≥ 0. In particular, since |⟨v1, ṽ1⟩| ≍ |⟨v1, v̂1⟩| ≍ 1

by Corollary 2.1.1 and (34), Lemma 1.2 implies |⟨vj , ṽj⟩|
a.s.−−→ 1 (we have λ≫ (nj ·N2/nj)

1/4).

12



It therefore suffices to prove that ∥v̂j − ṽj∥2
a.s.−−→ 0. By Theorem 2.3 of [5] or Theorem 1.1 of

[13] and Cauchy’s interlacing inequality, the spectral gap of Matj−1(X ×1 ṽ1)
⊤Matj−1(X ×1 ṽ1) is

Θ(λ2). Let Z denote the reshaping of Z with dimensions n1 × nj ×N2/nj and slices Matj−1(Zi),
i ∈ [n1]. Using the bound

∥Matj−1(Z ×1 (v̂1 − ṽ1))∥2 ≤ sup
u1∈Sn1−1,u2∈Snj−1,

u3∈SN2/nj−1

(
Z ×1 u1 ×2 u2 ×3 u3

)
· ∥v̂1 − ṽ1∥2

and Theorem 1 of [23],

∥Matj−1(X ×1 (v̂1 − ṽ1))∥2 ≤ λ∥v̂1 − ṽ1∥2∥Matj−1(v2 ⊗ · · · ⊗ vk)∥2 + ∥Matj−1(Z ×1 (v̂1 − ṽ1))∥2
≲

(
λ+ (N2/nj)

1/2
)
∥v̂1 − ṽ1∥2 ,

(37)
almost surely. Thus, using the Davis-Kahan theorem (Theorem 4 of [25]), (34), and (37), we have

∥v̂j − ṽj∥2 ≲
λ
(
λ+ (N2/nj)

1/2
)
∥v̂1 − ṽ1∥2

λ2

a.s.−−→ 0 , (38)

completing the proof.
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