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Abstract

While numerous works have focused on devising efficient algorithms for reinforce-
ment learning (RL) with uniformly bounded rewards, it remains an open question
whether sample or time-efficient algorithms for RL with large state-action space
exist when the rewards are heavy-tailed, i.e., with only finite (1 + ϵ)-th moments
for some ϵ ∈ (0, 1]. In this work, we address the challenge of such rewards in RL
with linear function approximation. We first design an algorithm, HEAVY-OFUL,
for heavy-tailed linear bandits, achieving an instance-dependent T -round regret of

Õ
(
dT

1−ϵ
2(1+ϵ)

√∑T
t=1 ν

2
t + dT

1−ϵ
2(1+ϵ)

)
, the first of this kind. Here, d is the feature

dimension, and ν1+ϵ
t is the (1 + ϵ)-th central moment of the reward at the t-th

round. We further show the above bound is minimax optimal when applied to the
worst-case instances in stochastic and deterministic linear bandits. We then extend
this algorithm to the RL settings with linear function approximation. Our algo-
rithm, termed as HEAVY-LSVI-UCB, achieves the first computationally efficient
instance-dependent K-episode regret of Õ(d

√
HU∗K

1
1+ϵ +d

√
HV∗K). Here, H

is length of the episode, and U∗,V∗ are instance-dependent quantities scaling with
the central moment of reward and value functions, respectively. We also provide
a matching minimax lower bound Ω(dHK

1
1+ϵ + d

√
H3K) to demonstrate the

optimality of our algorithm in the worst case. Our result is achieved via a novel
robust self-normalized concentration inequality that may be of independent interest
in handling heavy-tailed noise in general online regression problems.

1 Introduction

Designing efficient reinforcement learning (RL) algorithms for large state-action space is a significant
challenge within the RL community. A crucial aspect of RL is understanding the reward functions,
which directly impacts the quality of the agent’s policy. In certain real-world situations, reward
distributions may exhibit heavy-tailed behavior, characterized by the occurrence of extremely large
values at a higher frequency than expected in a normal distribution. Examples include image noise
in signal processing [14], stock price fluctuations in financial markets [12, 18], and value functions
in online advertising [11, 19]. However, much of the existing RL literature assumes rewards to be
either uniformly bounded or light-tailed (e.g., sub-Gaussian). In such light-tailed settings, the primary
challenge lies in learning the transition probabilities, leading most studies to assume deterministic
rewards for ease of analysis [5, 22, 15]. As we will demonstrate, the complexity of learning reward
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functions may dominate in heavy-tailed settings. Consequently, the performance of traditional
algorithms may decline, emphasizing the need for the development of new, efficient algorithms
specifically designed to handle heavy-tailed rewards.

Heavy-tailed distributions have been extensively studied in the field of statistics [9, 27] and in more
specific online learning scenarios, such as bandits [7, 28, 31, 34, 40]. However, there is a dearth of
theoretical research in RL concerning heavy-tailed rewards, whose distributions only admit finite
(1 + ϵ)-th moment for some ϵ ∈ (0, 1]. One notable exception is Zhuang and Sui [44], which made a
pioneering effort in establishing worst-case regret guarantees in tabular Markov Decision Processes
(MDPs) with heavy-tailed rewards. However, their algorithm cannot handle RL settings with large
state-action space. Moreover, their reliance on truncation-based methods is sub-optimal as these
methods heavily depend on raw moments, which do not vanish in deterministic cases. Therefore, a
natural question arises:

Can we derive sample and time-efficient algorithms for RL with large state-action space
that achieve instance-dependent regret in the presence of heavy-tailed rewards?

In this work, we focus on linear MDPs [35, 22] with heavy-tailed rewards and answer the above
question affirmatively. We say a distribution is heavy-tailed if it only admits finite (1 + ϵ)-th moment
for some ϵ ∈ (0, 1]. Our contributions are summarized as follows.

• We first propose a computationally efficient algorithm HEAVY-OFUL for heavy-tailed linear
bandits. Such a setting can be regarded as a special case of linear MDPs. HEAVY-OFUL achieves

an instance-dependent T -round regret of Õ
(
dT

1−ϵ
2(1+ϵ)

√∑T
t=1 ν

2
t + dT

1−ϵ
2(1+ϵ)

)
, the first of this kind.

Here d is the feature dimension and ν1+ϵ
t is the (1 + ϵ)-th central moment of the reward at the t-th

round. The instance-dependent regret bound has a main term that only depends on the summation
of central moments, and therefore does not have a

√
T term. Our regret bound is shown to be

minimax optimal in both stochastic and deterministic linear bandits (See Remark 4.2 for details).
• We then extend this algorithm to time-inhomogeneous linear MDPs with heavy-tailed rewards,

resulting in a new computationally efficient algorithm HEAVY-LSVI-UCB, which achieves a
K-episode regret scaling as Õ(d

√
HU∗K

1
1+ϵ + d

√
HV∗K) for the first time. Here, H is the

length of the episode and U∗,V∗ are quantities measuring the central moment of the reward
functions and transition probabilities, respectively (See Theorem 5.2 for details). Our regret bound
is instance-dependent since the main term only relies on the instance-dependent quantities, which
vanishes when the dynamics and rewards are deterministic. When specialized to special cases, our
instance-dependent regret recovers the variance-aware regret in Li and Sun [26] (See Remark 5.3
for details) and improves existing first-order regret bounds [33, 26] (See Corollary 5.6 for details).

• We provide a minimax regret lower bound Ω(dHK
1

1+ϵ + d
√
H3K) for linear MDPs with heavy-

tailed rewards, which matches the worst-case regret bound implied by our instance-dependent
regret, thereby demonstrating the minimax optimality of HEAVY-LSVI-UCB in the worst case.

For better comparisons between our algorithms and state-of-the-art results, we summarize the regrets
in Table 1 and 2 for linear bandits and linear MDPs, respectively. More related works are deferred to
Appendix A. Remarkably, our results demonstrate that ϵ = 1 (i.e. finite variance) is sufficient to obtain
variance-aware regret bounds of the same order as the case where rewards are uniformly bounded for
both linear bandits and linear MDPs. The main technique contribution behind our results is a novel
robust self-normalized concentration inequality inspired by Sun et al. [32]. To be more specific, it is
a non-trivial generalization of adaptive Huber regression from independent and identically distributed
(i.i.d.) case to heavy-tailed online regression settings and gives a self-normalized bound instead of
the ℓ2-norm bound in Sun et al. [32]. Our result is computationally efficient and only scales with the
feature dimension, d, (1 + ϵ)-th central moment of the noise, ν, and does not depend on the absolute
magnitude as in other self-normalized concentration inequalities [42, 41].

Road Map The rest of the paper is organized as follows. Section 2 introduces heavy-tailed linear
bandits and linear MDPs. Section 3 presents the robust self-normalized concentration inequality for
general online regression problems with heavy-tailed noise. Section 4 and 5 give the main results for
heavy-tailed linear bandits and linear MDPs, respectively. We then conclude in Section 6. Related
work, experiments and all proofs can be found in Appendix.
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Table 1: Comparisons with previous works on linear bandits. d, T , {σt}t∈[T ], {νt}t∈[T ] are feature
dimension, the number of rounds, the variance or central moment of the reward at the t-th round.

Algorithm Regret Instance-
dependent?

Minimax
Optimal?

Deterministic-
Optimal?

Heavy-
Tailed

Rewards?

OFUL [1] Õ
(
d
√
T
)

No Yes No No
IDS-UCB [24]

Weighted OFUL+ [41]
AdaOFUL [26]

Õ

(
d
√∑T

t=1 σ
2
t + d

)
Yes Yes Yes

No
No

ϵ = 1

MENU and TOFU [31] Õ
(
dT

1
1+ϵ

)
No Yes No Yes

HEAVY-OFUL (Ours) Õ

(
dT

1−ϵ
2(1+ϵ)

√∑T
t=1 ν

2
t + dT

1−ϵ
2(1+ϵ)

)
Yes Yes Yes Yes

Table 2: Comparisons with previous works on time-inhomogeneous linear MDPs. d, H , K, V ∗
1 , G∗

are feature dimension, the length of the episode, the number of episodes, optimal value function,
variance-dependent quantity defined in Li and Sun [26]. U∗, V∗ are defined in Theorem 5.2.

Algorithm Regret
Central

Moment-
Dependent?

First-
Order?

Minimax
Optimal?

Computa-
tionally

Efficient?

Heavy-
Tailed

Rewards?

LSVI-UCB[22] Õ
(√

d3H4K
)

No No No Yes No

FORCE [33] Õ
(√

d3H3V ∗
1 K

)
No Yes No No No

VOQL [2]
LSVI-UCB++ [15] Õ

(
d
√
H3K

)
No No Yes Yes No

VARA [26] Õ
(
d
√
HG∗K

)
Yes Yes Yes Yes ϵ = 1

HEAVY-LSVI-UCB (Ours) Õ
(
d
√
HU∗K

1
1+ϵ + d

√
HV∗K

)
Yes Yes Yes Yes Yes

Notations Let ∥a∥ := ∥a∥2. Let [t] := {1, 2, . . . , t}. Let Bd(r) := {x ∈ Rd|∥x∥ ≤ r}.
Let x[a,b] := max{a,min{x, b}} denote the projection of x onto the close interval [a, b]. Let
σ({Xs}s∈[t]) be the σ-field generated by random vectors {Xs}s∈[t].

2 Preliminaries

2.1 Heavy-Tailed Linear Bandits

Definition 2.1 (Heterogeneous linear bandits with heavy-tailed rewards). Let {Dt}t≥1 denote a
series of fixed decision sets, where all ϕt ∈ Dt satisfy ∥ϕt∥ ≤ L for some known upper bound
L. At each round t, the agent chooses ϕt ∈ Dt, then receives a reward Rt from the environment.
We define the filtration {Ft}t≥1 as Ft = σ({ϕs, Rs}s∈[t] ∪ {ϕt+1}) for any t ≥ 1. We assume
Rt = ⟨ϕt,θ

∗⟩+ εt with the unknown coefficient θ∗ ∈ Bd(B) for some known upper bound B. The
random variable εt ∈ R is Ft-measurable and satisfies E[εt|Ft−1] = 0,E[|εt|1+ϵ|Ft−1] = ν1+ϵ

t for
some ϵ ∈ (0, 1] with νt being Ft−1-measurable.

The agent aims to minimize the T -round pseudo-regret defined as Regret(T ) =
∑T

t=1[⟨ϕ∗
t ,θ

∗⟩ −
⟨ϕt,θ

∗⟩], where ϕ∗
t = argmaxϕ∈Dt

⟨ϕ,θ∗⟩.

2.2 Linear MDPs with Heavy-Tailed Rewards

We use a tuple M = M(S,A, H, {Rh}h∈[H], {Ph}h∈[H]) to describe the time-inhomogeneous finite-
horizon MDP, where S and A are state space and action space, respectively, H is the length of the
episode, Rh : S × A → R is the random reward function with expectation rh : S × A → R, and
Ph : S ×A → ∆(S) is the transition probability function. More details can be found in Puterman
[30]. A time-dependent policy π = {πh}h∈H satisfies πh : S → ∆(A) for any h ∈ [H]. When
the policy is deterministic, we use πh(sh) to denote the action chosen at the h-th step given sh by
policy π. For any state-action pair (s, a) ∈ S ×A, we define the state-action value function Qπ

h(s, a)

and state value function V π
h (s) as follows: Qπ

h(s, a) = E
[∑H

h′=h r(sh′ , ah′)|sh = s, ah = a
]
,

V π
h (s) = Qπ

h(s, πh(s)), where the expectation is taken with respect to the transition probability of
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M and the agent’s policy π. If π is randomized, then the definition of V should have an expectation.
Denote the optimal value functions as V ∗

h (s) = supπ V
π
h (s) and Q∗

h(s, a) = supπ Q
π
h(s, a).

We introduce the following shorthands for simplicity. At the h-th step, for any value function
V : S → R, let [PhV ](s, a) = Es′∼Ph(·|s,a)V (s′), [VhV ](s, a) = [PhV

2](s, a) − [PhV ]2(s, a)
denote the expectation and the variance of the next-state value function at the h-th step given (s, a).

We aim to minimize the K-episode regret defined as Regret(K) =
∑K

k=1[V
∗
1 (s

k
1)− V πk

1 (sk1)].

In the rest of this section, we introduce linear MDPs with heavy-tailed rewards. We first give the
definition of linear MDPs studied in Yang and Wang [35], Jin et al. [22], with emphasis that the
rewards in their settings are deterministic or uniformly bounded. Then we focus on the heavy-tailed
random rewards.
Definition 2.2. An MDP M = M(S,A, H, {Rh}h∈[H], {Ph}h∈[H]) is a time-inhomogeneous finite-
horizon linear MDP, if there exist known feature maps ϕ(s, a) : S × A → Bd(1), unknown
d-dimensional signed measures {µ∗

h}h∈[H] over S with ∥µ∗
h(S)∥ :=

∫
s∈S |µ(s)|ds ≤

√
d and

unknown coefficients {θ∗h}h∈[H] ⊆ Bd(B) for some known upper bound B such that
rh(s, a) = ⟨ϕ(s, a),θ∗h⟩, Ph(·|s, a) = ⟨ϕ(s, a),µ∗

h(·)⟩
for any state-action pair (s, a) ∈ S ×A and timestep h ∈ [H].
Assumption 2.3 (Realizable rewards). For all (s, a, h) ∈ S ×A× [H], the random reward Rh(s, a)
is independent of next state s′ ∼ Ph(·|s, a) and admits the linear structure

Rh(s, a) = ⟨ϕ(s, a),θ∗h⟩+ εh(s, a),

where εh(s, a) is a mean-zero heavy-tailed random variable specified below.

We introduce the notation νn[X] = E[|X − EX|n] for the n-th central moment of any random
variable X . And for any random reward function at the h-th step Rh : S ×A → R, let

[EhRh](s, a) = E[Rh(sh, ah)|(sh, ah) = (s, a)],

[ν1+ϵRh](s, a) = E[|[Rh − EhRh](sh, ah)|1+ϵ|(sh, ah) = (s, a)]

denote its expectation and the (1 + ϵ)-th central moment given (sh, ah) = (s, a) for short.
Assumption 2.4 (Heavy-tailedness of rewards). Random variable εh(s, a) satisfies [Ehεh](s, a) = 0.
And for some known ϵ, ϵ′ ∈ (0, 1] and constants νR, νRϵ ≥ 0, the following unknown moments of
εh(s, a) satisfy

[Eh|εh|1+ϵ](s, a) ≤ ν1+ϵ
R , [ν1+ϵ′ |εh|1+ϵ](s, a) ≤ ν1+ϵ′

Rϵ

for all (s, a, h) ∈ S ×A× [H].

Assumption 2.4 generalizes Assumption 2.2 of Li and Sun [26], which is the weakest moment
condition on random rewards in the current literature of RL with function approximation. Setting
ϵ = 1 and ϵ′ = 1 immediately recovers their settings.
Assumption 2.5 (Realizable central moments). There are some unknown coefficients {ψ∗

h}h∈[H] ⊆
Bd(W ) for some known upper bound W such that

[Eh|εh|1+ϵ](s, a) = ⟨ϕ(s, a),ψ∗
h⟩

for all (s, a, h) ∈ S ×A× [H].
Remark 2.6. When ϵ = 1, that is the rewards have finite variance, Li and Sun [26] use the fact that
[ν2Rh](s, a) = [VhRh](s, a) = [EhR

2
h](s, a) − [EhRh]

2(s, a), assume the linear realizability of
the second moment [EhR

2
h](s, a), and estimate it instead. However, when ϵ < 1, there is no such

relationship between the (1 + ϵ)-th central moment [ν1+ϵRh](s, a) and the (1 + ϵ)-th raw moment
[EhR

1+ϵ
h ](s, a). Thus, we adopt a new approach to estimate [ν1+ϵRh](s, a) directly, and bound the

error by a novel perturbation analysis of adaptive Huber regression in Appendix C.3.
Assumption 2.7 (Bounded cumulative rewards). For any policy π, let {sh, ah, Rh}h∈[H] be a random
trajectory following policy π. And define rπ =

∑H
h=1[EhRh](sh, ah) =

∑H
h=1 rh(sh, ah). We

assume (1) 0 ≤ rπ ≤ H. (2)
∑H

h=1[ν1+ϵRh]
2

1+ϵ (sh, ah) ≤ U . (3) Var(rπ) ≤ V .

Here, (1) gives an upper bound of cumulative expected rewards rπ . (2) assumes the summation of (1+
ϵ)-th central moment of rewards [ν1+ϵRh](sh, ah) is bounded since [

∑H
h=1[ν1+ϵRh](sh, ah)]

2
1+ϵ ≤∑H

h=1[ν1+ϵRh]
2

1+ϵ (sh, ah) ≤ U due to Jensen’s inequality. And (3) is to bound the variance of rπ
along the trajectory following policy π.
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Algorithm 1 Adaptive Huber Regression
Require: Number of total rounds T , confidence level δ, regularization parameter λ, σmin, parameters

for adaptive Huber regression c0, c1, τ0, estimated central moment ν̂t and moment parameter b
that satisfy νt/ν̂t ≤ b for all t ≤ T .

Ensure: The estimated coefficient θt.
1: κ = d log(1 + TL2/(dλσ2

min)).
2: SetHt−1 = λI +

∑t−1
s=1 σ

−2
s ϕsϕ

⊤
s .

3: Set σt = max

{
ν̂t, σmin,

∥ϕt∥H
−1
t−1

c0
,

√
LB

c
1
4
1 (2κb2)

1
4

∥ϕt∥
1
2

H−1
t−1

}
.

4: Set τt = τ0

√
1+w2

t

wt
t

1−ϵ
2(1+ϵ) with wt = ∥ϕt/σt∥H−1

t−1
.

5: Define the loss function Lt(θ) :=
λ
2 ∥θ∥

2 +
∑t

s=1 ℓτs(
ys−⟨ϕs,θ⟩

σs
).

6: Compute θt = argminθ∈Bd(B) Lt(θ).

3 Adaptive Huber Regression

At the core of our algorithms for both heavy-tailed linear bandits and linear MDPs is a new approach
– adaptive Huber regression – to handle heavy-tailed noise. Sun et al. [32] imposed adaptive Huber
regression to handle i.i.d. heavy-tailed noise by utilizing Huber loss [17] as a surrogate of squared
loss. Li and Sun [26] modified adaptive Huber regression for heterogeneous online settings, where the
variances in each round are different. However, it is not readily applicable to deal with heavy-tailed
noise. Our contribution in this section is to construct a new self-normalized concentration inequality
for general online regression problems with heavy-tailed noise.

We first give a brief introduction to Huber loss function and its properties.
Definition 3.1 (Huber loss). Huber loss is defined as

ℓτ (x) =

{
x2

2 if |x| ≤ τ,

τ |x| − τ2

2 if |x| > τ,
(3.1)

where τ > 0 is referred as a robustness parameter.

Huber loss is first proposed by Huber [17] as a robust version of squared loss while preserving
the convex property. Specifically, Huber loss is a quadratic function of x when |x| is less than
the threshold τ , while becomes linearly dependent on |x| when |x| grows larger than τ . It has the
property of strongly convex near zero point and is not sensitive to outliers. See Appendix C.1 for
more properties of Huber loss.

Next, we define general online regression problems with heavy-tailed noise, which include heavy-
tailed linear bandits as a special case. Then we utilize Huber loss to estimate θ∗. Below we give the
main theorem to bound the deviation of the estimated θt in Algorithm 1 from the ground truth θ∗.
Definition 3.2. Let {Ft}t≥1 be a filtration. For all t > 0, let random variables yt, εt be Ft-
measurable and random vector ϕt ∈ Bd(L) be Ft−1-measurable. Suppose yt = ⟨ϕt,θ

∗⟩+ εt, where
θ∗ ∈ Bd(B) is an unknown coefficient and

E[εt|Ft−1] = 0, E[|εt|1+ϵ|Ft−1] = ν1+ϵ
t

for some ϵ ∈ (0, 1]. The goal is to estimate θ∗ at any round t given the realizations of {ϕs, ys}s∈[t].

Theorem 3.3. For the online regression problems in Definition 3.2, we solve for θt by adaptive Huber
regression in Algorithm 1 with c0, c1, τ0 in Appendix C.2. Then for any δ ∈ (0, 1), with probability
at least 1− 3δ, for all t ≤ T , we have ∥θt − θ∗∥Ht

≤ βt, whereHt is defined in Algorithm 1 and

βt = 3
√
λB + 24t

1−ϵ
2(1+ϵ)

√
2κb(log 3T )

1−ϵ
2(1+ϵ) (log(2T 2/δ))

ϵ
1+ϵ . (3.2)

Proof. To derive a tight high-probability bound, we take the most advantage of the properties of
Huber loss. A Chernoff bounding technique is used to bound the main error term, which requires a
careful analysis of the moment generating function. See Appendix C.2 for a detailed proof.
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Algorithm 2 HEAVY-OFUL
Require: Number of total rounds T , confidence level δ, regularization parameter λ, σmin, parameters

for adptive Huber regression c0, c1, τ0, confidence radius βt.
1: κ = d log(1 + TL2

dλσ2
min

), C0 = Bd(B),H0 = λI .
2: for t = 1, . . . , T do
3: Observe Dt.
4: Set (ϕt, ·) = argmaxϕ∈Dt,θ∈Ct−1

⟨ϕ,θ⟩.
5: Play ϕt and observe Rt, νt.

6: Set σt = max
{
νt, σmin,

∥ϕt∥H
−1
t−1

c0
,

√
LB

c
1
4
1 (2κ)

1
4

∥ϕt∥
1
2

H−1
t−1

}
.

7: Set τt = τ0

√
1+w2

t

wt
t

1−ϵ
2(1+ϵ) with wt = ∥ϕt/σt∥H−1

t−1
.

8: UpdateHt =Ht−1 + σ−2
t ϕtϕ

⊤
t .

9: Solve for θt by Algorithm 1 and set Ct = {θ ∈ Rd|∥θ − θt∥Ht
≤ βt}.

10: end for

We refer to the regression process in Line 6 of Algorithm 1 as adaptive Huber regression in line with
Sun et al. [32] to emphasize that the value of robustness parameter τt is chosen to adapt to data for
a better trade-off between bias and robustness. Specifically, since we are in the online setting, ϕt

are dependent on {ϕs}s<t, which is the key difference from the i.i.d. case in Sun et al. [32] where
they set τt = τ0, for all t ≤ T . Thus, as shown in Line 4 of Algorithm 1, inspired by Li and Sun [26],
we adjust τt according to the importance of observations wt = ∥ϕt/σt∥H−1

t−1
, where σt is specified

below. In the case where ϵ < 1, different from Li and Sun [26], we first choose τt to be small for
robust purposes, then gradually increase it with t to reduce the bias.

Next, we illustrate the reason for setting σt via Line 3 of Algorithm 1. We use ν̂t ∈ Ft−1 to estimate
the central moment νt and use moment parameter b to measure the closeness between ν̂t and νt.
When we choose ν̂t as an upper bound of νt, b becomes a constant that equals to 1. And σmin is
a small positive constant to avoid singularity. The last two terms with respect to c0 and c1 are set
according to the uncertainty ∥ϕt∥H−1

t−1
. In addition, setting the parameter c0 ≤ 1 yields wt ≤ 1,

which is essential to meet the condition of elliptical potential lemma [1].

Remark 3.4. The error bound βt in (3.2) is only related to the feature dimension d and moment
parameter b. While the Bernstein-style self-normalized concentration bounds [42, 41] depend on the
magnitude of εt, thus cannot handle heavy-tailed errors.

4 Linear Bandits

In this section, we show the algorithm HEAVY-OFUL in Algorithm 2 for heavy-tailed linear bandits
in Definition 2.1. We first give a brief algorithm description, and then provide a theoretical regret
analysis.

4.1 Algorithm Description

HEAVY-OFUL follows the principle of Optimism in the Face of Uncertainty (OFU) [1], and uses
adaptive Huber regression in Section 3 to maintain a set Ct that contains the unknown coefficient θ∗
with high probability. Specifically, at the t-th round, HEAVY-OFUL estimates the expected reward
of any arm ϕ as maxθ∈Ct−1⟨ϕ,θ⟩, and selects the arm that maximizes the estimated reward. The
agent then receives the reward Rt and updates the confidence set Ct based on the information up to
round t with its center θt computed by adaptive Huber regression as in Line 9 of Algorithm 2.

4.2 Regret Analysis

We next give the instance-dependent regret upper bound of HEAVY-OFUL in Theorem 4.1.

Theorem 4.1. For the heavy-tailed linear bandits in Definition 2.1, we set c0, c1, τ0, βt in Algorithm 2
according to Theorem 3.3 with b = 1. Besides, let λ = d/B2, and σmin = 1/

√
T . Then with
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probability at least 1− 3δ, the regret of HEAVY-OFUL is bounded by

Regret(T ) = Õ

(
dT

1−ϵ
2(1+ϵ)

√∑T

t=1
ν2t + dT

1−ϵ
2(1+ϵ)

)
.

Proof. The proof uses the self-normalized concentration inequality of adaptive Huber regression and
a careful analysis to bound the summation of bonuses. See Appendix D.1 for a detailed proof.

Remark 4.2. Theorem 4.1 shows HEAVY-OFUL achieves an instance-dependent regret bound.
When we assume νt,∀t ≥ 1 have uniform upper bound ν (which can be treated as a constant), then
the bound is reduced to Õ(dT

1
1+ϵ ). It matches the lower bound Ω(dT

1
1+ϵ ) by Shao et al. [31] up to

logarithmic factors. In the deterministic scenario, where ϵ = 1 and νt = 0, for all t ≥ 1, the bound is
reduced to Õ(d). It matches the lower bound Ω(d)1 up to logarithmic factors.

5 Linear MDPs

In this section, we show the algorithm HEAVY-LSVI-UCB in Algorithm 3 for linear MDP with
heavy-tailed rewards defined in Section 2.2. Let ϕk,h := ϕ(sk,h, ak,h) for short. We first give the
algorithm description intuitively, then provide the computational complexity and regret bound.

5.1 Algorithm Description

HEAVY-LSVI-UCB features a novel combination of adaptive Huber regression in Section 3 and
existing algorithmic frameworks for linear MDPs with bounded rewards [22, 15]. At a high level,
HEAVY-LSVI-UCB employs separate estimation techniques to handle heavy-tailed rewards and
transition kernels. Specifically, we utilize adaptive Huber regression proposed in Section 3 to estimate
heavy-tailed rewards and weighted ridge regression [42, 15] to estimate the expected next-state
value functions. Then, it follows the value iteration scheme to update the optimistic and pessimistic
estimation of the optimal value function Qk

h, V k
h and Q̌k

h, V̌ k
h , respectively, via a rare-switching policy

as in Line 7 to 15 of Algorithm 3. We highlight the key steps of HEAVY-LSVI-UCB as follows.

Estimation for expected heavy-tailed rewards Since the expected rewards have linear structure in
linear MDPs, i.e., rh(s, a) = ⟨ϕ(s, a),θ∗h⟩, we use adaptive Huber regression to estimate θ∗h:

θk,h = argmin
θ∈Bd(B)

λR

2
∥θ∥2 +

k∑
i=1

ℓτi,h

(
Ri,h − ⟨ϕi,h,θ⟩

νi,h

)
, (5.1)

where νi,h will be specified later.

Estimation for central moment of rewards By Assumption 2.5, the (1 + ϵ)-th central moment of
rewards is linear in ϕ, i.e., [ν1+ϵRh](s, a) = ⟨ϕ(s, a),ψ∗

h⟩. Motivated by this, we estimate ψ∗
h by

adaptive Huber regression as

ψk,h = argmin
ψ∈Bd(W )

λR

2
∥ψ∥2 +

k∑
i=1

ℓτ̃i,h

(
|εi,h|1+ϵ − ⟨ϕi,h,ψ⟩

νi,h

)
, (5.2)

where W is the upper bound of ∥ψ∗
h∥ defined in Assumption 2.5. Since εi,h is intractable, we estimate

it by ε̂i,h = Ri,h − ⟨ϕi,h,θi,h⟩, which gives ψ̂k,h as

ψ̂k,h = argmin
ψ∈Bd(W )

λR

2
∥ψ∥2 +

k∑
i=1

ℓτ̃i,h

(
|ε̂i,h|1+ϵ − ⟨ϕi,h,ψ⟩

νi,h

)
. (5.3)

The inevitable error between ψk,h and ψ̂k,h can be quantified by a novel perturbation analysis of
adaptive Huber regression in Appendix C.3.

1Consider the decision set consisting of unit bases of Rd. Given that each arm pull can only yield information
about a single coordinate, it is inevitable that d pulls are required for exploration.
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Algorithm 3 HEAVY-LSVI-UCB
Require: Number of episodes K, confidence level δ, regularization parameter λR, λV , νmin, σmin,

confidence radius βRϵ , β0, βR, βV .
1: κ = d log(1 + K

dλRν2
min

).
2: θ0,h = ŵ0,h = w̌0,h = 0,H0,h = λRI,Σ0,h = λV I , UPDATE = TRUE.
3: for k = 1, . . . ,K do
4: V k

H+1(·) = V̌ k
H+1(·) = 0.

5: for h = H, . . . , 1 do
6: Compute θk−1,h, ŵk−1,h and w̌k−1,h via (5.1) and (5.8).
7: if UPDATE then
8: Qk

h(·, ·) = ⟨ϕ(·, ·),θk−1,h + ŵk−1,h⟩+ βR,k−1∥ϕ(·, ·)∥H−1
k−1,h

+ βV ∥ϕ(·, ·)∥Σ−1
k−1,h

.

9: Q̌k
h(·, ·) = ⟨ϕ(·, ·),θk−1,h + w̌k−1,h⟩ − βR,k−1∥ϕ(·, ·)∥H−1

k−1,h
− βV ∥ϕ(·, ·)∥Σ−1

k−1,h
.

10: Qk
h(·, ·) = min{Qk

h(·, ·), Q
k−1
h (·, ·),H}, Q̌k

h(·, ·) = max{Q̌k
h(·, ·), Q̌

k−1
h (·, ·), 0}.

11: Set klast = k.
12: else
13: Qk

h(·, ·) = Qk−1
h (·, ·), Q̌k

h(·, ·) = Q̌k−1
h (·, ·).

14: end if
15: V k

h (·) = maxa Q
k
h(·, a), V̌ k

h (·) = maxa Q̌
k
h(·, a), πk

h(·) = argmaxa Q
k
h(·, a).

16: end for
17: Observe initial state sk,1.
18: for h = 1, . . . ,H do
19: Take action ak,h = πk

h(sk,h) and observe Rk,h, sk,h+1.
20: Set νk,h and σk,h according to (5.4) and (5.9) respectively.

21: Set τk,h = τ0

√
1+w2

k,h

wk,h
k

1−ϵ
2(1+ϵ) , τ̃k,h = τ̃0

√
1+w2

k,h

wk,h
k

1−ϵ′
2(1+ϵ′) with wk,h = ∥ϕk,h/νk,h∥H−1

k,h
.

22: UpdateHk,h =Hk−1,h + 1
ν2
k,h
ϕk,hϕ

⊤
k,h and Σk,h = Σk−1,h + 1

σ2
k,h
ϕk,hϕ

⊤
k,h.

23: end for
24: if ∃h′ ∈ [H] such that det(Hk,h′) ≥ 2 det(Hklast,h′) or det(Σk,h′) ≥ 2 det(Σklast,h′) then
25: Set UPDATE = TRUE.
26: else
27: Set UPDATE = FALSE.
28: end if
29: end for

We then set the weight νk,h for adaptive Huber regression as

νk,h = max

{
ν̂k,h, νmin,

∥ϕk,h∥H−1
k−1,h

c0
,

√
max{B,W}

c
1
4
1 (2κ)

1
4

∥ϕk,h∥
1
2

H−1
k−1,h

}
, (5.4)

where νmin is a small positive constant to avoid the singularity, ν̂1+ϵ
k,h = [ν̂1+ϵRh](sk,h, ak,h)+Wk,h

is a high-probability upper bound of rewards’ central moment [ν1+ϵRh](sk,h, ak,h) with

[ν̂1+ϵRh](sk,h, ak,h) = ⟨ϕk,h, ψ̂k−1,h⟩, (5.5)
Wk,h = (βRϵ,k−1 + 6HϵβR,k−1κ) ∥ϕk,h∥H−1

k−1,h
, (5.6)

where κ is defined in Algorithm 3, βRϵ,k = Õ(
√
dνRϵk

1−ϵ′
2(1+ϵ′) /νmin) and βR,k = Õ(

√
dk

1−ϵ
2(1+ϵ) ).

Estimation for expected next-state value functions For any value function f : S → R, we define
the following notations for simplicity:

wh[f ] =

∫
s∈S

µ∗
h(s)f(s)ds, ŵk,h[f ] = Σ−1

k,h

k∑
i=1

σ−2
i,hϕi,hf(si,h+1), (5.7)

where σi,h will be specified later. Note for any state-action pair (s, a) ∈ S ×A, by linear structure
of transition probabilities, we have

[Phf ](s, a) =

∫
s′∈S

⟨ϕ(s, a),µ∗
h(s

′)⟩f(s′)ds′ = ⟨ϕ(s, a),wh[f ]⟩.
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In addition, for any f, g : S → R, it holds that wh[f + g] = wh[f ] + wh[g] and ŵk,h[f + g] =
ŵk,h[f ] + ŵk,h[g] due to the linear property of integration and ridge regression.

We remark ŵk,h[f ] is the estimation ofwh[f ] by weighted ridge regression on {ϕi,h, f(si,h+1)}i∈[k].
And we estimate the coefficients ŵk,h, w̌k,h, w̃k,h

ŵk,h = ŵk,h[V
k
h+1], w̌k,h = ŵk,h[V̌

k
h+1], w̃k,h = ŵk,h[(V

k
h+1)

2], (5.8)

where V k
h and V̌ k

h are optimistic and pessimistic estimation of the optimal value functions.

Estimation for variance of next-state value functions Inspired by He et al. [15], we set the weight
σk,h for weighted ridge regression in (5.7) as

σk,h = max

{
σ̂k,h,

√
d3HDk,h, σmin, ∥ϕk,h∥Σ−1

k−1,h
,
√

d
5
2HH∥ϕk,h∥

1
2

Σ−1
k−1,h

}
, (5.9)

where σmin is a small constant to avoid singularity, σ̂2
k,h = [V̂hV

k
h+1](sk,h, ak,h) + Ek,h with[

V̂hV
k
h+1

]
(sk,h, ak,h) = ⟨ϕk,h, w̃k−1,h⟩[0,H2] − ⟨ϕk,h, ŵk−1,h⟩2[0,H], (5.10)

Ek,h = min
{
4H⟨ϕk,h, ŵk−1,h − w̌k−1,h⟩+ 11Hβ0 ∥ϕk,h∥Σ−1

k−1,h
,H2

}
. (5.11)

Dk,h = min
{
2H⟨ϕk,h, ŵk−1,h − w̌k−1,h⟩+ 4Hβ0 ∥ϕk,h∥Σ−1

k−1,h
,H2

}
, (5.12)

where β0 = Õ(
√
d3HH2/σmin). Here σ̂2

k,h and Dk,h are upper bounds of [VhV
∗
h+1](sk,h, ak,h) and

max{[Vh

(
V k
h+1 − V ∗

h+1

)
](sk,h, ak,h), [Vh

(
V ∗
h+1 − V̌ k

h+1

)
](sk,h, ak,h)}, respectively.

5.2 Computational Complexity

Theorem 5.1. For the linear MDPs with heavy-tailed rewards defined in Section 2.2, the compu-
tational complexity of HEAVY-LSVI-UCB is Õ(d4|A|H3K +HKR). Here R is the cost of the
optimization algorithm for solving adaptive Huber regression in (5.1). Furthermore, we can specialize
R by adopting the Nesterov accelerated method, which gives R = Õ(d+ d−

1−ϵ
2(1+ϵ)H

1−ϵ
2(1+ϵ)K

1+2ϵ
2(1+ϵ) ).

Proof. See Appendix E for a detailed proof.

Such a complexity allows us to focus on the complexity introduced by the RL algorithm rather than
the optimization subroutine for solving adaptive Huber regression. Compared to that of LSVI-UCB++
[15], Õ(d4|A|H3K), the extra term Õ(HKR) causes a slightly worse computational time in terms
of K. This is due to the absence of a closed-form solution of adaptive Huber regression in (5.1).
Thus extra optimization steps are unavoidable. Nevertheless, Nesterov accelerated method gives R =

Õ
(
K

1+2ϵ
2(1+ϵ)

)
with respect to K, which implies the computational complexity of HEAVY-LSVI-UCB

is better than that of LSVI-UCB [22], Õ(d2|A|HK2) in terms of K, thanks to the rare-switching
updating policy. We conduct numerical experiments in Appendix B to further corroborate the
computational efficiency of adaptive Huber regression.

5.3 Regret Bound

Theorem 5.2 (Informal). For the linear MDPs with heavy-tailed rewards defined in Section 2.2, we
set parameters in Algorithm 3 as follows: λR = d/max

{
B2,W 2

}
, λV = 1/H2, νmin, σmin, c0, c1,

τ0, τ̃0, βRϵ , β0, βR, βV in Appendix F.1. Then for any δ ∈ (0, 1), with probability at least 1− 16δ,
the regret of HEAVY-LSVI-UCB is bounded by

Regret(K) = Õ
(
d
√
HU∗K

1
1+ϵ + d

√
HV∗K

)
,

where ϵ ∈ (0, 1], U∗ = min{U∗
0 ,U}, V∗ = min{V∗

0 ,V} with U∗
0 , V∗

0 defined in Appendix F.2 and
H,U ,V defined in Assumption 2.7.

Proof. See Appendix F.2 for a formal version of Theorem 5.2 and its detailed proof.
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Quantities U∗, V∗ We make a few explanations for the quantities U∗, V∗. On one hand, U∗ is
upper bounded by U , which is the upper bound of the sum of the (1 + ϵ)-th central moments of
reward functions along a single trajectory. On the other hand, U∗ is no more than U∗

0 , which is the
sum of the (1 + ϵ)-th central moments with respect to the averaged occupancy measure of the first K
episodes. V∗ is defined similar to U∗, but measures the randomness of transition probabilities.

Remark 5.3. When ϵ = 1, we can show that this regret is bounded by Õ(d
√
HG∗K), where

G∗ is an variance-dependent quantity defined by Li and Sun [26]. Thus, our result recovers their
variance-aware regret bound. See Remark F.15 in Appendix F.2 for a detailed proof.

To demonstrate the optimality of our results and establish connections with existing literature, we can
specialize Theorem 5.2 to obtain the worst-case regret [22, 2, 15] and first-order regret [33].
Corollary 5.4 (Worst-case regret). For the linear MDPs with heavy-tailed rewards defined in Sec-
tion 2.2 and for any δ ∈ (0, 1), with probability at least 1− 16δ, the regret of HEAVY-LSVI-UCB is
bounded by

Õ(dHK
1

1+ϵ + d
√
H3K).

Proof. Notice U∗ and V∗ are upper bounded by Hν2R and H2 (total variance lemma in Jin et al. [21])
respectively. When H = H , and we treat νR as a constant, the result follows.

Next, we give the regret lower bound of linear MDPs with heavy-tailed rewards in Theorem 5.5,
which shows our proposed HEAVY-LSVI-UCB is minimax optimal in the worst case.
Theorem 5.5. For any algorithm, there exists an H-episodic, d-dimensional linear MDP with
heavy-tailed rewards such that for any K, the algorithm’s regret is

Ω(dHK
1

1+ϵ + d
√
H3K).

Proof. Intuitively, the proof of Theorem 5.5 follows from a combination of the lower bound con-
structions for heavy-tailed linear bandits in Shao et al. [31] and linear MDPs in Zhou et al. [42]. See
Appendix G for a detailed proof.

Theorem 5.5 shows that for sufficiently large K, the reward term dominates in the regret bound. Thus,
in heavy-tailed settings, the main difficulty is learning the reward functions.
Corollary 5.6 (First-order regret). For the linear MDPs with heavy-tailed rewards defined in Sec-
tion 2.2 and for any δ ∈ (0, 1), with probability at least 1− 16δ, the regret of HEAVY-LSVI-UCB is
bounded by

Õ(d
√
HU∗K

1
1+ϵ + d

√
HHV ∗

1 K).

And when the rewards are uniformly bounded in [0, 1], the result is reduced to the first-order regret
bound of Õ(d

√
H2V ∗

1 K).

Proof. See Section F.3 for a detailed proof.

Our first-order regret Õ(d
√
H2V ∗

1 K) is minimax optimal in the worst case since V ∗
1 ≤ H . And it

improves the state-of-the-art result Õ(d
√

H3V ∗
1 K) [26] by a factor of

√
H .

6 Conclusion

In this work, we propose two computationally efficient algorithms for heavy-tailed linear ban-
dits and linear MDPs, respectively. Our proposed algorithms, termed as HEAVY-OFUL and
HEAVY-LSVI-UCB, are based on a novel self-normalized concentration inequality for adaptive
Huber regression, which may be of independent interest. HEAVY-OFUL and HEAVY-LSVI-UCB
achieve minimax optimal and instance-dependent regret bounds scaling with the central moments.
We also provide a lower bound for linear MDPs with heavy-tailed rewards to demonstrate the opti-
mality of HEAVY-LSVI-UCB. To the best of our knowledge, we are the first to study heavy-tailed
rewards in RL with function approximation and provide a new algorithm for this setting which is
both statistically and computationally efficient.
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