
Latent Exploration for Reinforcement Learning

Alberto Silvio Chiappa
École Polytechnique Fédérale de Lausanne (EPFL)

alberto.chiappa@epfl.ch

Alessandro Marin Vargas
EPFL

alessandro.marinvargas@epfl.ch

Ann Zixiang Huang
Mila, EPFL

zixiang.huang@mail.mcgill.ca

Alexander Mathis
EPFL

alexander.mathis@epfl.ch

Abstract

In Reinforcement Learning, agents learn policies by exploring and interacting with
the environment. Due to the curse of dimensionality, learning policies that map
high-dimensional sensory input to motor output is particularly challenging. During
training, state of the art methods (SAC, PPO, etc.) explore the environment by
perturbing the actuation with independent Gaussian noise. While this unstruc-
tured exploration has proven successful in numerous tasks, it can be suboptimal
for overactuated systems. When multiple actuators, such as motors or muscles,
drive behavior, uncorrelated perturbations risk diminishing each other’s effect,
or modifying the behavior in a task-irrelevant way. While solutions to introduce
time correlation across action perturbations exist, introducing correlation across
actuators has been largely ignored. Here, we propose LATent TIme-Correlated
Exploration (Lattice), a method to inject temporally-correlated noise into the latent
state of the policy network, which can be seamlessly integrated with on- and off-
policy algorithms. We demonstrate that the noisy actions generated by perturbing
the network’s activations can be modeled as a multivariate Gaussian distribution
with a full covariance matrix. In the PyBullet locomotion tasks, Lattice-SAC
achieves state of the art results, and reaches 18% higher reward than unstructured
exploration in the Humanoid environment. In the musculoskeletal control envi-
ronments of MyoSuite, Lattice-PPO achieves higher reward in most reaching and
object manipulation tasks, while also finding more energy-efficient policies with
reductions of 20-60%. Overall, we demonstrate the effectiveness of structured
action noise in time and actuator space for complex motor control tasks. The code
is available at: https://github.com/amathislab/lattice.

1 Introduction

Effectively exploring the environment while learning the policy is key to the success of Reinforcement
Learning (RL) algorithms. Typically, exploration is attained by using a non-deterministic policy to
collect experience, so that the random component of the action selection process allows the agent to
visit states that would have not been reached with a deterministic policy. In on-policy algorithms,
such as A3C [1] and PPO [2], the policy network parametrizes a probability distribution, usually an
independent multivariate Gaussian, from which actions are sampled. In off-policy algorithms, such
as DQN [3], DDPG [4] and SAC [5], the policy used to collect experience can be different from the
one learned to maximize the cumulative reward, which leaves more freedom in the selection of an
exploration strategy. The standard approach in off-policy RL consists in perturbing the policy by
introducing randomness (e.g., ϵ-greedy exploration in environments with a discrete action space and
Gaussian noise in environments with a continuous action space). In the past years, many notable

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/amathislab/lattice

LATTICE - LATent TIme-Correlated Exploration

LATTICE

gSDE

Default

A

B C

Latent noise

Latent size
Action size
Learned perturbation std

Perturbation matrices

T
im

e

T
im

e
+

 A
ct

io
n Time-correlation

Figure 1: A Lattice introduces state-dependent perturbations both to the action space and to the latent
space. B Compared to the default action noise, Generalized State-Dependent Exploration (gSDE) [8]
introduces a state-dependent perturbation of the action. Lattice generalizes gSDE, including a second,
policy-dependent perturbation, which induces correlation between action components. C Similarly to
gSDE, the perturbation matrices Px and Pa are sampled periodically, providing noise with a temporal
structure.

successes of RL are based on independent noise [1, 2, 4, 6, 7]. However, previous work has challenged
the inefficiency of unstructured exploration by focusing on introducing temporal correlations [8, 4, 9–
11]. Indeed, two opposite perturbations of subsequent actions might cancel out the deviation from the
maximum probability trajectory defined by the policy, effectively hiding potentially better actions if
followed by a more coherent policy. Here, we argue that not only correlation in time [4, 9–11, 8], but
also correlation across actuators, can improve noise-driven exploration.

In motor control, precise coordination between actuators is crucial for the execution of complex
behaviors [12–15]. Perturbing each actuator independently can disrupt such coordination, limiting
the probability of discovering improvements to the current policy. In particular, musculoskeletal
systems [16–19] typically feature a larger number of actuators (muscles) than degrees of freedom
(joints). Here, we demonstrate that in such systems the exploration achieved by uncorrelated
actuator noise is suboptimal. To tackle this problem, we introduce an exploration strategy, named
LATent TIme-Correlated Exploration (Lattice). Lattice takes advantage of the synergies between
actuators learned by the policy network to perturb the different action components in a structured
way. This is achieved by applying independent noise to the latent state of the policy network
(Fig. 1 A). With extensive experiments, we show that Lattice can replace standard unstructured
exploration [2, 5] and time-only-correlated exploration (gSDE) [8] in off-policy (SAC) and on-policy
(PPO) RL algorithms, and improve performance in complex motor control tasks. Importantly, we
demonstrate that Lattice-SAC is competitive in standard benchmarks for continuous control, such as
the locomotion environments of PyBullet [20]. In the Humanoid locomotion task, Lattice improves
training efficiency, final performance and energy consumption. In the complex object manipulation
tasks of the MyoSuite library [18], involving the control of a realistic musculoskeletal model of the
human hand, Lattice-PPO achieves higher reward, while also finding more energy-efficient policies
than standard PPO. To the best of our knowledge, our work is the first to showcase the potential
of modeling the action distribution of a policy network with a multivariate Gaussian distribution
with full covariance matrix induced by the policy network weights, rather than a diagonal covariance
matrix.

2

Figure 2: A Representation of a musculoskeletal model of a human arm. The elbow joint is actuated
by flexor-extensor muscle groups. Figure adapted from [18, 31]. B Covariance matrix of the actions
(left) and noise of the actions (right) when latent state of a learned policy is perturbed for flexors f1-f3
and extensors e1-e3. C Distribution of the joint angle perturbation across episodes when noise is
applied to the action or to the latent space. The action noise was tuned so that each action component
has the same variance as with latent noise. The difference in distribution, due to the extra-diagonal
terms of the action covariance, is statistically significant (p = 3.2× 10−17, Wilcoxon signed-rank
test).

2 Related work

Exploration based on the learned policy. In on-policy RL, the target policy must be stochastic, so
that the experience collected includes enough variability for the agent to discover policy improvements.
Algorithms such as A3C [1], PPO [2], and TRPO [21] parametrize each action component with an
independent Gaussian distribution (continuous actions) or a categorical distribution (discrete actions).
In off-policy RL, most exploration strategies are based on perturbations of the policy. For example,
in discrete action spaces an exploratory policy can be derived from the target policy by adding ϵ-
greedy exploration, or more sophisticated perturbations such as the upper confidence bound [22, 23],
Thompson sampling [24], Boltzmann exploration [25] and Information-Directed Sampling (IDS) [26].
In continuous action space, the perturbation of the actions is provided by independent random noise,
with (e.g., SAC [5]) or without (e.g., DDPG [4]) learned noise parameters. Unstructured exploration
has several drawbacks [9], which have been tackled by ensuring a temporally coherent noise through
colored noise [11], an auto-regressive process [27] or a Markov chain [28]. Another strategy to
induce time correlation consists in keeping the perturbation parameters constant for multiple steps.
This concept has been applied to perturbations of the network parameters [29] and to state-dependent
action perturbations [9, 10, 8, 30]. While these exploration strategies provide smoother noise in time,
Lattice aims to pair time-correlated state-dependent exploration with correlation in the action space.

Other exploration strategies. In on-policy RL, count-based exploration [32], curiosity-driven
exploration [33] and random network distillation [34] are techniques to encourage visiting rare states.
In off-policy RL, bootstrapped DQN [35] employs multiple Q-networks to guide exploration and
improve performance. Additionally, unsupervised methods like Diversity Is All You Need [36] can
achieve more diverse exploration by maximizing mutual information between a goal-conditioned
policy and a set of skill labels. Starting to explore only after returning to a recently visited state
allows to solve complex sequential-decision problem [37]. Lattice does not aim to replace curriculum
learning [38–40, 15] or exploratory policies, but proposes exploring implicitly via the policy network
in a monolithic way and can be combined with other approaches.

Exploration in over-actuated system. Overactuated systems, such as musculoskeletal systems,
pose a challenge for exploration. Recent NeurIPS challenges have addressed the problem of learning
control policies for locomotion and dexterous hand movements with musculoskeletal models [41,
14, 15]. The winners in these challenges have typically utilized complex training curricula, such
as static-to-dynamic stabilization in the Baoding task, where a hand needs to accurately rotate two
balls [15], or feature engineering and expert demonstration for locomotion [41]. Exploration can also
be encouraged by learning a muscle-coordination network [42] or the state-dependent joint torque
limits and energy function [43]. Similarly, Schumacher et al. proposed a self-organizing controller
that outperforms previous approaches by inducing state-space covering exploration [19]. Integrating
exploratory policies into a RL framework requires ad-hoc solutions, whereas Lattice can be trained
end-to-end with both on-policy and off-policy algorithms.

3

3 Motivating example: The case of a flexor-extensor, single joint arm

To motivate Lattice, consider a simple flexor-extensor system, such as the elbow joint in the human
upper arm (Fig. 2A). The activation af ∈ [0, 1] of the flexor muscle (biceps) produces a negative
angular acceleration at the elbow, while the activation ae ∈ [0, 1] of the extensor muscle (triceps)
produces a positive angular acceleration. Using a first order approximation of the system dynamics,
we can write the equation of the angular position of the elbow as θ̈ = α(ae − ar), where θ is the
angle between the upper arm and the lower arm and α [rad s−2] is a parameter of the system which
converts the muscle activations into angular acceleration. Given this system, we consider a simple
control problem, where an agent needs to reach a target angular position of the elbow by activating
the flexor and/or the extensor muscle. At every step, the agent observes the difference ∆θ = θ0 − θt
between the target angle θ0 and the angle θt at time t. For small values of ∆θ, we assume that the
control policy learned by the agent can be approximated with the linear functions ae = 0.5 +∆θ and
af = 0.5−∆θ. We now want to compare the effects on the angular acceleration produced by noise
applied to the actions (ae and af) or to the latent state (∆θ) for various cases:

Case 1: action space noise. If we inject independent noise ϵf and ϵe following a normal distribution
N (0, σ2) to the muscle activations, we have af ∼ N (⟨af ⟩, σ2) and ae ∼ N (⟨ae⟩, σ2). It can be
shown that θ̈ ∼ N (α(⟨ae⟩ − ⟨af ⟩), 2α2σ2) (Appendix A.1).

Case 2: latent space noise. If we instead inject Gaussian noise to the latent state ∆θ, while
the marginal distribution of af and ae is the same as with action space noise, the fact that the
two distributions are correlated has an effect on the distribution of θ̈. It can be shown that θ̈ ∼
N (α(⟨ae⟩ − ⟨ar⟩), 4α2σ2) (Appendix A.1).

This toy example illustrates how perturbing the latent state, instead of the actions, leads to higher
variance in the behavior space. In fact, when randomly perturbing two opposing muscles, half of
the time the perturbations will be in opposite directions, with a reduced impact on the observed
kinematics.

To corroborate this finding about the advantage of latent versus action perturbations, we consid-
ered a policy network trained to control a realistic musculoskeletal arm model, implemented in
MyoSuite [18], featuring three flexor muscles and three extensor muscles. A neural network trained
with PPO and Lattice exploration can learn to accurately reach a target angle in every episode, and
while doing so learns to alternately activate the extensor or the flexor muscle group (Fig. 2 B, left).
The training procedure is detailed in Appendix A.1. We collected a dataset of 100 episodes where the
latent state of the policy network was perturbed with Gaussian noise. While applying independent
random noise to the muscle activations produces a diagonal covariance matrix, perturbing the latent
state of the network leads to a full covariance matrix (Fig. 2 B, right). Thus, as hypothesized, the last
layer of the policy network learned to distinguish between agonist and antagonist muscles, namely,
the covariance shows positive correlation among muscles of the same group. We then tested whether
sampling action noise with this covariance matrix leads to higher variance in the task space (joint
angles) than noise sampled independently for each muscle. We collected 100 episodes where, at
each step, we computed an action with action space perturbation and one action with latent state
perturbation. For consistency of evaluation, the perturbation in the action space was sampled with
the same variance magnitude induced by the latent perturbation. We executed each pair of actions in
two cloned environments and compared the variance of the joint angles. The latent state perturbation
introduces higher variance in the joint angles (Fig. 2 C), thus driving more diverse kinematics and
wider exploration. Overall, we conclude that latent exploration might be advantageous when learning
to control over-actuated systems, and thus developed and empirically tested Lattice on different
benchmarks.

4 Methods

4.1 LATent TIme-Correlated Exploration (Lattice)

In continuous control, the policy update of on-policy algorithms (e.g., REINFORCE [44], A3C [1],
TRPO [21], PPO [2]) and of some off-policy algorithms (e.g., SAC [5]) requires the computation
of log π(at|st), which is the logarithm of the probability of choosing a certain action at given the
current state st, according to the current policy π. In such cases, the policy gradient needs to be

4

Algorithm 1 Standard (e.g., PPO, SAC)

Require:
Policy π, env. dynamics p,
std array σ(a), (ϵa)i ∼ N (0, σ

(a)
i)

1: Initialize state st;
2: step_count← 0;
3: while not done do
4: xt ← π(st);
5: ϵa ← sample

(
σ(a)

)
;

6: at ←Wxt+ϵa;
7: st+1, rt, done← p(st,at);
8: step_count← step_count +1;
9: end while

Algorithm 2 Lattice

Require:
Policy π, env. dynamics p,
period T , matrix S(a), matrix S(x), α ∈ {0, 1}
(Pa)i,j ∼ N (0, S

(a)
i,j), (Px)i,j ∼ N (0, S

(x)
i,j)

1: Initialize state st;
2: step_count← 0;
3: while not done do
4: if step_count mod T = 0 then
5: Pa ← sample

(
S(a)

)
;

6: Px ← sample
(
S(x)

)
;

7: end if
8: xt ← π(st);
9: at ← (W + Pa + αWPx)xt;

10: st+1, rt, done← p(st,at);
11: step_count← step_count +1;
12: end while

Algorithms 1-2: Experience collection algorithm with independent Gaussian noise (left) and with time-
and actuator-correlated noise (right). In green, we highlight the parameters defining the independent
noise. In brown, the elements inducing time-correlation (gSDE). In blue, those implementing actuator
correlation through the perturbation of the latent state (Lattice). Note that for α = 0, Lattice is
equivalent to gSDE.

backpropagated through the density function of the action distribution. This is typically accomplished
via the reparametrization trick, in which the policy network outputs the parameters of a differentiable
probability density function, whose analytical expression is known, so that gradients can flow through
the probability estimation. In the standard case, when we apply independent Gaussian noise to the
action components, the action probability distribution can be parametrized as a multivariate Gaussian
with diagonal covariance matrix (Algorithm 1). We propose that the weights of the policy network
can be naturally used to parameterize the amount of exploration noise (Algorithm 2).

While a generic perturbation of the policy network’s activations would lead to an action distribution
with an unknown probability density function, in Lattice we limit the latent perturbation to the last
layer’s latent state, which is linearly transformed into the action (Fig. 1 A). Consider the output
of the last layer of the policy network x ∈ RNx and the matrix W ∈ RNa×Nx , mapping the
embedding state to an action according to a = Wx. We have indicated the size of the latent space
with Nx and the size of the action space with Na. If we assume a perturbation of the latent state x
with independent Gaussian noise ϵ = N (0,Σx), where Σx is a positive-definite diagonal matrix,
then the perturbed latent state x̃ is distributed as x̃ ∼ N (x,Σx). Thus, the action distribution
a ∼ N (Wx,WΣxW

⊤ +Σa), where with Σa we have indicated the independent component of the
action noise, can be derived as a linear transformation of a multivariate Gaussian distribution (details
in Appendix A.2). This formula provides an analytical expression for log π(at|st), as a function of
the policy network weights and the covariance matrix of the latent state:

log π(a|s) = −Na

2
log(2π)− 1

2
log |WΣxW

⊤+Σa| −
1

2
(Wx−a)⊤(WΣxW

⊤+Σa)(Wx−a).

(1)

The probability of an action depends on the network weights both through its mean value Wx and
through the perturbation variance matrices Σx and Σa. Depending on the RL algorithm, it might be
convenient not to propagate the gradients of the policy network through the variance component of
the loss. In this way, the expected action trains the policy network, while the loss due to the standard
deviation can regulate its magnitude by updating the parameters Σx and Σa.

5

Figure 3: Learning curves in five locomotion tasks of PyBullet, representing the cumulative reward
of each training episode (mean ± s.e.m. across random seeds). Our baseline results improve over
the benchmark rewards of the pre-trained networks of RL Zoo [46], possibly because we used 16
vectorized environments to collect transitions and therefore a higher number of steps. The period
T refers to the time correlation of the exploration noise. Lattice, gSDE and Pink Noise perform
comparably in all environments apart from the Humanoid [16], where Lattice is more efficient and
achieves higher average reward.

4.2 Lattice generalizes time-correlated noise

Lattice can be thought of as an extension of Generalized State-Dependent Exploration (gSDE) [8],
as it inherits all its properties, while extending it with the possibility of perturbing the latent state
of the policy, besides the actions (Fig. 1 B). In Lattice, the agent learns two sets of parameters, Sx

and Sa, representing the standard deviation of Nx × (Nx + Na) Gaussian distributions (Nx and
Na being the size of the latent space and of the action space, respectively). These parameters are
used to sample, every T steps, two noise matrices Px and Pa (Fig. 1 C). These matrices are used to
determine the latent noise ϵx = αPxx and the action noise ϵa = Pax. The parameter α ∈ {0, 1}
can be used to turn on or off the correlated action noise. For α = 0, Lattice is equivalent to gSDE.
The value of T regulates the amount of time-correlation of the noise. If T is large, Px and Pa are
sampled infrequently, causing the noise applied to the latent state and to the action to be strongly
time-correlated (Algorithm 2).

In short, the action distribution depends on the latent state x, the last linear layer parameters W , the
Lattice noise parameters Sx and the gSDE noise parameters Sa in the following way:

π(a|s) = N
(
Wx,Diag(S2

ax
2) + α2WDiag(S2

xx
2)W⊤) (2)

4.3 Implementation details of Lattice

Code to study the implementation details is available at https://github.com/amathislab/lattice.

Noise magnitude. The magnitude of the variance of individual noise components can either be
learned or kept fixed, and can or can not be made dependent on the current state. We extend the
implementation of gSDE [8, 45], which makes the noise magnitude a learnable parameter independent
of the policy network.

Controlling the variance. We introduce two clipping parameters to limit the minimum and the
maximum value of the variance of each latent noise component, to avoid excessive perturbations and
convergence to a deterministic policy. This clipping does not modify the analytical expression of
the action distribution, because it does not affect the sampled values, but rather the variance of the
distribution.

Layer-dependent noise rescaling. As the noise vectors are given by ϵx = αPxx and ϵa = Pax,
assuming the components of x have similar magnitude, the noise scales with the size of the latent
state. To remove this effect, we apply a correction to the learned matrices log S̃x and log S̃a before
sampling Px and Pa: logSx = log S̃x − 0.5 log(Nx) and logSa = log S̃a − 0.5 log(Nx). It can
be proven that this correction removes the dependence of the noise from the size of the latent state
(Appendix A.3), and thus from the network architecture.

6

https://github.com/amathislab/lattice

Figure 4: Learning curves in the MyoSuite environments, showing the adjusted solved fraction
throughout the training (ratio between the number of steps in which the target is reached and the
maximum length of the episode, mean ± s.e.m. across random seeds). In the pose environments,
where the target prescribes the angle of all joints, standard exploration can be better than Lattice. In
the other environments, where the exploration can leverage the learned muscle synergies, Lattice
is on par with or better than independent noise. We omit the learning curves with time correlation
above 4, as they were always worse or much worse than 1 and 4 in PPO, in accordance with previous
findings for locomotion [8].

Preventing singularity of the covariance matrix. The covariance matrix of the action distribution
must be positive definite. It has the expression WΣxW

⊤ +Σa (Eq. 2), with Σx = α2Diag(S2
xx

2)
and Σa = Diag(S2

ax
2), where the square operations are to be intended element-wise. By construction,

the covariance matrix is positive-semidefinite. However, it could be singular, e.g., when x is the null
vector (Appendix A.4 for further details). To prevent the singularity of the covariance matrix, we add
a small positive regularization value to its diagonal terms.

5 Experiments

We benchmarked Lattice on standard locomotion tasks [47, 6, 16, 48–50] in PyBullet [20], as well
as musculoskeletal control tasks of MyoSuite [18] built in MuJoCo [31]. Both libraries include
continuous control tasks of varying complexity. While in PyBullet the actuators apply a torque to
each individual joint, in MyoSuite the agent controls its body through muscle activations. We give a
complete description of each task in Appendix A.6. We implemented Lattice as an extension of gSDE
in the RL library Stable Baselines 3 [45], which we used for all our experiments; the hyperparameters
of the algorithms are detailed in Appendix A.7. All the results are averaged across 5 random seeds.
The training was run on a GPU cluster, for a total of approximately 10,000 GPU-hours.

5.1 Pybullet locomotion environments

Lattice can be paired with off-policy RL algorithms, such as SAC [5]. We tested this combination in
the locomotion environments of PyBullet, where gSDE-SAC achieves state-of-the-art performance [8,
46]. We also included Pink Noise exploration [11] as an additional baseline, which is the state-
of-the-art colored noise process for exploration with off-policy RL algorithms. We used the same
network architecture and hyperparameters for SAC specified in [46] for all the environments (see
Appendix A.7). Preliminary experiments on the parameters of Lattice showed that environments
with a smaller action space benefit from a higher initial standard deviation of the exploration matrix,
so we set all the elements of logSx and logSa to 0 for Ant and Humanoid and to 1 for the other
environments. We found that Lattice achieves similar performance to gSDE-SAC and SAC-pink for
lower-dimensional morphologies (Ant, Hopper, Walker and Half Cheetah), while outperforming them
substantially for the Humanoid (Fig. 3 and Appendix A.8). This suggests that Lattice can achieve

7

higher performance when controlling larger-dimensional morphologies. Furthermore, we later show
that the policy learnt with Lattice-SAC for the Humanoid is more energy efficient than that learnt
with SAC (Section 6).

5.2 Musculoskeletal control: MyoSuite environments

For musculoskeletal control, we tested several tasks from the MyoSuite [18]:

• Three pose tasks (Elbow Pose, Finger Pose and Hand Pose). In each session, a target angular
position is sampled independently for each joint. This means that the policy has to learn
how to control each degree of freedom independently.

• Two reach tasks (Finger Reach and Hand Reach). In each session, a target position for each
finger tip (one for Finger Reach and five for Hand Reach) is sampled independently.

• Three object manipulation tasks (Reorient, Pend and Baoding). In each session, the target is
a fixed or moving target for an object (a die in Reorient, a pen in Pen and two Baoding balls
in Baoding).

We tested Lattice with a LSTM network and PPO. This choice is motivated by (our) winning solution
of the Boading ball task in the 2022 NeurIPS MyoChallenge [15], which used PPO together with
a LSTM network [51]. For our experiments we use the same PPO hyperparameters and network
architecture, which we keep identical across methods (see Appendix A.7).

Figure 5: Energy saving versus reward gain for the muscle
control tasks. Lattice learns policies 20% to 60% more
energy efficient than independent exploration in the reach-
ing and object manipulation tasks, while also achieving
higher reward. In the pose tasks, independent exploration
performs better, with similar energy consumption.

We set the initial value of all the elements
of logSx and logSa to 0 in every task,
except in Elbow pose and Hand pose,
where we set it to 1.

In the reach and challenging object ma-
nipulation tasks (Reorient, Baoding and
Pen), where the policy network has to
control a complex hand model with
39 muscles and receives an observation
with more than 100 dimensions, Lattice
consistently outperforms the baselines
(Fig. 4 and Appendix A.8). In contrast,
in the pose tasks PPO performs compa-
rably or better than Lattice-PPO (Fig. 4
and Appendix A.8). Those tasks define
dense target states and, perhaps, explo-
ration and coordination is less important
(see below).

Interestingly, focusing action noise in
the task-relevant space allows Lattice to
avoid activating muscles unnecessarily,
leading to conspicuous energy saving
in the manipulation and reaching tasks
(Fig. 5). In reach and object manipula-
tion, Lattice-PPO achieves better reward
at lower energy cost. We speculate that
injecting correlated noise across muscle
activations improves exploration in the
space of task-relevant body poses and facilitates the discovery of efficient, coordinated movements.
We tested this hypothesis next.

6 How does Lattice explore?

In most of the considered muskuloskeletal control environments, Lattice finds a more energy efficient
control strategy, without compromising the performance (Fig. 5 and Appendix A.8). Especially
in Reorient, where Lattice outperforms standard exploration in cumulative reward, it does so at a

8

Figure 6: A Left: Graph of the fraction of noise allocated to each group of action components
by a stochastic policy trained in the Humanoid environment with SAC and Lattice-SAC. In the
Humanoid, Lattice tends to focus most of the variance on the task-relevant actuators (legs). Middle:
Distribution of the energy consumption. Each bar represents the number of test episodes falling
in the corresponding energy consumption interval. Right: Cumulative explained variance of the
actions’ principal components, computed from a dataset of 100 test episodes per seed. Shaded area
represents 95% confidence interval across training seeds. More principal components are required
to explain the same fraction of variance in SAC and PPO versus Lattice-SAC and Lattice-PPO. B
Heatmap of the correlation matrix for the action space (left column) and noise of the action (right
column) for SAC (top row) and Lattice-SAC (bottom row). C-D Same as A-B but analyzing a policy
trained on the MyoSuite Reorient task with PPO and Lattice-PPO. Lattice tends to induce sharper
correlation between action components. Local patterns of correlation between action components can
be recognized in the noise covariance matrix.

fraction of the energy cost. We hypothesize that this is a direct consequence of biasing the noise with
the same correlation as the actuators, preventing energy-consuming co-activations, which the agent
needs to compensate for, despite the reward not being affected by them.

We assessed whether coordination emerged by analyzing policies for the Humanoid locomotion task
and the Reorient task. By looking at the relative allocation of action noise across actuators (Fig. 6 A,
C), we can see that in the Humanoid, compared to SAC, Lattice-SAC re-directs more exploration
noise towards the task-relevant leg motors (SAC: 40% Legs , 45% Arms and 15% Body; Lattice-SAC:
50% Legs , 32% Arms, 18% Body). In Reorient, where all the muscles contribute to controlling
the hand, the difference is less evident. Furthermore, both in the Humanoid and Reorient task,
the intrinsic dimensionality of the actions output by a policy trained with Lattice is lower. Indeed,
consistently across random seeds, fewer principal components explain a higher fraction of the action
variance in Lattice than in standard exploration (Fig. 6 A, C). Lattice consistently promotes policies
with actions lying on a lower-dimensional manifold, and this effect extends beyond Humanoid and
Reorient, to almost all the considered tasks (Appendix A.9). We speculate that this property of Lattice
determines when it is to be preferred to uncorrelated noise, i.e., when there exists a low-dimensional
solution to the task which allows the agent to take advantage of motor synergies. In environments
where the dimensionality of the task is intrinsically low (reach and object manipulation), Lattice
achieves strong performance. Further experiments in the pose and in the object manipulation tasks,
performed with Lattice-SAC, confirm the result that Lattice-SAC is better than SAC for learning to
manipulate objects (Appendix A.8).

9

The intrinsic dimensionality of the actions decreases as an effect of training (Appendix A.9). While
training tends to reduce the dimensionality of the policy regardless of the action noise, the decrease is
more marked with Lattice. The low dimensionality of the actions is explained by the action correlation
matrices, which show increased cross-actuator coordination with Lattice (Fig. 6 B, D). We speculate
that this is driven by the correlation structure of the noise. While the off-diagonal elements are close
to 0 with uncorrelated noise, those of Lattice present a structure that resembles that of the action
correlation matrix (Fig. 6 B, D), also consistent with the motivating example (Section 3). Indeed, if
we consider the off-diagonal elements at position (i, j), we have that Cov(ai, aj) = WCov(x)W⊤,
while V [π(a|s)]i,j = α2

(
WDiag(S2

xx
2)W⊤)

i,j
(further details in Appendix A.5). In the case

where α = 1, Sx is the identity and the components of x are uncorrelated, then the two matrices are
identical. While throughout the training the parameters of Sx can adapt, we can empirically see that
the covariance matrix retains elements of its original structure.

7 Discussion and Limitations

We proposed Lattice, a method that leverages the synergies between action components encoded in
the weights of the policy network to drive exploration based on the latent state. Latent exploration has
proven effective in discovering high-reward and energy efficient policies in complex locomotion and
muscle control tasks. Remarkably, Lattice outperforms random exploration in the reach and object
manipulation tasks, with a large reduction in energy consumption. We showed that perturbing the last
layer of the policy network introduces enough bias into the action noise. Importantly, this specific
perturbation allowed us to find an analytical expression for the action distribution, which makes
Lattice a straightforward enhancement for any on-policy or off-policy continuous control algorithm.

This sets Lattice apart from other forms of exploration using an auxiliary policy to collect experience,
as they see their application limited to off-policy RL. Furthermore, knowing the action distribution
is fundamental for those off-policy algorithms learning a stochastic policy, such as SAC. On the
other hand, modeling the action distribution with a multivariate Gaussian with full covariance matrix
comes at additional computational cost. In fact, Lattice introduces a training overhead over gSDE
and PPO/SAC (approx. 20%-30%, depending on the hardware). This is due to the additional
matrix multiplications required to estimate the action probabilities (Eq. 1). This limitation opens an
interesting research direction, e.g., introducing sparsity constraints in the distribution matrices. For
example, Sa and Sx could be forced to be diagonal or low-rank, without preventing motor synergies
to be included into the noise distribution. We leave this investigation to future work.

Biological motor learning finds efficient and robust solutions [12, 13, 52–55]. Lattice also discovers
low-energy solutions and it will be an interesting future question, if the brain is also performing some
form of latent-driven exploration. Beyond this specific question, we are enthusiastic that advances in
musculoskeletal simulators [18] as well as reinforcement learning are opening up exciting avenues
for Neuroscience [56].

Our research aims to facilitate the training of motor control policies for complex tasks. Lattice
might be employed as a tool in Artificial Intelligence, Robotics and Neuroscience, contributing to the
creation of powerful autonomous agents. The energy efficiency of the learned policies might be of
great interest for energy-sensitive robotics applications for reducing the carbon footprint of humans.
While the advancement of the research in this field is a great opportunity, the related concerns should
be carefully addressed [57].

Acknowledgments

We are grateful to Adriana Rotondo, Stéphane D’Ascoli and other members of the Mathis Group
for comments on earlier versions of this manuscript. Our work was funded by Swiss SNF grant
(310030_212516) and EPFL. A.M.V.: Swiss Government Excellence Scholarship. A.Z.H.: EPFL
School of Life Sciences Summer Research Program. We thank the Neuro-X institute at EPFL for
supporting the travel expenses (A.S.C. and A.M.V).

10

References
[1] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PMLR,
2016.

[2] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[4] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[5] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International conference
on machine learning, pages 1861–1870, 2018.

[6] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pages 1329–1338. PMLR, 2016.

[7] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval
Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich
environments. arXiv preprint arXiv:1707.02286, 2017.

[8] Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement
learning. In Conference on Robot Learning, pages 1634–1644. PMLR, 2022.

[9] Thomas Rückstieß, Martin Felder, and Jürgen Schmidhuber. State-dependent exploration for
policy gradient methods. In Machine Learning and Knowledge Discovery in Databases: Euro-
pean Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings,
Part II 19, pages 234–249. Springer, 2008.

[10] Thomas Rückstiess, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmidhu-
ber. Exploring parameter space in reinforcement learning. Paladyn, 1:14–24, 2010.

[11] Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you
need: Colored noise exploration in deep reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023.

[12] Stephen H Scott. Optimal feedback control and the neural basis of volitional motor control.
Nature Reviews Neuroscience, 5(7):532–545, 2004.

[13] Emanuel Todorov. Optimality principles in sensorimotor control. Nature neuroscience, 7(9):
907–915, 2004.

[14] Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Seungmoon Song, Yuval Tassa, Mas-
simo Sartori, and Vikash Kumar. Myochallenge: Learning contact-rich manipulation using a
musculoskeletal hand. https://sites.google.com/view/myochallenge, 2022.

[15] Vittorio Caggiano, Guillaume Durandau, Huwawei Wang, Alberto Chiappa, Alexander Mathis,
Pablo Tano, Nisheet Patel, Alexandre Pouget, Pierre Schumacher, Georg Martius, et al. My-
ochallenge 2022: Learning contact-rich manipulation using a musculoskeletal hand. In NeurIPS
2022 Competition Track, pages 233–250. PMLR, 2022.

[16] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behav-
iors through online trajectory optimization. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4906–4913. IEEE, 2012.

11

 https://sites.google.com/view/myochallenge

[17] Thomas K Uchida and Scott L Delp. Biomechanics of movement: the science of sports, robotics,
and rehabilitation. Mit Press, 2021.

[18] Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, and Vikash Kumar.
Myosuite–a contact-rich simulation suite for musculoskeletal motor control. arXiv preprint
arXiv:2205.13600, 2022.

[19] Pierre Schumacher, Daniel Häufle, Dieter Büchler, Syn Schmitt, and Georg Martius. Dep-rl:
Embodied exploration for reinforcement learning in overactuated and musculoskeletal systems.
arXiv preprint arXiv:2206.00484, 2022.

[20] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. 2016.

[21] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[22] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

[23] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

[24] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. Advances in
neural information processing systems, 24, 2011.

[25] Nicolò Cesa-Bianchi, Claudio Gentile, Gábor Lugosi, and Gergely Neu. Boltzmann exploration
done right. Advances in neural information processing systems, 30, 2017.

[26] Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-
directed exploration for deep reinforcement learning. arXiv preprint arXiv:1812.07544, 2018.

[27] Dmytro Korenkevych, A Rupam Mahmood, Gautham Vasan, and James Bergstra. Au-
toregressive policies for continuous control deep reinforcement learning. arXiv preprint
arXiv:1903.11524, 2019.

[28] Herke van Hoof, Daniel Tanneberg, and Jan Peters. Generalized exploration in policy search.
Machine Learning, 106(9-10):1705–1724, 2017.

[29] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

[30] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for
exploration. arXiv preprint arXiv:1706.10295, 2017.

[31] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[32] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

[33] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778–
2787. PMLR, 2017.

[34] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[35] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

12

[36] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[37] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return,
then explore. Nature, 590(7847):580–586, 2021.

[38] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[39] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Au-
tomatic curriculum learning for deep rl: A short survey. arXiv:2003.04664 [cs, stat], May
2020.

[40] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer
(poet): Endlessly generating increasingly complex and diverse learning environments and their
solutions. arXiv preprint arXiv:1901.01753, 2019.

[41] Łukasz Kidziński, Carmichael Ong, Sharada Prasanna Mohanty, Jennifer Hicks, Sean Carroll,
Bo Zhou, Hongsheng Zeng, Fan Wang, Rongzhong Lian, Hao Tian, et al. Artificial intelligence
for prosthetics: Challenge solutions. In The NeurIPS’18 Competition: From Machine Learning
to Intelligent Conversations, pages 69–128. Springer, 2020.

[42] Shuzhen Luo, Ghaith Androwis, Sergei Adamovich, Erick Nunez, Hao Su, and Xianlian
Zhou. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a
musculoskeletal model via deep reinforcement learning. Journal of NeuroEngineering and
Rehabilitation, 20(1):1–19, 2023.

[43] Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. Synthesis of biologically
realistic human motion using joint torque actuation. ACM Transactions On Graphics (TOG), 38
(4):1–12, 2019.

[44] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Reinforcement learning, pages 5–32, 1992.

[45] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

[46] Antonin Raffin. Rl baselines3 zoo, v1.8.3. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

[47] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[48] Seshashayee S Murthy and Marc H Raibert. 3d balance in legged locomotion: modeling and
simulation for the one-legged case. ACM SIGGRAPH Computer Graphics, 18(1):27–27, 1984.

[49] Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on
machine learning, pages 1–9. PMLR, 2013.

[50] Alberto Silvio Chiappa, Alessandro Marin Vargas, and Alexander Mathis. Dmap: a distributed
morphological attention policy for learning to locomote with a changing body. Advances in
Neural Information Processing Systems, 35:37214–37227, 2022.

[51] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[52] Yael Niv. Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3):
139–154, 2009.

[53] Michale S Fee and Jesse H Goldberg. A hypothesis for basal ganglia-dependent reinforcement
learning in the songbird. Neuroscience, 198:152–170, 2011.

13

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

[54] Dagmar Sternad. It’s not (only) the mean that matters: variability, noise and exploration in skill
learning. Current opinion in behavioral sciences, 20:183–195, 2018.

[55] Adam S Lowet, Qiao Zheng, Sara Matias, Jan Drugowitsch, and Naoshige Uchida. Distributional
reinforcement learning in the brain. Trends in neurosciences, 43(12):980–997, 2020.

[56] Sébastien B Hausmann, Alessandro Marin Vargas, Alexander Mathis, and Mackenzie W
Mathis. Measuring and modeling the motor system with machine learning. Current opinion in
neurobiology, 70:11–23, 2021.

[57] Maartje MA de Graaf. An ethical evaluation of human–robot relationships. International
journal of social robotics, 8:589–598, 2016.

[58] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

14

A Appendix

Contents

A.1 Singe-joint arm: detailed calculations . 15

A.2 Lattice’s Action Distribution Parameterization . 16

A.3 Noise rescaling across networks of different size 17

A.4 Conditions on the covariance matrix of the action distribution 17

A.5 Empirical covariance of the action . 18

A.6 Parameters of the PyBullet and MyoSuite environments 18

A.7 Hyperparameters of SAC, PPO, gSDE and Lattice 18

A.8 Detailed reward and energy results of all experiments 19

A.9 Evolution of the dimensionality of the policy during training 19

A.1 Singe-joint arm: detailed calculations

Case 1: action space noise. By combining the equation of the angular acceleration θ̈ = α(ae − af)
with the distributions of the muscle activations af ∼ N (⟨af ⟩, σ2) and ae ∼ N (⟨ae⟩, σ2), we can
compute expected value and variance of the angular acceleration:

E
[
θ̈
]
= E [α(ae − ar)] = α (E [ae]− E [af]) = α(⟨ae⟩ − ⟨ar⟩) (3)

V
[
θ̈
]
= V [α(ae − ar)] = α2 (V [ae] + V [af]) = 2α2σ2 (4)

In the second derivation we have used the fact that ae and ar are independent random variables to
compute their variances separately, and that V [−af] = V [af].

Case 2: latent space noise. In this case we apply noise to the latent state, so that ∆θ ∼ N (⟨θ⟩, σ2).
While it still holds that af ∼ N (⟨af ⟩, σ2) and ae ∼ N (⟨ae⟩, σ2), the two random variables are no
longer independent. This fact does not change the computation of the expectation:

E
[
θ̈
]
= E [α(ae − ar)] = α (E [ae]− E [af]) = α(⟨ae⟩ − ⟨ar⟩) (5)

For the variance, we need to make the dependence on θ explicit, using the formulas ae = 0.5 + ∆θ
and af = 0.5−∆θ:

V
[
θ̈
]
= V [α(ae − ar)] = V [2α∆θ] = 4α2 (V [∆θ]) = 4α2σ2 (6)

We can observe that the variance is double in the case of latent space noise.

To test whether these results can be observed also in simulation, we considered the Elbow pose task
of MyoSuite, where we trained a policy with PPO and Lattice exploration (with the hyperparameters
specified in Table T4). The policy reaches a solved value of 0.95, meaning that the angle between the
upper and the lower arm is in the immediate neighborhood of the target angle 95% of the simulation
time. We assessed the effect of latent and action perturbations on the angular position by carrying
out two simultaneous simulations of the environment per noise type. At every step, one simulation
received a noisy action, while the other would receive a deterministic, noise-free action. We then
registered the difference in elbow angle between the noisy and the deterministic simulation. To
avoid having the results obfuscated by the cumulative perturbation over longer time periods, we
synchronized the simulators after every step at the state achieved through the stochastic simulation.

To compute comparable results with latent and action noise, we had to make sure that the variance of
each action component would be equivalent in both cases. We accomplished this by first running
the simulation with latent noise, with the same variance for each latent state component. We then
measured the variance that such perturbation would cause to each action component, and we used

15

this value to generate the action perturbation noise. This ensures that the difference in the variability
of the elbow angle when applying latent or action noise is not due to a difference in scale, but only to
the presence of off-diagonal elements in the noise covariance matrix.

A.2 Lattice’s Action Distribution Parameterization

In Lattice, the action vector a is a linear transformation of the perturbed latent vector x̃ = x+ ϵx,
further perturbed with independent action noise ϵa:

a = W x̃+ ϵa = W (x+ ϵx) + ϵa (7)

Furthermore, the latent noise ϵx and the action noise ϵa are defined as follows:

ϵx = Pxx and ϵa = Pax (8)

The elements of Px and Pa are distributed as independent Gaussians:

(Px)i,j ∼ N
(
0, (Sx)

2
i,j

)
and (Pa)i,j ∼ N

(
0, (Sa)

2
i,j

)
(9)

where S(x) and S(a) are learnt parameter matrices whose elements represent the standard deviation
of each element of the perturbation matrices. We can therefore compute the distribution of each
element of the noise vectors. They are defined as:

(ϵx)i = α

Nx∑
j=1

(Px)i,jxj and (ϵa)i =

Nx∑
j=1

(Pa)i,jxj (10)

meaning that they are the sum of independent Gaussian random variables. We can compute their
mean and variance as follows:

E [(ϵx)i] = E

α Nx∑
j=1

(Px)i,jxj

 = α

Nx∑
j=1

xjE [(Px)i,j] = 0 (11)

V [(ϵx)i] = V

α Nx∑
j=1

(Px)i,jxj

 = α2
Nx∑
j=1

x2
jV [(Px)i,j] = α2

Nx∑
j=1

x2
j (Sx)

2
i,j (12)

E [(ϵa)i] = E

Nx∑
j=1

(Pa)i,jxj

 =

Nx∑
j=1

xjE [(Pa)i,j] = 0 (13)

V [(ϵa)i] = V

Nx∑
j=1

(Pa)i,jxj

 =

Nx∑
j=1

x2
jV [(Pa)i,j] =

Nx∑
j=1

x2
j (Sa)

2
i,j (14)

The covariance of noise elements at different indices is 0. Indeed, for i ̸= j:

Cov [(ϵx)i, (ϵx)j] = Cov

[
α

Nx∑
k=1

(Px)i,kxk, α

Nx∑
h=1

(Px)j,hxh

]

= α2
Nx∑
k=1

Nx∑
h=1

xkxhCov [(Px)i,k, (Px)j,h] = 0

(15)

Cov [(ϵa)i, (ϵa)j] = Cov

[
Nx∑
k=1

(Pa)i,kxk,

Nx∑
h=1

(Pa)j,hxh

]

=

Nx∑
k=1

Nx∑
h=1

xkxhCov [(Pa)i,k, (Pa)j,h] = 0

(16)

16

where we used that different elements of Px and Pa come from independent Gaussian distributions.
Therefore, the joint distribution of the noise vectors ϵx and ϵa is Gaussian, with a diagonal covariance
matrix:

ϵx ∼ N
(
0, α2Diag

(
S2
xx

2
))

and ϵa ∼ N
(
0,Diag

(
S2
ax

2
))

(17)

where the squares are to be intended element-wise. The distribution of a can be directly computed
from the formula of the linear transformations of multivariate Gaussian distributions from Eq. (7):

π(a|s) = N
(
Wx(s),Diag(S2

ax
2) + α2WDiag(S2

xx
2)W⊤) (18)

where we have used the independence of Pa and Px to find the covariance matrix of ϵa +Wϵx.

A.3 Noise rescaling across networks of different size

Here, we will show that the variance of Lattice’s generative noise model (Eq. (18)) depends the
dimension of the latent state x. We thus, rescale Sx and Sa to be invariant to the nework size.

Derivation: We first observe that the standard deviation of each element of the noise vector ϵx scales
with the size of x. Indeed:

V [(ϵx)i] = V

α Nx∑
j=1

(Px)i,jxj

 = α2
Nx∑
j=1

x2
jV [(Px)i,j]

= α2⟨V [(Px)i,j]⟩
Nx∑
j=1

x2
j = α2Nx⟨(Sx)

2
i,j⟩⟨x2

j ⟩.

(19)

Therefore, if we consider the average value of (Sx)
2
i,j and of x2

j to be independent of the size of the
latent state (at initialization time, it is the case, e.g., with the common Xavier initialization for the
network parameters [58]), then we have that V [ϵi] scales with Nx. By applying the correction

logSx = log S̃x − 0.5 log(Nx) (20)

we have that

(Sx)
2
i,j = exp

(
2(log S̃x − 0.5 log(Nx))

)
=

1

Nx
(S̃x)

2
i,j (21)

In this way the initialization of log S̃x can be kept the same across networks with different latent state
size. An identical argument is valid for Sa, too.

A.4 Conditions on the covariance matrix of the action distribution

First we show that the covariance matrix of the action distribution, defined as WΣxW
⊤ + Σa, is

positive semidefinite by construction. We start by observing that the matrix Σx = α2Diag(S2
xx

2)
and the matrix Σa = Diag(S2

ax
2) are square diagonal matrices, whose elements are larger or equal

than 0. We can therefore write Σx = Σ
1
2
xΣ

1
2
x and Σa = Σ

1
2
aΣ

1
2
a , where the elevation to 1

2 has to be
applied to each element of the matrices. For any vector y ∈ RNx , we have that

y⊤ (WΣxW
⊤ +Σa

)
y = y⊤

(
WΣ

1
2
xΣ

1
2
xW

⊤ +Σ
1
2
aΣ

1
2
a

)
y = ||Σ

1
2
xW

⊤y||2 + ||Σ
1
2
a y||2 ≥ 0 (22)

The regularization term we apply in Lattice consists in a multiple of the identity matrix by the
coefficient γ, so that the minimum eigenvalue of the covariance matrix can never be lower than γ
itself.

Without a regularization term, the covariance matrix WΣxW
⊤ + Σa might have 0 eigenvalues.

In particular, this is common when using an activation function which promotes sparse latent
representations, such as ReLU. In the limit case where x is the null vector, the covariance matrix is
the null matrix.

17

Table T1: Task and reward parameters of Elbow pose, Finger pose, Finger reach and Hand pose.
Task Elbow pose Finger pose Finger reach Hand pose

Parameter Value Parameter Value Parameter Value Parameter Value

Max steps 100 Max steps 100 Max steps 100 Max steps 100
Pose threshold 0.175 Pose threshold 0.35 Pose threshold 0.8
Target distance 1 Target distance 1 Target distance 0.5

Reward Pose 1 Pose 1 Reach 1 Pose 1
Bonus 0 Bonus 0 Bonus 4 Bonus 0
Penalty 1 Penalty 1 Penalty 50 Penalty 1
Action reg. 0 Action reg. 0 Action reg. 0 Action reg. 0
Solved 1 Solved 1 Solved 0 Solved 1
Done 0 Done 0 Done 0 Done 0
Sparse 0 Sparse 0 Sparse 0 Sparse 0

Table T2: Task and reward parameters of Hand reach, Baoding, Reorient and Pen.
Task Hand reach Baoding Reorient Pen

Parameter Value Parameter Value Parameter Value Parameter Value

Max steps 100 Max steps 200 Max steps 150 Max steps 100
Goal range x (0.25, 0.25) Goal pos. (0, 0) Goal orient. range (-1, 1)
Goal range y (0.28, 0.28) Goal rot. (-0.785, 0.785)

Reward Reach 1 Pos. dist. 1 1 Pos.dist. 1 Pos. align 0
Bonus 4 Pos. dist. 2 1 Rot. dist. 0.2 Rot. align 0
Penalty 50 Alive 1 Alive 1 Alive 1

Action reg. 0 Action reg. 0 Action reg. 0
Solved 5 Solved 2 Solved 1
Done 0 Done 0 Done 0
Sparse 0 Sparse 0 Sparse 0

Pos. dist. diff. 100 Pos. align diff. 100
Rot. dist. diff. 10 Rot. aligh diff. 100

A.5 Empirical covariance of the action

The covariance of the action components of a deterministic policy is given by:

Cov(ai, aj) = Cov

(∑
k

wi,kxk,
∑
h

wj,hxh

)
=
∑
k

∑
h

wi,kwj,hCov (xk, xh)

=
(
WCov(x)W⊤)

i,j

(23)

A.6 Parameters of the PyBullet and MyoSuite environments

We used all the default parameters for the PyBullet environments [20], including the default reward
function and episode length. The MyoSuite environments, instead, come with a defined metric for
the success (the solved value), while the reward components are adjustable [18]. We keep the same
reward components across all the algorithms, with values which consent achieving good solved values.
In Table T1 and T2 we detail the environment and reward parameters we choose for our trainings.

We often add a new reward component, called alive, which is equal to 1 when the episode is not
finished. It can be used to promote policies that do not trigger an early termination, e.g., by dropping
the object. To be noted that we reduced the range of possible target poses in Hand pose, because
no algorithm could solve the environment with the full range (without a curriculum), making the
environment unsuitable to test the difference between standard and latent exploration.

A.7 Hyperparameters of SAC, PPO, gSDE and Lattice

Our implementation was based on the library Stable Baselines 3 [45], and the code for Lattice will be
shared in an open-source way.

18

Here, we summarize the parameters of SAC, gSDE-SAC and Lattice-SAC for the PyBullet locomotion
tasks (Table T3) and the parameters of PPO, gSDE-PPO and Lattice-PPO in the MyoSuite muscle
control tasks (Table T4 and T5). We also assessed the dependency of the final reward depending

Table T3: Parameters of SAC, gSDE-SAC and Lattice-SAC in the PyBullet locomotion tasks
Task Ant Half Cheetah Walker Hopper Humanoid
Algorithms Parameters

SAC Action normalization Yes Yes Yes Yes Yes
Buffer size 300 000 300 000 300 000 300 000 300 000
Learning rate 0.0003 0.0003 0.0003 0.0003 0.0003
Warmup steps 10 000 10 000 10 000 10 000 10 000
Minibatch size 256 256 256 256 256
Discount factor γ 0.98 0.98 0.98 0.98 0.98
Soft update coeff. τ 0.02 0.02 0.02 0.02 0.02
Train frequency (steps) 8 8 8 8 8
Num gradient steps 8 8 8 8 8
Target update interval 1 1 1 1 1
Entropy coefficient auto auto auto auto auto
Target entropy auto auto auto auto auto
Policy hiddens [400, 300] [400, 300] [400, 300] [400, 300] [400, 300]
Q hiddens [400, 300] [400, 300] [400, 300] [400, 300] [400, 300]
Activation GELU GELU GELU GELU GELU

gSDE Init log std -3 -3 -3 -3 -3
Full std matrix Yes Yes Yes Yes Yes

Lattice Init log std 0 1 1 1 0
Full std matrix Yes Yes Yes Yes Yes
Std clip (0.001, 1) (0.001, 10) (0.001, 10) (0.001, 10) (0.001, 1)
Std regularization 0.001 0.001 0.001 0.001 0.001
α 1 1 1 1 1

on the initial value of log σ in for Hand Pose and Reorient. The default value of 0 seems to perform
optimally (Fig. F1).

Figure F1: Final reward as a function of the initial value of the exploration standard deviation of
Lattice, with period T = 1.

A.8 Detailed reward and energy results of all experiments

We list the performance (energy and reward) of SAC, gSDE-SAC and Lattice-SAC in the PyBullet
locomotion tasks (Table T6) and the performance of PPO, gSDE-PPO and Lattice-PPO in the
MyoSuite tasks (Tables T7,T8, T9 and T10).

All results are averaged over 5 seeds and we report mean and standard error of mean.

A.9 Evolution of the dimensionality of the policy during training

In the main text we analyzed how Lattice explores the environment (Section 6). As discussed in the
main text, here we present the results across learning.

We studied how the dimensionality of the policy changes during training when the policy is trained
with Lattice, compared to standard SAC and PPO. While the number of relevant components is
similar at the beginning of the training, the policies trained with Lattice converge to actions that lie

19

Table T4: Parameters of PPO, gSDE-PPO and Lattice-PPO in Elbow pose, Finger pose, Hand pose
and Finger reach.

Task Elbow pose Finger pose Hand pose Finger reach
Algorithms Parameters

PPO Action normalization Yes Yes Yes Yes
Learning rate 0.000025 0.000025 0.000025 0.000025
Batch size 32 32 32 32
Gradient steps 128 128 128 128
Num epochs 10 10 10 10
Discount factor γ 0.99 0.99 0.99 0.99
Entropy coefficient 0.0000036 0.0000036 0.0000036 0.0000036
Value function coefficient 0.84 0.84 0.84 0.84
GAE λ 0.9 0.9 0.9 0.9
Clip parameter 0.3 0.3 0.3 0.3
Max gradient norm 0.7 0.7 0.7 0.7
Policy hiddens [256, 256] [256, 256] [256, 256] [256, 256]
Critic hiddens [256, 256] [256, 256] [256, 256] [256, 256]
Policy LSTM hiddens 256 256 256 256
Critic LSTM hiddens 256 256 256 256
Activation ReLU ReLU ReLU ReLU

gSDE Init log std -2 -2 -2 -2
Full std matrix No No No No

Lattice Init log std 1 0 1 0
Full std matrix No No No No
Std clip (0.001, 10) (0.001, 10) (0.001, 10) (0.001, 10)
Std regularization 0 0 0 0
α 1 1 1 1

on a lower dimensional manifold (Fig. F2). We hypothesize that this is the main reason why Lattice
leads to more energy-efficient policies. Indeed, the energy consumption is similar for both Lattice and
SAC/PPO at initialization and diverges during training with Lattice achieving more energy-efficient
policies; this result is also consistent across seeds(Fig. F3). Overall, the final policies trained with
lattice have lower dimensionality, consistently across environments and random seeds (Fig. F4).

20

Table T5: Parameters of PPO, gSDE-PPO and Lattice-PPO in Hand reach, Baoding, Reorient and
Pen.

Task Hand reach Baoding Reorient Pen
Algorithms Parameters

PPO Action normalization Yes Yes Yes Yes
Learning rate 0.000025 0.000025 0.000025 0.000025
Batch size 32 32 32 32
Gradient steps 128 128 128 128
Num epochs 10 10 10 10
Discount factor γ 0.99 0.99 0.99 0.99
Entropy coefficient 0.0000036 0.0000036 0.0000036 0.0000036
Value function coefficient 0.84 0.84 0.84 0.84
GAE λ 0.9 0.9 0.9 0.9
Clip parameter 0.3 0.3 0.3 0.3
Max gradient norm 0.7 0.7 0.7 0.7
Policy hiddens [256, 256] [256, 256] [256, 256] [256, 256]
Critic hiddens [256, 256] [256, 256] [256, 256] [256, 256]
Policy LSTM hiddens 256 256 256 256
Critic LSTM hiddens 256 256 256 256
Activation ReLU ReLU ReLU ReLU

gSDE Init log std -2 -2 -2 -2
Full std matrix No No No No

Lattice Init log std 0 0 0 0
Full std matrix No No No No
Std clip (0.001, 10) (0.001, 10) (0.001, 10) (0.001, 10)
Std regularization 0 0 0 0
α 1 1 1 1

Table T6: Detailed results in the PyBullet locomotion environments. Results are averaged over N=5
seeds.

Ant Hopper Walker Half cheetah Humanoid
Energy Reward Energy Reward Energy Reward Energy Reward Energy Reward

SAC 0.23 ± 0.01 3381 ± 30 0.26 ± 0.01 2417 ± 106 0.27 ± 0.0 2741 ± 81 0.23 ± 0.0 2934 ± 27 0.12 ± 0.0 2122 ± 169
SAC-gSDE period 4 0.23 ± 0.0 3978 ± 14 0.23 ± 0.01 2356 ± 17 0.26 ± 0.0 2728 ± 74 0.23 ± 0.0 3191 ± 125 0.12 ± 0.0 2114 ± 126
SAC-gSDE period 8 0.23 ± 0.0 3962 ± 7 0.25 ± 0.01 2234 ± 86 0.25 ± 0.0 2746 ± 39 0.28 ± 0.01 2752 ± 23 0.12 ± 0.0 1927 ± 120
SAC-gSDE episode 0.24 ± 0.01 3796 ± 48 0.24 ± 0.01 2472 ± 64 0.26 ± 0.0 2822 ± 32 0.24 ± 0.0 3081 ± 93 0.11 ± 0.0 2460 ± 160
SAC-Lattice (ours) 0.25 ± 0.0 3544 ± 212 0.23 ± 0.01 2610 ± 78 0.29 ± 0.0 2718 ± 92 0.27 ± 0.01 2900 ± 67 0.11 ± 0.0 2742 ± 77
SAC-Lattice period 4 (ours) 0.25 ± 0.0 3926 ± 78 0.23 ± 0.01 2446 ± 133 0.29 ± 0.0 2541 ± 129 0.26 ± 0.0 2964 ± 44 0.11 ± 0.0 2798 ± 197
SAC-Lattice period 8 (ours) 0.24 ± 0.0 3686 ± 100 0.24 ± 0.01 2621 ± 86 0.3 ± 0.0 2641 ± 121 0.26 ± 0.0 3031 ± 23 0.11 ± 0.0 2358 ± 77
SAC-Lattice episode (ours) 0.25 ± 0.0 3845 ± 86 0.22 ± 0.01 2586 ± 23 0.28 ± 0.0 2661 ± 130 0.25 ± 0.0 2948 ± 24 0.11 ± 0.0 2901 ± 211

Table T7: Detailed results in MyoSuite environments: Elbow Pose and Finger Pose. Results are
averaged over N=5 seeds.

Elbow pose Finger pose
Energy Reward Solved Energy Reward Solved

PPO 0.21 ± 0.01 88.29 ± 0.33 0.95 ± 0.0 0.05 ± 0.04 81.61 ± 3.08 0.96 ± 0.01
PPO-gSDE period 4 0.18 ± 0.0 71.15 ± 3.84 0.84 ± 0.03 0.02 ± 0.01 47.68 ± 11.88 0.78 ± 0.07
PPO-Lattice (ours) 0.19 ± 0.01 85.55 ± 0.67 0.94 ± 0.0 0.04 ± 0.0 74.35 ± 4.51 0.91 ± 0.03
PPO-Lattice period 4 (ours) 0.27 ± 0.01 62.57 ± 1.35 0.77 ± 0.01 0.05 ± 0.02 52.57 ± 9.0 0.78 ± 0.05

Table T8: Detailed results in MyoSuite environments: Finger reach and Hand pose. Results are
averaged over N=5 seeds.

Finger reach Hand pose
Energy Reward Solved Energy Reward Solved

PPO 0.2 ± 0.02 242.72 ± 15.53 0.2 ± 0.02 0.04 ± 0.0 -25.85 ± 3.05 0.54 ± 0.03
PPO-gSDE period 4 0.07 ± 0.02 257.97 ± 23.81 0.22 ± 0.03 0.04 ± 0.0 -74.13 ± 7.81 0.24 ± 0.05
PPO-Lattice (ours) 0.04 ± 0.01 337.07 ± 15.62 0.33 ± 0.02 0.04 ± 0.0 -44.8 ± 8.75 0.42 ± 0.06
PPO-Lattice period 4 (ours) 0.05 ± 0.0 206.46 ± 52.45 0.18 ± 0.05 0.03 ± 0.0 -99.59 ± 9.48 0.11 ± 0.04

21

Table T9: Detailed results in MyoSuite environments: Hand reach and Baoding. Results are averaged
over N=5 seeds.

Hand reach Baoding
Energy Reward Solved Energy Reward Solved

PPO 0.09 ± 0.0 581.4 ± 30.37 0.52 ± 0.08 0.08 ± 0.0 573.46 ± 73.24 0.4 ± 0.07
PPO-gSDE period 4 0.07 ± 0.0 462.72 ± 25.97 0.21 ± 0.06 0.07 ± 0.01 437.12 ± 91.91 0.26 ± 0.09
PPO-Lattice (ours) 0.04 ± 0.0 586.9 ± 19.19 0.54 ± 0.05 0.04 ± 0.0 627.31 ± 69.01 0.44 ± 0.07
PPO-Lattice period 4 (ours) 0.07 ± 0.0 556.1 ± 11.14 0.44 ± 0.03 0.07 ± 0.01 471.16 ± 99.66 0.29 ± 0.1

Table T10: Detailed results in MyoSuite environments: Reorient and Pen. Results are averaged over
N=5 seeds.

Reorient Pen
Energy Reward Solved Energy Reward Solved

PPO 0.04 ± 0.01 233.74 ± 16.83 0.33 ± 0.05 0.07 ± 0.01 140.83 ± 9.77 0.16 ± 0.03
PPO-gSDE period 4 0.04 ± 0.01 187.99 ± 27.04 0.2 ± 0.08 0.07 ± 0.0 193.85 ± 13.42 0.42 ± 0.06
PPO-Lattice (ours) 0.01 ± 0.0 283.07 ± 14.99 0.48 ± 0.05 0.04 ± 0.0 169.72 ± 15.98 0.29 ± 0.06
PPO-Lattice period 4 (ours) 0.03 ± 0.01 250.13 ± 13.6 0.38 ± 0.04 0.06 ± 0.0 191.8 ± 15.75 0.39 ± 0.08

Table T11: SAC trained on a subset of the MyoSuite environments: Finger Pose, Hand Pose, Reorient
and Pen. Results are averaged over N=3 seeds.

Finger pose SAC Hand pose SAC Reorient SAC Pen SAC
Energy Solved Energy Solved Energy Solved Energy Solved

SAC 0.04 ± 0.0 0.96 ± 0.0 0.04 ± 0.0 0.84 ± 0.03 0.06 ± 0.0 0.55 ± 0.03 0.07 ± 0.0 0.39 ± 0.14
SAC-gSDE episode 0.04 ± 0.0 0.96 ± 0.0 0.04 ± 0.0 0.84 ± 0.0 0.07 ± 0.0 0.5 ± 0.03 0.07 ± 0.0 0.17 ± 0.02
SAC-Lattice episode (ours) 0.02 ± 0.01 0.92 ± 0.01 0.04 ± 0.0 0.73 ± 0.02 0.06 ± 0.0 0.67 ± 0.03 0.08 ± 0.0 0.59 ± 0.03

Figure F2: A Both in the Humanoid (top) and in the Reorient (bottom) motor control tasks, policies
trained with Lattice require fewer principal components to explain the variance of the actions. The
graphs, generated by testing policies at different stages of the training, highlight how the number
of components decreases almost uniformly throughout the training, both with Lattice and with
independent action noise. However, the effect is much stronger with Lattice. Result for one seed. B
Number of principal components that explain at least 90% of the variance with respect to the training
step for different seeds (N=5). For both Humanoid (top) and in the Reorient (bottom) tasks, Lattice
reaches lower principal components during training compared to SAC/PPO.

22

Figure F3: Distribution of the energy consumption across training episodes for different seeds
(column) in the Humanoid (top) and Reorient (bottom) task. For both, the energy consumption is
similar at the beginning and (relatively quickly diverges during training. Once the policy is trained,
LATTICE shows a more energy-efficient policy.

Figure F4: Analysis of the effective dimensionality of the policies obtained with Lattice-SAC and
Lattice-PPO versus standard SAC and PPO in the PyBullet (left) and Myosuite (right) environments.
The dimensionality is estimated by running 100 test episodes per environment (5 random seeds), com-
puting the principal component analysis of the actions counting how many principal components are
necessary to reach 90% cumulative explained variance, rescaled by the number of action components.
We can see that, consistently across most environments and random seeds (dotted lines in the plot),
Lattice leads to lower dimensional policies.

23

	Introduction
	Related work
	Motivating example: The case of a flexor-extensor, single joint arm
	Methods
	LATent TIme-Correlated Exploration (Lattice)
	Lattice generalizes time-correlated noise
	Implementation details of Lattice

	Experiments
	Pybullet locomotion environments
	Musculoskeletal control: MyoSuite environments

	How does Lattice explore?
	Discussion and Limitations
	Appendix
	Singe-joint arm: detailed calculations
	Lattice's Action Distribution Parameterization
	Noise rescaling across networks of different size
	Conditions on the covariance matrix of the action distribution
	Empirical covariance of the action
	Parameters of the PyBullet and MyoSuite environments
	Hyperparameters of SAC, PPO, gSDE and Lattice
	Detailed reward and energy results of all experiments
	Evolution of the dimensionality of the policy during training

