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Abstract

GNN explanation method aims to identify an explanatory subgraph which contains
the most informative components of the full graph. However, a major limitation
of existing GNN explainers is that they are not robust to the structurally corrupted
graphs, e.g., graphs with noisy or adversarial edges. On the one hand, existing
GNN explainers mostly explore explanations based on either the raw graph features
or the learned latent representations, both of which can be easily corrupted. On
the other hand, the corruptions in graphs are irregular in terms of the structural
properties, e.g., the size or connectivity of graphs, which makes the rigorous con-
straints used by previous GNN explainers unfeasible. To address these issues, we
propose a robust GNN explainer called V-InfoR 3. Specifically, a robust graph
representation extractor, which takes insights of variational inference, is proposed
to infer the latent distribution of graph representations. Instead of directly using
the corrupted raw features or representations of each single graph, we sample the
graph representations from the inferred distribution for the downstream explanation
generator, which can effectively eliminate the minor corruption. We next formulate
the explanation exploration as a graph information bottleneck (GIB) optimization
problem. As a more general method that does not need any rigorous structural
constraints, our GIB-based method can adaptively capture both the regularity and
irregularity of the severely corrupted graphs for explanation. Extensive evalua-
tions on both synthetic and real-world datasets indicate that V-InfoR significantly
improves the GNN explanation performance for the structurally corrupted graphs.

1 Introduction

Nowadays, graph data is ubiquitous in various domains, such as citation networks [1, 2, 3], social
networks [4, 5], and chemical molecules [6]. GNN has manifested promising performance in many
graph tasks, e.g., node classification [7, 8], link prediction [9], and graph classification [10, 11], by
aggregating node features in light of the topological structures. Similar to other deep learning models,
GNN models also have the defect that they are non-transparent, and the prediction results lack human-
intelligible explanations [12]. Precise explanations can not only make people better understand GNN
predictions but also assist GNN designers in detecting underlying flaws and purifying them.

∗Corresponding author.
†Equally contribute to this research.
3Code and dataset are available at https://anonymous.4open.science/r/V-InfoR-EF88
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(a) Raw graph 𝑮
𝜙 𝐺 = ො𝑦

(b) Minor corruption

𝜙 𝐺′ = ො𝑦
(c) Severe corruption

𝜙 𝐺′′ ≠ ො𝑦

Figure 1: An illustration of the structurally corrupted graphs, where the solid red lines represent the newly
added edges and the dashed red lines represent the removed edges. (a) is the raw graph and ŷ is the prediction
given by GNN ϕ; (b) represents the graph G′ with minor corruption whose prediction remains ŷ; (c) shows the
graph G′′ is severely corrupted such that the predicted label of GNN on it is changed.

GNN explainer aims to identify an explanatory subgraph, whose components exert vital influence
on the prediction of the full graph [13]. Existing GNN explanation methods generally allocate
significance scores for each component of the graph, and a subgraph with the highest score is
extracted as the explanation of the whole graph [14]. They optimize the allocation of the significance
scores by minimizing an explanation loss function [15, 13]. The final explanation provided by GNN
explainer includes a subgraph structure along with the corresponding node features.

However, a major limitation of existing works is that they mostly focus on designing effective
significance score allocation methods, but ignore such a critical problem: Whether and to what
extent a structurally corrupted graph will affect the performance of the GNN explainer? In many
real application scenarios, the graphs may contain various corruptions, such as noise [16, 17] and
adversarial edges [18, 19, 20]. Existing methods directly adopt the raw graph features [21, 22, 15, 23]
or the latent graph representations [13, 24, 25] as the input of the explainer model, and thus the
output explanation may not be reliable when the input is corrupted. Previous work has shown that the
explanation of deep neural networks is fragile to attacked images [26]. Thus whether the structurally
corrupted graphs will remarkably affect the performance of the GNN explainer and how to address it
is an interesting problem, yet has not been fully studied and remains an open research issue.

This paper for the first time investigates how to construct a robust GNN explainer for structurally
corrupted graphs. As illustrated in Figure 1, based on whether the prediction of the downstream task
(e.g., graph classification) is changed, the structural corruptions of a graph can be categorized into
minor corruptions and severe corruptions. In Figure 1(a), ϕ denotes the GNN model to be explained,
and G is the raw graph. Figure 1(b) shows the case of the graph with minor corruption G′, which is
not so intense that the predicted graph label remains the same as the raw graph. Figure 1(c) shows the
case of the severely corrupted graph G′′ where the corruption is devastating enough to the GNN and
thus results in a different prediction. Based on this example, we argue that a robust GNN explainer
should satisfy the following two requirements. First, the minor corruption should be considered as
redundant components and filtered by the explainer as they do not affect the final prediction. Second,
the severe corruption should be identified by the explainer as part of the explanation since they are
the non-ignorable reason that changes the final prediction. However, it is non-trivial to meet the two
requirements simultaneously due to the following two challenges.

Robust graph representation extraction to eliminate the minor corruptions. As we discussed
before, existing works directly use the raw graph features or the latent graph representations of each
single graph as the explanation input, which will raise the risk of the GNN explainer overfitting
to corruptions [26]. This is because the raw graph features can be easily corrupted by noise or
adversarial attacked edges. The latent graph representations have been proved vulnerable to structural
corruption [27, 20]. How to extract a robust graph representation that can effectively filter the minor
corruptions while preserving the vital information for GNN explanation exploration is challenging.

Structural irregularity of the severe corruptions. The corruptions may be of different sizes or
consist of several disconnected parts in the graphs, i.e., they are irregular [28]. For example, in
molecule chemistry, the corruptive functional groups differ largely in terms of size (e.g., -Cl and
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-C10H9 in solubility analysis). Moreover, a molecule containing multiple functional groups which
are disconnected from each other is common in the real-world. To meet the second requirement, the
structural irregularity of severe corruption should be identified by the GNN explainer. Hence it is
not reasonable to adopt some predefined rigorous constraints, e.g., size constraint or connectivity
constraint that are commonly used in previous explainers, to the explanations of corrupted graphs.
How to design a more general objective function to adaptively capture the structural irregularity of
severe corruption is also challenging.

To address the two aforementioned challenges, we propose a robust GNN explainer for structurally
corrupted graphs called V-InfoR (Variational Graph Representation based Information bottleneck
Robust explainer). Specifically, V-InfoR contains two major modules. (1) Robust graph represen-
tations extractor. In this module, we take insights of variational inference [29, 30] to model the
statistical characteristics that are shared by all the observed graphs, i.e., the mean and the standard
deviation. The statistics are capable of capturing the uncertainty and variability of the observed
graphs. Based on the statistics, a variational graph distribution is induced, which can effectively
model the common features of all the graphs and filter the minor corruption. The variational graph
representations provide a more robust graph representation for the downstream explanation generator.
(2) Adaptive explanation generator. To address the irregularity issue of the severe corruptions, we
propose an Adaptive Graph Information (AGI) constraint. The AGI constraint directly restricts the
information carried by the explanation without any rigorous assumptions on the structural properties
(e.g., size or connectivity) of the explanation. By incorporating the AGI constraint, we formulate
the GNN explanation exploration as a Graph Information Bottleneck (GIB) optimization problem to
adaptively capture both the regularity and irregularity of the severely corrupted graphs.

Our main contributions are summarized as follows:

• This work for the first time studies the negative effect of both minor and severe structural corruptions
on existing GNN explainers, and proposes a robust explainer V-InfoR to effectively handle the two
types of corruption.

• We novelly propose to incorporate variational inference to explore GNN explanation. A variational
inference based robust graph information extractor is proposed to mitigate the uncertainty and
variability of minor corruptions when extracting the critical graph information.

• We generalize the GNN explanation exploration by introducing an adaptive graph information
constraint, which can capture both the regularity and irregularity of the corrupted graphs. We also
theoretically derive the variational bound of this objective to make it feasibly optimizable.

• Extensive experiments on one synthetic dataset and three real-world datasets demonstrate the
superiority of V-InfoR over state-of-the-art GNN explanation methods.

2 Preliminary and Problem Statement

In this section, we will first provide the quantitative evidence that existing GNNs explainers are
fragile to structurally corrupted graphs. Then we provide a formal statement of the graph explanation
problem. See Appendix B for the basic notations.

2.1 Are existing GNN explainers robust to corruptions?

To study whether existing GNN explainers are robust to corruptions, we evaluate the performance
of six state-of-the-art GNN explainers when minor corruption and severe corruption are injected
into the raw graphs, respectively. We use the synthetic BA-3Motifs dataset [15], which is a widely
used benchmark dataset for GNN explanation. To investigate the minor corruption, we select the
corrupted graphs whose predictions are unchanged after randomly flipping 20% edges. For the severe
corruption, we use the SOTA graph adversarial attack algorithm GRABNEL, which formulates the
attack task as a Bayesian optimization problem [18]. The attack budget of GRABNEL means the
highest percentage of the attacked edges. We use a 10% attack budget here, which is able to change
the prediction of the selected graphs and thus can be considered as the severe corruption. FNS score
is used as the evaluation metric and a higher FNS score means a better explanation performance [25].
The formal definition will be given later in Section 4.1.
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Figure 2: The overall architecture of V-InfoR, which consists of the robust graph representation extractor and
the adapative explanation generator.

The result is presented in Figure 5 of Appendix C. The histograms of the three colors represent the
explainer performance on raw graphs, graphs with random noise, and attacked graphs, respectively.
One can see that both the minor corruption (20% random structural noise) and the severe corruption
(10% GRABNEL attack) remarkably degrade the explanation performance. Minor corruption brings
about an average performance degradation of 31.15% for the six GNN explainers, and severe
corruption results in an average performance degradation of 40.64%. The experimental result verifies
that both the minor and the severe corruptions do significantly affect the performance of existing
GNN explainers. Therefore, a robust GNN explainer is required for the structurally corrupted graphs.

2.2 Problem formulation

Formally, given the GNN model ϕ to be explained and the input graph G = (X,A), the explanation
provided by the GNN explainer is a subgraph GS = (XS,AS). AS is a subset of the original
adjacent matrix A and contains the key structure that determines prediction largely and XS is the
features of nodes which associates with AS. Existing researches show that topological information
is critically important to graph classification [27, 13]. Hence, our V-InfoR focuses on the structural
corruption when exploring explanation. We deem an explanation GS sufficient when it can produce
the same prediction as using the full graph, and deem it necessary when the prediction will change if
it is removed from the full graph [25]. An ideal explanation should be both sufficient and necessary.
Formally, the sufficient and necessary conditions [25] are formulated as follows, respectively,

argmax
c∈C

Pϕ(c|XS,AS) = ŷ. (1)

argmax
c∈C

Pϕ(c|X−XS,A−AS) ̸= ŷ, (2)

where ŷ = argmaxc∈C Pϕ(c|X,A) in Formula (1) and (2).

3 Methodology

Figure 2 illustrates the overall architecture of V-InfoR, which is composed of two key modules,
the robust graph representation extractor and the adaptive explanation generator. As shown in the
upper part of Figure 2, the robust graph representation extractor takes the full graph G as input,
and two GCN encoders are adopted to infer the statistics of G’s latent distribution (i.e., mean and
standard deviation). The variational node representations, which are sampled from the latent graph
distribution, will induce the edge representations. The edge representations are then fed into the
adaptive explanation generator which is shown in the lower part of the figure. A multi-layer perceptron
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projects the edge representations into the probability of each edge. The explanation subgraph GS is
generated on the basis of this probability. Finally, the proposed novel Graph Information Bottleneck
(GIB) objective is optimized, which is defined over the full graph prediction ŷ and the explanation
subgraph prediction ŷS . Next, we will introduce the two modules in detail.

3.1 Robust graph representation extractor

Specifically, we introduce a variational auto-encoder (VAE) [30] to deduce the statistics in the
variational distribution of the minorly corrupted graphs. For a set of observed graphs G = {Gk =

(Xk,Ak)}|G|k=1, variational inference assumes that they are generated by a latent random process,
involving a latent continuous random variable z [29, 30]. This random process contains two steps.
First, a value zk is generated from a prior distribution p(z). Then the graph Gk is generated from
a conditional distribution p(G|z) and observed by us. Variational inference aims at identifying the
posterior distribution p(z|G), i.e., inverting the distribution of latent variable z from the observed
graphs 4. However, the true posterior distribution p(z|G) is unknown. A feasible method is introducing
a variational distribution q(z;G) to approximate p(z|G) [28]. This work assumes that q(z;G) is
a Gaussian distribution N (µ,σ2) and increases the similarity between q(z;G) and p(z|G). The
similarity measurement is Kullback-Leibler divergence,

KL[q(z;G)||p(z|G)] =
∑
zk

q(zk;G) log
q(zk;G)

p(zk|G)
. (3)

We substitute the unknown p(z|G) for p(z,G)/p(G). Finally, the objective function of the robust
graph representation extractor to be minimized can be formulated as

LVAE = −Eq(z;G)[log p(G|z)] + KL[q(z;G)||p(z)], (4)

where p(z) is the standard Gaussian distribution N (0, I). See Appendix A for detailed derivation.

We refer to the latent variable z as a variational representation because it contains the indicative
information of the observed graphs. We also refer to the model that computes the distribution q(z;G)
as an encoder, since given a graph G, it produces a distribution over the latent variable z, from which
G could have been generated. Similarly, p(G|z) is referred to as a decoder, since given a code z it
produces the probability of the possible graph G.

In our implementation, we employ a 3-layer GCN as the encoder and a simple inner product as the
decoder. The first two layers of GCN aim to aggregate and combine the information from the graph.
The third layer consists of two separate graph convolution operators to calculate the mean µ and
standard deviation σ of q(z;G), respectively. This procedure can be formulated as

Hk = GCN(Hk−1,A), k = 1, 2,H0 = X, (5)

µ = GCNµ(H
2,A), (6)

logσ = GCNσ(H
2,A). (7)

The variational inference procedure endows q(z;G) vital graph information and is insensitive to minor
corruptions. Hence the sampled graph representation z which follows q(z;G) is more robust. Next,
the robust representation z will be fed into the explanation generator for explanation exploration.

3.2 Adaptive explanation generator

As the second challenge stated before, severe corruptions should be identified as part of the explana-
tion, but they are usually irregular in terms of size, connectivity or some other structural properties.
The rigorous constraints of the structural regularity adopted in previous works [15, 13, 25] are
thus not feasible for the severe corruptions. Hence, a new GNN explanation exploration objective
function is required to adaptively capture the irregularity of the severe corruptions. Inspired by the
Graph Information Bottleneck (GIB) principle [31, 32], we propose to introduce an Adaptive Graph
Information (AGI) constraint in exploring GNN explanation. On the one hand, the AGI constraint
functions as a bottleneck to directly restrict the information carried by the explanation GS , instead

4Without ambiguity, z represents the random variable and its sampled value (i.e., zk), simultaneously.

5



of simply restricting the size or connectivity of GS . Without any predefined structural regularity
constraints, our method can more effectively capture the irregularity of the explanation caused by the
severe corruptions. On the other hand, since the information measurement of the explanation GS can
be continuously optimized, the AGI constraint can adaptively cover the discrete rigorous constraints
[28]. To this end, we formulate the GNN explanation problem as a GIB-guided optimization task to
adaptively generate the explanations.

The insight of the GIB-guided optimization is that the explanation GS of graph G should contain
the minimal sufficient components of G [31]. GIB principle facilitates GS to be informative enough
about the prediction ŷ of G (sufficient). GIB principle also inhibits GS from preserving redundant
components which is irrelevant for predicting G (minimal). To this aim, the GIB-guided optimization
task of GS is formally defined as follows,

min
GS⊂G

GIB(G, ŷ;GS) = −MI(ŷ, GS) + βMI(G,GS), (8)

where MI(·, ·) denotes the mutual information. The second term MI(G,GS) measures the vital graph
information carried by the explanation GS , which functions as the AGI constraint. Nevertheless, the
GIB-guided explanation exploration task in Formula (8) cannot be directly extended to a continuous
optimization procedure, because both G and GS have discrete topological information which is
difficult to optimize over. We resort to Gilbert random graph theory [33] which argues that an
arbitrary graph G can be represented as a random graph variable, and each edge of G is associated
with a binary random variable r to reveal its existence. Additionally, the existence of one edge is
conditionally independent of the other edges. rij = 1 means there is an edge (i, j) from vi to vj ,
otherwise rij = 0. To sum up, an arbitrary graph G can be represented as

p(G) =
∏
(i,j)

p(rij). (9)

For the binary variable rij , a common instantiation is the Bernoulli distribution rij ∼ Bern(θij),
where θij = p(rij = 1) is the probability of edge (i, j) existing in G. However, the Bernoulli distri-
butiont cannot be directly optimized. To address this issue, we apply categorical reparameterization
[34] to the Bernoulli variable rij . The continuous relaxation of rij can be formulated as

rij = Sigmoid
( log ϵ− log(1− ϵ) + αij

τ

)
, ϵ ∼ Uniform(0, 1), (10)

where we let the latent parameter αij = log
θij

1−θij
. τ controls the approximation between the relaxed

distribution and Bern(θij). When τ approaches 0, the limitation of Formula (10) is Bern(θij).

According to Formula (10), the Bernoulli parameter θij is indeed associated with parameter αij .
In our implementation, we use a multi-layer perceptron (MLP) to compute α. The MLP takes the
variational node representation z as input and concatenates the representations of two nodes vi, vj as
the representation of the corresponding edge (i, j), which can be formulated as

αij = MLP[(zi, zj ]), (11)

where [·, ·] is the concatenation operator.

Based on α and Formula (10), we obtain the probability matrix Mp whose elements indicate
the existence of the corresponding edges. Next, we can sample the explanation GS based on the
probabilities in the matrix Mp as follows,

GS = (XS,AS = Mp ⊙A). (12)

So far, we have derived the optimizable representation of GS in Formula (8). However, the optimiza-
tion is still challenging since the distributions p(ŷ|GS) and p(GS) are intractable.

Fortunately, following the variational approximation proposed in [35], we can derive a tractable
variational upper bound of GIB in Formula (8). For the first term −MI(ŷ, GS), a parameterized
variational approximation pϕ(ŷ|GS) is introduced for p(ŷ|GS) to get the upper bound as follows,

−MI(ŷ, GS) ≤ −Ep(GS ,ŷ)

[
log pϕ(ŷ|GS)

]
+H(ŷ), (13)

where pϕ(ŷ|GS) is the GNN model and H(ŷ) is an entropy independent of GS . For the second term,
we introduce q(GS) for the marginal distribution P (GS) [28], and the upper bound is

MI(GS , G) ≤ Ep(G)

[
KL(pα(GS |G)||q(GS))

]
, (14)
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where pα(GS |G) represents the explanation generator and q(GS) represents the prior distribution
sharing a similar spirit of assuming standard Gaussian prior [28]. See Appendix A for the detailed
derivation. Finally, we obtain the variational upper bound of the GIB Formula (8) as follows,

LGIB =− Ep(GS ,ŷ)

[
log pϕ(ŷ|GS)

]
+ βEp(G)

[
KL(pα(GS |G)||q(GS))

]
, (15)

where q(GS) is usually set as

q(GS) = C ·
N∏

i,j=1

pπ(eij), eij ∼ Bern(π), (16)

where C is a constant that decided by the hyper-parameter π.

Note that there are no rigorous constraints imposed in Formula (15). The second term actually
functions as an adaptive constraint that inhibits GS from containing useless information. The risk of
ignoring the irregular severe corruptions in the final explanation GS can also be largely mitigated.

To achieve a robust GNN explainer for all the corruption situations, the two proposed modules are
trained jointly by minimizing the following overall objective function,

Ljoint = LVAE + LGIB. (17)

4 Experiment

4.1 Experimental setup

Following the standard procedure of GNN explanation [15, 2], we conduct two steps in the experi-
ments: (1) training a base GNN model for prediction, and (2) generating explanations for this base
model. For the first step, the base GNN model is trained to simulate the third-party predictor which
is independent of the GNN explainers. We take the trained GNN model as an oracle during the
explanation generation, i.e., input the graph (no matter clean or corrupted) and get the prediction. In
the second step, we simulate the corruptions by introducing random noise or adversarial attack to
the graph structures. The random noise represents the corruptions that naturally exist in real-world
which affects each graph component without any distinction. The noise ratio controls the percentage
of randomly flipped edges. The adversarial attack represents the man-made malicious corruptions
and the attack budget is the highest percentage of attacked edges.

Metric. For a quantitative explanation evaluation, we report the probability of sufficient PS , the
probability of necessary PN and the FNS scores. See Appendix D.1 for the detailed definition.

Dataset. We evaluate the proposed V-InfoR and baseline explanation methods on one synthetic
dataset and three real-world datasets. The synthetic dataset is BA-3Motifs introduced in [36]. Three
real-world datasets are Mutag, Ogbg-molhiv and Ogbg-ppa.

Baseline. The comparable baseline explainers include gradients-based methods GradCAM [21] and
IG [22], surrogate method PGM-Explainer [37], and perturbation-based methods GNNExplainer
[15], PGExplainer [2] and ReFine [36].

The detailed descriptions of datasets, baselines, and base GNN models are given in Appendix D. The
ablation study is presented in Appendix E. We also report the visualized cases of GNN explanation
for qualitative analysis in Appendix F.

4.2 Quantitative Evaluation on Graphs with Random Noise

We report the result on the graphs with 20% random structural noise corruptions in Table 1. Specifi-
cally, we randomly select the edges according to the noise ratio and flip the selected ones.

The result shows that V-InfoR is able to improve the explainer performance on the four datasets,
with the overall metric FNS score improvement at least by 9.19% for the BA-3Motifs dataset and
the highest improvement by 29.23% for the Mutag dataset. The V-InfoR improves the performance
remarkably for Mutag by 29.23% and Ogbg-molhiv datasets by 15.65%, since the irregularity of the
corruptions in chemical molecule structure is more obvious than the other types of graphs (motifs in
BA-3Motifs and biologically associations in Ogbg-ppa), and V-InfoR is able to effectively capture
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Table 1: The comparison of V-InfoR and baselines under random structural noise. We use bold font
to mark the highest score. The second highest score is marked with underline. The Impro. is defined
as

(
[V-InfoR]-[Best Baseline]

)/
[Best Baseline].

Dataset Metric GradCAM IG GNNExplainer PGExplainer PGM-Explainer ReFine V-InfoR Rank Impro.

BA-3Motifs
PS 0.8725 0.8625 0.8535 0.8510 0.8505 0.8300 0.8820 1 1.09%
PN 0.2605 0.2795 0.2410 0.2095 0.2235 0.2625 0.3021 1 8.09%
FNS 0.4012 0.4222 0.3758 0.3362 0.3540 0.3989 0.4610 1 9.19%

Mutag
PS 0.8760 0.8880 0.8916 0.8640 0.8900 0.8900 0.8964 1 0.54%
PN 0.0996 0.1068 0.1080 0.1260 0.1020 0.1260 0.1696 1 34.60%
FNS 0.1789 0.1907 0.1920 0.2199 0.1830 0.2207 0.2852 1 29.23%

Ogbg-molhiv
PS 0.9230 0.9200 0.8925 0.8390 0.8860 0.9105 0.9386 1 1.69%
PN 0.0680 0.0400 0.0940 0.1265 0.0980 0.1020 0.1470 1 16.21%
FNS 0.1267 0.0767 0.1701 0.2198 0.1765 0.1834 0.2542 1 15.65%

Ogbg-ppa
PS 0.4340 0.5820 0.6616 0.6260 0.6192 0.6344 0.6700 1 1.27%
PN 0.4720 0.4600 0.3480 0.2856 0.3780 0.4406 0.4930 1 4.45%
FNS 0.4522 0.5139 0.4561 0.3922 0.4694 0.5200 0.5680 1 9.23%

Figure 3: The comparison of V-InfoR and six baselines under different noise ratios in (a) BA-3Motifs
and (b) Mutag.

the irregularity. For the BA-3Motifs and Ogbg-ppa datasets with less obvious irregularity, V-InfoR
can still achieve a performance improvement, since the information constraint is general enough to
cover the rigorous constraint and thus avoid performance degradation.

One can also see that the raw features based explainers, including GradCAM, IG, GNNExplainer, and
PGM-Explainer, perform poorly in small/medium-scale datasets (BA-3Mmotifs, Mutag and Ogbg-
molhiv). This may be because the raw features are more easily to be corrupted in small/medium-scale
graphs. Since the graph representation is more difficult to learn in the large-scale graph, PGExplainer
and ReFine that relie on latent graph representations are unable to well explain large-scale graphs
for the Ogbg-ppa dataset. V-InfoR adopts the robust graph representation which is sampled from a
variational distribution containing common information shared by large amounts of graphs, and thus
achieves an overall better performance. Furthermore, one can note that all baseline GNN explainers
achieve a high PS , while the PN is relatively low. This phenomenon implies that the sufficient
condition is easier to satisfy than the necessary condition.

As shown in Figure 3, we also evaluate V-InfoR and baselines under different noise ratios ranging
from 0 to 0.30, which reverals the tendency of explainer performance with the increase of noise
ratio. In real application scenarios, it is intractable to separate the minor and the severe corruptions,
and both may exist simultaneously. Different noise ratios indicate different mixing ratios of the two
corruptions. Note that FNS scores with zero noise ratio represent the result on raw graphs without
any corruption. It shows that V-InfoR still achieves the best performance when no noise is added
(noise ratio = 0). This reveals that even without any corruption, the robust representation extractor
still extracts vital common graph information and the explanation generator adaptively identifies the
explanations with regular structural properties.
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Table 2: The comparison of V-InfoR and baselines under GRABNEL attack [18]. We use bold font
to mark the highest score. The second highest score is marked with underlines.

Attack budegt Dataset Metric GradCAM IG GNNExplainer PGExplainer PGM-Explainer ReFine V-InfoR Rank Impro.

5%

BA-3Motifs
PS 0.6980 0.6925 0.5625 0.6225 0.5950 0.6700 0.7075 1 1.36%
PN 0.3625 0.4675 0.4200 0.3700 0.3925 0.3925 0.5450 1 16.58%
FNS 0.4772 0.5582 0.4809 0.4641 0.4730 0.4950 0.6157 1 10.30%

Mutag
PS 0.5740 0.6600 0.6140 0.6610 0.5820 0.6340 0.6760 1 2.27%
PN 0.4200 0.3875 0.3800 0.4003 0.4060 0.4100 0.4588 1 9.24%
FNS 0.4851 0.4883 0.4695 0.4986 0.4783 0.4980 0.5466 1 9.63%

10%

BA-3Motifs
PS 0.8720 0.8495 0.8605 0.9020 0.8125 0.8800 0.9185 1 1.83%
PN 0.0800 0.2105 0.2615 0.2815 0.1925 0.2100 0.3332 1 18.37%
FNS 0.1466 0.3374 0.4011 0.4291 0.3113 0.3391 0.4890 1 13.96%

Mutag
PS 0.5848 0.7370 0.6616 0.6524 0.6392 0.6140 0.7424 1 0.73%
PN 0.4160 0.3404 0.3284 0.3928 0.3344 0.4040 0.4277 1 2.81%
FNS 0.4862 0.4657 0.4389 0.4904 0.4391 0.4873 0.5427 1 10.66%

4.3 Quantitative Evaluation on Graphs with Attack Corruption

The adversarial attack corresponds to the malicious corruption painstakingly customized by the
attacker. Here we use the SOTA graph classification attack algorithm GRABNEL [18], whose attack
budget is the highest percentage of attacked edges. GRABNEL employs a surrogate model to learn
the mapping from an attacked graph to its attack loss and optimizes the attacked graph iteratively via
an adapted genetic algorithm until successful attack or budget exhaustion. Considering the overhead
of executing GRABNEL, we run the attack algorithm only on the BA-3Motifs and Mutag datasets.
We report the results with 5% and 10% attack budgets in Table 2.

The result reveals that InfoR achieves an overall superior performance over the other baselines in
terms of all metrics. As the attack budget grows from 5% to 10%, though the GNN explanation
task becomes harder (all metrics decrease), the performance improvement of V-InfoR becomes more
significant than baselines. This shows that V-InfoR can effectively mitigate the negative influence of
the structural corruptions. For the Mutag dataset, the performance improvement on the graphs with
GRABNEL attack (13.96%) is less significant than that on the graphs with random noise (29.23%).
This gap can be attributed to the difference between adversarial attack and random noise. Although
the adversarial attack corruption is devastating to change the model prediction, they are subtle and
introduce as less irregularity as possible to the raw graphs.

4.4 Hyper-parameter analysis

We further analyse the effect of three parameters on the model performance, τ , β and π. τ controls
the approximation degree of rij distribution to Bernoulli distribution, which ranges in [0.1, 0.5]. β
controls the balance between the strength of information restoring (i.e., min−MI(ŷ, GS)) and the
strength of information filtering (i.e., minMI(GS , G)). π represents the prior Bernoulli probability,
which controls the distribution of q(GS).

Figure 4 shows the influence of the three hyper-parameters on V-InfoR for the BA-3Motifs and Mutag
datasets. One can roughly archieve the following three conclusions. First, V-InfoR is not so sensitive
to β that controls the strength of AGI constraint, which verifies the adaptability of our proposed
constraint. Second, a suitable value of τ is around 0.3, which means the best balance between the
continuity of Formula (10) and the approximation degree is achieved when τ = 0.3. Third, there is
no obvious pattern shown in Figure 4(c) for the choice of π in Formula (16), which means that a
reasonable π may largely depend on the specific dataset.

5 Related Work

Early attempts to explain GNN simply transfer gradients-based methods to graph data, and they
regard the gradients of nodes and edges as significance scores [14]. Though efficient and intuitive, the
explanations based on gradients are unavoidably suffered from gradients saturation [25]. Surrogate
methods [37, 23] are also adopted in GNN explanations. Yet limited by simple models that function
as surrogates, these approaches are unable to capture topological structure which plays an important
role in GNN predictions [13, 27]. Currently, the most concerned GNN explanation methods are
perturbation-based. By intervening components in the graph, such as deleting (or adding) edges
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Figure 4: The influence of hyper-parameters β in Formula (8), τ in Formula (10) and π in Formula
(16) on V-InfoR.

(or nodes), and monitoring the change of the corresponding prediction, perturbation-based GNN
explanation methods [15, 13, 24, 38] optimize the significance scores matrix round after round.

As a classic perturbation-based GNN explanation method, GNNExplainer [15] determines the
significant components by maximizing the mutual information between the intervented and the
original graphs. It calculates significance scores for both node features and edges, and the components
whose scores are below-threshold will be removed. PGExplainer [13] introduces a parameterized
neural network to provide significance scores. It demands a training procedure to endow the internal
neural network with multi-categorical predicting behavior, and the trained PGExplainer can explain
any new graph without retraining. While the previous methods aim to preserve the components that
make the prediction invariant, CF-GNNExplainer aims to find the components that will make the
prediction change if they are missing [24]. XGNN [39] formulates the GNN explanation problem as
a reinforcement learning task. Starting with an empty graph, XGNN gradually adds components until
the generated graph belongs to the specified class.

6 Conclusion

In this paper, we propose a robust GNN explainer V-InfoR for the structurally corrupted graphs.
V-InfoR employs the variational inference to learn the robust graph representations and generalizes the
GNN explanation exploration to a graph information bottleneck (GIB) optimization task without any
predefined rigorous constraints. The robust graph representations are insensitive to minor corruptions
when extract the common information shared by the observed graphs. By introducing an adaptive
graph information constraint, V-InfoR can effectively capture both the regularity and irregularity
of the explanation subgraphs. Extensive experiments demonstrate its superior performance and the
ablation study further illustrates the effectiveness of two proposed modules.
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A Detailed Derivation

First, we give the detailed derivation of Formula (4). To maximize the similarity between the varia-
tional distribution and the true posterior distribution, we minimize the Kullback-Leibler divergence,

KL[q(z;G)||p(zi|G)]

=
∑
zi

q(zi;G) log
q(zi;G)

p(zi|G)

=
∑
zi

q(zi;G) log
q(zi;G)

p(zi,G)
+
∑
zi

q(zi;G) log p(G)

=
∑
zi

q(zi;G) log
q(zi;G)

p(zi,G)
+ log p(G).

(18)

Since p(G) is independent of z, we get the following derivation,∑
zi

q(zi;G) log
q(zi;G)

p(zi,G)

=
∑
zi

q(zi;G) log
q(zi;G)

p(G|zi) · p(zi)

=
∑
zi

q(zi;G) log
q(zi;G)

p(zi)
−

∑
zi

q(zi;G) log p(G|zi)

=KL[q(z;G)||p(z)]− Eq(z;G)[log p(G|z)].

(19)

Next, we deduce the upper bound of −MI(ŷ, GS) in Formula (13),

−MI(ŷ, GS) = −Ep(ŷ,GS)

[
log

p(ŷ, GS)

p(ŷ) · p(GS)

]
=− Ep(ŷ,GS)

[
log

p(ŷ|GS)

p(ŷ)

]
=− Ep(ŷ,GS)

[
log

pϕ(ŷ|GS)

p(ŷ)

]
− Ep(ŷ,GS)

[
log

p(ŷ|GS)

pϕ(ŷ|GS)

]
=− Ep(ŷ,GS)

[
log

pϕ(ŷ|GS)

p(ŷ)

]
− Ep(GS)

[
KL

[
p(ŷ|GS)||pϕ(ŷ, GS)

]]
≤− Ep(ŷ,GS)

[
log

pϕ(ŷ|GS)

p(ŷ)

]
=− Ep(ŷ,GS)

[
log pϕ(ŷ|GS)

]
+H(ŷ).

(20)

At last, we deduce the upper bound of MI(GS , G) in Formula (14),

MI(GS , G) = EP (GS ,G)

[
log

p(GS , G)

p(GS) · p(G)

]
=EP (GS ,G)

[
log

pα(GS |G)

p(GS)

]
=EP (GS ,G)

[
log

pα(GS |G)

q(GS)

]
+ EP (GS ,G)

[
log

q(GS)

p(GS)

]
=EP (GS ,G)

[
log

pα(GS |G)

q(GS)

]
+ EP (G|GS)

[
p(GS) log

q(GS)

p(GS)

]
=EP (GS ,G)

[
log

pα(GS |G)

q(GS)

]
+ EP (G|GS)

[
−KL

[
p(GS)||q(GS)

]]
≤Ep(G)

[
pα(GS |G) log

pα(GS |G)

q(GS)

]
=Ep(G)

[
KL

[
pα(GS |G)||q(GS)

]]
.

(21)
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B Basic Notations

The basic notations and descriptions are summarized in Table 3

Table 3: Basic notations and descriptions in the manuscirpt.

Notation Description

G,Gk Graph instance, k-th graph instance
GS Explanatory subgraph

X,XS Node feature matrix
A,AS Adjacency matrix

G Graph set
ϕ GNN prediction model
ŷ GNN predicted label
c, C Specific label, label space
ŷS GNN prediction label of explanatory subgraph
| · | Cardinality of set
z, zk Continuous random variable, k-th sampled value

N (µ,σ2) Gaussian distribution with µ mean and σ standard deviation
rij Bernoulli variable of edge (i, j)
θij Bernoulli parameter of edge (i, j)
αij Latent parameter of edge (i, j)
τ Temperature parameter in Concrete distribution
ϵ Random noise following N (0, 1)

MP Probability matrix

C Preliminary Experiment

The results of six SOTA GNN explainers on the graphs with minor and severe corruptions is shown
in Figure 5. The dertailed analysis in reported at Section 2.1.

Figure 5: The FNS scores of the six SOTA GNN explainers on BA-3Motifs, BA-3Motifs with minor
corruptions, and BA-3Motifs with severe corruptions, respectively.
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D Experiment supplement

D.1 Metric

We formally define the three metrics for explanation evaluation as follows,

PS =

∑
I(ỹ = ŷ)

|Gtest|
,where ỹ = argmax

c∈C
Pϕ(c|XS,AS), (22)

PN =

∑
I(ỹ ̸= ŷ)

|Gtest|
,where ỹ = argmax

c∈C
Pϕ(c|X−XS,A−AS), (23)

FNS =
2 · PS · PN

PS + PN
, (24)

where Gtest is the test dataset. PS measures how faithfully the explanations in simulating the full
graph, PN measures the indispensability of explanations, and FNS score is the Harmonic mean of
PS and PN , which measures the overall performance of a GNN explanation method.

D.2 Dataset

We next briefly introduce the four datasets. The statistics of the four datasets are shown in Table 4,
where the "avg nodes/edges" means the average node/edge number of the graphs and the "split" is the
dataset splitting of the training, validation, and testing sets.

• BA-3Motifs [36] contains 3,000 synthetic graphs. Each graph adopts Barabasi Albert graphs as the
base and attaches each base with one of three motifs: house, cycle, and grid. The synthetic graphs
are classified into three classes according to the type of attached motifs.

• Mutag [6] contains 4,337 molecule graphs which are classified into two categories in accordance
with their mutagenic effect on a bacterium.

• Ogbg-molhiv [40] contains 41,127 molecule graphs which are classified into two categories based
on whether a molecule inhibits HIV virus replication or not.

• Ogbg-ppa [40] contains 158,100 protein-protein association networks in which nodes represent
proteins and edges indicate biologically meaningful associations. These association networks cover
1,581 species that belong to 37 taxonomic groups (e.g., mammals and bacterial families). The
prediction task is a 37-classes classification to predict which taxonomic group the network is from.

Table 4: The statistics of the four datasets.

Dataset avg nodes avg edges split

BA-3Motifs 21.92 14.76 2200/400/400
Mutag 30.32 30.77 3337/500/500

Ogbg-molhiv 25.5 27.5 scaffold split [40]
Ogbg-ppa 243.4 2266.1 scaffold split [40]

D.3 Baseline

We next briefly introduce the baseline explainers used in our experiments, including the gradients-
based, the perturbation-based, and the surrogate GNN explanation methods.

• GradCAM [21] is a gradients-based explanation method. It conducts a weighted summation on
the last layer representation to obtain the significance scores. The weights are provided by gradient
back-propagation.

• IG [22] is a gradients-based explanation method. It calculates the significance scores by conducting
path integral of the input feature gradients.

• GNNExplainer [15] is a perturbation-based explanation method. It perturbs both the topological
structure and the node features to calculate the significance scores and search for explanation
subgraphs GS that maximize the mutual information between GS and full graph prediction ŷ.
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• PGExplainer [13] is a perturbation-based explanation method. It perturbs the topology and
employs a parametric neural network to calculate the significance scores, with the same objective
function in GNNExplainer.

• ReFine [36] is a perturbation-based explanation method. It applies the pre-training and fine-tuning
paradigm to the GNN explanation exploration problem, which promises to offer an all-round
inspection of the GNN decision-making process from multi-granularity.

• PGM-Explainer [37] is a surrogate explanation method. It trains an interpretable Bayesian network
to fit the predicted label of the GNN model.

D.4 Base GNN model

The architectures and downstream task performances of the base GNN models which function as the
third-party predictors in our experiments are reported in Table 5.

Table 5: The architectures and downstream task performances of the base GNN models.

Dataset Backbone Layers Test Acc

BA-3Motifs LEconv [41] 2 100.00
Mutag GINConv [42] 2 83.63

Ogbg-molhiv GCNConv [43] 5 98.13
Ogbg-ppa GCNConv 5 60.46

E Ablation Study

In the ablation study, we create three variants of the full V-InfoR. No-VAE removes the robust graph
information extractor, which explores explanations based on the latent representations from the GNN
model to be explained. No-GIB replaces the GIB-based optimization objective function with the
traditional sparsity-driven mutual information objective function. No-VAE-GIB drops both two
proposed modules. We report the performance of full V-InfoR and three variants in Figure 6.

It shows that the performance drops significantly when removing either the robust graph representation
extractor or the adaptive graph information constraint. The performance of No-VAE-GIB is the lowest
among the variants. As shown in Figure 6, the performance of No-GIB degrades more significantly
than No-VAE in all the cases. This implies that the severe corruptions can more significantly affect
the GNN explainers than the minor corruptions, which is consistent with the preliminary result in
Section 2.1. On the one hand, the improvements from No-VAE-GIB to No-GIB and No-VAE indicate
that both of the two modules are helpful to explain the corrupted graphs. On the other hand, the
inferiority of No-GIB and No-VAE to the full V-InfoR further reveals that merely adopting one of the
two modules is unable to deal with the graphs with two types of structural corruptions.

F Case Study

We give a visualized case study of explanations provided by V-InfoR and five baselines for the
BA-3Motifs. Figure 7(a) shows the three types of motifs: cycle, grid, and house. Figure 7(b) shows
the explanations on a graph with minor corruptions, whose prediction (cycle class) and ground-truth
explanation (cycle) are both unchanged. V-InfoR allocates high significance scores (marked by
red lines) to the cycle motif (highlighted by circle) correctly and eliminates the minor corruption
successfully. While the other baseline explainers pay little attention to the vital cycle motif and fail to
identify it as the explanation. Figure 7(c) shows the explanations of the severely corrupted graph. The
raw prediction and raw ground-truth explanation are both associated with the grid motifs (marked by
"before corrupted"), which have been broken by the severe corruption. Since the severe corruption
has changed the prediction to house class, the explanation should be the house motif (marked by
"after corrupted"). However, the five baseline explainers still allocate high significance scores to the
component of the grid motif. Only V-InfoR succeeds in identifying the house motif (highlighted by
circle) as the explanation.
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Figure 6: The ablation study of V-InfoR and three variants.

(b). Explanations on graphs with minor corruption (prediction unchanged)

(c). Explanations on graphs with severe corruption (prediction changed)

House

Grid

Cycle

(a). Motifs

Ground-truth
explanation

Before corrupted

After corrupted

Before/after 
corrupted

Figure 7: A case study of explanations provided by V-infoR and five baseline explainers.

G Robustness Evaluation

To directly demonstrate the robustness of our proposed V-InfoR, we introduce a robustness evaluation
metric [44, 45], which is defined as the performance drop after a certain ratio of noise/adversarial
attack is added into the graphs. A smaller performance drop means a more robust model and a
negative value indicates that the model can even perform better under noise/adversarial attack.

First, we report the performance drop of V-InfoR and all the baselines in Table 6, with GRABNEL
attack ratio set as {2.5%, 5.0%, 7.5%, 10%}. The results show that our proposed method can even
improve the explanation performance on Mutag dataset after adversarial attack, while the performance
of all the baselines degrade, which can demonstrate the robustness of our model to GRABNEL attack.

As shown in Table 7, we further report the performance drop of V-InfoR and all the baselines
with the random noise ratio set as {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. For the Ogbg-molhiv and
Ogbg-ppa, V-InfoR is more robust to the random noise than all the baselines. The result on Mutag
indicates that V-InfoR stands among the top-tier robust methods, since the irregularity in chemical
molecules is more obvious and significant. This phenomenon implies that our method relies more on
capturing the irregularity stemming from graph corruption in order to maintain its robustness. When
adding adversarial attack to Mutag graphs, the robustness of our method is more significant, which
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Table 6: The robustness evaluation with GRABNEL attack.

Dataset Ratio GradCAM IG GNNExplainer PGExplainer PGM-Explainer ReFine V-InfoR Rank

Mutag

2.5% 0.0159 0.0190 0.0068 0.0056 0.0374 0.0092 -0.0054 1
5.0% 0.0038 0.0194 0.0287 -0.0047 0.0245 0.0093 -0.0186 1
7.5% 0.0052 0.0286 0.0690 -0.0032 0.0496 0.0274 -0.0172 1

10.0% 0.0027 0.0420 0.0593 0.0035 0.0637 0.0200 -0.0147 1

BA-3Motifs

2.5% 0.0459 0.0141 0.0085 0.0157 0.0521 0.0504 -0.0047 1
5.0% 0.0668 0.0400 0.0554 0.0509 0.0557 0.0962 -0.0010 1
7.5% 0.2526 0.1926 0.0505 0.0700 0.1811 0.0996 0.0241 1

10.0% 0.3947 0.2608 0.1352 0.0859 0.2174 0.2521 0.1277 2

Table 7: The robustness evaluation with random noise.

Dataset Ratio GradCAM IG GNNExplainer PGExplainer PGM-Explainer ReFine V-InfoR Rank

Ogbg-molhiv

0.05 0.0154 0.0741 0.0297 0.0247 0.0963 0.0318 0.0054 1
0.10 0.0766 0.1469 0.0495 0.0577 0.0591 0.0554 0.0073 1
0.15 0.0997 0.1914 0.0658 0.0569 0.0940 0.0605 0.0156 1
0.20 0.1674 0.2132 0.1063 0.0518 0.1298 0.1325 0.0496 1
0.25 0.2149 0.1606 0.1237 0.1237 0.1556 0.1692 0.0630 1
0.30 0.2314 0.1775 0.1469 0.1593 0.1397 0.1890 0.0858 1

Ogbg-ppa

0.05 0.0045 0.0153 0.0063 0.0228 0.0537 0.0075 0.0013 1
0.10 0.0506 0.0381 0.0402 0.1014 0.0789 0.0404 0.0172 1
0.15 0.0797 0.0403 0.0535 0.1421 0.1331 0.0648 0.0237 1
0.20 0.1010 0.0639 0.0844 0.2069 0.1049 0.0859 0.0328 1
0.25 0.1357 0.1053 0.1093 0.2224 0.1591 0.1556 0.0254 1
0.30 0.1797 0.0958 0.1267 0.2391 0.1656 0.1577 0.0491 1

Mutag

0.05 0.0866 0.0849 0.1037 0.0711 0.1131 0.0781 0.0647 1
0.10 0.1669 0.1738 0.1532 0.1565 0.1986 0.1681 0.1189 1
0.15 0.2656 0.2430 0.2348 0.2099 0.2647 0.2431 0.2097 1
0.20 0.3218 0.3081 0.3023 0.2800 0.2794 0.2866 0.2403 1
0.25 0.3417 0.3435 0.3343 0.3103 0.3359 0.3242 0.3118 2
0.30 0.3655 0.3775 0.3819 0.3428 0.3690 0.3670 0.3452 2

BA-3Motifs

0.05 -0.0074 0.0074 0.0020 -0.0137 0.0150 0.0231 0.0061 4
0.10 -0.0041 0.0239 0.0019 0.0400 0.0353 0.0238 0.0163 3
0.15 0.0825 0.0801 0.0493 0.0672 0.1043 0.0884 0.0878 5
0.20 0.1125 0.1772 0.1358 0.1402 0.1874 0.1923 0.1527 4
0.25 0.1278 0.2112 0.1574 0.1615 0.2100 0.2071 0.1836 4
0.30 0.1407 0.2169 0.1617 0.1879 0.1952 0.2285 0.1951 4

verifies our deduction again. For BA-3Motifs, the result shows that our proposed model is within the
middle range of the robustness evaluation on BA-3Motifs graphs with random noise. This can be
attributed to two main possible reasons. Firstly, the introduction of random noise results in a lesser
degree of irregularity compared to adversarial attack and thus the ability of our method to capture
irregularities in corrupted graphs does not bring robustness improvement significantly. In contrast,
our method showcases greater robustness than the baseline models when exposed to adversarial
attacks on BA-3Motifs graphs. This is due to the fact that such attacks will destroy the influential
motifs and consequently amplify the level of irregularity. Secondly, the synthetic BA-3Motifs graph
itself adheres to a more regular structure than real-world graphs, which adopts a Barabasi-Albert
graph as the base and attaches the base with one of three motifs. Consequently, the potential for our
method to achieve robustness improvement is further constrained by the synthetic structural topology.

H Limitation

Node Feature Corruptions. Both the robust graph representation extractor and the adaptive explana-
tion generator are proposed to mitigate and address the graph structural corruptions. Thus, V-InfoR
cannot be directly applied to explain the graphs with node feature corruptions. In the future work, we
will extend the V-InfoR model to fulfill the robustness on node feature level.

Multi-Task Explanation. The explanation performance of V-InfoR explainer on some other graph
tasks, such as node classification and link prediction tasks, has not been evaluated. We argue that
V-InfoR can be directly used to explain the GNN predictor on node classification task, with little
modification. However, the V-InfoR explainer for link prediction is non-trivial, since the GNN
explanation methods on link prediction is scarce until now.
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