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In this document, we include more details about the technical methods, more experimental results of1

our backprop-free dataset distillation method, and more discussion on limitations and future works,2

which cannot be accommodated in the main paper due to the page limit. Our method first trains a3

meta generator to generate synthetic samples and then an adaptation stage is executed for a target4

dataset. We provide algorithmic details of the adaptation stage, a summary of hyper-parameters, and5

configurations of our generator architecture. Then, we conduct more evaluations on the cross-number-6

of-channel, cross-resolution, cross-ipc, and cross-number-of-classes performance of our method.7

More discussions of the adaptation performance and more qualitative examples are also included.8

Finally, we discuss limitations of the proposed method and potential future works.9

A More Details10

Adaptation Algorithm: Alg. 1 of the main paper demonstrates the procedure of meta learning to11

obtain a meta synthetic sample generator. On a downstream target dataset, the meta network is adapted12

to a specific network with a limited number of steps. The adaptation algorithm is similar to the meta-13

training step of the meta learning algorithm. Here, we present the full details in Alg. 1. We can prepare14

multiple initialization of synthetic samples through randomly sampling from the target dataset. Recall15

that the main pipeline of our algorithm is to first obtain analytical synthetic labels in a random neural16

space θ: Y ∗
s = fθ(Xs)W

θ
t . Here, the optimal kernel-ridge-regression parameters of the target dataset17

W θ
t can be computed by W θ

t = fθ(Xt)
⊤(fθ(Xt)fθ(Xt)

⊤)−1Yt, if the number of real samples nt is18

smaller than the feature dimension p. Otherwise, W θ
t = (fθ(Xt)

⊤fθ(Xt))
−1fθ(Xt)

⊤Yt.19

Algorithm 1 Adaptation Algorithm of Synthetic Sample Generator for a Target Dataset
Input: (Xt, Yt): A Target Dataset; T : Number of Adaptation Steps; α: Learning Rate of Generator;

θ: Parameter of a Random Neural Network; ω: Parameter of a Meta Generator; I: A Set of
Randomly Initialized Synthetic Samples.

Output: ω′: Parameter of a Target-Specific Generator.
1: W θ

t = fθ(Xt)
⊤(fθ(Xt)fθ(Xt)

⊤)−1Yt;
2: for Each Xs in I do
3: Y ∗

s = fθ(Xs)W
θ
t ; ▷ Eq. 3 in the main paper

4: end for
5: Initialize generator parameters ω′ with ω;
6: for 1 ≤ i ≤ T do
7: Sample a batch of real data (Xi

t , Y
i
t ) of from (Xt, Yt);

8: Sample a initialized synthetic data (Xs, Y
∗
s ) from I;

9: X∗
s = gω′(Xs); ▷ Forward propagation

10: Sample neural parameters θ∗ from a random distribution;
11: L = ∥fθ∗(Xt)fθ∗(X∗

s )
⊤(fθ∗(X∗

s )fθ∗(X∗
s )

⊤)−1Y ∗
s − Yt∥22; ▷ Eq. 1 in the main paper

12: Update ω′ via ω′ ← ω′ − α∇ω′L; ▷ Back propagation
13: end for
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Figure 1: Architecture of our generator network.

Hyper-Parameter Notation Value

Meta Learning Stage

Number of Meta Testing Steps T ′ 200,000
Number of Meta Training Steps T 5

Maximal Number of Classes max(C) 100
Minimal Number of Classes min(C) 10

Maximal Number of Synthetic Samples max(ns) 1,000
Minimal Number of Synthetic Samples min(ns) 10

Number of Real Samples nt 2,000
Learning Rate in Meta-Training α 1e-4
Learning Rate in Meta-Testing β 1e-5
Parameter of Adam Optimizer (β1, β2) (0.9, 0.999)

Parameter of Cosine Learning Rate Scheduler η 0.1

Adaptation Stage

Number of Adaptation Steps T 1,000
Batch Size of Real Data nt 1,024

Learning Rate of Generator α 1e-4
Parameter of Adam Optimizer (β1, β2) (0.9, 0.999)

Parameter of Cosine Learning Rate Scheduler η 0.1

Table 1: List of hyper-parameters.

Dataset MNIST FashionMNIST
IPC 1 10 50 1 10 50

Ratio (%) 0.017 0.17 0.83 0.017 0.17 0.83
Random Acc. (%) 64.9±3.5 95.1±0.9 97.9±0.2 51.4±3.8 73.8±0.7 82.5±0.7

Full Acc. (%) 99.6±0.0 93.5±0.1

DC [12]
Acc. (%) 91.7±0.5 97.4±0.2 98.8±0.2 70.3±0.7 83.4±0.3 82.9±0.2

Time (sec.) 157 3581 19811 155 3597 19829

DSA [10]
Acc. (%) 88.7±0.6 98.8±0.2 99.2±0.1 70.3±0.7 84.6±0.1 88.7±0.1

Time (sec.) 172 3908 21259 173 3854 21118

IDC [4]
Acc. (%) 89.1±0.1 97.8±0.1 98.8±0.1 70.6±0.4 85.2±0.4 88.9±0.1

Time (sec.) 22062 22798 28389 21929 23160 28499

MTT [1]
Acc. (%) 88.7±1.0 96.6±0.4 98.1±0.1 75.3±0.9 87.2±0.3 88.3±0.1

Time (sec.) 3114 9323 9987 3107 9305 10092

DM [11]
Acc. (%) 89.7±0.6 97.5±0.1 98.6±0.1 71.5±0.5 83.8±0.2 88.2±0.3

Time (sec.) 1115 1177 1457 1105 1172 1456

FRePo [13]
Acc. (%) 93.0±0.4 98.6±0.1 99.2±0.0 75.4±0.5 85.5±0.2 89.2±0.1

Time (sec.) 6112 9174 21678 6115 8463 21549

Ours
Acc. (%) 91.3±0.2 97.8±0.2 99.0±0.0 73.8±0.8 84.7±0.2 88.3±0.1

Time (sec.) 153×40 392×10 1012×21 147×42 432×22 1005×21

Table 2: Comparisons on test accuracy and running time with state of the arts on single-channel
datasets. The acceleration marked by the red subscript is computed against the method with the
best accuracy. IPC: Number of Images Per Class; Ratio: ratio of distilled images to the whole
training set. Results demonstrate the cross-channel generalization ability of our meta generator.

After the calculation of analytical labels, we fix them and train the synthetic sample generator20

initialized by parameters of the meta generator for some steps. The optimization objective is similar21

to those in Zhou et al. [13] and Loo et al. [6]. The difference is that the optimization target is22

parameters of the generator instead of synthetic samples.23

Summary of Hyper-Parameters: For a clear view, we summarize the hyper-parameters and their24

values in both meta learning and adaptation stages as shown in Tab. 1. All experiments follow these25

default settings of hyper-parameters if not specified. Other configurations unmentioned follow the26

settings of the baseline FRePo [13].27

Generator Architecture: We illustrate the detailed configurations of our generator architecture in28

Fig. 1. It essentially adopts an encoder-decoder structure with 3 Conv-BatchNorm-ReLU blocks29

and 2 AvgPool layers for down-sampling for the encoder and a symmetric structure for the decoder.30

Notably, to make the network aware of different sizes of synthetic datasets, we concatenate the size31

embedding to bottle-necked features after the encoder. Inspired by the positional embedding in32

Transformer models [8] and the time-step embedding in diffusion models [3, 7], we encode the size33
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IPC 1 10

Baseline 28.20±0.77 48.26±1.26
Ours 36.51±0.47 49.20±0.10

Table 3: Comparisons with the baseline
FRePo on ImageNette under 128 resolution.
Results demonstrate the cross-resolution
generalization ability of our meta generator.

# of Classes 20 50

IPC 1 10 1 10

Baseline 23.42±1.08 49.40±0.53 16.84±0.30 39.61±0.21
Ours 37.95±0.44 53.62±0.09 29.53±0.20 41.90±0.38

Table 4: Comparisons with the baseline FRePo on
various CIFAR100 subsets. Results demonstrate the
cross-number-of-classes generatlization ability of our
meta generator.

Dataset CIFAR10 CIFAR100
IPC 20 5 5 2
DC 41.8±0.6 25.9±0.4 13.3±0.3 6.7±0.2

DSA 41.5±0.4 27.6±0.2 14.9±0.3 8.1±0.1
IDC 51.9±0.5 30.2±0.4 13.3±0.3 11.0±0.1
MTT 55.9±0.3 29.8±0.4 26.7±0.5 13.7±0.3
DM 46.8±0.5 25.3±0.3 15.7±0.3 8.0±0.2

FRePo 59.1±0.7 38.3±0.9 30.0±0.6 19.9±0.3
Ours 60.8±0.4 46.1±0.8 30.6±0.3 25.4±0.5

Table 5: Comparisons with state of the arts on cross-IPC generalization.

by sinusoidal signals and a learnable non-linear transformation function. Embedding features are34

replicated and expanded along the spatial axes before concatenation with features from the encoder.35

B More Results36

Cross-Number-of-Channel Generalization: In the meta learning stage, a meta generator is trained37

taking RGB images as input and output. Here, we demonstrate that it is also be feasible for the meta38

generator to be adapted for target datasets that have different numbers of channels. Specifically, we39

additionally train convolution layers for channel adaptation to map the number of channels from the40

original number to 3 and from 3 to original number at the beginning and the ending positions of the41

generator, respectively. The parameters of these adaptors are initialized from a uniform distribution42

and are optimized jointly with parameters of the generator.43

Here, we conduct experiments on MNIST [5] and FashionMNIST [9] datasets. Both of them contain44

10 classes with 60,000 single-channel images. Results are shown in Tab. 2 following the same45

comparison protocols as Tab. 1 of the main paper, where the generator in our method is adapted46

for 10,000 steps in each setting. Experiments demonstrate that our method can achieve comparable47

performance with those state-of-the-art ones in a significantly shorter period of time. The conclusion48

is the same as that in the main paper.49

Cross-Resolution Generalization: Although the meta generator is trained under 32 resolution, it is50

possible for it to be adapted for datasets with different resolutions, thanks to the fully-convolutional51

architecture of the generator. We demonstrate the cross-resolution generalization performance on52

ImageNette [2], which contains 10 classes and 9,469 images. Following the FRePo baseline [13],53

we conduct experiments on 1 and 10 IPCs under 128 resolution. Results in Tab. 3 demonstrate the54

feasibility of such cross-resolution generalization.55

Cross-Number-of-Class Generalization: Here, we conduct experiments on CIFAR100 subsets with56

random 20 and 50 classes respectively and compare the performance with the FRePo baseline [13].57

Results in Tab. 4 demonstrate that the meta generator performs robustly on datasets with various58

numbers of classes.59

Cross-IPC Generalization: For existing methods, when budgets for synthetic datasets change, they60

have to either repeat the time-consuming training loop of dataset distillation, which is inconvenient if61

not infeasible at all, or prune some synthetic data heuristically, which leads to inferior performance.62

For example, as shown in Tab. 5, on CIFAR10, if the original synthetic IPC is 50 and the new IPC63

becomes 20 or 5, random pruning would lead to unsatisfactory performance for existing methods.64

By contrast, the generator in our backprop-free dataset distillation can work for arbitrary sizes of65
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Dataset IPC DC [12] DSA [10] IDC [4] MTT [1] DM [11] FRePo [13] Ours

MNIST
1 88.7±0.5 87.7±0.6 76.1±0.1 73.1±0.8 87.8±0.7 64.8±0.9 87.8±0.2
10 96.2±0.2 96.7±0.1 95.1±0.1 92.8±0.2 96.2±0.1 96.3±0.1 97.2±0.1
50 95.7±0.2 98.3±0.1 98.4±0.1 96.6±0.1 98.0±0.1 98.5±0.1 98.6±0.1

FashionMNIST
1 70.3±0.7 70.3±0.7 64.4±0.4 70.5±1.2 71.1±0.3 61.5±0.3 71.9±0.4
10 79.8±0.2 79.0±0.3 82.9±0.2 80.1±0.5 83.0±0.1 81.2±0.2 83.4±0.2
50 78.5±0.2 86.9±0.1 87.0±0.1 86.2±0.1 86.8±0.2 85.9±0.1 87.2±0.1

CIFAR10
1 28.2±0.7 28.1±0.7 25.3±1.0 36.8±0.5 26.8±0.8 27.2±0.5 42.6±0.3
10 39.7±0.5 48.7±0.3 49.5±0.3 50.8±0.5 48.8±0.2 49.4±0.3 58.9±0.4
50 39.1±1.0 56.0±0.4 61.7±0.2 56.5±0.5 57.7±0.3 61.8±0.2 66.8±0.2

CIFAR100
1 12.4±0.2 13.8±0.2 15.4±0.2 13.2±0.6 11.9±0.2 10.1±0.2 20.8±0.2
10 21.1±0.2 31.3±0.4 28.9±0.3 30.2±0.4 30.0±0.4 26.6±0.4 32.2±0.3

Table 6: Comparisons with state of the arts on various benchmarks under the same number of
training steps. IPC: Number of Images Per Class. Results demonstrate the superior efficiency of
our method.

synthetic datasets once adapted, which makes it handle such scenarios better. We present another66

example on CIFAR100, the original IPC is 10 and the new IPC is 5 or 2.67

Comparisons under the Same Steps: To better demonstrate the superiority of the proposed method,68

we compare our method with state of the arts with the number of training/adaptation steps controlled69

the same. As shown in Tab. 6, under 1000 steps, our method outperforms others significantly70

especially on relatively challenging datasets with more patterns, like CIFAR10 and CIFAR100.71

Furthermore, in Fig. 2, 3, 4, and 5, we visualize the performance of generators in each setting with72

different adaptation steps on MNIST, FashionMNIST, CIFAR10, and CIFAR100 datasets respectively73

as supplements to Fig. 4 in the main paper. It can be shown that our method can achieve the most74

satisfactory performance with only a limited number of adaptation steps compared with the baseline75

FRePo and generators from scratch, which indicates that the proposed method is more suitable for76

scenarios requiring high efficiency, like processing data streams. Note that for 1 IPC, we observe that77

using analytical labels would often lead to inferior performance compared with vanilla one-hot labels.78

We speculate that it is because soft labels by the analytical solution are relatively not good at leading79

the generator to synthesize class-discriminative patterns when the size of synthetic dataset is small.80

Thus, we do not use analytical labels for 1 IPC by default.81

Qualitative Results: In Fig. 6, we supply qualitative visualization of initialized synthetic samples82

and results by generator under 1 and 10 IPC on CIFAR10 and 1 IPC on CIFAR100, as supplements83

to Fig. 6 in the main paper.84

C Limitations and Future Works85

Our backprop-free dataset distillation method mainly focuses on the efficiency issue in existing86

methods. Although it can be demonstrated that our method can result in better performance in only87

limited time, it does not reduce the time and memory complexity of computing the matching metrics88

since we adopt the same objectives as previous approaches. When adapting for large synthetic89

datasets, it may still face the issue on GPU memory in existing works. Nevertheless, it is possible for90

our method to adapt on some small IPCs and then generalize to large synthetic datasets, as discussed91

in the main paper, which can serve as a remedy to this limitation. Besides, initialized samples of92

synthetic datasets come from real data, and results by generator still look somehow realistic, which93

may potentially make the method vulnerable to privacy attack, especially for data like personal94

information. Also, in scenarios like storing synthetic samples of human faces, the generator may95

break the integrity of faces and lead to an infringement of portrait rights if being misused.96

Future works may focus on more effective training objective, training pipeline, and architecture of97

the generator in meta learning or/and adaptation stages to further improve the cross-dataset, cross-ipc,98

and cross-architecture generalization. It would also be valuable to extend the backprop-free DD99

to other tasks and modalities beyond image classification and explore advanced input and output100

parameterizations of the generator.101
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Figure 2: Performance of generators with various adaptation steps on MNIST.
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Figure 3: Performance of generators with various adaptation steps on FashionMNIST.
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Figure 4: Performance of generators with various adaptation steps on CIFAR10.
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Figure 5: Performance of generators with various adaptation steps on CIFAR100.
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Figure 6: More visualizations of samples before and after generator on CIFAR10 and CIFAR100.
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