
MGDD: A Meta Generator for
Fast Dataset Distillation

Songhua Liu Xinchao Wang∗
National University of Singapore

songhua.liu@u.nus.edu, xinchao@nus.edu.sg

Abstract

Existing dataset distillation (DD) techniques typically rely on iterative strategies
to synthesize condensed datasets, where datasets before and after distillation are
forward and backward through neural networks a massive number of times. Despite
the promising results achieved, the time efficiency of prior approaches is still far
from satisfactory. Moreover, when different sizes of synthetic datasets are required,
they have to repeat the iterative training procedures, which is highly cumbersome
and lacks flexibility. In this paper, different from the time-consuming forward-
backward passes, we introduce a generative fashion for dataset distillation with
significantly improved efficiency. Specifically, synthetic samples are produced by
a generator network conditioned on the initialization of DD, while synthetic labels
are obtained by solving a least-squares problem in a feature space. Our theoretical
analysis reveals that the errors of synthetic datasets solved in the original space
and then processed by any conditional generators are upper-bounded. To find a
satisfactory generator efficiently, we propose a meta-learning algorithm, where a
meta generator is trained on a large dataset so that only a few steps are required to
adapt to a target dataset. The meta generator is termed as MGDD in our approach.
Once adapted, it can handle arbitrary sizes of synthetic datasets, even for those
unseen during adaptation. Experiments demonstrate that the generator adapted
with only a limited number of steps performs on par with those state-of-the-art DD
methods and yields 22× acceleration.

1 Introduction

Dataset distillation (DD) introduced by Wang et al. [51] aims to compress an original dataset T
into a much smaller synthetic set S, such that the performance of a neural network, trained with the
condensed dataset S , is similar to the network trained with T . The derived synthetic datasets not only
save the cost of storage and transmission but also significantly reduce the computational resources
and time required by training models using original datasets. As such, DD finds its application across
a wide spectrum of domains and is receiving increasing attention from the community.

The typical paradigm of DD is to optimize S in an iterative loop, as shown in Fig. 1(a). In each
iteration, a new network is sampled, leveraged by which a matching metric is calculated for S and T ,
and the matching loss is then back-propagated through the network to update S. Recently, a large
number of approaches have been dedicated to exploring advanced matching objectives to improve
the training performance of distilled datasets, including matching training performance via meta
learning [51, 7], matching feature regression performance [37, 38, 61, 32, 33], matching training
gradients [60, 58, 20], matching training trajectories [2, 8, 4], and matching feature statistics [59, 50].

Although impressive results have been achieved and it has been demonstrated that neural networks
trained by a synthetic dataset with even only 1 image per class can yield reasonable performance

∗Corresponding Author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Match
Loss

Backprop

(a) Previous DD Paradigm

𝒯

𝒮

×N Times

Analytical
Label

Generator

𝒯

Initialized 𝒮

Random
Select

Final 𝒮

(b) MGDD Paradigm

Solve

Figure 1: Illustration of previous back-propagation-based and our generative fashions after adapta-
tion for dataset distillation.

on real data, the iterative optimization process adopted in existing works results in significant
computational overhead. As shown in Fig. 2, for FRePo [61], the method with the best performance
requires above 3 hours to obtain a synthetic dataset with 1 image per class for CIFAR100 [23],
let alone RTP [7], which is a back-propagation-through-time method and requires over 9 days for
optimization. Such a dramatic latency makes existing approaches hard to be applied in scenarios
requiring high efficiency, like handling data streams. Moreover, when the memory budget for a
synthetic dataset changes, existing methods have to repeat the time-consuming optimization for the
different sizes of S, which lacks flexibility.

To alleviate the drawbacks of the conventional iterative forward-backward process, in this paper, we
propose a generative dataset distillation approach, where the optimization loop is replaced by a single
feed-forward propagation, as shown in Fig. 1(b). Specifically, given an initialization of synthetic
samples in S , we first obtain the corresponding synthetic labels by analytically solving a least-squares
problem in a feature space. Then, a generator is adopted to transfer the initialized samples to the final
ones. Our theoretical analysis indicates that S solved in an original space can be transferred to the
final result by any conditional generator with an upper-bounded error, which validates the feasibility
of this pipeline.

Then, the key problem of our framework lies in finding a suitable generator as quickly as possible for
the feed-forward generation process of S. To this end, we propose a method called MGDD, where
a meta generator is learned with a meta learning algorithm on a large database like ImageNet [6].
Trained in a learning-to-learn fashion, the meta generator is optimized such that only a small number
of adaptation steps are required for a target dataset unseen in the meta learning. Experiments
demonstrate that our approach yields 22× acceleration 2 and comparable performance with existing
state-of-the-art methods, as shown in Fig. 2. Beyond that, the generator once adapted can also handle
unseen sizes of S during adaptation, which improves the flexibility of cross-size generalization in
existing DD methods significantly. We also validate that MGDD gets competitive performance on
target datasets with large domain shifts from those seen in the meta learning.

Our contributions can be summarized from the following three aspects:

• We propose an innovative feed-forward generation fashion for DD without backward propa-
gation after adaptation which significantly improves the efficiency of existing methods;

• We introduce MGDD which uses a meta-learning algorithm to learn a meta generator and
helps the generator adapt to a target dataset rapidly;

• The proposed method achieves significant acceleration and improvement in the flexibility of
cross-size generalization for existing DD approaches with comparable performance.

2 Related Works

Unlike conventional efficient learning schemes that mainly focus on lightening models [9, 34, 55,
54, 10, 18, 19, 17], dataset distillation (DD) looks into data compression: given a real large dataset
T , DD aims at a smaller synthetic dataset S which can match the training performance of T . The
seminal work by Wang et al. [51] proposes a meta learning approach to model this objective: in meta
training, a network is trained with the current S for multiple times, while in meta test, the loss for the
updated network is evaluated on T , which is then back-propagated through the bi-level optimization

2The acceleration factor estimated here includes adaptation time. If only feed-forward time is considered, the
acceleration can be 1650×.

2

to update S . The following work by Deng et al. [7] improves performances by adopting momentum
during meta training.

Considering the concerns on memory and time complexity of unrolling the computational graph
in meta learning, a variety of works introduce various surrogate matching objectives to update
S. Zhao et al. [60] propose to match training gradients of S with those of T , and following
researches [20, 27, 16, 57, 45] focus on improving the classical gradient-matching objective. Beyond
the single-step gradient, Cazenavette et al. [2] and subsequent works [4, 8] consider regulating multi-
step training effects and propose matching training trajectories. Without the necessity of calculating
higher order gradients, the distribution matching methods [59, 50] minimize the distance between
feature statistics of S and T , and result in satisfactory computational efficiency. Another branch of
methods [37, 38, 61, 32, 33] turn to kernel ridge regression (KRR) model to improve the efficiency
of the seminal meta learning based solution, since KRR enjoys the analytical form of solution, which
gets rid of the meta-training process and yields best trade-off between performance and efficiency.

102 103 104 105 106

Log-Scale Running Time (sec.)

12
14
16
18
20
22
24
26
28

A
cc

ur
ac

y
(%

)

DC

DSA
DM

MTT
FRePo

RTP

IDC

Ours

Ours-DS

Figure 2: Results of different DD meth-
ods on CIFAR100 with 1 image per class.
Our MGDD achieves state-of-the-art ef-
ficiency and at least comparable perfor-
mance. DS denotes down-sampling pa-
rameterization.

Different from works focusing on objectives of DD,
some other researches explore methods of synthetic
data parameterization, where synthetic samples can be
stored in some other formats except the raw one to
improve the data efficiency, and raw samples are recov-
ered via some functions during down-stream training,
e.g., data augmentation [58], up-sampling [20], linear
transformation [7], and neural networks [30, 26, 3, 49].

For a thorough introduction to dataset distillation, we
refer readers to the recent surveys for this area [56, 13,
43, 28]. For existing methods, no matter what objec-
tives and parameterizations are adopted, they all rely
on an intensive loop of forward-backward propagation
through a massive number of neural networks. Al-
though a concurrent work [31] also adopts a similar
pre-training and adaptation pipeline, it still relies on an
iterative loop to solve an initialization of synthetic data.
Different from prior works, we innovatively introduce a feed-forward fashion for dataset distillation in
this paper. In fact, our method is orthogonal to different training objectives and data parameterizations,
and can be built upon any combination of them. In this paper, we consider the KRR-based objective
thanks to its favorable performance and computational efficiency and experiment with both raw and
down-sampled parameterizations.

3 Methods

In this section, we elaborate on the technical methods of the proposed MGDD pipeline. We first
introduce in Sec. 3.1 some preliminary information related to the matching objective. Then, for the
main method, according to the overview of the whole pipeline in Fig. 1(b), the final synthetic labels
and samples are derived by solving a least-squares problem and a conditional generator given initial
synthetic data, which would be illustrated in detail in Sec. 3.2 and 3.3 respectively. Finally in Sec. 3.4,
we analyze the feasibility of this two-step pipeline theoretically.

3.1 Preliminary

Let us denote datasets before and after distillation as T = (Xt, Yt) and S = (Xs, Ys) respectively,
where Xt ∈ Rnt×d, Yt ∈ Rnt×c, Xs ∈ Rns×d, Ys ∈ Rns×c, nt and ns are number of real and
synthetic data respectively, d and c are input and output dimensions respectively. Typically, for the
RGB image classification task, d is equal to h×w× 3, c is the number of classes, and Yt is organized
in the one-hot format. For the objective of DD, in this paper, we mainly consider the KRR-based
methods in neural feature spaces [61, 32] due to its overall superior performance in terms of accuracy
and efficiency. Specifically, assume there is an optimal neural network fθ∗ to projects Xt and Xs to a
feature space with p dimensions and ns ≪ nt < p. The prediction error on T for the optimal KRR

3

parameter solved by S, denoted as W θ∗

s is adopted as the loss function:

L(S; θ∗) = ∥fθ∗(Xt)W
θ∗

s − Yt∥22 = ∥fθ∗(Xt)fθ∗(Xs)
⊤(fθ∗(Xs)fθ∗(Xs)

⊤)−1Ys − Yt∥22. (1)

In practice, since the optimal parameter θ∗ is unknown, it is approximated by different random
initializations [32] or alternately optimization with S [61].

3.2 Solving Synthetic Labels

Through Eq. 1, we can find that the loss in a neural space θ is upper-bounded by the distance between
parameters solved by S and T :

L(S; θ) = ∥fθ(Xt)W
θ∗

s − Yt∥22 = ∥fθ(Xt)W
θ
s − fθ∗(Xt)fθ(Xt)

†Yt∥22
= ∥fθ(Xt)W

θ
s − fθ(Xt)W

θ
t ∥22 ≤ ∥fθ(Xt)∥22∥W θ

s −W θ
t ∥22

= ∥fθ(Xt)∥22∥fθ(Xs)
†Ys −W θ

t ∥22,
(2)

where † denotes the pseudo-inverse of a matrix. In our MGDD framework, synthetic samples Xs

are initialized as some random real samples in Xt. Given a fixed Xs and a random network fθ, the
upper bound in Eq. 2 forms a least-squares problem with respect to synthetic labels Ys, which can be
minimized by an analytically optimal solution:

Y ∗
s = fθ(Xs)W

θ
t = fθ(Xs)fθ(Xt)

⊤(fθ(Xt)fθ(Xt)
⊤)−1Yt. (3)

Y ∗
s obtained with Eq. 3 serves as final synthetic labels. In the next subsection, we will introduce the

generation of synthetic samples conditioned on their initialization.

3.3 Learning a Synthetic Sample Generator

Conditioned on initialized synthetic samples Xs, a generator gω is adopted to predict the final
synthetic data X∗

s , where the parameter ω can encode useful information of the target dataset T
and the optimal neural space parameterized by θ∗. We expect that the generator can acquire such
knowledge through a fast learning process within a limited number of training steps. To this end, we
propose a learning-to-learn algorithm based on MAML [12], where a meta generation network is
learned to optimize the performance of the network adapted for a few steps from the meta one.

Specifically, to ensure the generality of the meta generator for different target datasets, we perform
the training algorithm on ImageNet1k [6], a large-scale dataset for image classification. In each
training iteration, a subset of all classes is randomly sampled from it to mimic different target datasets
that the generator may encounter in practice. And the meta generator is learned in a bi-level learning
framework including a meta-training loop and a meta-testing step, and the meta-testing loss is back-
propagated through the computational graph of meta-training steps to update the parameter of the
meta generator.

In each meta-training and meta-testing step, from the selected classes, we randomly sample a batch
of real images as T and initialize synthetic data Xs with part of them. With a random and fixed
neural network as fθ, the synthetic labels Y ∗

s are solved via Eq. 3. Then, the final synthetic samples
X∗

s are predicted by the current generator in a forward pass, and S = (X∗
s , Y

∗
s) is evaluated by the

loss L(S; θ∗) in Eq. 1. In this paper, following Loo et al. [32], we approximate the optimal neural
parameter θ∗ via random sampling in different steps from the distribution for initialization. The loss
signal is back-propagated to the current generator and the meta generator to update parameters in
meta-training and meta-testing respectively. It is worth noting that in different meta-training and meta-
testing times, we use different sizes of synthetic data, which enhances the cross-size generalization
ability on target datasets since the meta-testing losses on sizes probably unseen during meta-training
are optimized. The main algorithm is summarized in Alg. 1. Given a trained meta generator, a limited
number of adaptation steps are performed for a target dataset. The procedure of adaptation is similar
to the meta-training loop in Alg. 1.

As for the architecture of the generator, in this paper, we adopt a simple encoder-decoder model,
where the encoder consists of three convolutional blocks with two average pooling layers while
the decoder has a symmetric structure. Notably, we observe in practice that it is beneficial for
different sizes of synthetic datasets to adopt different transfer functions. Taking various sizes into
consideration, we concatenate additional size-embedding channels to the bottle-necked layer of the

4

Algorithm 1 MGDD: Meta-Learning Framework for Training a Synthetic Sample Generator
Input: Z: A Large Dataset; θ: Parameter of a Random Neural Network; T : Number of Meta-

Training Steps; α: Learning Rate in Meta-Training; β: Learning Rate in Meta-Testing.
Output: ω: Parameter of a Meta Generator.

1: procedure GETTRAININGLOSS(T)
2: Initialize Xs with some random real images from T ;
3: Obtain Y ∗

s with the analytical solution in Eq. 3;
4: Forward propagation with X∗

s ← gω′(Xs);
5: Randomly sample θ∗ and compute the loss L((X∗

s , Y
∗
s); θ

∗) in Eq. 1;
6: return L((X∗

s , Y
∗
s); θ

∗)
7: end procedure
8: Initialize ω randomly;
9: repeat

10: ω′ ← copy(ω);
11: Randomly choose a subset of classes C from Z;
12: Sample a batch of images of C as T ;
13: for 1 ≤ i ≤ T do
14: L = GetTrainingLoss(T); ▷ Meta-Training
15: Back propagation and update ω′: ω′ ← ω′ − α∇ω′L;
16: end for
17: L = GetTrainingLoss(T); ▷ Meta-Testing
18: Back propagation and update ω: ω ← ω − β∇ωL;
19: until convergence

generator, inspired by the design of the position embedding in Transformer models [47] and the
time-step embedding in diffusion models [15, 39, 41]. Please refer to the appendix for detailed
architecture configurations.

3.4 Theoretical Analysis

There are two key steps in the proposed MGDD framework: solving the optimal synthetic labels Y ∗
s

as introduced in Sec. 3.2 and generating the corresponding synthetic samples X∗
s as introduced in

Sec. 3.3. Define the error L(S; θ) in Eq. 1 using the fixed Xs and the optimal Ys in Eq. 3 with the
projection function of fθ as ϵ. The reason we pursue the optimal Ys is that the final X∗

s is transferred
from the initial Xs, whose error in the optimal neural space parameterized by θ∗ is upper-bounded by
ϵ, as derived in the following theorem.

Theorem 1. Given fθ : Rd → Rp, fθ∗ : Rd → Rp, Xt ∈ Rnt×d, Yt ∈ Rnt×c, Xs ∈ Rns×c,
d < p, Y ∗

s obtained by Eq. 3 with the optimal L((Xs, Y
∗
s); θ) denoted as ϵ, and an arbitrary transfer

function gω parameterized by ω taking Xs as input, the transferred gω(Xs) yields an upper-bounded
loss L((gω(Xs), Y

∗
s); θ

∗).

Proof. We first rewrite the given condition:

L((Xs, Y
∗
s); θ) = ∥fθ(Xt)W

θ
s − Yt∥22 = ∥fθ(Xt)fθ(Xs)

⊤(fθ(Xs)fθ(Xs)
⊤)−1Y ∗

s − Yt∥22 = ϵ.
(4)

Then, we have:

L((gω(Xs), Y
∗
s); θ

∗) = ∥fθ∗(Xt)W
θ∗

s − Yt∥22
= ∥fθ∗(Xt)fθ∗(gω(Xs))

⊤(fθ∗(gω(Xs))fθ∗(gω(Xs))
⊤)−1Y ∗

s − Yt∥22
≤ ∥fθ∗(Xt)W

θ∗

s − fθ(Xt)W
θ
s ∥22 + ∥fθ(Xt)W

θ
s − Yt∥22

= ∥fθ∗(Xt)W
θ∗

s − fθ(Xt)W
θ
s ∥22 + ϵ,

(5)

where the inequality is based on the triangle inequality and the last equation is due to Eq. 4.

Theorem 1 indicates that to achieve feed-forward dataset distillation, we do not need to design a
neural network taking the whole original dataset T as input. We can in fact adopt a conditional

5

Dataset CIFAR10 CIFAR100

IPC 1 10 50 1 10
Ratio (%) 0.02 0.2 1 0.2 1

Random Acc. (%) 21.87±0.30 38.86±0.31 57.07±0.54 7.06±0.16 24.50±0.08
Full Dataset Acc. (%) 84.8±0.1 56.2±0.3

DC [60] Acc. (%) 28.20±0.71 43.74±0.41 53.43±0.28 12.44±0.18 25.08±0.17
Time (sec.) 153 3605 20090 1496 33749

DSA [58] Acc. (%) 28.10±0.72 52.15±0.48 60.58±0.29 13.81±0.21 32.49±0.30
Time (sec.) 172 3871 21217 1667 35905

IDC [20] Acc. (%) 35.34±0.87 58.50±0.39 69.32±0.30 17.93±0.15 36.08±0.38
Time (sec.) 39062 40244 45888 189811 198101

MTT [2] Acc. (%) 45.29±0.86 62.77±0.56 71.09±0.34 24.17±0.57 39.43±0.26
Time (sec.) 2972 8588 8601 8063 10295

DM [59] Acc. (%) 27.08±0.36 48.80±0.31 62.94±0.28 11.51±0.25 29.33±0.23
Time (sec.) 1123 1182 1423 10942 11355

RTP [7] Acc. (%) 49.1±0.6∗ 62.4±0.4∗ 70.5±0.4∗ 21.3±0.6∗ 34.7±0.5∗

Time (sec.) 816212 1647559 1660726 842801 1672205

FRePo [61] Acc. (%) 43.24±0.32 65.76±0.72 71.03±0.34 27.07±0.26 39.97±0.32
Time (sec.) 8507 11133 29185 11231 37607

Ours

Acc. (%) 46.26±0.27 60.76±0.38 69.50±0.17 24.66±0.15 36.47±0.27
Time (sec.) 120×6802 505×22 1395×6 505×22 3004×13

Label (sec.) 7 7 7 7 7
Generator (sec.) 113 498 1388 498 2997
Forward (ms) 2 3 11 3 20

Table 1: Comparisons on test accuracy and running time with state of the arts. The acceleration
marked by the red subscript is computed against the method with the best accuracy. We also
provide detailed analysis for our method on the time cost for each component in adaptation,
including solving synthetic labels, updating the generator from the meta generator, and feed-
forward generation. IPC: Number of Images Per Class; Ratio: ratio of distilled images to the whole
training set. ∗ denotes results from the original paper.

generation function that transfers the initial synthetic samples to the desired ones, which has an error
upper bound as shown in Theorem 1. Since the upper bound is related to the error in the original
space parameterized by θ, it is crucial to solve the optimal synthetic labels with respect to θ in the first
step. Also, we notice from Eq. 5 that the optimal generator is dependent on T and θ∗. Given that θ∗
is intractable and can only be approximated by iterative sampling, we build a meta learning algorithm
in Alg. 1 for the MGDD framework to enforce an efficient process to model this dependency in only
a few steps.

4 Experiments

4.1 Implementing Details

As discussed in the previous section, there are 3 stages in the proposed MGDD, including training,
adaptation, and inference stages. In the training stage, we aim at a meta generator gω and adopt
Alg. 1 to train gω on a large dataset. In this paper, to ensure that the meta generator can acquire
general knowledge for fast adaptation on a target dataset, we use ImageNet1k [6], a large-scale image
recognition dataset popular in the computer vision and machine learning communities, as the dataset
for meta learning. There are roughly 1,280,000 images in a total of 1,000 classes. We resize all
images to the 32 × 32 resolution. In each outer loop of Alg. 1, we randomly select 100 classes at
most and a batch of data with 2,000 images in maximal from the selected class as a current target
dataset T , with which we initialize a synthetic dataset S with 1,000 samples at most in each inner
step. The training objective is based on Eq. 1 and the implementation follows the open-source code
of FRePo [61]. For computational efficiency, the generator processes each sample independently and
the configuration of the architecture can be found in the appendix. The meta generator is trained by
the Adam optimizer [21] and the learning rate β is set as 10−5. The learning rate in meta-training
is set as 10−4 and the number of meta-training steps T is 5. The meta generator is trained with
200,000 meta-testing iterations. We use a cloud server with a single A40 GPU for meta learning
and a workstation with a single 3090 GPU for the subsequent adaptation. The meta learning takes
roughly 2 days while the time cost of adaptation is analyzed in Tab. 1.

6

IPC Steps Methods P A C S PACS Path Blood PathBlood CUB200
Baseline 53.54±0.99 33.53±3.19 51.69±1.25 39.76±1.74 38.03±0.60 54.23±3.12 68.38±0.55 55.11±1.26 4.84±0.19
w/o Meta 51.74±1.71 40.29±0.68 60.45±0.32 35.87±0.07 42.73±0.25 57.06±1.36 69.14±1.86 58.03±0.51 6.73±0.131,000

Ours 57.31±1.41 41.18±0.48 60.71±1.02 43.98±0.55 43.46±0.89 57.60±1.19 70.83±0.81 59.86±0.66 7.40±0.20
Baseline 55.80±1.16 40.87±1.47 56.40±2.57 44.26±0.52 38.53±0.80 54.70±1.07 68.55±1.39 60.62±1.14 5.65±0.26
w/o Meta 57.37±1.38 42.15±0.89 62.84±1.19 41.47±1.05 43.89±0.62 58.33±1.76 71.28±1.61 60.72±0.17 7.25±0.092,000

Ours 60.18±1.99 42.50±0.09 63.96±0.80 46.47±0.96 44.92±0.48 59.06±1.02 72.72±0.90 62.22±0.27 7.68±0.18
Baseline 68.64±0.52 41.59±1.53 59.38±0.93 52.85±0.51 44.87±0.28 64.74±1.10 71.17±0.72 64.57±1.63 12.41±0.20

1

Full
Ours 66.77±1.81 44.24±0.36 64.48±0.68 53.40±1.58 48.39±0.49 70.25±0.11 72.93±1.70 65.30±0.44 12.51±0.27

Baseline 76.33±0.31 47.20±1.61 70.92±1.02 63.26±1.26 59.54±0.34 76.18±0.87 80.09±0.82 74.46±0.91 10.33±0.64
w/o Meta 77.28±0.44 54.57±0.75 72.81±0.10 69.11±0.17 58.33±0.37 75.00±0.74 79.26±0.17 74.45±0.39 13.69±0.091,000

Ours 79.40±0.29 56.18±0.34 74.49±0.35 70.63±0.33 61.41±0.13 76.21±0.10 80.20±0.41 75.78±0.69 13.98±0.09
Baseline 77.59±0.41 51.18±2.31 72.36±0.44 67.68±0.86 59.86±0.21 76.96±0.70 81.73±0.37 75.01±0.51 11.25±0.51
w/o Meta 78.24±0.42 55.52±0.63 74.89±0.23 71.09±0.63 60.69±0.33 77.06±0.18 81.71±0.37 75.26±0.07 13.83±0.242,000

Ours 80.78±1.05 56.82±0.51 76.12±0.63 72.11±0.48 62.33±0.15 77.44±0.11 82.31±0.45 76.32±0.14 14.69±0.37
Baseline 85.40±0.30 60.64±1.64 78.10±0.54 76.87±1.09 65.38±0.48 77.44±1.53 85.81±0.56 76.58±0.25 16.84±0.12

10

Full
Ours 82.27±0.89 59.47±1.20 78.88±0.15 76.91±0.25 65.76±0.26 78.21±1.42 84.47±0.23 77.07±0.98 15.05±0.37

Table 2: Evaluations on PACS, PathMNIST, BloodMNIST, and CUB200 datasets. The baseline is
FRePo [61]. w/o Meta denotes adapting from scratch instead of a meta generator.

In the adaptation stage, we load the meta generator obtained by the training stage and try to adapt
it for a target dataset. The optimization is similar to that in the meta-training step of Alg. 1 and the
difference is that we use the Adam optimizer to update the parameters instead of pure gradient decent.
Notably, there are two ways to initialize Xs in each adaptation step, namely single-initialization and
multi-initialization modes. In the single-initialization mode, Xs is set as the same group of random
real samples in the real dataset for all adaptation steps, while in the multi-initialization mode, it can
be set differently, with various random seed or/and various sizes of synthetic datasets. We experiment
with both ways in this section.

4.2 Comparisons with State of the Arts

In this part, we compare the proposed MGDD with existing state-of-the-art DD methods on standard
benchmarks, including CIFAR10 and CIFAR100 [23] datasets. There are 50,000 training images and
10,000 testing images in the 32×32 resolution for both datasets, and the numbers of classes are 10 and
100 respectively. For CIFAR10, we compare our method with state of the arts on settings of 1, 10, and
50 images per class (IPC) in synthetic datasets and for CIFAR100, IPCs are 1 and 10. The candidates
are three gradient-matching methods DC [60], DSA [58], and IDC [20], one trajectory-matching
method MTT [2], one distribution-matching method DM [59], one back-propagation-through-time
(BPTT) method RTP [7], and one kernel-ridge-regression-based method FRePo [61]. We obtain
synthetic datasets using each algorithm on a 3-layer ConvNet whose architecture is the same as
that in [61] and evaluate the accuracy on testing datasets for networks with the same architecture
trained on synthetic datasets. For our method, we adapt the generator from the meta model on each
comparison setting for 10,000 steps, and for each setting, we report mean and standard deviation over
the accuracy of 3 networks initialized from scratch. Moreover, we report the cost of time to derive
synthetic datasets.

As shown in Tab. 1, our method achieves comparable performance with DD methods based on heavy
iterative loops and yields significant acceleration. For gradient-matching-based based solutions,
they typically rely on computing second-order derivatives over a large amount of neural networks
to back-propagate the matching loss to synthetic data, which results in high computation overhead.
Even worse, for trajectory-matching and BPTT methods, higher-order derivatives are necessary. As
a result, their time cost for optimizing synthetic datasets is formidable, and our method achieves
up to 6800× acceleration compared with BPTT. For DM and FRePo, although they do not rely on
high-order gradients, they typically require a massive number of forward-backward iterations to
update synthetic datasets, e.g., the FRePo baseline requires 500,000 iterations for optimization, and
the efficiency is still unsatisfactory. On the contrary, the results of our method are produced by a
generator in a one-stop fashion, which is trained by a meta-learning algorithm and learns to adapt to
a target dataset rapidly. It thus enjoys the superior running efficiency of DD. More analysis of the
accuracy performance given the same running time can be found in the appendix.

Notably, although the generator is only trained under 32× 32 RGB images in meta-learning, given
that it has a fully-convolutional structure and maintains the same resolution for input and output, it

7

Dataset CIFAR10 CIFAR100

IPC 1 10 50 1 10

FRePo 26.8±0.7 49.6±0.1 62.0±0.4 10.1±0.3 29.6±0.2
Ours w FRePo 42.6±0.3 58.9±0.4 66.8±0.2 20.8±0.2 32.2±0.3

DC 24.7±0.4 43.1±0.3 56.0±0.3 6.6±0.2 19.8±0.3
Ours w DC 34.3±0.4 46.2±0.6 60.0±0.4 14.1±0.1 22.3±0.4

DM 25.7±0.5 45.5±0.4 57.4±0.5 9.6±0.2 21.9±0.3
Ours w DM 31.4±0.2 48.9±0.2 60.8±0.4 16.6±0.2 22.9±0.3

Table 3: Performance of using different DD training
objectives during adaptation.

Train Arch. Unseen Arch.

IPC Method ConvNet AlexNet VGG ResNet

1 Baseline 49.6±0.1 44.5±0.7 33.0±0.1 31.8±1.6
Ours 58.9±0.4 55.1±0.4 35.9±0.6 32.7±0.8

10 Baseline 26.8±0.7 23.4±0.3 16.9±0.1 15.1±0.8
Ours 42.6±0.3 39.6±0.8 22.9±0.6 19.1±1.3

50 Baseline 62.0±0.4 59.2±0.3 48.7±1.1 48.2±0.4
Ours 66.8±0.2 62.8±0.2 50.9±0.7 52.4±1.2

Table 4: Performance of different network
architectures on CIFAR10.

is applicable to datasets with larger resolutions. It can also be adapted for datasets with different
numbers of input channels with minor modifications. In the appendix, we provide more experimental
results of such cross-resolution and cross-channel-number generalization cases.

4.3 Empirical Studies

In this part, we focus on some interesting properties of the proposed MGDD method, including cross-
dataset, cross-objective, cross-architecture, cross-synthetic-initialization, cross-parameterization, and
cross-IPC settings. More studies including cross-resolution, cross-channel-number, and cross-class-
number that cannot fit into the main content are put in the appendix.

Cross-Dataset Generalization: MGDD proposed in this paper is expected to be generalized to
any downstream target datasets, including those unseen and with large domain shifts from datasets
used in the meta learning. To evaluate the cross-dataset generalization performance of MGDD,
we conduct experiments on more datasets including one domain generalization dataset PACS [29],
two medical classification datasets PathMNIST and BloodMNIST [53], and one fine-grain image
classification dataset CUB200 [48]. PACS contains 9,991 images from 7 classes and 4 domains:
Photo (P), Art Painting (A), Cartoon (C), and Sketch (S). The style variations across the 4 domains
are drastic. We perform dataset distillation on each domain both independently and jointly, which
formulates a 28-class dataset. PathMNIST and BloodMNIST contain 107,180 images of 9 classes and
17,092 images from 8 classes respectively. We also combine them together to form a 17-class dataset
denoted as PathBloodMNIST. CUB200 contains 6,000 images of 200 bird species. We process all the
images to the 32× 32 resolution in the RGB format and compare the performance with the FRePo
baseline [61] and a generator from scratch instead of the meta generator, under 1,000 and 2,000
steps as well as full convergence. The quantitative results shown in Tab. 2 validate the robustness of
MGDD under various datasets and domain shifts.

Cross-Objective Generalization: By default, both the meta-learning and adaptation objectives used
in this paper for MGDD are the KRR objective in Eq. 1 following FRePo [61]. Empirically, we find
that it is also feasible to adopt different objectives for adaptation. Here, we switch the adaptation
objective to DC [60] and DM [59] respectively. The optimization steps for both baselines and our
method are set as 2,000. As shown in Tab. 3, our methods yield consistent improvement over different
baselines in a limited number of optimization steps.

Cross-Architecture Generalization: Adapted on an original architecture, a satisfactory generator
is expected to produce results that are also valid to train networks with different structures, namely
cross-architecture generalization. Tab. 4 shows the performance on CIFAR10, where ConvNet is used
in adaptation while AlexNet [24], VGG11 [46], and ResNet18 [14] are used as unseen architectures
for evaluation. The results indicate that the accuracy improvement on the original model still holds
for unseen structures.

Cross-Initialization Generalization: We find that the single-initialization scheme used in Tab. 1
may lead to over-fitting of the generator to the adopted single initialization. As shown in Tab. 5, if we
change the initialization of synthetic data, the performance would drop dramatically. Fortunately,
multi-initialization is an alternative to account for this drawback, wherein each adaptation step, a
new initialization of the synthetic dataset is sampled from the original dataset. Tab. 5 indicates that
multi-initialization typically requires more adaptation steps for convergence and can perform on par
with single-initialization. It is useful when samples in the synthetic dataset are concerned with user
privacy, given that visualization results produced by the KRR objective are somehow realistic, as
illustrated in Fig. 6 and [61]. In such cases, replacing the current dataset with the results of another

8

Setting Default Multi-Init

Original Different Init Different Init

Acc. (%) 60.76±0.38 43.27±0.46 60.24±1.28
Time (sec.) 505 1108

Table 5: Using multiple initialized samples during
adaptation can enhance the cross-initialization
performance. Performance on CIFAR10 with 10
IPC is shown here.

Dataset CIFAR10 CIFAR100

IPC 1 10 1

Ours 46.26±0.27 60.76±0.38 24.66±0.15
Ours-DS 48.17±0.77 63.97±0.30 27.76±0.44

Table 6: Our method is orthogonal to synthetic
dataset parameterization methods and provides
improvement gain on small synthetic datasets. DS
denotes down-sampling parameterization.

10 20 30 40 50 100 200
IPC

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Embed
Random
Ours

Figure 3: Performance of vari-
ous IPCs on CIFAR10. Only 10
and 50 are seen in adaptation.

100 200 300 400 500 1000 2000
Adaptation Steps

40.0
42.5
45.0
47.5
50.0
52.5
55.0
57.5
60.0

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

Figure 4: Performance of gen-
erators with various adaptation
steps on CIFAR10 with 10 IPC.

2 4 6 8 10
CL Task Index

25
30
35
40
45
50
55
60
65

Te
st

 A
cc

ur
ac

y
(%

)

Ours from Meta
Ours Adapt Once
Baseline
Ours from Previous

Figure 5: Performance of con-
tinual learning on CIFAR100.

initialization would help solve the problem efficiently, without the necessity to re-run the whole
optimization loop of existing methods.

Cross-Parameterization Generalization: Beyond different training objectives, the proposed MGDD
is also orthogonal with different synthetic data parameterization tricks. In Tab. 6, we consider storing
2× down-sampled synthetic images instead of the raw ones. Thus, 4× synthetic samples can be stored
given the same storage budget. We find that the simple strategy can lead to additional performance
gain for relatively small budgets. The observation is consistent with previous works [20, 30, 7].

Cross-IPC Generalization: One crucial benefit of the MGDD is the cross-IPC generalization. Once
the generator is adapted for a target dataset, when the storage budget changes, we do not need to
perform the optimization again, unlike previous solutions relying on iteratively updating synthetic
datasets. To demonstrate the cross-IPC generalization performance, we conduct experiments on
CIFAR10 and adapt the meta generator using multi-initialization, with 10 and 50 IPCs for 2,000 steps.
The adapted generator is evaluated on unseen IPCs 20, 30, and 40. The results are shown in the red
curve of Fig. 3, where the generator produces satisfactory synthetic datasets with unseen IPCs.

To make the generator aware of the sizes of synthetic datasets, we concatenate size embedding
channels to features at the middle layer of the generator. To understand how the embedding works,
we remove these channels and conduct the same evaluation. As shown in the yellow curve of Fig. 3,
the performance degrades without size embedding. In Fig. 6, we visualize some samples before and
after the adapted generator on CIFAR10 with 1 and 50 IPCs. We can observe that the results are quite
different: for small sizes, the generated results are vague, while for large sizes the results are more
realistic, and their styles are also different. Thus, it is reasonable to take different sizes of synthetic
datasets into consideration in the inference stage.

We also try training the generator from scratch instead of the meta model on the target dataset. As
shown in Fig. 3, the worse performance in the green curve indicates that meta-learning is crucial for
finding a satisfactory initial checkpoint for downstream adaptation.

Moreover, we also evaluate the performance on higher IPCs like 100 and 200, and the results are still
encouraging compared with random real samples, which indicates that our method can serve as an
alternative when the computational resource cannot support optimization for larger IPCs directly.

Various Adaptation Steps: In Fig. 4, we visualize the accuracy under different adaptation steps
on CIFAR10 with 10 IPC as the red curve. Compared with training from scratch and the baseline
FRePo [61], as shown in the yellow and green curves respectively, our method results in significantly
faster adaptation convergence, which would be attributed to the good initial generator found by the
meta-learning algorithm. Thus, our method is more applicable in scenarios requiring high efficiency,
like processing streaming data.

9

50 IPC before Generator

1 IPC after Generator 50 IPC after Generator

1 IPC before Generator

Figure 6: Visualizations of samples before and after generator on CIFAR10 with 1 and 50 IPC.

Furthermore, to demonstrate the effectiveness of analytical labels, we replace them with vanilla
one-hot labels in synthetic datasets and the performance is shown in the blue curve. The considerable
performance drop indicates the importance of minimizing the error in an original space via analytical
labels, which is consistent with the theoretical analysis in Theorem 1.

4.4 Application: Continual Learning

Continual learning (CL) aims to learn from a stream of data, where historical and future data are
unavailable when learning the current data batch. One important issue is catastrophic forgetting [22]:
a model tends to forget knowledge acquired in previous data when learning on newly-coming data.
Focusing on this drawback, many works introduce a buffer with limited memory to store core data
and knowledge of past experience for future use [40, 1]. Dataset distillation benefits this field by
generating informative samples [36, 5, 42, 35, 44] to prevent forgetting as much as possible.

In this paper, we evaluate the CL performance of the proposed MGDD on CIFAR100, following the
same protocol of [61, 59], where all 100 classes are divided into 10 tasks randomly with 10 classes for
each task. For each task, a buffer with 20 images for each class is allowed for synthetic data. We first
try adapting the generator on each new task from the meta model for 2,000 steps and the performance
is shown in the yellow curve in Fig. 5. Alternatively, we can choose to adapt the generator from the
checkpoint of the previous task, which has already learned some global knowledge of full data and
yields better performance, as shown in the red curve. Notably, it is also feasible to only adapt the
generator on the first task and the remaining tasks directly adopt this generator to output synthetic data.
As shown in the blue curve, with the most significant flexibility, the performance is still comparable
with the FRePo baseline [61] shown in the green curve, which suggests great practical value for
processing data streams.

5 Conclusion

In this paper, we propose MGDD, a novel feed-forward paradigm for dataset distillation (DD).
Specifically, in our pipeline, synthetic labels are obtained by solving a least-squares problem equipped
with an analytical solution, and synthetic samples are transferred from their initial results by a
conditional generator instead of taking the whole original training dataset as input. Theoretical
derivation indicates an error upper bound of the proposed framework. On the one hand, unlike
existing DD approaches requiring time-consuming forward-backward iterations through a massive
number of networks, MGDD generates distilled results with a generator adapted rapidly from a
meta generator, which improves the efficiency of DD significantly. On the other hand, existing
techniques have to repeat the whole iterative algorithms for different sizes of synthetic datasets, while
MGDD can perform inference flexibly on various sizes once adapted to the target dataset. Focusing
on the efficiency of adaptation on target datasets, we propose a meta-learning algorithm to train a
meta generator, such that it can acquire knowledge of target datasets sufficiently in only a few steps.
Experiments demonstrate that the proposed MGDD performs on par with existing state-of-the-art DD
baselines under 22× acceleration. It also exerts strong cross-size generalization ability even on sizes
of synthetic datasets unseen during adaptation. Future works may explore advanced feed-forward
fashions of DD, focusing on generation pipelines, training algorithms, and network architectures,
making improvements on the cross-dataset, cross-size, and cross-architecture generalization.

10

Acknowledgment

This work is supported by the Advanced Research and Technology Innovation Centre (ARTIC),
the National University of Singapore under Grant (project number: A0005947-21-00, project refer-
ence: ECT-RP2), and the Singapore Ministry of Education Academic Research Fund Tier 1 (WBS:
A0009440-01-00).

References
[1] Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking experience replay: a

bag of tricks for continual learning. In 2020 25th International Conference on Pattern Recognition (ICPR),
pages 2180–2187. IEEE, 2021.

[2] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. arXiv preprint arXiv:2203.11932, 2022.

[3] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Generalizing
dataset distillation via deep generative prior. arXiv preprint arXiv:2305.01649, 2023.

[4] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k with
constant memory. arXiv preprint arXiv:2211.10586, 2022.

[5] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks.
IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[7] Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable memories
for neural networks. arXiv preprint arXiv:2206.02916, 2022.

[8] Jiawei Du, Yidi Jiang, Vincent TF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumulated
trajectory error to improve dataset distillation. arXiv preprint arXiv:2211.11004, 2022.

[9] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

[10] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural Pruning for Diffusion Models. In Advances in
Neural Information Processing Systems, 2023.

[11] Fastai. Fastai/imagenette: A smaller subset of 10 easily classified classes from imagenet, and a little more
french.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

[13] Jiahui Geng, Zongxiong Chen, Yuandou Wang, Herbert Woisetschlaeger, Sonja Schimmler, Ruben Mayer,
Zhiming Zhao, and Chunming Rong. A survey on dataset distillation: Approaches, applications and future
directions. arXiv preprint arXiv:2305.01975, 2023.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[16] Zixuan Jiang, Jiaqi Gu, Mingjie Liu, and David Z. Pan. Delving into effective gradient matching for dataset
condensation. arXiv preprint arXiv:2208.00311, 2022.

[17] Yongcheng Jing. Efficient Representation Learning With Graph Neural Networks. PhD thesis, 2023.

[18] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Amalgamating knowledge
from heterogeneous graph neural networks. In CVPR, 2021.

[19] Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep graph
reprogramming. In CVPR, 2023.

11

[20] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo
Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization. arXiv preprint
arXiv:2205.14959, 2022.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[22] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

[25] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[26] Hae Beom Lee, Dong Bok Lee, and Sung Ju Hwang. Dataset condensation with latent space knowledge
factorization and sharing. arXiv preprint arXiv:2208.00719, 2022.

[27] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset condensation
with contrastive signals. arXiv preprint arXiv:2202.02916, 2022.

[28] Shiye Lei and Dacheng Tao. A comprehensive survey to dataset distillation. arXiv preprint
arXiv:2301.05603, 2023.

[29] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pages 5542–5550,
2017.

[30] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via factorization.
In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), 2022.

[31] Songhua Liu and Xinchao Wang. Few-shot dataset distillation via translative pre-training. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 18654–18664, October
2023.

[32] Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Efficient dataset distillation using ran-
dom feature approximation. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[33] Noel Loo, Ramin Hasani, Mathias Lechner, and Daniela Rus. Dataset distillation with convexified implicit
gradients. arXiv preprint arXiv:2302.06755, 2023.

[34] Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-Pruner: On the Structural Pruning of Large Language
Models. In Advances in Neural Information Processing Systems, 2023.

[35] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online continual
learning in image classification: An empirical survey. Neurocomputing, 469:28–51, 2022.

[36] Wojciech Masarczyk and Ivona Tautkute. Reducing catastrophic forgetting with learning on synthetic
data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Workshop, 2020.

[37] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-regression.
arXiv preprint arXiv:2011.00050, 2020.

[38] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. Advances in Neural Information Processing Systems, 34, 2021.

[39] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[40] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 2001–2010, 2017.

12

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models, 2021.

[42] Andrea Rosasco, Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, and Davide Bacciu. Distilled replay:
Overcoming forgetting through synthetic samples. arXiv preprint arXiv:2103.15851, 2021.

[43] Noveen Sachdeva and Julian McAuley. Data distillation: A survey. arXiv preprint arXiv:2301.04272,
2023.

[44] Mattia Sangermano, Antonio Carta, Andrea Cossu, and Davide Bacciu. Sample condensation in online
continual learning. In Proceedings of the International Joint Conference on Neural Networks (IJCNN),
pages 1–8, 2022.

[45] Seungjae Shin, Heesun Bae, Donghyeok Shin, Weonyoung Joo, and Il-Chul Moon. Loss-curvature
matching for dataset selection and condensation. In International Conference on Artificial Intelligence and
Statistics, pages 8606–8628. PMLR, 2023.

[46] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[48] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

[49] Kai Wang, Jianyang Gu, Daquan Zhou, Zheng Zhu, Wei Jiang, and Yang You. Dim: Distilling dataset into
generative model. arXiv preprint arXiv:2303.04707, 2023.

[50] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. arXiv preprint
arXiv:2203.01531, 2022.

[51] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

[52] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747, 2017.

[53] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing
Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification.
Scientific Data, 10(1):41, 2023.

[54] Xingyi Yang, Jingwen Ye, and Xinchao Wang. Factorizing knowledge in neural networks. In European
Conference on Computer Vision, 2022.

[55] Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model reassembly. In
Advances in Neural Information Processing Systems, 2022.

[56] Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

[57] Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao, Caiwen Ding, Yao Li, and
Xu Dongkuan. Accelerating dataset distillation via model augmentation. arXiv preprint arXiv:2212.06152,
2022.

[58] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In International
Conference on Machine Learning, pages 12674–12685. PMLR, 2021.

[59] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 6514–6523, 2023.

[60] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. arXiv
preprint arXiv:2006.05929, 2020.

[61] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regression.
arXiv preprint arXiv:2206.00719, 2022.

13

In this part, we include more details about the technical methods, more experimental results of our
MGDD method, and more discussion on limitations and future works, which cannot be accommodated
in the main paper due to the page limit. Our method first trains a meta generator to generate synthetic
samples and then an adaptation stage is executed for a target dataset. We provide algorithmic details of
the adaptation stage, a summary of hyper-parameters, and configurations of our generator architecture.
Then, we conduct more evaluations on the cross-number-of-channel, cross-resolution, cross-ipc, and
cross-number-of-classes performance of our method. More discussions of the adaptation performance
and more qualitative examples are also included. Finally, we discuss limitations of the proposed
method and potential future works.

A More Details

Adaptation Algorithm: Alg. 1 demonstrates the procedure of meta learning to obtain a meta
synthetic sample generator. On a downstream target dataset, the meta network is adapted to a specific
network with a limited number of steps. The adaptation algorithm is similar to the meta-training step
of the meta learning algorithm. Here, we present the full details in Alg. 2. We can prepare multiple
initialization of synthetic samples through randomly sampling from the target dataset. Recall that the
main pipeline of our algorithm is to first obtain analytical synthetic labels in a random neural space θ:
Y ∗
s = fθ(Xs)W

θ
t . Here, the optimal kernel-ridge-regression parameters of the target dataset W θ

t can
be computed by W θ

t = fθ(Xt)
⊤(fθ(Xt)fθ(Xt)

⊤)−1Yt, if the number of real samples nt is smaller
than the feature dimension p. Otherwise, W θ

t = (fθ(Xt)
⊤fθ(Xt))

−1fθ(Xt)
⊤Yt.

Algorithm 2 Adaptation Algorithm of Synthetic Sample Generator for a Target Dataset
Input: (Xt, Yt): A Target Dataset; T : Number of Adaptation Steps; α: Learning Rate of Generator;

θ: Parameter of a Random Neural Network; ω: Parameter of a Meta Generator; I: A Set of
Randomly Initialized Synthetic Samples.

Output: ω′: Parameter of a Target-Specific Generator.
1: W θ

t = fθ(Xt)
⊤(fθ(Xt)fθ(Xt)

⊤)−1Yt;
2: for Each Xs in I do
3: Y ∗

s = fθ(Xs)W
θ
t ; ▷ Eq. 3

4: end for
5: Initialize generator parameters ω′ with ω;
6: for 1 ≤ i ≤ T do
7: Sample a batch of real data (Xi

t , Y
i
t) of from (Xt, Yt);

8: Sample a initialized synthetic data (Xs, Y
∗
s) from I;

9: X∗
s = gω′(Xs); ▷ Forward propagation

10: Sample neural parameters θ∗ from a random distribution;
11: L = ∥fθ∗(Xt)fθ∗(X∗

s)
⊤(fθ∗(X∗

s)fθ∗(X∗
s)

⊤)−1Y ∗
s − Yt∥22; ▷ Eq. 1

12: Update ω′ via ω′ ← ω′ − α∇ω′L; ▷ Back propagation
13: end for

After the calculation of analytical labels, we fix them and train the synthetic sample generator
initialized by parameters of the meta generator for some steps. The optimization objective is similar
to those in Zhou et al. [61] and Loo et al. [32]. The difference is that the optimization target is
parameters of the generator instead of synthetic samples.

Summary of Hyper-Parameters: For a clear view, we summarize the hyper-parameters and their
values in both meta learning and adaptation stages as shown in Tab. 7. All experiments follow these
default settings of hyper-parameters if not specified. Other configurations unmentioned follow the
settings of the baseline FRePo [61].

Generator Architecture: We illustrate the detailed configurations of our generator architecture in
Fig. 7. It essentially adopts an encoder-decoder structure with 3 Conv-BatchNorm-ReLU blocks
and 2 AvgPool layers for down-sampling for the encoder and a symmetric structure for the decoder.
Notably, to make the network aware of different sizes of synthetic datasets, we concatenate the size
embedding to bottle-necked features after the encoder. Inspired by the positional embedding in
Transformer models [47] and the time-step embedding in diffusion models [15, 39], we encode the
size by sinusoidal signals and a learnable non-linear transformation function. Embedding features are
replicated and expanded along the spatial axes before concatenation with features from the encoder.

14

AvgPool

ReLU

BN

Conv 128

ReLU

BN

Conv 512

Conv 3

AvgPool

ReLU

BN

Conv 256

ReLU

BN

Conv 256

UpSample

Conv 128

BN

ReLU
Linear

ReLU

Linear

Expand

Concat.

～
Sinusoid

Figure 7: Architecture of our generator network.

Hyper-Parameter Notation Value

Meta Learning Stage

Number of Meta Testing Steps T ′ 200,000
Number of Meta Training Steps T 5

Maximal Number of Classes max(C) 100
Minimal Number of Classes min(C) 10

Maximal Number of Synthetic Samples max(ns) 1,000
Minimal Number of Synthetic Samples min(ns) 10

Number of Real Samples nt 2,000
Learning Rate in Meta-Training α 1e-4
Learning Rate in Meta-Testing β 1e-5
Parameter of Adam Optimizer (β1, β2) (0.9, 0.999)

Parameter of Cosine Learning Rate Scheduler η 0.1

Adaptation Stage

Number of Adaptation Steps T 1,000
Batch Size of Real Data nt 1,024

Learning Rate of Generator α 1e-4
Parameter of Adam Optimizer (β1, β2) (0.9, 0.999)

Parameter of Cosine Learning Rate Scheduler η 0.1

Table 7: List of hyper-parameters.

Dataset MNIST FashionMNIST
IPC 1 10 50 1 10 50

Ratio (%) 0.017 0.17 0.83 0.017 0.17 0.83
Random Acc. (%) 64.9±3.5 95.1±0.9 97.9±0.2 51.4±3.8 73.8±0.7 82.5±0.7

Full Acc. (%) 99.6±0.0 93.5±0.1

DC [60]
Acc. (%) 91.7±0.5 97.4±0.2 98.8±0.2 70.3±0.7 83.4±0.3 82.9±0.2

Time (sec.) 157 3581 19811 155 3597 19829

DSA [58]
Acc. (%) 88.7±0.6 98.8±0.2 99.2±0.1 70.3±0.7 84.6±0.1 88.7±0.1

Time (sec.) 172 3908 21259 173 3854 21118

IDC [20]
Acc. (%) 89.1±0.1 97.8±0.1 98.8±0.1 70.6±0.4 85.2±0.4 88.9±0.1

Time (sec.) 22062 22798 28389 21929 23160 28499

MTT [2]
Acc. (%) 88.7±1.0 96.6±0.4 98.1±0.1 75.3±0.9 87.2±0.3 88.3±0.1

Time (sec.) 3114 9323 9987 3107 9305 10092

DM [59]
Acc. (%) 89.7±0.6 97.5±0.1 98.6±0.1 71.5±0.5 83.8±0.2 88.2±0.3

Time (sec.) 1115 1177 1457 1105 1172 1456

FRePo [61]
Acc. (%) 93.0±0.4 98.6±0.1 99.2±0.0 75.4±0.5 85.5±0.2 89.2±0.1

Time (sec.) 6112 9174 21678 6115 8463 21549

Ours
Acc. (%) 91.3±0.2 97.8±0.2 99.0±0.0 73.8±0.8 84.7±0.2 88.3±0.1

Time (sec.) 153×40 392×10 1012×21 147×42 432×22 1005×21

Table 8: Comparisons on test accuracy and running time with state of the arts on single-channel
datasets. The acceleration marked by the red subscript is computed against the method with the
best accuracy. IPC: Number of Images Per Class; Ratio: ratio of distilled images to the whole
training set. Results demonstrate the cross-channel generalization ability of our meta generator.

B More Results

Cross-Number-of-Channel Generalization: In the meta learning stage, a meta generator is trained
taking RGB images as input and output. Here, we demonstrate that it is also be feasible for the meta
generator to be adapted for target datasets that have different numbers of channels. Specifically, we
additionally train convolution layers for channel adaptation to map the number of channels from the
original number to 3 and from 3 to original number at the beginning and the ending positions of the
generator, respectively. The parameters of these adaptors are initialized from a uniform distribution
and are optimized jointly with parameters of the generator.

Here, we conduct experiments on MNIST [25] and FashionMNIST [52] datasets. Both of them
contain 10 classes with 60,000 single-channel images. Results are shown in Tab. 8 following the
same comparison protocols as Tab. 1, where the generator in our method is adapted for 10,000 steps
in each setting. Experiments demonstrate that our method can achieve comparable performance with
those state-of-the-art ones in a significantly shorter period of time. The conclusion is the same as that
in the main paper.

15

IPC 1 10

Baseline 28.20±0.77 48.26±1.26
Ours 36.51±0.47 49.20±0.10

Table 9: Comparisons with the baseline
FRePo on ImageNette under 128 resolution.
Results demonstrate the cross-resolution
generalization ability of our meta generator.

of Classes 20 50

IPC 1 10 1 10

Baseline 23.42±1.08 49.40±0.53 16.84±0.30 39.61±0.21
Ours 37.95±0.44 53.62±0.09 29.53±0.20 41.90±0.38

Table 10: Comparisons with the baseline FRePo on
various CIFAR100 subsets. Results demonstrate the
cross-number-of-classes generatlization ability of our
meta generator.

Dataset CIFAR10 CIFAR100
IPC 20 5 5 2
DC 41.8±0.6 25.9±0.4 13.3±0.3 6.7±0.2

DSA 41.5±0.4 27.6±0.2 14.9±0.3 8.1±0.1
IDC 51.9±0.5 30.2±0.4 13.3±0.3 11.0±0.1
MTT 55.9±0.3 29.8±0.4 26.7±0.5 13.7±0.3
DM 46.8±0.5 25.3±0.3 15.7±0.3 8.0±0.2

FRePo 59.1±0.7 38.3±0.9 30.0±0.6 19.9±0.3
Ours 60.8±0.4 46.1±0.8 30.6±0.3 25.4±0.5

Table 11: Comparisons with state of the arts on cross-IPC generalization.

Dataset IPC DC [60] DSA [58] IDC [20] MTT [2] DM [59] FRePo [61] Ours

MNIST
1 88.7±0.5 87.7±0.6 76.1±0.1 73.1±0.8 87.8±0.7 64.8±0.9 87.8±0.2
10 96.2±0.2 96.7±0.1 95.1±0.1 92.8±0.2 96.2±0.1 96.3±0.1 97.2±0.1
50 95.7±0.2 98.3±0.1 98.4±0.1 96.6±0.1 98.0±0.1 98.5±0.1 98.6±0.1

FashionMNIST
1 70.3±0.7 70.3±0.7 64.4±0.4 70.5±1.2 71.1±0.3 61.5±0.3 71.9±0.4
10 79.8±0.2 79.0±0.3 82.9±0.2 80.1±0.5 83.0±0.1 81.2±0.2 83.4±0.2
50 78.5±0.2 86.9±0.1 87.0±0.1 86.2±0.1 86.8±0.2 85.9±0.1 87.2±0.1

CIFAR10
1 28.2±0.7 28.1±0.7 25.3±1.0 36.8±0.5 26.8±0.8 27.2±0.5 42.6±0.3
10 39.7±0.5 48.7±0.3 49.5±0.3 50.8±0.5 48.8±0.2 49.4±0.3 58.9±0.4
50 39.1±1.0 56.0±0.4 61.7±0.2 56.5±0.5 57.7±0.3 61.8±0.2 66.8±0.2

CIFAR100
1 12.4±0.2 13.8±0.2 15.4±0.2 13.2±0.6 11.9±0.2 10.1±0.2 20.8±0.2
10 21.1±0.2 31.3±0.4 28.9±0.3 30.2±0.4 30.0±0.4 26.6±0.4 32.2±0.3

Table 12: Comparisons with state of the arts on various benchmarks under the same number of
training steps. IPC: Number of Images Per Class. Results demonstrate the superior efficiency of
our method.

Cross-Resolution Generalization: Although the meta generator is trained under 32 resolution, it is
possible for it to be adapted for datasets with different resolutions, thanks to the fully-convolutional
architecture of the generator. We demonstrate the cross-resolution generalization performance on
ImageNette [11], which contains 10 classes and 9,469 images. Following the FRePo baseline [61],
we conduct experiments on 1 and 10 IPCs under 128 resolution. Results in Tab. 9 demonstrate the
feasibility of such cross-resolution generalization.

Cross-Number-of-Class Generalization: Here, we conduct experiments on CIFAR100 subsets with
random 20 and 50 classes respectively and compare the performance with the FRePo baseline [61].
Results in Tab. 10 demonstrate that the meta generator performs robustly on datasets with various
numbers of classes.

Cross-IPC Generalization: For existing methods, when budgets for synthetic datasets change, they
have to either repeat the time-consuming training loop of dataset distillation, which is inconvenient if
not infeasible at all, or prune some synthetic data heuristically, which leads to inferior performance.
For example, as shown in Tab. 11, on CIFAR10, if the original synthetic IPC is 50 and the new IPC
becomes 20 or 5, random pruning would lead to unsatisfactory performance for existing methods. By
contrast, the generator in our MGDD can work for arbitrary sizes of synthetic datasets once adapted,
which makes it handle such scenarios better. We present another example on CIFAR100, the original
IPC is 10 and the new IPC is 5 or 2.

16

100 300 500 1000 2000
Adaptation Steps (1 IPC)

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

100 300 500 1000 2000
Adaptation Steps (10 IPC)

95.0

95.5

96.0

96.5

97.0

97.5

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

100 300 500 1000 2000
Adaptation Steps (50 IPC)

98.2

98.3

98.4

98.5

98.6

98.7

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

Figure 8: Performance of generators with various adaptation steps on MNIST.

Comparisons under the Same Steps: To better demonstrate the superiority of the proposed method,
we compare our method with state of the arts with the number of training/adaptation steps controlled
the same. As shown in Tab. 12, under 1000 steps, our method outperforms others significantly
especially on relatively challenging datasets with more patterns, like CIFAR10 and CIFAR100.
Furthermore, in Fig. 8, 9, 10, and 11, we visualize the performance of generators in each setting with
different adaptation steps on MNIST, FashionMNIST, CIFAR10, and CIFAR100 datasets respectively
as supplements to Fig. 4. It can be shown that our method can achieve the most satisfactory
performance with only a limited number of adaptation steps compared with the baseline FRePo and
generators from scratch, which indicates that the proposed method is more suitable for scenarios
requiring high efficiency, like processing data streams. Note that for 1 IPC, we observe that using
analytical labels would often lead to inferior performance compared with vanilla one-hot labels. We
speculate that it is because soft labels by the analytical solution are relatively not good at leading the
generator to synthesize class-discriminative patterns when the size of synthetic dataset is small. Thus,
we do not use analytical labels for 1 IPC by default.

Qualitative Results: In Fig. 12, we supply qualitative visualization of initialized synthetic samples
and results by generator under 1 and 10 IPC on CIFAR10 and 1 IPC on CIFAR100, as supplements
to Fig. 6.

C Limitations and Future Works

Our MGDD method mainly focuses on the efficiency issue in existing methods. Although it can
be demonstrated that our method can result in better performance in only limited time, it does not
reduce the time and memory complexity of computing the matching metrics since we adopt the same
objectives as previous approaches. When adapting for large synthetic datasets, it may still face the
issue on GPU memory in existing works. Nevertheless, it is possible for our method to adapt on some
small IPCs and then generalize to large synthetic datasets, as discussed in the main paper, which can
serve as a remedy to this limitation. Besides, initialized samples of synthetic datasets come from real
data, and results by generator still look somehow realistic, which may potentially make the method
vulnerable to privacy attack, especially for data like personal information. Also, in scenarios like
storing synthetic samples of human faces, the generator may break the integrity of faces and lead to
an infringement of portrait rights if being misused.

Future works may focus on more effective training objective, training pipeline, and architecture of
the generator in meta learning or/and adaptation stages to further improve the cross-dataset, cross-ipc,
and cross-architecture generalization. It would also be valuable to extend the MGDD to other tasks
and modalities beyond image classification and explore advanced input and output parameterizations
of the generator.

17

100 300 500 1000 2000
Adaptation Steps (1 IPC)

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5
Te

st
 A

cc
ur

ac
y

(%
)

w/o Meta
w/o Ana. Label
Baseline
Ours

100 300 500 1000 2000
Adaptation Steps (10 IPC)

78

79

80

81

82

83

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

100 300 500 1000 2000
Adaptation Steps (50 IPC)

82

83

84

85

86

87

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

Figure 9: Performance of generators with various adaptation steps on FashionMNIST.

100 300 500 1000 2000
Adaptation Steps (1 IPC)

20

25

30

35

40

45

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

100 300 500 1000 2000
Adaptation Steps (10 IPC)

40.0
42.5
45.0
47.5
50.0
52.5
55.0
57.5
60.0

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

100 300 500 1000 2000
Adaptation Steps (50 IPC)

47.5
50.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

Figure 10: Performance of generators with various adaptation steps on CIFAR10.

100 300 500 1000 2000
Adaptation Steps (1 IPC)

8

10

12

14

16

18

20

22

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

100 300 500 1000 2000
Adaptation Steps (10 IPC)

18

20

22

24

26

28

30

32

Te
st

 A
cc

ur
ac

y
(%

)

w/o Meta
w/o Ana. Label
Baseline
Ours

Figure 11: Performance of generators with various adaptation steps on CIFAR100.

18

Before Generator After Generator

1 IPC, CIFAR10

Before Generator After Generator

10 IPC, CIFAR10

Before Generator After Generator

1 IPC, CIFAR100

Figure 12: More visualizations of samples before and after generator on CIFAR10 and CIFAR100.

19

	Introduction
	Related Works
	Methods
	Preliminary
	Solving Synthetic Labels
	Learning a Synthetic Sample Generator
	Theoretical Analysis

	Experiments
	Implementing Details
	Comparisons with State of the Arts
	Empirical Studies
	Application: Continual Learning

	Conclusion
	More Details
	More Results
	Limitations and Future Works

