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Abstract

We introduce a transformation framework that can be utilized to develop online
algorithms with low ϵ-approximate regret in the random-order model from offline
approximation algorithms. We first give a general reduction theorem that trans-
forms an offline approximation algorithm with low average sensitivity to an online
algorithm with low ϵ-approximate regret. We then demonstrate that offline approxi-
mation algorithms can be transformed into a low-sensitivity version using a coreset
construction method. To showcase the versatility of our approach, we apply it to
various problems, including online (k, z)-clustering, online matrix approximation,
and online regression, and successfully achieve polylogarithmic ϵ-approximate
regret for each problem. Moreover, we show that in all three cases, our algorithm
also enjoys low inconsistency, which may be desired in some online applications.

1 Introduction

In online learning literature, stochastic and adversarial settings are two of the most well-studied
cases. Although the stochastic setting is not often satisfied in real applications, the performance
and guarantees of online algorithms in the adversarial case are considerably compromised. This is
particularly true for important online tasks such as k-means clustering, which gives a significantly
worse guarantee than their offline or stochastic counterparts [Cohen-Addad et al., 2021]. As a result,
their practical applicability is greatly limited.

Recently, the random-order model has been introduced as a means of modeling learning scenarios
that fall between the stochastic and adversarial settings [Garber et al., 2020, Sherman et al., 2021]. In
the random-order model, the adversary is permitted to choose the set of losses, with full knowledge
of the learning algorithm, but has no influence over the order in which the losses are presented to
the learner. Instead, the loss sequence is uniformly and randomly permuted. This effectively bridges
the gap between the stochastic setting, where only the distribution of losses can be chosen by the
setting, and the adversarial setting, where the adversary has complete control over the order of the
losses presented to the learner.

In this work, we introduce a batch-to-online transformation framework designed specifically for the
random-order model. Our framework facilitates the conversion of an offline approximation algorithm
into an online learning algorithm with ϵ-approximate regret guarantees. Our primary technical tool
is average sensitivity, which was initially proposed by Varma and Yoshida [2021] to describe the
algorithm’s average-case sensitivity against input perturbations. We demonstrate that any offline
approximation algorithm with low average sensitivity will result in a transformed online counterpart
that has low ϵ-approximate regret. To achieve small average sensitivity for offline algorithms, we
leverage the idea of a coreset [Agarwal et al., 2005, Har-Peled and Mazumdar, 2004], which is a small
but representative subset of a larger dataset that preserves important properties of the original data.
We present a coreset construction method that attains low average sensitivity, and when combined
with the approximation algorithm, yields an overall algorithm with low average sensitivity.
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To showcase the practicality and versatility of our framework, we apply it to three popular online
learning problems: online (k, z)-clustering, online matrix approximation, and online regression. In
all three cases, our approach yields a polylogarithmic ϵ-approximate regret. Furthermore, due to the
low average sensitivity of our algorithms, they also enjoy low inconsistency, which is the cumulative
number of times the solution changes. This additional property may prove useful in certain online
settings. We note that this inconsistency has also been investigated in the classic online learning and
multi-armed bandits literature [Agrawal et al., 1988, Cesa-Bianchi et al., 2013].

2 Related Works

Average sensitivity Varma and Yoshida [2021] first introduced the notion of average sensitivity
and proposed algorithms with low average sensitivity on graph problems such as minimum spanning
tree, minimum cut, and minimum vertex cover problems. Various other problems have then been
analyzed for the average sensitivity, including dynamic programming problems [Kumabe and Yoshida,
2022], spectral clustering [Peng and Yoshida, 2020], Euclidean k-clustering [Yoshida and Ito, 2022],
maximum matching problems [Yoshida and Zhou, 2021], and decision tree learning problem [Hara
and Yoshida, 2023].

Online (consistent) (k, z)-clustering While (k, z)-clustering, which includes k-means (z = 2)
and k-median (z = 1) as its special cases, has been studied extensively from various perspectives
such as combinatorial optimization and probabilistic modeling, it can be NP-hard to obtain the exact
solution [Impagliazzo et al., 2001]. Thus most theoretical works have been focused on designing
approximation algorithms. In the online setting, Li et al. [2018] proposed a Bayesian adaptive online
clustering algorithm that enjoys a minimal sublinear regret. However, the algorithm is allowed to
output more than k clusters. Without such assumption, Cohen-Addad et al. [2021] proposed the first
algorithm that attains ϵ-approximate regret of O(k

√
d3n log(ϵ−1dkn)) for k-means clustering under

adversarial setting.

On a separate vein, Lattanzi and Vassilvitskii [2017] proposed an online consistent (k, z)-clustering
algorithm that produces a 2O(z)-approximate solution for the data points obtained so far at each step
while maintaining an inconsistency bound of O(k2 log4 n). This implies that their algorithm only
updates the output O(k2 log4 n) many times. Then, Yoshida and Ito [2022] gave an online algorithm
with approximation ratio (1 + ϵ) and inconsistency poly(d, k, 2z, ϵ−1) · log n in the random-order
model. We remark that the way how the losses are computed in Lattanzi and Vassilvitskii [2017],
Yoshida and Ito [2022] is different from that of the online setting, which Cohen-Addad et al. [2021]
and our paper considered.

Online convex optimization and online principle component analysis (PCA) under the random-
order model The online random-order optimization was proposed in Garber et al. [2020], which
established a bound of O(log n) for smooth and strongly convex losses. This result is then improved
by Sherman et al. [2021] while still requiring smooth and convex losses.

The techniques and results are then extended to online PCA with the random-order setting, for which
a regret of O

(
ζ−1
√
kn
)

was established, where ζ is an instance-dependent constant. This recovers
the regret for online PCA in the stochastic setting [Warmuth and Kuzmin, 2008, Nie et al., 2016].
We remark that PCA can be viewed as a special case of matrix approximation, in which the matrix
being approximated is the covariance matrix of the data, and we discuss the more general problem of
matrix approximation in this paper.

3 Preliminaries

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. For real values a, b ∈ R, a ∈ (1± ϵ)b is
a shorthand for (1− ϵ)b ≤ a ≤ (1 + ϵ)b.

3.1 Offline Learning

We consider a general class of learning problems. Let X be the input space, Θ be the parameter
space, and ℓ : Θ×X → R+ be a loss function. For simplicity, we assume the loss is bounded, i.e.,
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ℓ(θ, x) ≤ 1. Given a set of n data points X ∈ Xn, we are asked to learn a parameter θ ∈ Θ that
minimizes the objective value ℓ(θ,X) :=

∑
x∈X ℓ(θ, x). We call this problem the offline learning

problem.

When the exact minimization of the loss function ℓ is NP-hard or computationally demanding, one
may only hope to obtain an approximate solution efficiently. Specifically, for α > 0, we say a solution
θ ∈ Θ is α-approximate for X ∈ Xn if ℓ(θ,X) ≤ α ·minθ̃∈Θ ℓ(θ̃, X). The value α is called the
approximation ratio of the solution. We say a (possibly randomized) algorithm A is α-approximate
if the expected approximation ratio of the output solution is at most α.

3.2 Online Learning with Random-Order Model

In the online learning problem, instead of receiving all points at once, the data arrives sequentially
throughout a time horizon n. Specifically, the data point comes one by one, where xt comes at time
t ∈ [n]. At the time t, using the collected data points Xt−1 := (x1, . . . , xt−1), we are asked to output
a parameter θt ∈ Θ. Then we receive the data point xt and incur a loss of ℓ(θt, xt). In this work, we
consider the random-order model, in which the data points x1, . . . , xn may be chosen adversarially,
but their ordering is randomly permuted before the algorithm runs.

To evaluate our performance, we use the notion of regret, which is the cumulative difference between
our solution and the best solution in hindsight. In cases where obtaining the exact solution is hard,
and one may only hope to obtain an approximate solution efficiently, we use the ϵ-approximate regret.

Definition 3.1 (ϵ-approximate regret for the random-order model). Given a (randomized) algorithm
A that outputs a sequence of parameters θ1, . . . , θn when given input x1, . . . , xn. The ϵ-approximate
regret of A for the random-order model is defined as

Regretϵ(n) := E
A,{xt}

[
n∑

t=1

ℓ(θt, xt)− (1 + ϵ) ·min
θ̃∈Θ

n∑
t=1

ℓ(θ̃, xt)

]
.

where the randomness is over the internal randomness of A and the ordering of data points. When
ϵ = 0, we simply call it the regret.

In certain cases, online algorithms are required to maintain a good solution while minimizing
inconsistency, which is quantified as the number of times the solution changes. This can be expressed
formally as Inconsistency(n) = EA,{xt}[

∑n−1
t=1 I{θt ̸= θt+1}], where I is the indicator function.

3.3 Average sensitivity

On a high level, the notion of average sensitivity describes the differences in the performance of a
randomized algorithm with respect to input changes. This difference is captured by the total variation
distance, which is defined below.

Definition 3.2. For a measurable space (Ω,F) and probability measures P,Q defined on (Ω,F).
The total variation distance between P and Q is defined as TV(P,Q) := supA∈F |P (A)−Q(A)|.

Equipped with this, the average sensitivity of a randomized algorithm is formally defined as the
average total variation distance between the algorithm’s output on two training data sets that differ
by deleting one point randomly. For a dataset X = (x1, . . . , xn) ∈ Xn and i ∈ [n], let X(i) denote
the set (x1, . . . , xi−1, xi+1, . . . , xn) obtained by deleting the i-th data point. Then, the following
definition gives a detailed description of the notion:

Definition 3.3 (Average Sensitivity [Varma and Yoshida, 2021, Yoshida and Ito, 2022]). Let A be a
(randomized) algorithm that takes an input X ∈ Xn and outputs A(X). For β : Z+ → R+, we say
that the average sensitivity of A is at most β if

1

n

n∑
i=1

TV(A(X),A(X(i))) ≤ β(n) ,

for any X ∈ Xn, where we identify A(X) and A(X(i)) with their distributions.
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4 Batch-to-Online Transformation in the Random-Order Model

In this section, we describe a general framework that can transform any offline (1 + ϵ)-approximate
algorithm into an online algorithm with low ϵ-approximate regret. Our goal is to show the following.
Theorem 4.1. Let A be a (randomized) (1 + ϵ)-approximate algorithm for the offline learning
algorithm with average sensitivity β : Z+ → R+. Then, there exists an online learning algorithm in
the random-order model such that Regretϵ(n) = O (

∑n
t=1 β(t) + 1).

Our method is described in Algorithm 1. LetA be an approximation algorithm for the offline learning
problem. Then, at each time step, based on the collected data Xt−1, we simply output θt = A(Xt−1).

Algorithm 1: General batch-to-online conversion
Input: Offline approximation algorithm A.

1 for t = 1, . . . , n do
2 Obtain θt by running A on Xt−1.
3 Receive xt and ℓ(θt, xt).

To show that Algorithm 1 achieves a low approximate regret when A has a low average sensitivity,
the following lemma is useful.
Lemma 4.2. Let A be a (randomized) algorithm for the offline learning problem with average
sensitivity β : Z+ → R+. Then for any input X ∈ Xn, we have

1

n

n∑
i=1

E
A
[ℓ(A(X(i)), xi)] =

1

n

n∑
i=1

E
A
[ℓ(A(X), xi)]± β(n) ,

where x = a± b means a− b ≤ x ≤ a+ b.

Proof of Theorem 4.1. Consider Algorithm 1. For any t ∈ [n], we have

E
A,{xi}

[
ℓ(θt+1, xt+1)−

1

t
ℓ(θt+1, Xt)

]
= E

A,{xi}

[
1

t

t∑
i=1

(ℓ(θt+1, xt+1)− ℓ(θt+1, xi))

]

= E
A,{xi}

[
1

t

t∑
i=1

(ℓ(A(Xt), xt+1)− ℓ(A(Xt), xi))

]

≤ E
A,{xi}

[
1

t

t∑
i=1

(
ℓ(A(Xt), xt+1)− ℓ(A(X(i)

t ), xi)
)]

+ β(t) (By Lemma 4.2)

= E
A,{xi}

[
1

t

t∑
i=1

(
ℓ(A(Xt), xt+1)− ℓ(A(X(i)

t ), xt+1)
)]

+ β(t)

≤ E
A,{xi}

[
1

t

t∑
i=1

TV(A(Xt),A(X(i)
t ))

]
+ β(t) ≤ 2β(t) ,

where the last equality follows by replacing xi with xt+1 in ℓ(A(X(i)
t ), xi) because they have the

same distribution, and the last inequality is by the average sensitivity of the algorithm.

Rearranging the terms, we have

E
A,{xi}

[ℓ(θt+1, xt+1)] ≤ E
A,{xi}

[
ℓ(θt+1, Xt)

t

]
+ 2β(t) ≤ E

{xi}

[
(1 + ϵ)OPTt

t

]
+ 2β(t) ,

where OPTt := minθ ℓ(θ,Xt) is the optimal value with respect to Xt, and the second inequality
holds because the approximation ratio of θt+1 is 1 + ϵ in expectation.

Taking summation over both sides, we have

E
A,{xi}

[
n∑

t=1

ℓ(θt, xt)

]
= E

A,{xi}
[ℓ(θ1, x1)] + E

A,{xi}

[
n−1∑
t=1

ℓ(θt+1, xt+1)

]
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≤ 1 + E
{xi}

[
n−1∑
t=1

(1 + ϵ)OPTt

t

]
+ 2

n−1∑
t=1

β(t) .

Fix the ordering x1, . . . , xn, and let ci (i ∈ [t]) be the loss incurred by xi in OPTn. In particular, we
have OPTn =

∑n
i=1 ci. Note that ci’s are random variables depending on the ordering of data points,

but their sum, OPTn, is deterministic. Then, we have OPTt ≤
∑t

i=1 ci because OPTt minimizes
the loss up to time t, Hence, we have

E
{xi}

[
n∑

t=1

OPTt

t

]
≤ E

{xi}

[
n∑

t=1

∑t
i=1 ci
t

]
= E

{xi}

[
n∑

i=1

ci

n∑
t=i

1

t

]
=

n∑
i=1

E
{xi}

[ci]

n∑
t=i

1

t

=
OPTn

n
·

n∑
i=1

n∑
t=i

1

t
=

OPTn

n
· n = OPTn .

Therefore, we have

EA,{xi}

[
n∑

t=1

ℓ(θt, xt)

]
− (1 + ϵ)OPTn = O

(
n∑

t=1

β(t) + 1

)
.

5 Approximation Algorithm with Low Average Sensitivity via Coreset

To design approximation algorithms for the offline learning problem with low average sensitivity, we
consider the following approach: We first construct a small subset of the input that well preserves
objective functions, called a coreset, with small average sensitivity, and then apply any known
approximation algorithm on the coreset. Coreset is formally defined as follows:
Definition 5.1 (Har-Peled and Mazumdar [2004], Agarwal et al. [2005]). Let ℓ : Θ×X → R+ be
a loss function and let X ∈ Xn. For ϵ > 0, we say that a weighted set (Y,w) with Y ⊆ X and
w : Y → R+ is an ϵ-coreset of X with respect to ℓ if for any θ ∈ Θ, we have

∑
y∈Y w(y)ℓ(θ, y) ∈

(1± ϵ)
∑

x∈X ℓ(θ, x).

Now, we consider a popular method for constructing coresets based on importance sampling and
show that it enjoys a low average sensitivity. For a data x ∈ X , its sensitivity σX(x)1 is its maximum
contribution to the loss of the whole dataset, or more formally

σX(x) = sup
θ∈Θ

ℓ(θ, x)

ℓ(θ,X)
. (1)

Algorithm 2: Coreset Construction Based on Sensitivity Sampling
Input: Loss function ℓ : Θ×X → R+, dataset X ∈ Xn, m ∈ N, and ϵ > 0

1 For each x ∈ X , compute σX(x) and set p(x) = σX(x)/
∑

x′∈X σX(x′).
2 Let S be an empty set.
3 for i = 1, . . . ,m do
4 Sample x with probability p(x).
5 Sample p̃ from [p(x), (1 + ϵ/2)p(x)] uniformly at random.
6 if w(x) is undefined then
7 S ← S ∪ {x}.
8 w(x)← 1/p̃.
9 else

10 w(x)← w(x) + 1/p̃.
11 return (S,w).

It is known that we can construct a coreset as follows: A data point x ∈ X is sampled with probability
p(x) := σX(x)/

∑
x′∈X σX(x′), and then its weight in the output coreset is increased by 1/p̃, where

1The reader should not confuse sensitivity, which is a measure for data points, with average sensitivity, which
is a measure for algorithms.
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p̃ is a slight perturbation of p(x). This process is to be repeated for a fixed number of times, where
the exact number depends on the approximation ratio of the coreset. See Algorithm 2 for details. We
can bound its average sensitivity as follows:

Lemma 5.2. The average sensitivity of Algorithm 2 is O
(
ϵ−1m/n

)
.

A general bound on the number of times we need to repeat the process, i.e., m in Algorithm 2, to
obtain an ϵ-coreset is known (see, e.g., Theorem 5.5 of Braverman et al. [2016]). However, we do not
discuss it here because better bounds are known for specific problems and we do not use the general
bound in the subsequent sections.

6 Online (k, z)-Clustering

In online applications, unlabelled data are abundant and their structure can be essential, and clustering
serves as an important tool for analyzing them. In this section, as an application of our general
batch-to-online transformation, we describe an online (k, z)-clustering method that enjoys low regret.

6.1 Problem setup

The online (k, z)-clustering problem [Cohen-Addad et al., 2021] is an instance of the general online
learning problem described in Section 3. We describe the problem as follows: Let k ≥ 1 be an
integer and z ≥ 1 be a real value. Over a time horizon n, at each time step t, a data point xt ∈ Rd

is given. Using the set of data points Xt−1 = {x1, . . . , xt−1}, we are asked to compute a set
Zt = {z1, . . . , zk} of k points in Rd that minimize ℓ (Zt, xt) := minj=1,...,k ∥xt − zj∥z2, which is
the z-th power of the Euclidean distance between xt and the closest point in Zt. Note that Zt plays
the role of θt in the general online learning problem. The regret and ϵ-approximate regret are defined
accordingly.

6.2 Method and results

One important ingredient to our method is the coreset construction method proposed by Huang and
Vishnoi [2020]. The method provides a unified two-stage importance sampling framework, which
allows for a coreset with a size that is dimension independent. Specifically, the method constructs an
ϵ-coreset of size Õ

(
min

{
ε−2z−2k, 22zϵ−4k2

})
in Õ(ndk) time, where the Õ hides polylogarithmic

factors in n and k. We remark that the importance of sampling steps in the framework is similar to
the ones described in Section 5, which thus allows us to analyze its average sensitivity.

Algorithm 3 gives a brief description of our algorithm, while a detailed description is presented in
the appendix. The algorithm adheres to the standard transformation approach, whereby an offline
approximation algorithm is run on the coreset derived from the aggregated data.

Algorithm 3: Online consistent (k, z)-clustering
Input: Offline algorithm A for (k, z)-clustering, approximation ratio 1 + ϵ, ϵ ∈ (0, 1).

1 ϵ′ ← ϵ/3.
2 for t = 1, . . . , n do
3 Construct an ϵ′-coreset Ct−1 = (St−1, ωt−1) on Xt−1.
4 Obtain a cluster set Zt by running a PTAS A with approximation ratio of (1 + ϵ′) on Ct−1.
5 Receive xt ∈ Rd and ℓ(Zt, xt) ∈ R+.

Theorem 6.1. For any ϵ ∈ (0, 1), Algorithm 3 gives a regret bound of

Regretϵ(n) ≤ O

((
(168z)10zϵ−5z−15k5 log

kn

ϵ
+ ϵ−2z−2k log k log

kn

ϵ

)
log n

)
.

Moreover, there exists an algorithm that enjoys the same regret bound and an inconsistency bound
of Inconsistency(n) = O

((
(168z)10zϵ−5z−15k5 log(ϵ−1kn) + ϵ−2z−2k log k log(ϵ−1kn)

)
log n

)
for (k, z)-clustering.

6



Remark 6.1. When z = 2, previous results for the adversarial setting show an ϵ-approximate regret
bound of O(k

√
d3n log(ϵ−1dkn)) [Cohen-Addad et al., 2021]. In comparison, although our regret

is for the random-order model, our method and results accommodate a range of values for z, and the
regret bound is only polylogarithmically dependent on n and is independent of the dimension d.

7 Online Low-Rank Matrix Approximation

Low-rank matrix approximation serves as a fundamental tool in statistics and machine learning. The
problem is to find a rank-k matrix that approximates an input matrix A ∈ Rd×n as much as possible.
In this section, we apply the transformation framework to the offline approximation algorithm to
obtain a low regret online algorithm.

7.1 Problem setup

Low-rank matrix approximation By the singular value decomposition (SVD), a rank-r matrix
A ∈ Rd×n can be decomposed as A = UΣV⊤, where U ∈ Rd×r and V ∈ Rn×r are orthonormal
matrices, Σ ∈ Rr×r is a diagonal matrix with A’s singular values on the diagonal. The best rank-k
approximation of A is given by

Ak = UkΣkV
⊤
k = argmin

B∈Rd×n:rank(B)≤k

∥A−B∥F ,

where ∥ · ∥F denotes the Frobenius norm, Σk ∈ Rk×k is a diagonal matrix with Ak’s top k singular
values on the diagonal, and Uk ∈ Rd×k and Vk ∈ Rn×k are orthonormal matrices obtained from U
and V, respectively, by gathering corresponding columns. The best rank-k approximation can also
be found by projecting A onto the span of its top k singular vectors, that is, Ak = UkU

⊤
k A. Then,

we can say an orthonormal matrix Z is an ϵ-approximate solution if∥∥A− ZZ⊤A
∥∥
F
≤ (1 + ϵ)

∥∥A−UkU
⊤
k A
∥∥
F
.

The matrix approximation problem serves as an important tool in data analytics and is closely related
to numerous machine learning methods such as principal component analysis and least squares
analysis. When dealing with streaming data, the online version of the matrix approximation problem
becomes a vital tool for designing online versions of the machine learning algorithms mentioned
above.

Online matrix approximation Through a time horizon of n, we receive a column of A, at ∈ Rd

at each time step t. We are then asked to compute Zt ∈ Rd×k that minimizes

ℓ(Zt, at) =
∥∥at − ZtZ

⊤
t at
∥∥
F
.

Without loss of generality, we will assume that the losses are bounded between [0, 1]. We remark that
similar assumptions are also made in Nie et al. [2016].

The online matrix approximation problem serves as a core component of online machine learning
algorithms such as principle component analysis. These algorithms are important to a range of
applications, such as online recommendation systems and online experimental design [Warmuth and
Kuzmin, 2008, Nie et al., 2016].

7.2 Method and results

In the context of low-rank matrix approximation, the coreset of a matrix is called the projection-cost
preserving samples, defined as follows:
Definition 7.1 (Rank-k Projection-Cost Preserving Sample Cohen et al. [2017]). For n′ < n, a
subset of rescaled columns C ∈ Rd×n′

of A ∈ Rd×n is a (1 + ϵ) projection-cost preserving sample
if, for all rank-k orthogonal projection matrices X ∈ Rd×d, (1− ϵ)∥A−XA∥2F ≤ ∥C−XC∥2F ≤
(1 + ϵ)∥A−XA∥2F .

Such sketches that satisfy Definition 7.1 can be constructed via importance sampling-based routines,
which are modifications of the “leverage scores”. Specifically, for the i-th column ai of matrix A,
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the ridge leverage score is defined as τi(A) = a⊤i

(
AA⊤ +

∥A−Ak∥2
F

k I
)†

ai, where † denotes the
Moore-Penrose pseudoinverse of a matrix [Cohen et al., 2017].

Now, we introduce our online matrix approximation algorithm in Algorithm 4, which builds upon our
transformation framework. It computes the approximation of the matrix from the sketch derived from
the aggregated matrix using ridge leverage scores.

Algorithm 4: Online low rank matrix approximation
Input: Approximation parameters ϵ ∈ (0, 1).

1 Set δ = O(ϵ/n) and m = O
(
ϵ−2k log(δ−1k)

)
.

2 for t = 1, . . . , n do
3 Construct At−1 ∈ Rd×(t−1) by concatenating a1, . . . at−1.
4 Let Ct−1 ∈ Rd×m be the zero matrix.
5 for j = 1, . . . ,m do
6 Sample the i-th column ai ∈ Rd of At−1 with probability pi :=

τi(At−1)∑t−1
j=1 τj(At−1)

.

7 Sample w ∈ R uniformly from [1/
√
tpi, (1 + ϵ)/

√
tpi].

8 Replace the j-th column of Ct−1 with w · ai.
9 Set Zt ∈ Rd×k to the top k left singular vectors of Ct

10 Receive at ∈ Rd and ℓ(Zt, at) ∈ R+.

Theorem 7.2. For any ϵ ∈ (0, 1), Algorithm 4 has regret Regretϵ(n) = O
(
ϵ−2k log n log(ϵ−1kn)

)
.

Moreover, there exists an algorithm for online low-rank matrix approximation that enjoys the same
regret bound and an inconsistency bound of Inconsistency(n) = O

(
ϵ−2k log n log(ϵ−1kn)

)
.

Remark 7.1. The online matrix approximation with the random-order setting has previously been
investigated in the context of principle component analysis by Garber et al. [2020]. They established
a regret of O

(
ζ−1
√
kn
)

, where ζ is the smallest difference between two eigenvalues of AtA
⊤
t . In

contrast, our result gives a polylogarithmic result on ϵ-regret, which translate to an exact regret of
O
(
ϵOPT+O

(
ϵ−2k log n log(ϵ−1kn)

))
, with OPT being the minimum possible cumulative loss

attained by the hindsight best approximate.

8 Online Regression

In the online regression problem, at each time step t ∈ [n], we are asked to output a vector xt ∈ Rd,
and then we receive vectors at ∈ Rd and bt ∈ R that incurs the loss of ℓ(xt, at, bt) = ∥a⊤t xt − b∥2.
Without loss of generality, we assume that the losses are bounded between [0, 1]. We note that similar
assumptions are also made in [Cesa-Bianchi et al., 1996, Ouhamma et al., 2021].

With our general reduction framework, we show an ϵ-regret upper bound as follows.

Theorem 8.1. For any ϵ ∈ (0, 1), Algorithm 5 has regret Regretϵ(n) = O
(
ϵ−2d log n log(ϵ−1dn)

)
.

Moreover, there exists an algorithm for online regression that enjoys the same regret bound and an
inconsistency bound of Inconsistency(n) = O

(
ϵ−2d log n log(ϵ−1dn)

)
.

Remark 8.1. In the stochastic setting, the online regression problem has been extensively investigated
[Foster, 1991, Littlestone et al., 1995, Cesa-Bianchi et al., 1996, Ouhamma et al., 2021]. Using online
ridge regression or forward algorithms, the regret is shown to be O (d log n). In the random-order
model setting, Garber et al. [2020], Sherman et al. [2021] give O(

√
n)-type regret when the matrix

A has a small condition number. In comparison, our result attains polylogarithmic ϵ-approximate
regret, while maintaining no requirement on the loss function or the condition number. Our result
can be translated to an exact regret of O

(
ϵOPT+O

(
ϵ−2d log n log(ϵ−1dn)

))
, with OPT being

the minimum possible cumulative loss attained by the hindsight best parameter.
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8.1 Method and results

Similar to the low-rank matrix approximation problem, we utilize the leverage score method to learn
a subspace that preserves information regarding the regression. Specifically, we use the leverage
score to learn a ϵ-subspace embedding, which is defined as follows.

Definition 8.2 (ϵ-Subspace Embedding). A matrix S ∈ Rm×n is said to be an ϵ-subspace embedding
of A ∈ Rn×d if for any vector x ∈ Rd, we have (1− ϵ)∥Ax∥ ≤ ∥SAx∥ ≤ (1 + ϵ)∥Ax∥.

The subspace embedding serves the same functionality as coreset in the problem of online regression,
it preserves the loss of information while enjoying a much lower dimension. In the online regression
problem context, we define the leverage score as follows.

Definition 8.3 (Leverage Score). Let A = UΣV⊤ be the singular value decomposition of A ∈
Rn×d. For i ∈ [n], the i-th leverage score of A, is defined as τi = ∥Ui,:∥22.

With the leverage score, we propose Algorithm 5. The algorithm follows the general transformation
framework, where the regression problem is solved at every step with the sketch derived from the
aggregated matrix using leverage score. For notational convenience, we construct the sketch by
appending rows instead of columns as we did in Section 7.

Algorithm 5: Online consistent regression
Input: Approximation parameters ϵ ∈ (0, 1)

1 Set δ = O(ϵ/n) and m = O
(
ϵ−2d log(δ−1d)

)
.

2 for t = 1, . . . , n do
3 Construct At−1 ∈ R(t−1)×d by stacking a⊤1 , . . . a

⊤
t−1.

4 Construct b ∈ Rt−1 by stacking b1, . . . , bt−1.
5 Set St ∈ Rm×(t−1) be the zero matrix.
6 for j = 1, . . . ,m do
7 Sample i ∈ [t− 1] with probability pi :=

τi(At−1)∑t−1
j=1 τj(At−1)

.

8 Sample w ∈ R uniformly from
[

1√
mpi

, 1+ϵ√
mpi

]
.

9 Replace the j-th row of St with w · e⊤i , where ei ∈ Rt−1 is a one-hot vector with 1 on
the i-th index.

10 Solve the regression problem xt = minx ∥StAt−1x− Stb∥2, e.g., by an iterative method
such as Newton’s method.

11 Receive at ∈ Rd, bt ∈ R, and loss ℓ(xt, at, bt).

The subspace embedding result of Woodruff [2014] immediately shows the following:

Theorem 8.4. For any ϵ, δ ∈ (0, 1), if m = O
(
ϵ−2d log(δ−1d)

)
, then with probability ≥ 1− δ, St

is an ϵ-subspace embedding for At−1 with O
(
ϵ−2d log(δ−1d)

)
columns.

To obtain Theorem 8.1, we first analyze the average sensitivity of the leverage score sampling. Then,
with Theorem 8.4 and the general reduction Theorem 4.1, we obtain the regret bound.

9 Experiments

We here provide a preliminary empirical evaluation of our framework in the context of online k-means
clustering, and online linear regression, with the result shown in Figure 1. Our experiments are
conducted with various approximation ratios and experimental setups (ϵ = 0.1, 0.01, 0.001, with
k = 3 or k = 5 clusters). We then compare the performance of the proposed algorithm to the
hindsight optimal solution. For k-means clustering, we obtain the hindsight optimal solution by
applying k-means++ to all the data. In the context of regression, we utilize the least square formula
to compute the hindsight optimal solution. Our experimental results demonstrate that the proposed
algorithm is highly effective, and its performance aligns with our theoretical findings.

9



(a) k-means, 3 clusters (b) k-means, 5 clusters (c) Regression

Figure 1: Experimental results for k-means clustering with 3, 5 clusters and online regression. Each experiment
is repeated with 5 different random seed to ensure reproducible results. The shaded region indicates the 1
standard deviation.

10 Conclusion

In this paper, we proposed a batch-to-online transformation framework that designs consistent
online approximation algorithms from offline approximation algorithms. Our framework transforms
an offline approximation algorithm with low average sensitivity to an online algorithm with low
approximate regret. We then show a general method that can transform any offline approximation
algorithm into one with low sensitivity by using a stable coreset. To demonstrate the generality of
our framework, we applied it to online (k, z)-clustering, online matrix approximation, and online
regression. Through the transformation result, we obtain polylogarithmic approximate regret for all
of the problems mentioned.
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A Proofs for Section 4

Lemma 4.2. Let A be a (randomized) algorithm for the offline learning problem with average
sensitivity β : Z+ → R+. Then for any input X ∈ Xn, we have

1

n

n∑
i=1

E
A
[ℓ(A(X(i)), xi)] =

1

n

n∑
i=1

E
A
[ℓ(A(X), xi)]± β(n) ,

where x = a± b means a− b ≤ x ≤ a+ b.

Proof. We have

1

n

n∑
i=1

E
A
[ℓ(A(X(i)), xi)]

≤ 1

n

n∑
i=1

E
A
[ℓ(A(X), xi)] +

1

n

n∑
i=1

∣∣E
A
[ℓ(A(X), xi)]− E

A
[ℓ(A(X(i)), xi)]

∣∣
≤ 1

n

n∑
i=1

E
A
[ℓ(A(X), xi)] +

1

n

n∑
i=1

TV(A(X),A(X(i)))

≤ 1

n

n∑
i=1

E
A
[ℓ(A(X), xi)] + β(n).

The other direction can be shown analogously.
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B Proofs for Section 5

In this section, we prove Lemma 5.2.

Lemma B.1. For any i ∈ [n] and x ∈ X(i), let θ(i) = argmaxθ
ℓ(θ,x)∑

x′∈X(i) ℓ(θ,x′) . Then, we have

0 ≤ σX(i)(x)− σX(x) ≤
ℓ
(
θ(i), xi

)
· ℓ
(
θ(i), x

)∑
x′∈X(i) ℓ

(
θ(i), x′

)
·
∑

x′∈X ℓ
(
θ(i), x′

) .
Proof. Denote θ = argmaxθ

ℓ(θ,x)∑
x′∈X ℓ(θ,x′) , then for the left-hand side of the inequality, we have

σX(i)(x)− σX(x) ≥ ℓ(θ, x)∑
x′∈X(i) ℓ (θ, x′)

− ℓ(θ, x)∑
x′∈X ℓ (θ, x′)

≥ 0 .

For the second inequality, we have

σX(i)(x)− σX(x) ≤
ℓ
(
θ(i), x

)∑
x′∈X(i) ℓ

(
θ(i), x′

) − ℓ
(
θ(i), x

)∑
x′∈X ℓ

(
θ(i), x′

)
=

ℓ
(
θ(i), xi

)
· ℓ
(
θ(i), x

)∑
x′∈X(i) ℓ

(
θ(i), x′

)
·
∑

x′∈X ℓ
(
θ(i), x′

) .
Lemma B.2. For any i ∈ [n], we have

n∑
i=1

∣∣∣∣∣∣
∑
x∈X

σX(x)−
∑

x′∈X(i)

σX(i)(x′)

∣∣∣∣∣∣ ≤
∑
x∈X

σX(x) .

Proof. By Lemma B.1, we have∑
x∈X

σX(x)−
∑

x′∈X(i)

σX(i)(x′) = σX (xi)−
∑

x∈X(i)

(σX(i)(x)− σX(x)) ≤ σX (xi) ,

and we have∑
x∈X

σX(x)−
∑

x′∈X(i)

σX(i)(x′) = σX (xi)−
∑

x∈X(i)

(σX(i)(x)− σX(x))

≥ σX (xi)−
∑

x∈X(i)

ℓ
(
θ(i), xi

)
· ℓ
(
θ(i), x

)∑
x′∈X(i) ℓ

(
θ(i), x′

)
·
∑

x′∈X ℓ
(
θ(i), x′

)
= σX (xi)−

ℓ
(
θ(i), xi

)∑
x′∈X ℓ

(
θ(i), x′

) ≥ 0 .

Then, we have

n∑
i=1

∣∣∣∣∣∣
∑
x∈X

σX(x)−
∑

x′∈X(i)

σX(i)(x′)

∣∣∣∣∣∣ =
n∑

i=1

∑
x∈X

σX(x)−
∑

x′∈X(i)

σX(i)(x′)


≤

n∑
i=1

σX (xi) ≤
∑
x∈X

σX(x) .

Lemma B.3. We have
n∑

i=1

∑
x∈X(i)

∣∣∣∣ σX(x)∑
x∈X σX(x)

− σX(i)(x)∑
x′∈X(i) σX(i)(x′)

∣∣∣∣ ≤ 2 .
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Proof. First, we have

σX(x)∑
x∈X σX(x)

− σX(i)(x)∑
x′∈X(i) σX(i)(x′)

=
σX(x)∑

x∈X σX(x)
− σX(i)(x)∑

x∈X σX(x)

(
1−

∑
x′∈X(i) σX(i)(x′)−

∑
x∈X σX(x)∑

x′∈X(i) σX(i)(x′)

)
= σX(i)(x)

∑
x′∈X(i) σX(i)(x′)−

∑
x∈X σX(x)∑

x∈X σX(x)
∑

x′∈X(i) σX(i)(x′)
− 1∑

x∈X σX(x)
(σX(i)(x)− σX(x)) .

We can bound this quantity from below and above by Lemma B.1,

σX(i)(x)

∑
x′∈X(i) σX(i)(x′)−

∑
x∈X σX(x)∑

x∈X σX(x)
∑

x′∈X(i) σX(i)(x′)
− 1∑

x∈X σX(x)

ℓ
(
θ(i), xi

)
ℓ
(
θ(i), x

)∑
x′∈X ℓ

(
θ(i), x′

)
·
∑

x′∈X(i) ℓ
(
θ(i), x′

)
≤ σX(x)∑

x∈X σX(x)
− σX(i)(x)∑

x′∈X(i) σX(i)(x′)

≤ σX(i)(x)

∑
x′∈X(i) σX(i)(x′)−

∑
x∈X σX(x)∑

x∈X σX(x)
∑

x′∈X(i) σX(i)(x′)
.

Then, we have ∣∣∣∣ σX(x)∑
x∈X σX(x)

− σX(i)(x)∑
x′∈X(i) σX(i)(x′)

∣∣∣∣
≤ σX(i)(x)∑

x∈X σX(x)
∑

x′∈X(i) σX(i)(x′)

∣∣∣∣∣∣
∑

x′∈X(i)

σX(i)(x′)−
∑
x∈X

σX(x)

∣∣∣∣∣∣
+

1∑
x∈X σX(x)

ℓ
(
θ(i), xi

)
ℓ
(
θ(i), x

)∑
x′∈X ℓ

(
θ(i), x′

)
·
∑

x′∈X(i) ℓ
(
θ(i), x′

) .
It then follows,

n∑
i=1

∑
x∈X(i)

∣∣∣∣ σX(x)∑
x∈X σX(x)

− σX(i)(x)∑
x′∈X(i) σX(i)(x′)

∣∣∣∣
≤

n∑
i=1

∑
x∈X(i)

 σX(i)(x)∑
x∈X σX(x)

∑
x′∈X(i) σX(i)(x′)

∣∣∣∣∣∣
∑

x′∈X(i)

σX(i)(x′)−
∑
x∈X

σX(x)

∣∣∣∣∣∣
+

1∑
x∈X σX(x)

ℓ
(
θ(i), xi

)
ℓ
(
θ(i), x

)∑
x′∈X ℓ

(
θ(i), x′

)
·
∑

x′∈X(i) ℓ
(
θ(i), x′

))

=

n∑
i=1

(∣∣∑
x′∈X(i) σX(i)(x′)−

∑
x∈X σX(x)

∣∣∑
x∈X σX(x)

+
1∑

x∈X σX(x)

ℓ
(
θ(i), xi

)∑
x′∈X ℓ

(
θ(i), x′

))

≤ 1 +
1∑

x∈X σX(x)

≤ 2 ,

where the second to last inequality is from Lemma B.2, and the last inequality is by
∑

x∈X σX(x) ≥
1.

Lemma B.4. For ϵ > 0, let X and X ′ be sampled from the uniform distribution over [B, (1 + ϵ)B]
and [B′, (1 + ϵ)B′], respectively. Then, we have

TV(X,X ′) ≤ 1 + ϵ

ϵ

∣∣∣∣1− B′

B

∣∣∣∣ .
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Proof. The proof is implicit in Lemma 2.3 of Kumabe and Yoshida [2022].

Lemma 5.2. The average sensitivity of Algorithm 2 is O
(
ϵ−1m/n

)
.

Proof. The average sensitivity of importance sampling can be bounded by the sum of the average
total variation distance between selected elements and that between assigned weights, conditioned on
that the selected elements are the same. The former is bounded by

1

n

n∑
i=1

|C| ·

 σX (xi)∑
x∈X σX(x)

+
∑

x∈X(i)

∣∣∣∣ σX(x)∑
x∈X σX(x)

− σX(i)(x)∑
x′∈X(i) σX(i)(x′)

∣∣∣∣


= O

(
|C|
n

)
+O

(
|C|
n

)
= O

(
|C|
n

)
,

where the first equality is Lemma B.3. With Lemma B.4, we have the latter as

1

n

n∑
i=1

|C| ·

 ∑
x∈X(i)

min

{
σX(x)∑

x∈X σX(x)
,

σX(i)(x)∑
x′∈X(i) σX(i)(x′)

}
· 1 + ϵ

ϵ

∣∣∣∣∣1− σX(i)(x)/
(∑

x′∈X(i) σX(i)(x′)
)

σX(x)/
∑

x∈X σX(x)

∣∣∣∣∣


≤ 1

n

n∑
i=1

|C| ·

 ∑
x∈X(i)

1 + ϵ

ϵ

∣∣∣∣ σX(x)∑
x∈X σX(x)

− σX(i)(x)∑
x′∈X(i) σX(i)(x′)

∣∣∣∣


= O

(
|C|
ϵn

)
.

Combining the two terms, we have the average sensitivity of importance sampling be bounded as
O
(

|C|
n

)
+O

(
|C|
ϵn

)
= O

(
|C|
ϵn

)
.
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C Proofs for Section 6

C.1 Algorithm

We now introduced the detailed version of Algorithm 3. In Algorithm 7, we provide a detailed
description of the coreset construction method for clustering, which is based on Huang and Vishnoi
[2020]. To make the coreset construction enjoys small average sensitivity, we perturbe the weights
assigned (Line 6 and Line 11). We show that this preserves the approximation ratio while makes
the overall algorithm insensitive. With this, we obtain the online consistent clustering Algorithm 6,
which clusters data from a coreset at each step.

Algorithm 6: Online consistent (k, z)-clustering
Input: PTAS algorithm D for (k, z)-clustering, approximation ratio ϵ, δ ∈ (0, 1).

1 for t = 1, . . . , n do
2 Construct an ϵ-coreset Ct−1 = (St−1, ωt−1) by running Algorithm 7 on Xt−1.
3 Obtain cluster set Zt by running a PTAS D with approximation ratio of (1 + ϵ) on Ct−1.
4 Receive xt and ℓ(Zt, xt).

Algorithm 7: Coreset construction for clustering Huang and Vishnoi [2020]
Input: A set of point X , approximation parameter ϵ, δ ∈ (0, 1), integer k, z.

1 Set ϵ = ϵ/c for some large constant c > 0.
2 Compute a k-center set C∗

t ⊆ Rd as an ϵ-approximation of the (k, z)-clustering problem over X
with the Dz-sampling algorithm with an approximation ratio of O(2z log k).

3 For each x ∈ X , compute the closest point to x in C∗, c∗(x), with ties broken arbitrarily. For
each c ∈ C∗, denote Xc to be the set of points x ∈ X with c∗(x) = c.

4 For each x ∈ X , let σ1,X(x) = 22z+2ϵ2
(

∥x−c∗(x)∥z
2∑

x∈X ℓ(C∗,x) +
1

|Xc∗(x)|

)
.

5 Pick a non-uniform random sample D1 of N1 = O
(
(168z)10zϵ−5z−15k5 log k

δ

)
points from X ,

where each x ∈ X is selected with probability σ1,X(x)∑
y∈X σ1,X(y) .

6 For each x ∈ D1, sample ũX(x) from
[∑

y∈X σ1,X(y)

|D1
t |·σ1,X(x)

, (1 + ϵ)
∑

y∈X σ1,X(y)

|D1
t |·σ1,X(x)

]
.

7 Set uX(x) = ũX(x)
8 For each c ∈ C∗, compute Dc to be the set of points in D1 whose closest point in C∗ is c with

ties broken arbitrarily.
9 For each x ∈ D1, let σ2,X(x) = uX(x)·ℓ(C∗,x)∑

y∈D1 uX(y)·ℓ(C∗,y)

10 Pick a non-uniform random sample D2 of N2 = O
(
ϵ−2z−2k log k log k

ϵδ

)
points from Xt,

where each x ∈ Xt is selected with probability σ2,X(x)∑
y∈D1 σ2,X(y)

11 For each x ∈ D2, sample w̃X(x) from
[∑

y∈D1 σ2,X(y)

|D2|·σ2,X(x) , (1 + ϵ)
∑

y∈D1 σ2,X(y)

|D2|·σ2,X(x)

]
.

12 Set wX(x) = w̃X(x)
13 For each c ∈ C∗, let wX(c) = (1 + 10ϵ)

∑
x∈Dc

uX(x)−
∑

x∈D2∩Dc
wX(x).

14 S = D2 ∪ C∗

15 w(x) = wX(x)
16 Output (S,w)

C.2 Analysis

Theorem C.1. Algorithm 7 outputs an ϵ-coreset with probability at least 1− δ and has an average
sensitivity of

O

(
k + (168z)10zϵ−5z−15k6 log k

δ + ϵ−2z−2k log k log k
ϵδ (1 + ϵ−2z−2k2 log k log k

ϵδ )

n

)
.
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Proof. We first show that our coreset construction method gives an ϵ-coreset.

We remark that the way we assigned the weights is a perturbed version of the method presented
in Huang and Vishnoi [2020]. Then, to show that the perturbed version of the assignment of the
weight still preserves the coreset approximation ratio, we show that the perturbed version still satisfies
Corollary 15.3 of Feldman and Langberg [2011] and Theorem 14.5. Then using the same argument as
Theorem 15.4 of Feldman and Langberg [2011], our coreset construction method gives an ϵ-coreset.

In the first importance sampling stage, we only perturb ũX(x) by a ratio of 1 + ϵ, for each x ∈ D1.
The same is applied in the second stage with w̃X(x), for all x ∈ D2. For c ∈ C∗, we have

(1 + 10ϵ)
∑
x∈Dc

uX(x)−
∑

x∈D2∩Dc

wX(x) ≤ (1 + ϵ)

(1 + 10ϵ)
∑
x∈Dc

ũX(x)−
∑

x∈D2∩Dc

w̃X(x)

 .

In all cases, the result from [Feldman and Langberg, 2011] still holds, as the weights are scaled by
(1 + ϵ) at most. By the same argument that all perturbed weights are scaled by (1 + ϵ) at most, we
have Theorem 15.4 of Feldman and Langberg [2011] holds with a ratio of ϵ(1 + ϵ). This results in an
approximation of 1 + ϵ(1 + ϵ) by applying the argument of Theorem 15.4 of Feldman and Langberg
[2011]. Rescale ϵ to ϵ/c for some constant c > 0 gives an approximation ratio of 1+ ϵ and completes
our argument that Algorithm 7 produces an ϵ-coreset with probability at least 1− δ.

To show that our method enjoys low average sensitivity, we upper bound the average sensitivity of
the two importance sampling stage of Algorithm 7 separately.

The average sensitivity of importance sampling in the first stage can be bounded by the average total
variation distance between selected elements and that between assigned weights, conditioned on the
selected elements are the same. By Lemma 5.2, we can upper bound the average sensitivity of the
first importance sampling stage to be O(N1/n), where N1 = O

(
(168z)10zϵ−5z−15k5 log(δ−1k)

)
.

In the second stage, as points are selected with probability σ2,X(x)∑
y∈X σ2,X(y) , we bound the total variation

distance between selected points in a similar way as to that for the first stage. This gives a bound
of O(N2/n), where N2 = O

(
ϵ−2z−2k log k log k

ϵδ

)
. To bound the average total variation distance

between assigned weights, we again apply the same argument as above and obtain a bound of
O(N2/n).

Combining these and that the average sensitivity of Line 2 of Algorithm 7 is O(k/n) (by Lemma 2.2
of Yoshida and Ito [2022]), we have the average sensitivity as

O

(
k +N1 +N2

n

)
= O

(
k + (168z)10zϵ−5z−15k5 log k

δ + ϵ−2z−2k log k log k
ϵδ

n

)
.

Theorem 6.1. For any ϵ ∈ (0, 1), Algorithm 3 gives a regret bound of

Regretϵ(n) ≤ O

((
(168z)10zϵ−5z−15k5 log

kn

ϵ
+ ϵ−2z−2k log k log

kn

ϵ

)
log n

)
.

Moreover, there exists an algorithm that enjoys the same regret bound and an inconsistency bound
of Inconsistency(n) = O

((
(168z)10zϵ−5z−15k5 log(ϵ−1kn) + ϵ−2z−2k log k log(ϵ−1kn)

)
log n

)
for (k, z)-clustering.

Proof. First, we note that the approximation ratio of the algorithm with respect to the aggregated loss
is at most

(1− δ)
(
1 +

ϵ

3

)(
1 +

ϵ

3

)
+ δn ≤ 1 + ϵ

from the choice of δ, i.e., δ = O(ϵ/n).

Also, we note that the overall average sensitivity is
n∑

t=1

β(t) =

n∑
t=1

O

(
(168z)10zϵ−5z−15k5 log k

δ + ϵ−2z−2k log k log k
ϵδ

t

)

= O

((
(168z)10zϵ−5z−15k5 log

k

δ
+ ϵ−2z−2k log k log

k

ϵδ

)
log n

)
.
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Then substituting this into Theorem 4.1, for z ≥ 1, we have a regret bound of

Regretϵ(n) ≤ O

((
(168z)10zϵ−5z−15k5 log

k

δ
+ ϵ−2z−2k log k log

k

ϵδ

)
log n

)
= O

((
(168z)10zϵ−5z−15k5 log

kn

ϵ
+ ϵ−2z−2k log k log

kn

ϵ

)
log n

)
.

For the second claim about inconsistency, we first convert the average sensitivity bound to an
inconsistency bound of the same order. This can be done by Lemma 4.2 of [Yoshida and Ito, 2022]
and by arguing in a similar way as Lemma 4.5 of [Yoshida and Ito, 2022] by showing that there
exists a computable probability transportation for the output of Algorithm 3. This thus yields an
inconsistency of O

((
(168z)10zϵ−5z−15k5 log(ϵ−1kn)ϵ−2z−2k log k log(ϵ−1kn)

)
log n

)
.
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D Proofs for Section 7

Theorem 7.2. For any ϵ ∈ (0, 1), Algorithm 4 has regret Regretϵ(n) = O
(
ϵ−2k log n log(ϵ−1kn)

)
.

Moreover, there exists an algorithm for online low-rank matrix approximation that enjoys the same
regret bound and an inconsistency bound of Inconsistency(n) = O

(
ϵ−2k log n log(ϵ−1kn)

)
.

Proof. Let δ > 0 be determined later. By Theorem 6 from Cohen et al. [2017], with probability 1− δ,
for any rank-k orthogonal projection X, by sampling m = O

(
ϵ−2k log(δ−1k)

)
columns, in Line 4

of Algorithm 5, we have,(
1− ϵ

2

)
∥At −XAt∥2F ≤ ∥Ct −XCt∥2F ≤

(
1 +

ϵ

2

)
∥At −XAt∥2F .

With this, we note that the algorithm has an approximation of 1 + ϵ as 1 + ϵ/2 + δn ≤ 1 + ϵ by
choosing the hidden constant in δ small enough.

Note that by applying Lemma 5.2, this routine has an average sensitivity of O(m/t) =
O
(
ϵ−2k log(δ−1k)/t

)
at any step t. Then set Zt to the top k left singular vectors of Ct, and

we have ∥∥At − ZtZ
⊤
t At

∥∥
F
≤ (1 + ϵ)

∥∥At −UkU
⊤
k At

∥∥
F
.

To obtain the regret, we calculate the overall average sensitivity as
∑n

t=1 β(t) =∑n
t=1 O

(
ϵ−2k log(δ−1k)/t

)
= O

(
ϵ−2k log n log(δ−1k)

)
. Applying Theorem 4.1, and from the

choice δ = O(ϵ/n), we have Regretϵ(n) = O
(
ϵ−2k log n log(ϵ−1kn)

)
.

For the second claim about inconsistency, we prove this convert the average sensitivity bound to an
inconsistency bound of the same order. This can be done by Lemma 4.2 of [Yoshida and Ito, 2022]
and by arguing in a similar way as Lemma 4.5 of [Yoshida and Ito, 2022] by showing that there exists
a computable probability transportation for the output of Algorithm 3.
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E Proof for Section 8

Theorem 8.1. For any ϵ ∈ (0, 1), Algorithm 5 has regret Regretϵ(n) = O
(
ϵ−2d log n log(ϵ−1dn)

)
.

Moreover, there exists an algorithm for online regression that enjoys the same regret bound and an
inconsistency bound of Inconsistency(n) = O

(
ϵ−2d log n log(ϵ−1dn)

)
.

Proof. By Theorem 8.4, the algorithm has an approximation of 1 + ϵ as 1 + ϵ/2 + δn ≤ 1 + ϵ by
choosing the hidden constant in δ small enough.

Similar to the low-rank case, the average sensitivity of leverage score sampling at step t is
O
(

d log(d/δ)
ϵ2t

)
. Summing over the average sensitivity

n∑
t=1

O

(
d log(d/δ)

ϵ2t

)
= O

(
d log n log(d/δ)

ϵ2

)
.

Take this into Theorem 1, and with δ = O(ϵ/n), we have a ϵ-regret of O
(
ϵ−2d log n log(dn/ϵ)

)
.

Similar to that of Theorem 6.1 and Theorem 7.2, we prove the second claim by converting the average
sensitivity bound to an inconsistency bound of the same order. This can be done by Lemma 4.2
of [Yoshida and Ito, 2022] and by arguing in a similar way as Lemma 4.5 of [Yoshida and Ito, 2022]
by showing that there exists a computable probability transportation for the output of Algorithm
3.
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