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Abstract

Recent research on online Gradient Balancing (GraB) has revealed that there exist
permutation-based example orderings for SGD that are guaranteed to outperform
random reshuffling (RR). Whereas RR arbitrarily permutes training examples,
GraB leverages stale gradients from prior epochs to order examples — achieving
a provably faster convergence rate than RR. However, GraB is limited by design:
while it demonstrates an impressive ability to scale-up training on centralized data,
it does not naturally extend to modern distributed ML workloads. We therefore
propose Coordinated Distributed GraB (CD-GraB), which uses insights from prior
work on kernel thinning to translate the benefits of provably faster permutation-based
example ordering to distributed settings. With negligible overhead, CD-GraB
exhibits a linear speedup in convergence rate over centralized GraB and outperforms
distributed RR on a variety of benchmark tasks.

1 Introduction

Random reshuffling, which samples training-data examples without replacement, has become the de
facto example-ordering method in modern deep-learning libraries [34], given that it tends to accelerate
optimizer convergence in practice. However, some recent theoretical work has identified cases in
which random reshuffling can lead to data orderings that have a poor effect on convergence [8, 36, 49].
This has encouraged a line of research to investigate if there exist provably better permutation-based
orderings that afford greater scalability in training [22, 24, 31]. Notably, Lu et al. [24] connects
permuted-order SGD to the herding problem [16], and proposes the herding-based online Gradient
Balancing algorithm (GraB), which converges provably faster than random reshuffling, and does so
with little memory or computational overhead. In fact, in follow-on work, Cha et al. [6] proves that
GraB is optimal: in theory, GraB is the fastest possible permutation-based example ordering algorithm.

These results are very exciting, suggesting that GraB should unseat random reshuffling as the example
ordering method-of-choice for SGD; however, they only hold with respect to a single machine. GraB
is optimal in settings with centralized data, but does not naturally translate to problems of modern-ML
scale, which demand that training workloads be distributed across multiple parallel workers that each
only have access to a subset of the training data. This drawback raises an important question:

Can we simultaneously achieve the scalability benefits of distributed training and
provably faster permutation-based example ordering for SGD — both in theory and in practice?

In this work, we show that it is indeed possible to attain these twin objectives. To do so, we suggest
the online Coordinated Distributed Gradiant Balance algorithm (CD-GraB), which leverages insights
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from kernel thinning to elevate the herding framework of centralized GraB (GraB) to the parallel
setting. Felicitously, as a side effect, this choice of formulation brings about positive practical
performance benefits (that can also improve the empirical behavior of centralized GraB). Using the
exact same assumptions as the original GraB paper, we show analytically that coordinating example
orders across parallel workers leads a linear speedup in convergence rate. For T epochs and m
parallel workers, each with access to n examples, CD-GraB’s convergence rate is Õ((mnT )−2/3)

on smooth, non-convex objectives and Õ((mnT )−2) under the Polyak-Łojasiewicz (P.L.) condition.2

We run a series of experiments to verify these improvements in practice, implementing CD-GraB on
a single node that distributes computation across multiple GPUs. We also run an ablation study in
order to disentangle the benefits of parallelism from the positive side effects of using kernel thinning
to formulate the CD-GraB algorithm. Similar to how centralized GraB demonstrates improved
generalization over centralized random reshuffling (RR), we observe that CD-GraB exhibits improved
generalization over distributed random reshuffling (D-RR). Altogether, the success of our work
suggests a new distributed training paradigm to explore in future work, which we call the Order Server
(Section 6). In summary, we:

• Propose the online Coordinated Distributed Gradient Balancing (CD-GraB) algorithm, which
enables provably accelerated training using SGD in the parallel setting (Section 3);

• Prove that the convergence rate for CD-GraB exhibits a linear speedup over GraB, using the exact
same assumptions as the original GraB paper (Section 4);

• Produce extensive empirical validation of CD-GraB’s improved scalability on a variety of tasks
in deep learning and on large-scale logistic regression (Section 5).

2 Preliminaries and Related Work

In this section, we discuss the preliminaries and prior scholarship on permutation-based example
ordering, with particular attention paid to the centralized online Gradient Balancing Algorithm
(GraB) [24]. This lays the groundwork for how our coordinated, distributed GraB algorithm (Section 3)
imparts the efficiency guarantees of GraB to the parallelized regime (Section 4).

Ordering data examples during training. Training a model can be formulated as minimizing a
differentiable loss function f :Rd→R overN data examples. The goal of this minimization is to obtain
the target model weights w∗ = argminwf(w), where f(w) = 1

N

∑N
j=1f(w;j), for which f(w;j)

denotes the loss incurred on the j-th example. A typical training process iteratively updates the model
parameters w by scanning over the N data examples repeatedly, with t-th scan (or epoch) following

wj+1
t =wj

t−α∇f(w
j
t ;πt(j)), ∀j∈ [N ], (1)

whereα denotes the learning rate, andπt : [N ]→ [N ] denotes a permutation ordering3 adopted in the t-th
epoch from which the examples are chosen to compute gradients, w1

t denotes the initial model weights
for the t-th epoch, and wj

t denotes the model weights after j−1 gradient updates in the t-th epoch.4

The choice of ordering π can have a significant effect on optimizer performance. Two popular methods,
which can demonstrate convergence speedups in practice, are 1) random reshuffling (RR) [46], for
which the permutations are random and differ over epochs, and 2) Shuffle Once (SO) [4, 13], for which
a random permutation is computed once and remains fixed for all epochs. Recht and Ré [37] conducted
the first theoretical investigation of RR, while subsequent works like Yun et al. [49] and De Sa [8]
have given counterexamples in which RR leads to orderings that have a poor effect on convergence.
Altogether, many studies indicate that RR and SO only provide efficiency benefits under certain
conditions [14, 15, 30].

These limitations of RR and SO have motivated research to identify permutations that outperform
random ones. Rajput et al. [36] introduces an RR variant that achieves improved convergence for
quadratics by reversing the ordering every other epoch. Other non-RR-based methods pick efficient
orderings based on correlations between adjacently selected examples. In a recent line of work, Lu et al.

2In this paper, we use Õ by convention to hide logarithmic factors in the problem parameters.
3While without-replacement orderings are most common in large-scale learning [5], ordering strategies need

not be permutations, e.g., with-replacement sampling [23, 32, 39] or curriculum learning [12, 27, 41].
4Note that we write (1) in terms of per-example-j gradients.
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[22] proves that faster convergence is possible for SGD when the averages of consecutive stochastic
gradients converge faster to the full gradient. Based on this result, in follow-on work Lu et al. [24]
proposes the centralized online Gradient Balancing algorithm (GraB), which outperforms RR, and
upon which we base this work.

2.1 GraB: Optimal, online, permutation-based example ordering for centralized ML

GraB is a permutation-based example-ordering algorithm that identifies provably better-than-random
orderings in centralized, single-node settings for SGD. GraB finds such orderings by leveraging infor-
mation in stale stochastic gradients from previous epochs to guide ordering in the next epoch. More for-
mally, for smooth, non-convex objectives, Lu et al. [24] proves that any permutation π∗ that guarantees

maxk∈[N ]

∥∥∥∑k
j=1∇f(w;π∗(j))−∇f(w)

∥∥∥
∞
=Õ(1) (∇f(w) is the average gradient), (2)

will yield a convergence rate of Õ((NT )−2/3) (for epochs T ) for SGD, which is superior to the
O(N−1/3T−2/3) convergence rate of random reshuffling [30].

GraB’s connection to herding and balancing. To find such a permutation π∗, Lu et al. [24] connect
(2) to the herding problem and vector balancing [16, 45]. Understanding why GraB does not naturally
extend to the distributed setting — and our main contributions (Sections 3 and 4) — requires some
additional details on the fundamentals of herding:

Given N vectors5 {zj}Nj=1 (zj ∈Rd), ∥zj∥2≤1 (∀j), herding identifies a permutation π∗ such that

maxk∈[N ]

∥∥∥∑k
j=1

(
zπ∗(j)−z̄

)∥∥∥
∞
=Õ(1), where z̄= 1

N

∑N
j=1zj . (3)

It is clear that (3) generalizes (2), which is a specific case of herding in an optimization setting.

Harvey and Samadi solve (3) with a method called balancing [16]. Balancing uses a signed version of
the herding problem to optimize any given permutation π to reduce the bound in (3). That is, balancing
formulates the signed herding problem

maxk∈[N ]

∥∥∥∑k
j=1sπ(j)

(
zπ(j)−z̄

)∥∥∥
∞
, where {sj}Nj=1∈{+1,−1}. (4)

Given a group of such signs {sj}Nj=1 and an arbitrary permutation π, Harvey and Samadi prove that
Algorithm 1 produces a new permutation π′ such that

max
k∈[N ]

∥∥∥∑k
j=1

(
zπ′(j)−z̄

)∥∥∥
∞
≤ 1

2
max
k∈[N ]

∥∥∥∑k
j=1sπ(j)

(
zπ(j)−z̄

)∥∥∥
∞
+ 1

2
max
k∈[N ]

∥∥∥∑k
j=1

(
zπ(j)−z̄

)∥∥∥
∞
.

This says that, with new permutation π′, the
objective of (3) now approaches the bound
of (4). Importantly, recent advances show
that it is quite cheap to find a group of signs,
such that (4) is on the order of Õ(1) (e.g.,
Alweiss et al. [2], in Algorithm 2). We are
therefore able to call Algorithm 1 repeat-
edly, which will eventually obtain the π∗

that solves the Õ(1) herding objective in (3).

Algorithm 1 Reordering Vectors based on Balanced
Signs [Harvey and Samadi [16]]

input: a group of signs {sj}Nj=1, initial order π
initialize: two order-sensitive lists Lpos← [ ], Lneg← [ ].
for j=1...N do

Lpos.append(π(j)) if sj is +1 else Lneg.append(π(j)).
end for
return: new order π′ :=concat(Lpos,reverse(Lneg)).

GraB’s application of herding to gradient balancing. Lu et al. [24] applies this framework of herding
and balancing to develop GraB, i.e., to minimize (2). The main challenge for the success of this approach
is to find the right gradients zj in the optimization context of (2). Notably, the herding and balancing
framework requires the vector mean z̄ in advance. To satisfy this requirement, GraB “centers” the gra-
dient vectors using a stale mean. That is, GraB runs the herding algorithm on vectors that are defined as

zj=∇f(wj
t ;πt(j))− 1

N

∑N
p=1∇f(w

p
t−1;πt−1(p)), (5)

where wp
t denotes the model weights after p − 1 updates in the t-th epoch, and πt denotes the

permutation adopted in the t-th epoch. Lu et al. [24] proves that this definition of zj preserves the

5Herding does not have an optimization context. Here,N does not refer to the number of data examples used in
training (1); rather,N ∈Z+ describes the size of a set of arbitrary vectors. We slightly abuse notation because we ex-
ecute the herding subroutine on exactlyN gradients (Section 3), which happen to equal the number ofN examples.
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benefits of balancing with negligible noise or overhead. The only overhead comes from storing the
running average of the gradients in epoch t−1 to “center” the gradients in the subsequent epoch t.

With this approach, Lu et al. [24] proves that GraB demonstrates more efficient convergence than RR
for SGD. Better still, Cha et al. [6] demonstrates that GraB is in fact the optimal permutation-based
ordering method for SGD: it is not possible to produce a permutation-based ordering in the centralized
setting that achieves a faster convergence rate for SGD.

Despite GraB’s clear benefits over RR, it assumes local access to all examples. This assumption does
not hold for popular, modern, parallel settings (e.g., parameter server [20]), in which workers only have
access to subsets of examples. No present work has attempted to investigate GraB’s applicability to this
setting. While some work has studied distributed RR (D-RR) [18, 26, 38, 48], it remains an open ques-
tion if GraB’s efficiency benefits for SGD can be conferred to the modern-scale, distributed-ML setup.

3 CD-GraB: A Provably Efficient Ordering Algorithm for Distributed Training

Our main contribution is to elevate GraB to the parallel regime, so that distributed training can enjoy the
efficiency benefits of provably better example ordering. Based on the preliminaries, we can now explain
why this is not a straightforward task: While GraB achieves the optimal convergence rate for SGD
on centralized data, it does not naturally translate to a distributed setting (Section 3.1). Our key
insights for resolving these problems are to reformulate the herding framework in Lu et al. [24] to work
in parallel, and to leverage insights from kernel thinning [3, 10, 11] to derive the online PairBalance
algorithm, which solves this parallelized herding objective (Section 3.2). Lastly, we present the full-
stack CD-GraB algorithm that makes our solution work in practice (Section 3.3). The server implements
online PairBalance, which coordinates gradient information from the distributed workers in training
epoch t in order to determine a provably efficient example order for the next epoch t+1 (Section 4).

3.1 Issues with GraB in the distributed setting

To clarify the issues with distributing GraB, we first need to define the distributed training setup more
precisely. We consider the standard data-parallel regime with m parallel workers, where each worker
keeps a copy of the model weights w ∈Rd and maintains n=N/m local examples.6 As in many
data-parallel training applications,7 such as geo-distributed model training [47], we assume the data
examples cannot be shared or moved across workers. More formally, this setup can be expressed as

minw∈Rd

[
f(w)= 1

m

∑m
i=1f

i(w)
]

with f i(w)= 1
n

∑n
j=1f

i(w;j), (6)

where f i(w;j) :Rd→R, j∈ [n], denotes the loss incurred on the j-th example on the i-th worker for
model weights w. We can now consider running (1) using this setup, for which each worker scans
over their n local-data examples using (potentially) different permutations. We denote πt,i : [n]→ [n]
as the permutation-based ordering adopted on the i-th worker in the t-th training epoch. Adjusting
(1) to accommodate the setup in (6), the update to the model can be summarized as

wj+1
t =wj

t− α
m

∑m
i=1∇f i(wj

t ;πt,i(j)), ∀j∈ [n]. (7)

That is, in epoch t, each worker i selects their respective, local j-th example according to {πt,i}ni=1
in order to compute stochastic gradients (Appendix).

Following this setup, Algorithm 1 no longer guarantees the Õ(1)bound to the herding problem (3),
a bound that is valid only when all data examples can be permuted freely [16]. This constraint is fine
for centralized GraB, but, in distributed training, workers only have access to a subset of examples.
Distributed training requires that worker-specific permutations only involve the examples in their
respective local subsets. Further, recall that GraB uses stale means to center gradients (5) in order to
solve the herding objective. This, too, causes problems in distributed training. In practice, it is typical to
employ larger learning rates α for greater scalability [40]; larger α increases the discrepancy between
averaged gradients in adjacent epochs, which, in turn, would make GraB’s use of stale means unreliable.

6Without loss of generality, we assume theN examples are divided evenly among themworkers andn is even.
7One such popular paradigm is federated learning [28, e.g.]. Federated learning typically involves highly

imbalanced loads, heterogeneous data, partial user participation, and additional privacy-preserving mechanisms.
These characteristics are orthogonal to what we consider here for example order. If we were to allow for such data
organization, we would need to assume non-global communication per iteration or additional constraints on how
global communication occurs. For CD-GraB, we focus on the regime of using parallelism to accelerate training.
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3.2 Our efficient solution: parallel herding and pair balancing

To address the limitations presented in the prior section, which preclude the direct application of GraB
to distributed training, we will need to 1) reformulate the herding problem to fit the parallel setting,
and 2) redesign how to do gradient balancing, such that it both solves our new herding formulation
and allows for reliability with higher learning rates. We now present our solution to both these problems;
we introduce the parallel herding problem and the online PairBalance subroutine that solves it.

Parallel Herding. To extend herding to the parallel setting, consider the following setup: There are
m workers, which each have local access to n vectors. Let zi,j ∈Rd denote the vector indexed by
j on the i-th worker. Assuming ∥zi,j∥2≤1 (∀i∈ [m],∀j∈ [n]), the goal of parallel herding is to find
m permutations, π1,π2,...,πm where πi : [n]→ [n] (∀i∈ [m]), so as to minimize:

maxk∈[n]

∥∥∥∑k
j=1

∑m
i=1

(
zi,πi(j)−z̄

)∥∥∥
∞
, with z̄= 1

mn

∑m
i=1

∑n
j=1zi,j . (8)

When directly comparing (8) with (3), it is clear that parallel herding differs in two notable ways from
the original herding problem. First, each permutation πi : [n]→ [n] (∀i∈ [m]) only decides the ordering
of the n vectors that are associated with worker i. Second, the prefix sum taken in the objective norm
is accumulated over all the workers (the inner sum from i=1...m). This formulation naturally captures
the setting in a distributed environment: workers need to decide permutations collaboratively, and
the worker-specific vectors are processed simultaneously rather than sequentially.

Given that this formulation fits the distributed setting, we next need to show that parallel herding
does in fact address the limitations posed by centralized GraB: that it is possible recover the original
Õ(1) herding bound, and that we can solve the issue of unreliable stale gradients (Section 3.1). The
solution that we present in the remainder of this section is a new vector balancing subroutine: online
PairBalance. To give an intuition, as its name suggests, online PairBalance leverages insights from
kernel thinning to balance vector differences over vector pairs. This also eliminates the need to
perform vector centering, and thus solves the stale mean problem.

Using kernel thinning to solve parallel herding. We call our solution to the parallel herding objective
(8) pair balancing, which we derive from key insights in kernel thinning [3, 10, 11]. In particular,
Dwivedi and Mackey show that it is possible to solve the herding objective in Õ(1) by only examining
differences on pairs of examples [10]. They derive an algorithm that generalizes Alweiss et al. [2,
subroutine in Algorithm 2], which solves herding in Õ(1) (Section 2), and does so by operating only
on vector-pair differences.8 This comes with a very useful property: eliminating the requirement of
knowing the maximum vector norm ahead of time and centering the vectors (i.e., making all the vectors
sum to zero) in order to solve the herding problem. This is the key to solving the parallel herding
objective (8) in Õ(1), and elevating the benefits of GraB to a distributed setting.

Following Dwivedi and Mackey [10], we will balance over paired vectors, and will do so in an online
fashion (Section 3.3). This eliminates GraB’s requirement of using a stale mean to center gradient
vectors (Section 2.1), but still minimizes the parallel herding objective to Õ(1). We defer proving this
result to Section 4, and first describe our concrete algorithm. Online PairBalance applies Algorithm 1
on the“flattened” and “paired” sequence of all of the workers’ paired-difference gradients, i.e.,

yn(k−1)+i=zi,2k−1−zi,2k, ∀k∈ [n2 ], i=1...m.

That is, we fit these ordered-paired differences {yi}mn/2
i=1 into the herding and balancing framework (Al-

gorithm 1): if sign s is associated with yn(k−1)+i, then zi,2k−1 and zi,2k receive s and−s, respectively.

3.3 The full-stack CD-GraB algorithm

Having solved the parallel herding problem with pair balancing, we now demonstrate how to
bring everything together in an optimization context to coordinate distributed gradient balancing
for distributed training. That is, we can now introduce our full-stack CD-GraB algorithm, which
trains models in a distributed setting (Section 3.1) while efficiently ordering the examples by using
PairBalance (Section 3.2, Algorithm 2) in an online manner.

8Dwivedi and Mackey minimize the maximum mean discrepancy (MMD) between a selected coreset and
an empirical distribution. They develop a new self-balancing Hilbert walk on differences of pairs of examples to
select exactly half of the dataset points, and solve coreset selection by iteratively halving the input vector sequence
into balanced coresets then selecting and refining a candidate coreset to minimize MMD with the input sequence.
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Algorithm 2 PairBalance

▷ The inputs, outputs and subroutine for this
algorithm are order-sensitive

input: current running sum r, paired vectors z1, z2

compute: s,r←RandomizedBalance(r,z1−z2)
return: s (sign for z1),

−s (sign for z2),
r (updated running sum)

▷ Adapted from Alweiss et al. [2]
define subroutine: RandomizedBalance(r,c)

compute: p← 1−⟨r,c⟩
2

compute: s←+1 with probability p;
s←−1 with probability 1−p

update: r←r+sc
return: s, r

Worker 1 Worker 2

1. Examples
ordered with

Worker 1 Worker 2

2. Compute
gradients

-1

+1

-1+1

Worker 1 Worker 2

7. Reorder
examples with

4. Call Pair
Balance

6. New Data
Permutations

Server

5. Call
Algorithm 1

3. Send Gradients
to server

Figure 1: Left: The PairBalance algorithm, which the server runs online. Right: CD-GraB running
on one server (top) and two workers (bottom). The workers do not share data examples.

We describe CD-GraB at two levels of abstraction: a high-level illustration (Figure 1, steps 1-7) and
a detailed pair of worker-server algorithm statements (Figure 2). Since the workers only have access to
a subset of the training data, in parallel they compute local, per-example stochastic gradients and send
them to the server. The server simultaneously calls PairBalance online, which coordinates information
from all the workers’ gradients (i.e., using adjacent example-specific gradients) to determine the next
epoch’s worker-specific permutations. In more detail:

In epoch t, (Figure 1, step 1) the two workers have permutations πt,1 and πt,2, respectively. Each
worker computes per-example gradients gi

j (2; Algorithm 3:4), and sends them to the server (3;
Algorithm 3:5). The server we implement functions as a parameter server [20]: It computes the
average of the workers’ per-example gradients (Algorithm 4:6), and sends it back to all workers
(Algorithm 4:7) so that they can update their local models (Algorithm 3:6-7). Simultaneously, as the
server receives gradients (Algorithm 4:5), it calls PairBalance (Algorithm 2) on adjacent vectors (4;
Algorithm 4:4-13). PairBalance produces signs to supply to the reordering algorithm (Algorithm 1),
which, using the current worker permutations πt,i, produces the new per-worker permutations for
the next epoch (5; Algorithm 4:14). In Figure 1, these correspond to πt+1,1 and πt+1,2, which the
server then sends back to the respective workers (6; Algorithm 4:15). Lastly, before the start of the
next epoch, the workers reorder their examples according to the new permutations (7; Algorithm 3:9).

4 Convergence Analysis

We next demonstrate formally that our CD-GraB algorithm (Section 3.3) confers the efficiency benefits
of centralized GraB (Section 2.1) to the distributed setting. In brief, our main theoretical results show
that CD-GraB enjoys a linear speedup in convergence rate under two sets of conditions: smoothness
(Theorem 2) and the Polyak-Łojasiewicz (P.L.) condition (Theorem 3). Both results guarantee that
CD-GraB is faster than distributed random reshuffling (D-RR). Our proofs rely on Corollary 7 from
Dwivedi and Mackey [10], which shows that, with high probability, RandomizedBalance (subroutine
in Algorithm 2, from Alweiss et al. [2]) guarantees a Õ(1) bound to the signed herding objective (4).9

To begin, we restate this result to cohere with our framework, for which the vectors zj are gradients
in an optimization context:
Theorem 1 (Corollary 7, Dwivedi and Mackey [10]). Consider any vectors {zj}Nj=1 (zj ∈Rd) with
∥zj∥2≤1 supplied as input to the RandomizedBalance subroutine in Algorithm 2. Then for any δ>0,
with probability at least 1−δ, RandomizedBalance outputs a sequence of signs {sj}Nj=1 ∈ {−1,1}

that satisfy maxk∈[N ]

∥∥∥∑k
j=1sjzj

∥∥∥
∞
≤Ã, where Ã=

√
2log

(
4d
δ

)
log
(
4N
δ

)
=Õ(1).

9Corollary 7 from Dwivedi and Mackey [10] improves the result of Theorem 1.1 from Alweiss et al. [2].
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Algorithm 3 CD-GraB Workers

require: m workers, n := N
m

ex. per worker
input: initial w1

1 , epochs T , learning rate α

1: receive: initial permutations
2: for epoch t :=1...T do

▷ Run in parallel for workers i=1...m
3: for example j :=1...n do
4: compute: gi

j←∇f i(wj
t ,πt,i(j))

j-th stochastic grad. gi
j−−−−−−−−−−−−−−−−−−−−−−→5: send: gi

j

avg. j-th stochastic grad. ḡj←−−−−−−−−−−−−−−−−−−−−6: receive: ḡj

7: update: wj+1
t ←wj

t−αḡj

8: end for

9: receive: next permutation
10: update: w1

t+1 :=wn+1
t

11: end for
12: return: wT+1 :=w1

T+1

Algorithm 4 CD-GraB Parameter Server

require: m workers, n := N
m

ex. per worker
input: epochs T

{π1,i}mi=1←−−−−−−−−−−−−−−− 1: send: initial permutations {π1,i}mi=1

2: for epoch t :=1...T do
3: initialize: running sum h=0; empty list S
4: for example j :=1...n do

5: receive: {gi
j}mi=1 from all workers i

6: compute: avg. gradient: ḡj← 1
m

∑m
i=1g

i
j

7: send: ḡj to all the workers
8: for worker i :=1...m do
9: if j mod 2=0:

10: h,sij−1,s
i
j←PairBalance(h,gi

j−1,g
i
j)

11: S.append(sij−1); S.append(sij)
12: end for
13: end for

▷ Call Alg. 1 for i=1...m on πt,i and S
14: compute: next permutations {πt+1,i}mi=1πt+1,i←−−−−−−−−−−−− 15: send: {πt+1,i}mi=1 to each worker i
16: end for

Figure 2: CD-GraB worker and server (here, a parameter server [20]) algorithms.

To integrate this result with our parallel setting, we need some additional assumptions that are standard
in the literature on distributed optimization — that the variance of the per-example gradients on each
worker is uniformly bounded (Assumption 1), and that the variance between worker-specific gradients
is similarly bounded (Assumption 2). More precisely, following the distributed setup in (7), we denote
the global loss gradient to be∇f(w), each i-th worker’s local loss gradient to be∇f i(w) (∀i∈ [m]),
and each i-th worker’s per-example loss gradients to be∇f i(w;j) (∀j∈ [n]). We assume:
Assumption 1 (Bounded Gradient Variance). For all i∈ [m] there exists a constant σ>0 such that
for all j∈ [n] and for all w∈Rd, it holds that

∥∥∇f i(w;j)−∇f i(w)
∥∥2
2
≤σ2.

Assumption 2 (Bounded Data Heterogeneity). There exists a constant ς > 0 such that ∀i ∈ [m],∥∥∇f i(w)−∇f(w)
∥∥2
2
≤ ς2.

Lastly, we include one additional assumption from the original GraB paper [24]: we assume a cross
norm L2,∞ (which can be easily adapted to L2-smoothness by setting L2,∞ to be

√
dL2).

Assumption 3 (Smoothness). There exists constant L2,∞>0 such that for any w,v∈Rd, any i∈ [m],
and any j∈ [n], it holds that

∥∥∇f i(w;j)−∇f i(v;j)
∥∥
2
≤L2,∞∥w−v∥∞.

Given these assumptions, we can prove a convergence guarantee for CD-GraB:
Theorem 2. Suppose that Assumptions 1,2 and 3 hold. For any δ>0, if we set learning rate α to be

α=min

 1

16L2,∞(2n+Ã/m)
,

(
4F1m

2

42L2
2,∞(ς+σ)2Ã2nT+18L2

2,∞m2n3σ2

)1/3
,

where F1 = f(w1)− infw∈Rd f(w) and Ã comes from Theorem 1. Then, with probability at least
1−Tδ,

1

T

T∑
t=1

∥∇f(wt)∥22≤
9(F1L2,∞(ς+σ)Ã)2/3

(mnT )2/3
+
(72F1L2,∞σ)2/3+64F1L2,∞(2+Ã/(mn))

T

=Õ

(
1

(mnT )2/3
+

1

T

)
.

We can also prove an accelerated rate for CD-GraB if we additionally assume the P.L. condition:
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Assumption 4 (P.L. Condition). We say the loss function f fulfills the P.L. condition if there exists
µ>0 such that for any w∈Rd, 1

2∥∇f(w)∥22≥µ(f(w)−infv∈Rdf(v)).

Theorem 3. Suppose that Assumptions 1, 2, 3, and 4 hold. For any δ >0, we set constants W̃ and
C3 to be

C3=
(F1+σ2/L2,∞)µ2

224L2
2,∞(ς+σ)2Ã2

and W̃ =W0(T
2m2n2C3),

where Ã comes from Theorem 1, F1 is from Theorem 2, and W0 is the Lambert-W function. If we set
learning rate α= 2W̃

Tnµ and if the number of epochs T satisfies

T ≥10+
1

µ
32L2,∞(2+Ã/(mn))W0((mnT )2C3)=Õ(1),

then, with probability at least 1−Tδ, it holds that

FT+1≤
1

(mnT )2

(
(F1+L2

2,∞σ2)W̃

C3
+
112L2

2,∞(ς+σ)2Ã2W̃ 2

µ3

)
=Õ

(
1

(mnT )2

)
,

where FT+1=f(wT+1)−infw∈Rdf(w).

We prove Theorems 2 and 3 in the Appendix. Together, they show that CD-GraB exhibits a linear
speedup in the number of workers m over GraB [24]’s convergence rates (Õ((nT )−2/3) and
Õ((nT )−2), respectively).10 under both smoothness and the P.L. condition. Further, CD-GraB’s
convergence rate of Õ((mnT )−2) is faster than many previous rates,11 such as the high probability
bound of Õ((mn)−1T−2) for D-RR in Yun et al. [48].

5 CD-GraB in Practice: Distributed and Simulation Experiments

We next verify CD-GraB’s accelerated convergence on a variety of empirical tasks.12 For ease of
comparison, we follow the experimental plan from the original GraB paper,13 and add some additional
large-scale logistic regression experiments. We also run an ablation study to isolate the effects of
different improvements in CD-GraB. We do this because online PairBalance exhibits performance
benefits that are separate from parallelism — namely, removing the need for gradient centering with
a stale mean and allowing for higher learning rates (Section 3.2).14

Evaluating CD-GraB’s convergence speedup. We use the following three tasks for evaluating
distributed training efficiency: logistic regression on a large-scale mortgage application (New
York 2017 subset, 244,107 examples with 18 features) [7] (Figure 3a), Long Short-Term Memory
(LSTM) [17] on the WikiText-2 dataset [29] (Figure 3b), and autoregressive Multi-Layer Perceptron
(MLP) on the M4 Weekly dataset [25] (Figure 3c). We measure the loss incurred on the entire training
set (Full Train Loss) and task-appropriate test metrics during evaluation, with respect to both the
number of epochs and wall-clock time. Regarding test metrics, we measure test accuracy for the
mortgage application, perplexity for WikiText-2, and SMAPE for M4. Additional details regarding
the datasets, models, and test metrics can be found in the Appendix.

For all three tasks, we use a single 128 GiB memory machine with 4 NVIDIA GeForce RTX 2080
Ti GPUs. For the mortgage application and WikiText-2 (Figures 3a and 3b), we launch m=4 workers
(processes), where each worker runs on one GPU. For the M4 task, we launch m = 32 workers,
where each of the 4 GPUs hosts 8 process workers. We use NCCL as the distributed communication
backend [33] for the mortgage application and WikiText-2 tasks, and GLOO [1] as the distributed
communication backend for the M4 task.

As shown in Figure 3, we compare CD-GraB’s convergence to the standard distributed-training example-
ordering method: random reshuffling (D-RR). From all subfigures in Figure 3, we observe that CD-GraB
outperforms the D-RR baseline significantly and consistently: CD-GraB exhibits better training loss
and test metrics, measured against both the number of epochs and wall-clock time. We also note that the

10For centralized GraB, the total number of examples N=n and m=1.
11These exclusively focus on the P.L. case, so we compare CD-GraB to them under the same condition.
12Our GitHub repository is https://github.com/GarlGuo/CD-GraB.
13Following Lu et al. [24], for our LSTM experiment on WikiText-2, we set the embedding dimension to 32.

We note that we can improve perplexity if we set the dimension higher.
14GraB can also implement online PairBalance, in place of Balance [22] (Appendix).
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(c) Autoregressive MLP on M4 Weekly [25]

Figure 3: Convergence of CD-GraB in comparison to D-RR. For each experiment, we show train loss
over epochs and time (left of each subfigure) and test performance over epochs and time (right of
each subfigure). We run at least 3 random seeds, and plot the mean± STD.

results for CD-GraB are much smoother than for D-RR. This is likely due to the variance of stochastic
gradients during training, which CD-GraB reduces as a side-effect (so, too, does GraB, in comparison to
RR). For smoother D-RR results, we can reduce the learning rate (Appendix). CD-GraB allows for the
use of a larger learning rate, which accelerates training while preserving the final model’s performance.

Ablation simulation study: the importance of coordination at large scale. CD-GraB has several de-
sign benefits over the original centralized GraB algorithm [24]: coordinating parallel workers’ specific
permutations using PairBalance on the server (Algorithm 2) and removing the dependency on a stale
mean (Section 2.1), which enables the ability to using larger learning rates reliably (Section 3.2). Clearly,
not all of these benefits come directly from distributing training. For example, being able to use larger
learning rates, is a side effect of our solution to develop CD-GraB, not our main contribution. There-
fore, we run a simulation ablation study to disentangle the relative importance of each of CD-GraB’s
efficiency benefits over GraB. To do so, we compare the convergence of CD-GraB to two additional base-
lines in the distributed setting, beyond D-RR: (1) ID-GraB (Bal), where each independent worker runs
GraB locally using RandomizedBalance (subroutine in Algorithm 2) to perform gradient vector bal-
ancing; (2) ID-GraB (PairBal), where each independent worker runs GraB locally using PairBalance.

Figure 4 summarizes the results, with convergence curves for m∈{4,8,16,32,64}workers training
LeNet on CIFAR-10. We choose this task and architecture to cohere with the experiments done in
the original GraB paper. For these experiments, we denote B to be the aggregated minibatch across all
the workers, which refers to the number of stochastic examples used for an overall optimization step;
each worker thus has a subset of this minibatch — an equivalently-sized subset of B examples.15 We
make two main observations. First, when scaling up training with more workers, CD-GraB converges
increasingly faster than the no-coordination-ordering methods ID-GraB (Bal) and ID-GraB (PairBal).
This result aligns with our theory and intuition that, when the number of workers m increases, the
parallel herding bound (8) will increase linearly if there is no coordination. Second, as we scale up
to larger m, the convergence curves of ID-GraB (Bal) and ID-GraB (PairBal) gradually approach

15For example, if we have 4 workers with an aggregated minibatch size of 32, each worker would compute
their respective local gradients with 8 examples, and then all-reduce these gradients to obtain the aggregated
minibatch gradient for all 32 examples for the optimization step. We discard N mod B examples at random
to ensure n examples per worker.
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Figure 4: Convergence for CD-GraB, D-RR, ID-GraB (Bal), and ID-GraB (PairBal) training LeNet on
CIFAR-10, withm∈{4,8,16,32,64}workers. For each, the aggregated minibatch size per update is 64.

the curve for D-RR: at larger scales, herding-based example ordering will be no better than randomly
permuting the dataset. Both observations give strong evidence that coordination (i.e., running online
PairBalance on the server to coordinate per-worker permutations) is critical for accelerating training.

We note that all of these experiments use SGD, since both the theoretical results of the original GraB
paper and our results for CD-GraB here are for SGD. In the Appendix, we additionally include results
for training GPT-2 on WikiText-103, for which we use AdamW as the optimizer. We find that GraB
with AdamW works in practice; however, our theory results do not directly apply to these experiments.
We additionally include results on memory usage in the Appendix, which show that CD-GraB results
in negligible overhead in practice.

6 Conclusion and Future Work: Toward an Order Server Architecture
We elevate the benefits of provably faster, permutation-based example ordering to the contemporary
ML distributed-training setting. We focus on reformulating the online Gradient Balancing algorithm
(GraB) [24] because, even though it is the provably optimal permutation-based example-ordering
method [6], it is limited by design to centralized settings (Section 3.1). To overcome these limitations,
we redesign GraB’s herding and balancing framework to account for parallel workers: A parallel
herding objective, which we solve with an online PairBalance subroutine, based on key insights from
kernel thinning [3, 10, 11]. PairBalance operates on ordered pairs of vectors to do balancing, which
enables our full-stack, low-overhead, Coordinated and Distributed online CD-GraB algorithm. We give
a full specification of our online CD-GraB algorithm (Section 3.3), provide convergence rate guarantees
regarding its speedups on both 1) smooth non-convex and 2) P.L. objectives (Section 4), and verify
these speedups in practice on single-node distributed tasks and a simulated ablation study (Section 5).

Both our theory and experiments demonstrate that CD-GraB really shines when there are multiple
training epochs (Appendix). This is another reason that we do not emphasize experiments involving fine-
tuning pre-trained models like GPT-2, as fine-tuning can be achieved in just a couple of epochs. As noted
above, it is also more common to train such models using optimizers from the Adam family. In future
work, we intend to extend the theory on GraB and CD-GraB to such optimizers, which would make
the results on optimal, permutation-based example ordering more useful for base-model pre-training.

Pre-training from scratch would demonstrate the tremendous power of CD-GraB to scale to very large
models; however, we did not have the training budget to perform such experiments for the present work.
Further, to truly exercise the benefits of CD-GraB in such large-scale settings, future work should inves-
tigate moving beyond the single-node setup that we present. Notably, to train larger models, our results
suggest a novel distributed training architecture. The ordering operation performed by the server (Algo-
rithm 4) is not very latency sensitive; the server has the duration of the entire epoch t to compute the new
permutations for the next, t+1 epoch. Given this relaxed latency requirement, and the success of our al-
gorithmic results, it would be an exciting direction for future ML-systems research to invest in building
an Order Server architecture. Such an architecture, which could be composed with traditional parameter
servers, would afford the scalability benefits of CD-GraB to a host of massive-scale ML applications.
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A Glossary

Term/Symbol Explanation

GraB Centralized online Gradient Balancing algorithm. We use this term to refer to
the centralized algorithm developed in the original GraB paper (Lu et al. [24]).

CD-GraB Coordinated and distributed online Gradient Balancing algorithm. We use this
term to refer to the algorithm that constitutes our main contribution.

ID-GraB Independent and distributed online gradient balancing. We implement this for
our ablation study, to compare with coordinated and distributed GraB. There
are two variants: One which uses the original GraB paper’s online Balance
algorithm (ID-GraB (Bal)), and one which implements our online PairBalance
algorithm (ID-GraB (PairBal)).

RR Random reshuffling algorithm. We use this to refer to its centralized variant.

D-RR Distributed random reshuffling algorithm.

SO Shuffle Once algorithm.

x Data-example vector; we do not use this in the math in the main paper, but do refer
to examples in our schematic description for PairBalance ordering in Figure 1.

z Vector (for illustration under the herding context). For GraB and CD-GraB,
these are gradients.

z̄ The average vector (for illustration under the herding context).

zj The j-th component of a vector (for illustration under the herding context).

zi,j The j-th component of the gradient on worker i (for illustration under our
parallel herding framework).

w Parameters / model-weights vector.

f Loss function.

∇f(w) Global loss gradient.

∇f i(w) Local i-th worker’s loss gradient.

∇f i(w;j) Local i-th worker’s, j-th example’s loss gradient.

π A permutation; we study permutation-based example orderings.

T Number of epochs.

t Index for iterating over T epochs.

m Number of workers (in this paper, workers are processes, potentially on different
GPUs but on the same node). m=1 in the centralized setting.

i Index for iterating over m workers .

n Number of training-data examples per worker; equivalent to N
m

.

N Number of total training-data examples. N=n in the centralized setting.

j Index for iterating over examples.

g Gradient, taken with respect to the model weights w and data examples x.

gi
j Gradient associated with the j-th data example x on worker i.

s A sign, either +1 or−1; related to the signed herding problem.

sij A sign, either+1 or−1, computed according to the j-th example gradient gi
j for

worker i; to be associated with the example xj when determining a permutation
ordering using Algorithm 1.
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B Additional Details on the CD-GraB Algorithm and online PairBalance

In this Appendix, we provide more details on related work and our contributions. To start, we give
a unified description of our online CD-GraB algorithm with prior work on herding, vector balancing,
and kernel thinning (Appendix B.1), some more details on Alweiss et al. [2] that we elide in the main
paper due to space constraints (Appendix B.2), conceptual details on implementing CD-GraB with
a parameter server (Appendix B.3), and implementing our improved balancing algorithm (online
PairBalance) in a centralized fashion to get additional improvements for GraB (Appendix B.4).

B.1 Distinguishing our contributions

We summarize our contributions in relation to prior work in a concise format. This kind of presentation
would not be easily understandable without the appropriate background and context that we provide
in the paper. This is why present it here, in the Appendix, so that (ideally) this is seen by the reader
after finishing the main paper.

We emphasize that it is prior work that:

• Formulates the herding objective and solves it with vector balancing [16, 45] (Algorithm 1).

• Leverages ideas from herding and vector balancing (above) in an optimization setting to do
permutation-based example ordering [24].

• Observes and proves that it is possible to solve the herding objective in Õ(1) by only examining
differences on pairs of examples (the overarching idea of PairBalance [10], which relies on the
online RandomizedBalance subroutine [2]; see Algorithm 2).

Our contributions are to bring together all of this prior work in a novel way. We

• Translate the herding and balancing framework to the parallel setting via defining a parallel herding
objective (8).

• Leverage prior work on herding in an optimization setting [24] so that we can do parallel herding
in an optimization setting (Section 3).

• Execute online pair balancing on a server (Algorithm 2 on a running sum, Figure 1), i.e., do pair
balancing in a streaming and asynchronous (rather than blocking) fashion from gradient vectors
produced on distributed workers (Algorithm 2), on the flattened sequenced of paired-difference
gradients (Section 3.2); this leads to an improvement over GraB, which relies on a stale mean.

B.2 More details on RandomizedBalance from Alweiss et al. [2]

In the subroutine for RandomizedBalance in Algorithm 2, we elide details about how the probability
p is computed exactly as in Alweiss et al. [2]. We provide a more complete specification in Algorithm 5
written in terms of a single input vector (which, for us, is the vector containing the difference between
adjacent gradients). Note that the difference here is in the use of a required parameter, constant upper
bound w, which is used to compute the probability p. For clarity of presentation in the subroutine
in Algorithm 2, we have set w=1. Alweiss et al. [2] sets this threshold differently, which we still elide
for simplicity.

Algorithm 5 Probabilistic Balancing with Logarithm Bound [Alweiss et al. [2]]

require: parameter w, used to compute probability
input: current running sum r vector, vector zdiff

1: if |⟨r,zdiff⟩|>w or ∥r∥∞>w then
2: Fail
3: end if
4: compute: p← 1

2−
⟨r,zdiff⟩

2w
5: compute: s←+1 with probability p;

s←−1 with probability 1−p
6: update: r←r+szdiff
7: return: s, r
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In practice, we actually do not use RandomizedBalance in our online PairBalance. We use the
deterministic, greedy-ordering algorithm from the original Lu et al. [24, Algorithm 5] paper:

Algorithm 6 Balancing without normalization [Lu et al. [24]]

input: current running sum r vector, vector zdiff
1: if ∥r+zdiff∥<∥r−zdiff∥ then s←+1 else s←−1
2: update: r←r+szdiff
3: return: s, r

Note that, unlike Alweiss et al. [2] (Algorithm 5), Algorithm 6 from Lu et al. [24] cannot end up in
a failure state.

In Alweiss et al. [2], Theorem 1.1 proves the Õ(1) probabilistic bound for Algorithm 5 (See Theorem 1)
for a restatement of this result in terms of our work). Corollary 7 of Dwivedi and Mackey [10] re-proves
this result (which they mislabel as Alweiss et al. [2], Theorem 1.2, see Dwivedi and Mackey [10,
Appendix R, p. 69]). They improve the constants and have a less conservative setting of the thresholds
w. The proof is also very short and elegant, by relying on their Theorem 3.

B.3 Implementing CD-GraB with a parameter server

For our implementation of CD-GraB, we use a parameter server architecture [20]. For our purposes,
this just entails computing the average gradient (used to update the model on all workers) on the server
side. That is, the server (other than determining the ordering for the next epoch) also has the function
of aggregating gradient information (in this case, a simple mean) to send back to the workers.

We have the server compute the average j-th gradient for illustrative purposes. We could, instead, imple-
ment the computation the average gradient as an all-reduce operation, in which each worker broadcasts
their gradients to all other workers, so that they can each locally compute the average gradient to update
their local models. We implement CD-GraB using a parameter server pattern to show that this is a plausi-
ble architecture to use with our coordinated and distributed example ordering algorithm. We could also
implement a full parameter server system, for which the server also coordinates global model updates.

If we kept everything in our implementation the same and switched to all-reduce, then we would
no longer be following a parameter server paradigm. In this case, the server would just function to
determine example orders. It is this kind of paradigm that suggests the abstraction of an order server,
which we mention briefly in Section 6: A server whose sole responsibility is coordinating worker
information to determine example ordering.

In future work, we intend to explore a host of architectural possibilities — of building a full system
that incorporates both traditional parameter server aspects with our new abstraction of an order server.
For example, we could have parameter servers and order servers work in tandem in a distributed system
to perform model training. To move beyond the single-node implementation we present in this paper,
we intend to investigate the benefits and trade-offs associated with such design decisions in an actual
implemented system.

B.4 Centralized online PairBalance

In Section 3.3, we provide a schematic diagram of how onlinePairBalanceworks for a distributed imple-
mentation using a parameter server (Figure 1). We also claim in Section 3 that online PairBalance can
be applied to the original centralized GraB algorithm for improved empirical performance. We provide
a schematic here, in Figure 5 (analogous to Figure 1), for online PairBalance for centralized GraB.
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Figure 5: Schematic representation of online PairBalance for centralized GraB.

We also provide empirical results comparing GraB’s Balance routine to the online PairBalance routine
that we instead use in this work. We observe that both PairBalance and Balance would have similar
convergence rates under centralized settings, and both outperform RR.

This experiment justifies the uses of PairBalance even in centralized learning settings. PairBalance
theoretically tolerates higher learning rates and, as we will justify in Appendix D.1.2, is more memory-
efficient than Balance. In short, PairBalance an excellent substitute for Balance when running GraB.
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Figure 6: Convergence for centralized online PairBalance on LeNet on CIFAR-10. We use the
identical set of hyperparameters (α = 1e-3, weight decay = 1e-2, momentum = 0.9, B=64) as in the
scaling experiments as in Figure 4.
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C Proof Results

We present supporting results, which we use to prove the main results presented in Section 4. First, we
show how to analyze the parallel herding bound in terms of a single step over the server-sidePairBalance
algorithm (Appendix C.1). We then include some additional observations/notation (Appendix C.2),
which we use in the remaining intermediate results. We prove some intermediate results about how much
the loss can change over the course of one epoch, assuming smoothness (Appendix C.3) and bounded
gradient variance and heterogeneity (Appendix C.4). We combine these results to get one more interme-
diate result about the maximum the loss can change on average over many epochs (Appendix C.5), which
we then use altogether to prove the two theorems that we present in the main paper (Appendix C.6).

C.1 Analyzing the parallel herding bound

In the main paper, we cover how CD-GraB runs on both the worker- and server-side. In this section,
we dive deeper into the example-ordering part of CD-GraB, and demonstrate in theory how server-side
online PairBalance reduces the parallel herding bound (8), as formulated in Section 3. We conclude
this section by presenting Lemma 1, which shows server-side PairBalance is able to iteratively reduce
the parallel herding bound.

To begin, we formalize our illustration over a group of vectors (since vector balancing, including
PairBalance, does not inherently involve an optimization context until we use it in our online setting on
gradients). Without loss of generality, we assume that the N examples are divided evenly among the m
workers and that n is even. That is, we consider that we are given a set of vectors zi,j ∈Rd for i∈ [m]

and j∈ [n] evenly located on m workers (i.e., n= N
m ), where zi,j denotes the j-th vector located on the

i-th worker. Now denote πi as the original permutation of the vectors on worker i. Consider running
Algorithm 7 on the server side over these N vectors.

Algorithm 7 Server-side PairBalance over a set of vectors (one step)

require: m workers, n := N
m vectors per worker

input: initial permutations for all the workers {πi}mi=1
1: initialize: new permutations for all the workers {π′

i}mi=1
2: initialize: running partial sum h=0
3: initialize: new indices front (left) pointer {li=1}mi=1
4: initialize: new indices back (right) pointer {ri=1}mi=1
5: for example j :=1...n do
6: for worker i :=1...m do
7: if j mod 2=0 then ▷ If at an even index, i.e., can examine a full pair of examples
8: h,sij−1,s

i
j←PairBalance(h,zi

j−1,z
i
j)

9: if sij−1=+1 then
10: π′

i(li)=j−1; li= li+1 ▷ Append first in pair to the front/left
11: π′

i(ri)=j; ri=ri−1 ▷ Append second in pair to the right/back
12: else
13: π′

i(li)=j; li= li+1 ▷ Append second in pair to the left/front
14: π′

i(ri)=j−1; ri=ri−1 ▷ Append first in pair to the right/back
15: end if
16: end if
17: end for
18: end for
19: output: new permutations for all m workers {π′

i}mi=1

Figure 7: One-step PairBalance algorithm on the server side to solve the parallel herding problem
(8). This algorithm can be seen as a prototype for Algorithms 3 and 4, without the optimization context.

It follows, in the following Lemma 1, that we can get the parallel herding bound with the output
permutations {π′

i}mi=1 from Algorithm 7:
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Lemma 1. Suppose that we have a set of vectors zi,j ∈Rd for all i,i′∈ [m] and for all j,j′∈ [n] that
satisfies ∥∥∥∥∥∥

m∑
i=1

n∑
j=1

zi,j

∥∥∥∥∥∥
∞

≤c1 and

∥∥∥∥∥∥zi′,j′− 1

mn

m∑
i=1

n∑
j=1

zi,j

∥∥∥∥∥∥
∞

≤c2

for some constants c1 > 0 and c2 > 0. If we run Algorithm 7 over these vectors, then, for any δ > 0,
it holds with probability at least 1−δ that

max
l∈[n]

∥∥∥∥∥∥
m∑
i=1

l∑
j=1

zi,π′
i(j)

∥∥∥∥∥∥
∞

≤ 1

2
max
l∈[n]

∥∥∥∥∥∥
m∑
i=1

l∑
j=1

zi,πi(j)

∥∥∥∥∥∥
∞

+c1+Ãc2,

where Ã comes from Theorem 1.

Lemma 1 shows that PairBalance reduces the parallel herding objective (8) towards a constant
(invariant ton) at each step. This implies that, if we repeatedly callPairBalance on a given permutation,
it will return a permutation that guarantees the parallel herding bound to be Õ(1).

Proof. We prove this lemma by defining the following auxiliary sequence of pair differences, as in
Section 3.2

yn·(k−1)+i=zi,πi(2k−1)−zi,πi(2k), ∀k∈ [n/2],

which we also can refer to as {yj}mn/2
j=1 .

We also leverage Theorem 1, which we reprint below for clarity of presentation:

Theorem 1 (Corollary 7, Dwivedi and Mackey [10]). Consider any vectors {zj}Nj=1 (zj ∈Rd) with
∥zj∥2≤1 supplied as input to the RandomizedBalance subroutine in Algorithm 2. Then for any δ>0,
with probability at least 1−δ, RandomizedBalance outputs a sequence of signs {sj}Nj=1 ∈ {−1,1}

that satisfy maxk∈[N ]

∥∥∥∑k
j=1sjzj

∥∥∥
∞
≤Ã, where Ã=

√
2log

(
4d
δ

)
log
(
4N
δ

)
=Õ(1).

Note that the reordering part of Algorithm 7 (line 8) gives a sequence of signs {sj}mn/2
j=1 . Therefore,

by Theorem 1, the sequence {yj}mn/2
j=1 satisfies

max
P∈[mn/2]

∥∥∥∥∥
P∑

p=1

spyp

∥∥∥∥∥
∞

≤2Ãc2, (9)

since (based on what is given in Lemma 1)

∥∥yn(k−1)+i

∥∥
∞≤

∥∥∥∥∥∥zi,πt,i(2k−1)−
1

mn

m∑
i=1

n∑
j=1

zi,j

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥zi,πt,i(2k)−
1

mn

m∑
i=1

n∑
j=1

zi,j

∥∥∥∥∥∥
∞

≤2c2.

Note that, if si,k is the sign associated with yn(k−1)+i, then zi,πt,i(2k−1) and zi,πt,i(2k) will receive
opposite signs si,k and−si,k, respectively.

We denote x+
i,k to be the example that receives sign si,k=+1 and x−

i,k to be the example that receives
sign si,k=−1.

That is, if si,k=+1, then x+
i,k=zi,πi(2k−1), otherwise, if si,k=−1, then x+

i,k=zi,πi(2k); and, x−
i,k

is the other term of the pair {zi,πi(2k−1),zi,πi(2k)}.
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Now, for K∈ [n2 ], let

κi,K=

K∑
k=1

(zi,πi(2k−1)+zi,πi(2k)) and

υi,K=

K∑
k=1

(si,kzi,πi(2k−1)−si,kzi,πi(2k)).

Then
K∑

k=1

x+
i,k=

1

2
(κi,K+υi,K) and

K∑
k=1

x−
i,k=

1

2
(κi,K−υi,K).

Now, observe that

m∑
i=1

κi,K=

2K∑
j=1

m∑
i=1

zi,πi(j) and
m∑
i=1

υi,K=

mK∑
p=1

spyp.

Therefore,

max
K∈[n/2]

∥∥∥∥∥
K∑

k=1

m∑
i=1

x+
i,k

∥∥∥∥∥
∞

≤ 1

2

(
max

K∈[n/2]

∥∥∥∥∥
m∑
i=1

κK,i

∥∥∥∥∥
∞

+ max
K∈[n/2]

∥∥∥∥∥
m∑
i=1

υK,i

∥∥∥∥∥
∞

)

≤ 1

2
max

K∈[n/2]

∥∥∥∥∥∥
2K∑
j=1

m∑
i=1

zi,j

∥∥∥∥∥∥
∞

+Ãc2 By substituting above and (9)

≤ 1

2
max
k∈[n]

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

zi,j

∥∥∥∥∥∥
∞

+Ãc2.

And similarly,

max
K∈[n/2]

∥∥∥∥∥
K∑

k=1

m∑
i=1

x−
i,k

∥∥∥∥∥≤ 1

2

(
max

K∈[n/2]

∥∥∥∥∥
m∑
i=1

κK,i

∥∥∥∥∥
∞

+ max
K∈[n/2]

∥∥∥∥∥
m∑
i=1

υK,i

∥∥∥∥∥
∞

)

≤ 1

2
max
k∈[n]

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

zi,j

∥∥∥∥∥∥
∞

+Ãc2.

Applying the new permutation π′
i(j) on the vectors zi,πi(j), we get for each i ∈ [m] the permuted

sequence
x+
i,1,...,x

+
i,n/2,x

−
i,n/2,...,x

−
i,1.

Thus, we need to bound the herding objective of the sequence

m∑
i=1

x+
i,1,...,

m∑
i=1

x+
i,n/2,

m∑
i=1

x−
i,n/2,...,

m∑
i=1

x−
i,1.

If the partial sums above peak at t0≤n/2, then we can bound the parallel herding objective as

∥∥∥∥∥
t0∑

k=1

m∑
i=1

x+
i,k

∥∥∥∥∥
∞

= max
K∈[n/2]

∥∥∥∥∥
K∑

k=1

m∑
i=1

x+
i,k

∥∥∥∥∥
∞

≤ 1

2
max
k∈[n]

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

zi,j

∥∥∥∥∥∥
∞

+Ãc2;

otherwise, we can bound the parallel herding objective as
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∥∥∥∥∥∥
n∑

j=1

m∑
i=1

zi,j−
m−t0∑
k=1

m∑
i=1

x−
i,k

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
n∑

j=1

m∑
i=1

zi,j

∥∥∥∥∥∥
∞

+

∥∥∥∥∥
m−t0∑
k=1

m∑
i=1

x−
i,k

∥∥∥∥∥
∞

≤c1+
1

2
max
t∈[n]

∥∥∥∥∥∥
t∑

j=1

m∑
i=1

zi,j

∥∥∥∥∥∥
∞

+Ãc2,

since in Algorithm 1 the list of vectors with negative signs is reversed before concatenated.

The claim follows.

C.2 Notation and observations

We begin with three notes that we will use throughout the intermediate results we present in this section.
We will use the lemmas presented here to prove our main results: Theorems 2 and 3 in Appendix C.6.

1. A single t-th update. First, recall that one t-th step of the parameter update can be written as

wj+1
t =wj

t−
α

m

m∑
i=1

∇f i(wj
t ;πt,i(j)), ∀j∈ [n]

We will use the convention wt+1≜w1
t+1≜wn+1

t .
2. The maximum amount a parameter can change over an epoch. The key quantity in our proof

is ∆t, which is the maximum amount that a parameter in w can change in epoch t. That is,

∆t≜max
k∈[n]

∥∥wk+1
t −wt

∥∥
∞

=
α

m
max
k∈[n]

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(wj
t ;πt,i(j))

∥∥∥∥∥∥
∞

. (10)

Following this definition of ∆t, we note that the maximum amount that a parameter in w can
change over two different epochs is 2∆t. That is, we observe∥∥∥wj

t−wk
t

∥∥∥
∞
≤
∥∥∥wj

t−wt

∥∥∥
∞
+
∥∥wk

t −wt

∥∥
∞≤2∆t∥∥∥wj

t+1−wk
t

∥∥∥
∞
≤
∥∥∥wj

t+1−wt+1

∥∥∥
∞
+∥wt+1−wt∥∞+

∥∥wk
t −wt

∥∥
∞≤∆t+1+2∆t, ∀j,k∈ [n].

We make repeated use of this relation in the results that follow, which we typically will use in
combination with the Lipschitz assumption to bound gradients of the same loss function but with
different parameters.

3. Bounding loss at epoch t. We will denote Ft = f(wt)−f(w∗) where w∗ is the minimizer of
f which we assume to be bounded from below.

C.3 Assuming L2,∞-smoothness: results on the amount the loss can change over one epoch)

We will next prove an intermediate result regarding that bounds the loss f at epoch t+1 in relation
to the loss at the prior epoch t (Lemma 2). That is, we prove results about how much the loss with
respect to the parameters can change over the course of one epoch.
Lemma 2. If the loss f is L2,∞-smooth and the learning rate α≤ 1

nL2,∞
, then

f(wt+1)≤f(wt)+
αnL2

2,∞

2
∆2

t−
αn

2
∥∇f(wt)∥22. (11)

Proof. We begin with the definition of L2,∞-smoothness, with respect to loss f :

f(wt+1)≤f(wt)+∇f(wt)
⊤(wt+1−wt)+

L2,∞

2
∥wt+1−wt∥22
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Also observe that

−∇f(wt)
⊤(wt−wt+1)=−

αn

2
2∇f(wt)

⊤
(
wt−wt+1

αn

)
=

αn

2

(∥∥∥∥∇f(wt)−
(wt−wt+1)

αn

∥∥∥∥2
2

−∥∇f(wt)∥22−
∥∥∥∥ (wt−wt+1)

αn

∥∥∥∥2
2

)
.

(12)

Combining the above — i.e., the definition of L2,∞-smoothness with (12) — we get

f(wt+1)≤f(wt)+
αn

2

∥∥∥∥∇f(wt)−
(wt−wt+1)

αn

∥∥∥∥2
2

−αn

2
∥∇f(wt)∥22 +

αnL2,∞−1
2αn

∥wt−wt+1∥22.

The last term on the right-hand side is≤0 by the assumption that the learning rateα≤ 1
nL2,∞

. Therefore,

f(wt+1)≤f(wt)+
αn

2

∥∥∥∥∇f(wt)−
(wt−wt+1)

αn

∥∥∥∥2
2

−αn

2
∥∇f(wt)∥22. (13)

We next bound the second term on the right-hand side by ∆t (10):∥∥∥∥∇f(wt)−
(wt−wt+1)

αn

∥∥∥∥2
2

=

∥∥∥∥∥∥ 1

mn

m∑
j=1

n∑
i=1

∇f i(wt,πt(j))−
1

mn

m∑
j=1

n∑
i=1

∇f i(wj
t ;πt(j))

∥∥∥∥∥∥
2

2

≤ 1

mn

m∑
j=1

n∑
i=1

∥∥∥∇f i(wt,πt(j))−∇f i(wj
t ;πt(j))

∥∥∥2
2

≤
L2
2,∞

mn

m∑
j=1

n∑
i=1

∥∥∥wj
t−wt

∥∥∥2
∞
,

where we have used L2,∞-smoothness (Assumption 3) in the last inequality. Substituting ∆t, we get

L2
2,∞

mn

m∑
j=1

n∑
i=1

∥∥∥wj
t−wt

∥∥∥2
∞
≤ L2

2,∞∆2
t .

Plugging the above into (13), we get

f(wt+1)≤f(wt)+
αnL2

2,∞

2
∆2

t−
αn

2
∥∇f(wt)∥22,

yielding the claim.

We next build slightly on Lemma 2 to make two additional observations. First:
Lemma 3. If the loss f is L2,∞-smooth and the learning rate α≤ 1

nL2,∞
, then

1

T

T∑
t=1

∥∇f(wt)∥22≤
2F1

αnT
+
L2
2,∞

T

T∑
t=1

∆2
t ,

where F1 comes from Theorem 2.

Proof. Using Lemma 2 and Jensen’s inequality, we average (11) over t∈ [T ] and match terms, yielding
1

T

T∑
t=1

∥∇f(wt)∥22≤
2(f(w1)−f(wT+1))

αnT
+
L2
2,∞

T

T∑
t=1

∆2
t .

Substituting F1, we get

≤ 2F1

αnT
+
L2
2,∞

T

T∑
t=1

∆2
t ,

yielding the claim.
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We next build on Lemma 2 by further assuming the P.L. assumption holds.
Lemma 4. If the loss f is L2,∞-smooth, the learning rate α ≤ 1

nL2,∞
, and the P.L. assumption

(Assumption 4) holds, then, for ρ=1− αnµ
2

FT+1≤ρTF1+
αnL2

2,∞

2

T∑
t=1

ρT−t

(
∆2

t−
1

2L2
2,∞
∥∇f(wt)∥22

)
.

Proof. From Lemma 2, we got (11), i.e.,

f(wt+1)≤f(wt)+
αnL2

2,∞

2
∆2

t−
αn

2
∥∇f(wt)∥22,

Applying the P.L. assumption (Assumption 4) to (11), we get

f(wt+1)≤f(wt)+
αnL2

2,∞

2
∆2

t−
αn

4
∥∇f(wt)∥22−

αn

4
∥∇f(wt)∥22

≤f(wt)+
αnL2

2,∞

2
∆2

t−
αnµ

2
(f(wt)−f(w∗))−αn

4
∥∇f(wt)∥22.

Subtracting f∗ from both sides, we get

f(wt+1)−f∗≤
(
1−αnµ

2

)
(f(wt)−f∗)+

αn

2

(
L2
2,∞∆2

t−
1

2
∥∇f(wt)∥22

)
.

For ρ=1− αnµ
2 , we then apply the above inequality recursively for t∈ [T ], yielding the claim:

FT+1≤ρTF1+
αnL2

2,∞

2

T∑
t=1

ρT−t

(
∆2

t−
1

2L2
2,∞
∥∇f(wt)∥22

)
.

C.4 Assuming bounded gradient variance and heterogeneity: results applying Algorithm 7

We next prove a result that builds on Lemma 1 and our one-step version of the server-side PairBalance
algorithm (Algorithm 7).

We begin by introducing some additional notation. Namely, we will call π−1 the operation that, given
an example, yields the index in the permutation for that example. For instance, πt+1,i(j) returns the
example at the j-th index for the i-th worker’s t+1 permutation. Let us denote that example τ . Then,
π−1
t,i πt+1,i(j) is equivalent to applying π−1

t,i to τ : it takes the example τ and returns τ ’s associated
index in the i-th worker’s epoch t’s permutation (in this case, the prior epoch’s permutation).

We will make use of this notation in the following Lemma.
Lemma 5. Assume bounded gradient variance (Assumption 1), bounded gradient heterogeneity
(Assumption 2), and L2,∞-smoothness (Assumption 3). For t∈ [T ] and δ>0, if we apply Algorithm 7
to the gradients∇f i(wj

t ;π
i
t(j)) at epoch t to produce the next permutation πt+1,i for epoch t+1, then,

with probability at least 1−δ,

∆t+1 ≤ 1

2
∆t + αL2,∞

(
4n+

2Ã

m

)
∆t + αnL2,∞∆t+1 +

α(ς+σ)Ã

m
+ αn∥∇f(wt+1)∥2,

where Ã comes from Theorem 1.

Proof. We start with the triangle inequality:∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(wj
t+1;πt+1,i(j))

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(w
π−1
t,i πt+1,i(j)

t ;πt+1,i(j))

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

(
∇f i(wj

t+1,i,πt+1,i(j))−∇f i(w
π−1
t,i πt+1,i(j)

t,i ;πt+1,i(j))

)∥∥∥∥∥∥
∞

(14)

We use Lemma 1 to bound the first term on the right-hand side of (14) from Lemma 2.
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That is, let

zi,j=∇f i(w
π−1
t,i (j)

t ;j),
so that

zi,πt+1,i(j)=∇f
i(w

π−1
t,i πt+1,i(j)

t ;πt+1,i(j)).

The upper bounds for
∥∥∥zi,j− 1

mn

∑
r,szr,s

∥∥∥
∞

and
∥∥∥∑i,jzi,j

∥∥∥
∞

are:∥∥∥∥∥∇f i(wj
t ;πt,i(j))−

1

mn

m∑
r=1

n∑
s=1

∇fs(wr
t ;πt,s(r))

∥∥∥∥∥
∞

,

which are

≤

∥∥∥∥∥∇f i(wj
t ;πt,i(j))−

1

mn

m∑
r=1

n∑
s=1

∇fs(wj
t ;πt,s(r))

∥∥∥∥∥
∞

+∥∥∥∥∥ 1

mn

m∑
r=1

n∑
s=1

∇fs(wj
t ;πt,s(r))−

1

mn

m∑
r=1

n∑
s=1

∇fs(wr
t ;πt,s(r))

∥∥∥∥∥
∞

.

We can rewrite the above to be

≤
∥∥∥∇f i(wj

t ;πt,i(j))−∇f(wj
t )
∥∥∥
∞
+
L2,∞

mn

m∑
r=1

m

n∑
s=1

∥∥∥wj
t−wr

t

∥∥∥
∞

≤ ς+σ+2L2,∞∆t,

by Assumptions 1, 2, and 3, and by the definition of ∆t (10).

Now, observe that∥∥∥∥∥∥
m∑
i=1

n∑
j=1

∇f i(wj
t ;πt,i(j))

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
m∑
i=1

n∑
j=1

∇f i(wj
t ;πt,i(j))−

m∑
i=1

n∑
j=1

∇f i(wt+1;πt,i(j))

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
m∑
i=1

n∑
j=1

∇f i(wt+1;πt,i(j))

∥∥∥∥∥∥
∞

.

By using the above, we can rewrite the right-hand side to be

≤
m∑
i=1

n∑
j=1

L2,∞

∥∥∥wj
t−wt+1

∥∥∥
∞
+mn∥∇f(wt+1)∥∞

≤2mnL2,∞∆t+mn∥∇f(wt+1)∥2.
Therefore, by Lemma 1,

max
k∈[n]

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(w
π−1
t,i πt+1,i(j)

t ,πt+1,i(j))

∥∥∥∥∥∥
∞

≤max
k∈[n]

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(wj
t ,πt,i(j))

∥∥∥∥∥∥
∞

+2mnL2,∞∆t+∥∇f(wt+1)∥2+(ς+σ+2L2,∞∆t)Ã.

The second term of the triangle inequality (14) can be bounded as∥∥∥∥∥∥
k∑

j=1

m∑
i=1

(
∇f i(wj

t+1,i;πt+1,i(j))−∇f i(w
π−1
t,i πt+1,i(j)

t,i ;πt+1,i(j))

)∥∥∥∥∥∥
∞

,

which is
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≤
k∑

j=1

m∑
i=1

∥∥∥∥wj
t+1,i−w

π−1
t,i πt+1,i(j)

t,i

∥∥∥∥
∞

≤mnL2,∞(∆t+1+2∆t).

Substituting these bounds into the right-hand side of the triangle inequality (14), taking the max of
both sides, and grouping terms, we get

max
k∈[n]

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(wj
t+1,i,πt+1,i(j))

∥∥∥∥∥∥
∞

≤1

2
max
k∈[n]

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(wj
t ,πt,i(j))

∥∥∥∥∥∥
∞

+L2,∞(4mn+2Ã)∆t+mnL2,∞∆t+1+(ς+σ)Ã

+mn∥∇f(wt+1)∥2.

Multiplying both sides by α
m and using the definition of ∆t (10), we get the claim.

C.5 Combining the prior intermediate results: proofs over multiple steps

Lemma 6. If the learning rate α≤ 1
16L2,∞(2n+Ã/m)

, then

1

T

T∑
t=1

∆2
t ≤

21α2(ς+σ)2Ã2

m2
+
9α2n2σ2

T
+21α2n2 1

T

T∑
t=1

∥∇f(wt)∥22.

Proof. First, we bound ∆2
1.

We start with a series of triangle inequalities:

α

m

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(wj
1,π1,i(j))

∥∥∥∥∥∥
∞

≤ α

m

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

∇f i(wj
1,π1,i(j))−

k∑
j=1

m∑
i=1

∇f i(w1,π1,i(j))

∥∥∥∥∥∥
∞

+
α

m

∥∥∥∥∥∥
k∑

j=1

m∑
i=1

(
∇f i(w1,π1,i(j))−∇f i(w1)

)∥∥∥∥∥∥
∞

+αk∥∇f(w1)∥∞

≤ α

m

k∑
j=1

m∑
i=1

L2,∞

∥∥∥wj
1−w1

∥∥∥
∞
+αkσ+αk∥∇f(w1)∥2.

We next take the max of both sides with respect to k∈ [n]:

∆1≤αnL2,∞∆1+αnσ+αn∥∇f(w1)∥2

≤(1/32)∆1+αnσ+αn∥∇f(w1)∥2 (since α≤ 1

32nL2,∞
)

≤(32/31)αnσ+(32/31)αn∥∇f(w1)∥2,
Squaring both sides:

∆2
1≤3α2n2σ2+3α2n2∥∇f(w1)∥22. (15)

Now, we use Lemma 5 to get the relationship between ∆t+1 and ∆t for t∈ [T ].
Recall that

∆t+1≤
1

2
∆t+αL2,∞

(
4n+

2Ã

m

)
∆t+αnL2,∞∆t+1+

α(ς+σ)Ã

m
+αn∥∇f(wt+1)∥2
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Because α≤ 1
16L2,∞(2n+Ã/m)

, we can rewrite the above as

∆t+1≤
1

2
∆t+(1/8)∆t+(1/32)∆t+1+

α(ς+σ)Ã

m
+αn∥∇f(wt+1)∥2.

Squaring both sides:

(31/32)2∆2
t+1≤

1

2
∆2

t+2

(
(1/8)∆t+

α(ς+σ)Ã

m
+αn∥∇f(wt+1)∥2

)2

≤ 1

2
∆2

t+(6/82)∆2
t+

6α2(ς+σ)2Ã2

m2
+6α2n2∥∇f(wt+1)∥22,

so that

∆2
t+1≤(32/31)2(1/2+6/82)∆2

t+
(32/31)26α2(ς+σ)2Ã2

m2
+(32/31)26α2n2∥∇f(wt+1)∥22

≤(2/3)∆2
t+

7α2(ς+σ)2Ã2

m2
+7α2n2∥∇f(wt+1)∥22.

(16)

We next sum (16) over t∈ [T−1] and add (15):

∆2
1+

T∑
t=2

∆2
t ≤(2/3)

T∑
t=2

∆2
t−1+

(T−1)7α2(ς+σ)2Ã2

m2
+3α2n2σ2+7α2n2

T∑
t=1

∥∇f(wt)∥22

1

T

T∑
t=1

∆2
t ≤(2/3)

1

T

T∑
t=1

∆2
t+

7α2(ς+σ)2Ã2

m2
+
3α2n2σ2

T
+7α2n2 1

T

T∑
t=1

∥∇f(wt)∥22

≤ 21α2(ς+σ)2Ã2

m2
+
9α2n2σ2

T
+21α2n2 1

T

T∑
t=1

∥∇f(wt)∥22,

yielding the claim.

We next build on Lemma 6.

Lemma 7. If α≤ 2
9nµ , then, for ρ=1− αnµ

2 ,

T∑
t=1

ρT−t∆2
t ≤12ρT−1α2n2σ2+

28ρα2(ς+σ)2Ã2

(1−ρ)m2
+

1

2L2
2,∞

T∑
t=1

ρT−t∥∇f(wt)∥22.

Proof. Recall (15) from Lemma 6:

∆2
1≤3α2n2σ2+3α2n2∥∇f(w1)∥22.

We multiply each term ∆t with ρT−t for t∈ [T ] and get

ρT−1∆2
1≤ρT−13α2n2σ2+ρT−13α2n2∥∇f(w1)∥22. (17)

Similarly, recall (16) from Lemma 6,

∆2
t+1≤(2/3)∆2

t+
7α2(ς+σ)2Ã2

m2
+7α2n2∥∇f(wt+1)∥22,

for which we also multiply each term ∆t with ρT−t for t∈ [T ], and get
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ρT−t∆2
t ≤(2/3)ρT−t∆2

t−1+ρT−t 7α
2(ς+σ)2Ã2

m2
+ρT−t7α2n2∥∇f(wt)∥22

≤(3/4)ρT−(t−1)∆2
t−1+ρT−t 7α

2(ς+σ)2Ã2

m2
+ρT−t7α2n2∥∇f(wt)∥22, ∀t∈{2,...,T},

(18)

where we have used α≤ 2
9nµ so that ρ=1− αnµ

2 ≥(2/3)(4/3).

Next, we sum the bounds in (17) and (18) for ρT−t∆t for all t∈ [T ], and we get

ρT−1∆2
1+

T∑
t=2

ρT−t∆2
t ≤

3

4

T∑
t=2

ρT−(t−1)∆2
t−1+ρT−13α2n2σ2+

T∑
t=1

ρT−t 7α
2(ς+σ)2Ã2

m2
+

7α2n2
T∑

t=1

ρT−t∥∇f(wt)∥22.

We can rewrite the right-hand side as

≤ 3

4

T∑
t=1

ρT−t∆2
t+ρT−13α2n2σ2+

7ρα2(ς+σ)2Ã2

(1−ρ)m2
+7α2n2

T∑
t=1

ρT−t∥∇f(wt)∥22

≤12ρT−1α2n2σ2+
28ρα2(ς+σ)2Ã2

(1−ρ)m2
+28α2n2

T∑
t=1

ρT−t∥∇f(wt)∥22.

Lastly, we use α≤ 1√
56nL2,∞

to get:
T∑

t=1

ρT−t∆2
t ≤12ρT−1α2n2σ2+

28ρα2(ς+σ)2Ã2

(1−ρ)m2
+

1

2L2
2,∞

T∑
t=1

ρT−t∥∇f(wt)∥2.
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C.6 Proof of Theorems 2 and 3

Using the Lemmas above, we next prove our main results, presented in Section 4.

Proof of Theorem 2. The given learning rate α satisfies the constraints of Lemma 3 and Lemma 6.

Therefore,

1

T

T∑
t=1

∥∇f(wt)∥22≤
2F1

αnT
+L2

2,∞

(
21(α(ς+σ)Ã)2

m2
+
9(αnσ)2

T
+21α2n2 1

T

T∑
t=1

∥∇f(wt)∥22

)

≤ 4F1

αnT
+
42L2

2,∞(α(ς+σ)Ã)2

m2
+
18L2

2,∞(αnσ)2

T
,

due to α≤ 1√
42nL2,∞

.

We next derive the convergence rate. Let Γ= 42(L2,∞(ς+σ)Ã)2

m2 +
18L2

2,∞n2σ2

T . Then,

1

T

T∑
t=1

∥∇f(wt)∥22≤
4F1

αnT
+Γα2.

We then set α≤
(

4F1

nΓT

)1/3
. So we will have α=min

{
1

16L2,∞(2n+Ã/m)
,
(

4F1

nΓT

)1/3}
or

1

α
=max

{
16L2,∞(2n+Ã/m),

(
4F1

nΓT

)−1/3
}
.

Substitute α:

1

T

T∑
t=1

∥∇f(wt)∥22≤
4F1

nT

{
16L2,∞(2n+Ã/m)+

(
4F1

nΓT

)−1/3
}
+Γ

(
4F1

nΓT

)2/3

≤
(
4F1

nT

)2/3

Γ1/3+
64F1L2,∞(2+Ã/(mn))

T

≤
(
4F1

nT

)2/3
(
(
√
42L2,∞(ς+σ)Ã)2/3

m2/3
+
(
√
18L2,∞nσ)2/3

T 1/3

)

+
64F1L2,∞(2+Ã/(mn))

T

≤ (4
√
42F1L2,∞(ς+σ)Ã)2/3

(mnT )2/3
+
(72F1L2,∞σ)2/3

T

+
64F1L2,∞(2+Ã/(mn))

T
,

Since (4
√
42)2/3<9, the above is

≤ 9(F1L2,∞(ς+σ)Ã)2/3

(mnT )2/3
+
(72F1L2,∞σ)2/3+64F1L2,∞(2+Ã/(mn))

T
,

in which the leading term (slowest in terms of T ) is Õ((mnT )−2/3), proving the claim.
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Proof of Theorem 3. With the P.L. assumption (Assumption 4), we use Lemma 4 and Lemma 7. We
show that their constraints are satisfied later) to get

FT+1≤ρTF1+
αnL2

2,∞

2

T∑
t=1

ρT−t

(
∆2

t−
1

2L2
2,∞
∥∇f(wt)∥22

)

≤ρTF1+
αnL2

2,∞

2

(
12ρT−1α2n2σ2+

28ρα2(ς+σ)2Ã2

(1−ρ)m2

)

≤ρTF1+ρT−16α3n3L2
2,∞σ2+

28ρα3nL2
2∞(ς+σ)2Ã2

αnµm2

≤ρTF1+ρT 7α3n3L2
2,∞σ2+

28ρα3nL2
2∞(ς+σ)2Ã2

αnµm2

≤ρT (F1+σ2/L2,∞)+
28α2L2

2,∞(ς+σ)2Ã2

µm2

≤(F1+σ2/L2,∞)exp(−Tαnµ/2)+
28α2L2

2,∞(ς+σ)2Ã2

µm2
,

where we have further constrained α≤ 2
9nµ so that ρ≤9/8 in the forth inequality and α≤ 1

71/3nL2,∞

in the fifth inequality. By setting the derivative w.r.t α of the RHS to 0, the minimizer α under the
constraint that 0<α≤min

{
2

9nµ ,
1

16L2,∞(2n+Ã/m)

}
(required by the lemmas) is:

α=
2

Tnµ
W0(T

2m2n2C3),

as long as

T ≥1+
2

nµ
max{(9/2)nµ,16L2,∞(2n+Ã/m)W0(T

2m2n2C3)}

=10+
1

µ
32L2,∞(2+Ã/(mn))W0(T

2m2n2C3),

where C3=
(F1+σ2/L2,∞)µ2

224L2
2,∞(ς+σ)2Ã2

.

What we did here was to set T just large enough so that the minimizer α is the same with or without
the constraint.

Denoting W̃ =W0(T
2m2n2C3)=Õ(1), we get

FT+1≤
(F1+σ2/L2,∞)W̃

T 2m2n2C3
+
112L2

2,∞(ς+σ)2Ã2W̃ 2

T 2m2n2µ3

≤ 1

T 2m2n2

(
(F1+σ2/L2,∞)W̃

C̃3

+
112L2

2,∞(ς+σ)2Ã2W̃ 2

µ3

)
,

which shows rate the convergence rate in the P.L. case is Õ((mnT )−2).
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D Experiment Details

Here we provide more extensive details on our empirical results. This includes background information
on our experimental setup in the main paper (Appendix D.1), an additional simulation experiment on
pre-training and fine-tuning Tiny GPT-2 (Appendix D.2), and an additional simulation experiment that
investigates CD-GraB with different learning rates (Appendix D.3). Our source codes can be found here.

D.1 Additional details on setup for main paper experiments

D.1.1 Distributed experiments

We provide additional details on the experiments shown in Figure 3.

Hardware and software. We use a single machine with 128 GiB memory, 1 CPU, and 4 Nvidia
GeForce 2080ti GPUs for the HMDA mortgage application, M4, and WikiText-2 tasks. We first
discard the remainder N modB, and then randomly partition n to each worker. Our experiments
are all implemented with the PyTorch library. We release our code suite at [REDACTED].

Datasets and models.

• Logistic regression on mortgage application (NY 2017 subset): The US Home Mortgage
Disclose Act (HMDA) makes available US national data regarding mortgage applications, which
has recently been packaged up for easy ML research use [7]. We use the binary classification
version of the task, which classifies features as either “grant loan” or “deny loan,” for the New
York (NY) 2017 subset of the dataset, which includes 244107 examples with 18 features. We
model this problem using logistic regression, for which we first perform a random 80/20 train/test
split on the raw dataset, and then we discard N modB (B is the aggregated minibatch size)
examples to ensure that each worker receives exactly n examples. We use 1 worker per GPU, and
in total we have m=4 workers, and use NCCL [33] as the distributed communication backend;
m=4,n=48816,d=18,B=16. We report test accuracy as our evaluation metric.

• LSTM on WikiText-2: We follow the settings in Lu et al. [24] and train a 2-layer LSTM with
an embedding size of 32 and dropout set to 0. We use backpropagation through time, for which
we set the sequence length to 35. We also adopt the word-vector-classifier-weight-sharing strategy
inspired by Inan et al. [19]. WikiText-2 [43] has 600 articles in the train set, with more than 2M
tokens and 30K vocabulary; the validation and test sets each have 60 articles. We adapt our training
script from PyTorch’s official Word Language Modeling Github repository. We use 4 workers in
total, with each GPU hosting 1 worker, and use NCCL as the distributed communication backend;
m=4,n=3728,d=1081760,B=16. We report test perplexity as the evaluation metric, and we
follow the HuggingFace’s approach of computing perplexity as the exponentiated average negative
log-likelihood of a sequence16.

• Autoregressive MLP on M4 Weekly Dataset: We build a 3-layer autoregressive MLP with
a hidden dimension of 64. We set input sequence length to be 20 and the output sequence
length to be 6. M4 is a time series dataset composed of 100,000 time series for yearly, quarterly,
monthly, weekly, daily and hourly data [25], which is drawn from a random sample of ForeDeCk
database [42]. We use the weekly data in our experiment. We use 32 workers, where each of
the 4 GPUs hosts 8 process workers. We use GLOO as the distributed communication backend.
m=32, n=3355, d=5569, B=32. We report test symmetric mean absolute percentage error
(SMAPE) as the evaluation metric. We follow the formula of SMAPE in [25] as follows:

SMAPE≜
2

h

n+h∑
t=n+1

|Yt−Ŷt|
|Yt|+|Ŷt|

∗100%

where Yt is the reference time series value at timestep t, Ŷt is the forecast time series value at
timestep t, and h is the forecasting horizon and n is the number of datapoints.

Hyperparameter optimization. For all tasks, we tune the learning rate α for D-RR first, and then
use the selected learning rate for CD-GraB. Therefore, an performance improvement here implies
we would have in-place substitution benefits via switching from D-RR to CD-GraB with identical
learning rate and experiment setups. We use SGD with momentum as the optimizer for all tasks. The
hyperparameters for each task are as follows:

16https://huggingface.co/docs/transformers/perplexity
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• Logistic regression on mortgage application (NY 2017 subset): α= 5e-3 ∈{1e-2, 5e-3, 1e-3},
momentum: 0.9, weight decay: 0, B: 16.

• LSTM on WikiText-2: α=5∈{5, 10} and decays by 0.1 per 10 epochs, momentum: 0.9, weight
decay: 0, B: 16.

• Autoregressive MLP on Weekly M4 Dataset α= 1e-3 ∈{1e-2, 1e-3, 1e-4}, momentum: 0.9,
weight decay: 0, B: 32.

D.1.2 Memory Overhead of CD-GraB in LSTM on WikiText-2 Task

We profile the CUDA memory usage for the LSTM on WikiText-2 Task with CD-GraB and D-RR
to understand the memory overhead of both data permutation algorithms. This memory analysis is both
task and implementation dependent, but still serves to illustrate the overarching point that CD-GraB’s
memory overhead is not so significant. The additional overhead comes from two sources for CD-GraB:
communication and example sorting (Figure 8).

In more detail: In our LSTM experiment, each local worker will share its gradients with all other
workers at every optimization step. To reduce the communication burden of CD-GraB, we make
each local worker function as an order server.17 The memory consumption of forward, backward,
and optimizer states between CD-GraB and D-RR should be (at least approximately) identical. The
model size of LSTM is roughly 4 MiB. We use 4 workers, and as each worker (functioning as an
order server) needs to all-gather gradients, the memory overhead for all-gather communication is
roughly tensor_size × # workers = 4 MiB × 4 = 16 MiB for CD-GraB(we observe 16.51 MiB in
practice, Communication in Figure 8), while D-RR only needs to all-reduce the gradients (yielding
no memory overhead; the communication buffer for all-reduce is reusing the same gradient tensor).
The PairBalance algorithm (Algorithm 2) internally needs a model-sized accumulator as the running
sum r, and both computing inner product between r and g1−g2 and updating r with r+sc takes
virtually no space with a memory-efficient implementation. Therefore, the memory consumption
for PairBalance is still roughly 4 MiB (Data Sorter in Figure 8). .
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Figure 8: CUDA Memory Overhead of CD-GraB and D-RR in LSTM on WikiText-2 Task.

The main memory overhead of CD-GraB will be dominated by the communication buffer size on
the order server side: the order server have to gather the gradient (differences) from all workers, and
sequentially apply the PairBalance algorithm. This memory bottleneck would similarly be found in
GraB as GraB also needs per-example gradients to perform Balance sequentially.

A future algorithmic improvement to the general gradient balancing framework would be finding a
balancing algorithm that does not need per-example gradients to achieve comparable convergence
guarantees. However, we still notice that PairBalance is more memory-efficient than Balance as
Balance needs to store 3 model-sized tensors: 1 for the balancing accumulator, 1 for running-average
gradients for last epoch, and 1 for the running-average for current epoch. In constrast, PairBalance
only needs 1 model-sized tensor as the balancing accumulator.

17An ideal location for a dedicated order server is on a network node that has large input bandwidth and
memory buffer to host all gradients while not blocking the normal optimization stages. Since we do not have
enough computational resources to host a dedicated order server, we make each worker an order server.
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D.1.3 Simulated ablation study using LeNet on CIFAR-10

In the experiment shown on Figure 4, we select the same learning rate, momentum, and weight decay
as the LeNet experiment in Lu et al. [24]. We use 3 different random seeds to control 3 different
initialization and the randomness in random reshuffling. The aggregated minibatch size B is 64 for
all runs. We implement this ablation study by using 1 GPU with up to m=64 workers (processes). As
above, we discard N modB examples and partition the remaining examples evenly on each worker.

α= 1e-3∈{1e-2, 5e-3, 1e-3, 5e-4, 1e-4}, momentum: 0.9, weight decay: 1e-2, B: 64.

We do not implement this via distributed environment due to the fact that we do not have access to
64 GPUs, but expect the simulation results to be a good reflection of the results we would obtain in
a multi-GPU setting.

Parallel herding bound. We further investigate the empirical parallel herding bounds (8) for the
LeNet experiment for the different ordering methods. We plot the results in Figure 9. We observe
that as the number of workers increases, the empirical parallel herding bounds of both ID-GraB (Bal)
and ID-GraB (PairBal) also increase, and eventually exhibit little difference with D-RR. CD-GraB,
in contrast, exhibits a consistently lower bound.
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Figure 9: Empirical parallel herding bounds of gradients for each algorithm in LeNet experiment. We
plot the mean as the curve and standard deviation across 3 random seeds.

For comparison, we also run a simulation experiment on synthetic data to investigate the behavior
of the parallel herding bound. We include these below, in Figure 10.

We randomly initialize 1 million random vectors zi,j from a uniform distribution between 0 and 1
with 16 dimensions as zi,j ∼Unif(0,1)16, and then we zero-center this set of 1 million vectors and
normalize them to all have L2 norm as 1. We then evenly partition this set of 1 million random vectors
to {5,10,20,50,100}workers and run each example ordering algorithm.

In Figure 10, we run CD-GraB, D-RR, ID-GraB (Bal), ID-GraB (PairBal) on these random vectors,
and compute the parallel herding bounds (8). From left to right in Figure 10, we observe that as the
number of workers m increases, the parallel herding bound of ID-GraB (Bal), ID-GraB (PairBal)
becomes larger. This shows the importance of coordination when we have a large number of workers.

These results for random vectors cohere with our above results for LeNet on CIFAR-10.

D.2 An additional simulation experiment: pre-training and fine-tuning Tiny GPT-2

We perform an end-to-end simulation experiment involving pre-training and fine-tuning Tiny GPT-2
on WikiText-103, which we document below.

D.2.1 Pre-training

We adapt the training script from the HuggingFace’s PyTorch casual language modeling code to train
the GPT-2 architecture [35]. We set the maximum sequence length to 128 and token and positional
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Figure 10: Parallel herding bounds for different example ordering algorithms on N=1 million random
vectors. We use 3 random seeds, plot the mean and standard deviation across each random seed as
the shaded area.

embedding dimension to 128; use 2 hidden layers in the transformer encoder and 2 attention heads;
and disable dropout. This model configuration corresponds to the following Python code snippet:

1 from transformers import GPT2Config , GPT2LMHeadModel , GPT2Tokenizer
2

3 tokenizer = GPT2Tokenizer.from_pretrained(’gpt2’)
4 config = GPT2Config.from_pretrained(’gpt2’)
5 config.n_embd = 128
6 config.n_ctx = 128
7 config.n_layer = 2
8 config.n_head = 2
9 config.n_positions = 128

10 config.summary_first_dropout = 0
11 config.attn_pdrop = 0
12 config.resid_pdrop = 0
13 model = GPT2LMHeadModel(config)

We train our Tiny GPT-2 model from scratch on WikiText-103 [43]. WikiText-103 is a standard
language modeling benchmark that has 28,475 articles in the train set, and 60 for both the validation
and test sets, with more than 100M tokens and 267K vocabulary inside the train set. We use the original
GPT-2 tokenizer, and use maximum sequence length 128. We note that this is much smaller than the
default maximum sequence length for GPT-2, which is 1024, which was too large to use given our
computational budget. Nevertheless, 128 is still a reasonable sequence length for the initial phrase
of pre-training; BERT uses a sequence length of 128 for the first 90% of pre-training steps to speedup
the experiment [9]. We tune the learning rate for D-RR with the grid { 5e-3, 1e-3, 5e-4, 1e-4 } (the final
learning rate is 5e-4), and use AdamW optimizer [21]. We use 3 random seeds. Before the training,
we simulate 64 workers, and similarly divide the training dataset evenly across them by discarding
N modB examples. Our hyperparameter optimization space is listed below:

Pretraining Hyperparameters. α=5e-4∈{5e-3, 1e-3, 5e-4, 1e-4}, weight decay: 1e-4, B: 64.

We document convergence for pre-training in Figure 11, and use test perplexity as our evaluation metric.

D.2.2 Fine-tuning

We then fine-tune the pre-trained Tiny GPT-2 model on downstream tasks. For each task, we load
the pre-trained foundation model weights obtained at the end of 30 epochs of each example ordering
algorithm after pretraining, and use the same example ordering algorithm to perform supervised
fine-tuning. We focus on the largest 4 GLUE tasks [44]: MNLI, QQP, QNLI, and SST2. We tune
the learning rate for D-RR with the AdamW optimizer, and for each run we report the best validation
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Figure 11: Pre-training Tiny GPT-2 on WikiText-103 from scratch: Convergence for CD-GraB and
D-RR with m=64 workers. The aggregated minibatch size per update is 64. We use 3 random seeds,
and plot the mean vand standard deviation.

accuracy. We then take an average results of each run and summarize them in Table 1. Our training
script is adapted from the HuggingFace’s PyTorch GLUE fine-tuning example codes.

Fine-Tuning Hyperparameters

• MNLI α=5e-4∈{5e-3, 1e-3, 5e-4, 1e-4}, Weight decay: 1e-4, B: 32, epochs: 10, linear learning
rate scheduler

• QQP α=5e-4∈{5e-3, 1e-3, 5e-4, 1e-4}, Weight decay: 1e-4, B: 32, epochs: 10, linear learning
rate scheduler

• QNLI α=5e-4∈{5e-3, 1e-3, 5e-4, 1e-4}, Weight decay: 1e-4, B: 32, epochs: 10, linear learning
rate scheduler

• SST2 α=5e-4∈{5e-3, 1e-3, 5e-4, 1e-4}, Weight decay: 1e-4, B: 32, epochs: 10, linear learning
rate scheduler

MNLI (Matched) MNLI (Mismatched) QQP QNLI SST2

CD-GraB 65.91± 0.46 % 64.36± 2.03 % 82.25± 0.21 % 62.11± 0.70 % 82.65± 0.39 %
D-RR 65.42± 0.36 % 63.93± 1.63 % 81.74± 0.33 % 61.87± 0.67 % 82.68± 0.57 %

Table 1: GLUE fine-tuning datasets: Validation accuracy of CD-GraB in comparison to D-RR,
reporting mean and standard deviation of best results for each run. There are 3 runs for each example
ordering algorithm.

We include these fine-tuning results in part to support our claim in Section 6 that CD-GraB exhibits
its benefits more clearly when there are more training epochs. Our pre-training results suggest that
CD-GraB would confer benefits to pre-training large models over multiple epochs; however, CD-GraB
will not necessarily be useful for short runs of fine-tuning (as indicated in Table 1, for which the results
for both ordering algorithms are effectively identical).

34

https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py


D.3 Ablation simulation study: The impact of learning rate α

In the experiment shown on Figure 12, we select the same momentum and weight decay as the LeNet
experiment for 3 random seeds as in Appendix D.1.3. The aggregated minibatch size is still 64 for
all runs, and we use 64 workers.
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Figure 12: Convergence for CD-GraB, D-RR training LeNet on CIFAR-10, with m= 64 workers.
The aggregated minibatch size per update is 64. We use 3 random seeds, and plot the mean values
across random seeds as the curve, the standard deviation as the shaded area.

We find that when we increase the learning rate from 1e-3 to 1e-2, CD-GraB still maintains relatively
better performance than D-RR. The best learning rate for D-RR is 1e-3, in terms of achieving the best test
accuracy. We did not tune the learning rate for CD-GraB, and we expect that it is possible to use a higher
learning rate and still maintain better empirical performance than D-RR and even faster convergence.
We defer such empirical investigations to future work. Altogether, these preliminary empirical results
confirm that it is possible to use higher learning rate for CD-GraB, given that online PairBalance does
not need to use a stale mean (Section 3.2), which would make larger learning rates perform poorly.
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