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1 Appendix Overview

In the supplementary material section, we first discuss the social impact and limitations of Med-
UniC framework. Then, we introduce the details of the pre-training stage, including cross-lingual
MLM pre-training and VLP for Med-UniC. Then we present the detailed configurations of several
downstream tasks. Next, we conduct some additional experimental analysis.

2 Discussion

Social impact Our Med-UniC framework presents an innovative solution for unifying CXR images
and corresponding medical reports from diverse communities that use different languages, thereby
addressing the data shortage in the medical VLP domain. Further investigations reveal that existing
VLP models exhibit biased performance across various linguistic communities, even when pre-trained
on cross-lingual data. However, Med-UniC effectively minimizes this bias, enhancing performance
not only in cross-lingual tasks but also in uni-modal tasks. In essence, our work offers more than
just a strategy for integrating data from different sources; it shines a light on the significant issue of
community bias in cross-lingual VLP, calling for more fair and equitable practices in this field.

Limitation Our research primarily concentrates on cross-lingual medical VLP, limiting the number
of languages, medical images, and reports included due to the current lack of public datasets. We’ve
conducted comprehensive experiments involving uni-modal visual and vision-language tasks, but
have not ventured into uni-modal language tasks like report generation. Looking ahead, we aim to
expand our work to include more languages in the medical VLP and take on more challenging tasks,
such as zero-shot guided segmentation or object detection. This area of our work, thus, acknowledges
room for further development and exploration.

Future work Exploring these methods on diverse modality medical data such as electrocardiograms
paired with clinical monitor records is an interesting future direction [? ]. Furthermore, the alignment
of different modality data can be viewed as a data fusion task, a commonly addressed issue in
physics [? ? ? ? ], or recommendation system [? ] .
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3 Implementation details for Pre-Training

3.1 Implementation for Cross-lingual MLM

Medical Report Pre-processing We prepare the cross-lingual pre-training corpus from the medical
reports of MIMIC (En) [? ] and PadChest (Sp) [? ]. Specifically, we concatenate the findings and
impression to form English medical reports for MIMIC. As for PadChest, we treat their radiology
reports as Spanish reports. Examples of these reports can be seen in Fig 1 and Fig 2. To create the
MLM corpus, we combine all the reports and shuffle them at the report-level.

MLM Pre-training Setup To obtain cross-lingual medical LM, we train the cross-linguistic encoder
with the combined corpus using an Adam optimizer and adopt a linear warm-up scheduler. Specifi-
cally, the learning rate is 5e-4, and the learning rate linearly increases from 0 to the peak value with a
linear warm-up. Additionally, the max length for input tokens is 256. The MLM process is conducted
on 8 V100 GPUs and pre-trained within 15 epochs. To save GPU memory and speed up training, we
adopt automatic mixed-precision FP16. The details of cross-lingual MLM are shown in Tab 1.

Table 1: Hyper-parameters of Cross-lingual MLM

Hyperparameters
Training epochs 15
Total Batch size 1024
Number of GPUs 8
Gradient Accumulation 16
Maximum Sequence Length 256
Learning Rate 5e-4
Learning Rate Optimizer Adam
Schedule Linear Warm-up
Warm-up Proportion 10%
Adam Epsilon 1e-8
Masked Rate 0.15
FP16 True

Table 2: Hyper-parameters of VLP

Hyperparameters
Pre-training epochs 50
Batch size per GPU 128
Number of GPUs 16
Gradient Accumulation 2
Maximum Sequence Length 256
Learning Rate 4e-5
Learning Rate Optimizer AdamW
schedule CosineAnnealing
Weight Decay 5e-2
FP16 True
Frozen Linguistic Encoder Layers 9
λ 5.1e-3
VL Alignment Dimension 512
CTR Embedding Dimension 1024

3.2 Implementation for Vision-language Pre-training

Model Architecture Following the same framework as CLIP [? ], we utilize ResNet-50 [? ],
ViT-B/16 and ViT-L/32 [? ] as our visual encoder, and we further pre-train CXR-BERT [? ] via
cross-lingual masked language modelling to obtain the linguistic encoder. Moreover, the input
resolution of visual encoder is 256 × 256, and the input token length of the linguistic encoder is
256. The final image and text features are projected to the same dimension, which is 512 as [? ],
followed by batch normalization before interaction. The dimension of cross-lingual text alignment
regularization (CTR) is set to 1024. More senstivity analysis can be found in Sec 5.5.

Image Data Pre-processing The original CXR images from the MIMIC-CXR and PadChest
datasets [? ? ] are resized to 256 × 256 and randomly cropped to 224 × 224, following the
procedure in [? ? ? ]. All images are normalized to the range [0, 1]. For data augmentation during
pre-training, we apply horizontal flip, random rotation in the range [0◦, 180◦], and auto contrast using
the PyTorch vision library1. The English and Spanish CXR image examples and its corresponding
reports are depicted in Fig 1 and Fig 2, respectively.

Vision-language Pre-training Setup The detailed hyperparameters of vision-language pre-training
for Med-UniC are shown in Tab 2. We use a cosine annealing scheduler for the adjustment of the
learning rate. The pre-training step is conducted by V100 GPUs. To save GPU memory and speed up
training, we also adopt automatic mixed-precision FP16.

4 Configurations for downstream Tasks

This section provides a detailed introduction to all downstream tasks and presents the data split
information for each task. The data split details are presented in Tab 3.

1https://pytorch.org/vision/stable/transforms.htmls
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(a) CXR image example 1 from
MIMIC dataset

(b) CXR report example 1 from MIMIC dataset

(c) CXR image example 2 from
MIMIC dataset

(d) CXR report example 2 from MIMIC dataset

Figure 1: CXR dataset examples from MIMIC-CXR[? ].

Table 3: Data Split Details, ‘/’ indicates that no training/validation data is required in the zero-shot
classification task.

Task Dataset Split Train Valid Test

Linear
Classification

CheXpert [? ] [? ] 186,027 5,000 202
RSNA [? ] [? ? ] 16,010 5,337 5,337

COVIDx [? ] [? ? ] 23988 5998 400

Semantic
Segmentation

RSNA [? ] [? ? ] 16,010 5,337 5,337
SIIM [? ] [? ? ] 8,433 1,807 1,807

Object
Detection

RSNA [? ] [? ? ] 16,010 5,337 5,337
Object-CXR [? ] [? ] 6,400 1,600 1,000

Zero-shot
Classification

CXP500 [? ] [? ] / / 500
PDC [? ] [? ] / / 1000

Medical Image Linear Classification We explain the setting of linear classification tasks, including
CheXpert [? ], RSNA [? ], and COVIDx [? ]. We utilize ResNet-50, ViT-B/16 and ViT-L/32 as
our visual backbone and fine-tune the linear layer with 50 epochs using early stop, with the same
learning rate of 5e-4 and the default batch size is 8. We leverage the AdamW optimizer to schedule
the learning rate, with the β1 of 0.9, the β2 of 0.999, and the weight decay rate of 1e-6. All the linear
classification tasks are conducted on a V100 GPU with 32GB memory.

Medical Image Semantic Segmentation For the segmentation tasks RSNA and SIIM [? ], we first
adopt the ResNet-50 as the visual backbone and train the segmentation network on a 32G V100 GPU.
We leverage early stopping to train the tasks for 50 and 100 epochs. We adapt 5e-4 as the learning rate
, 1e-8 as the weight decay and 4 as the default batch size. We also employ AdamW as the optimizer
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(a) CXR image example 1 from
PadChest dataset

(b) CXR image example 1 from PadChest dataset

(c) CXR image example 2 from
PadChest dataset

(d) CXR image example 2 from PadChest dataset

Figure 2: CXR dataset examples from PadChest [? ].

and set the β1 and β2 as 0.9 and 0.999, respectively. For the ViT-B/16 and ViT-L/32 backbones, we
set the training configurations following [? ? ].

Medical Image Object Detection The Object Detection tasks RSNA and Object-CXR [? ] are
conducted on 1 V100 GPU. We use the grid search to find the optimal batch size as shown in Tab ??.
Specifically, we also adapt AdamW as our optimizer with the learning rate of 5e-4, weight decay
of 1e-6, β1, β2 of 0.9 and 0.999, batch size of 4. The IOU and NMS thresholds are [0.4, 0.45, 0.5,
0.55,0.6, 0.65, 0.7, 0.75] and 0.5, respectively. We use ResNet-50 as the visual encoder of Med-UinC
for fair comparisons with other baselines.

Sim

��

...

Image encoder Fv

Text encoder Fl

...

{Hili Prominent}, No hay {Hili Prominent} 

{Hilar Enlargement}, No {Hilar Enlargement} ��...
...

Positive: 0.75

Negative: 0.25

Predict: 
Hili Prominent

Figure 3: An example of Med-UniC zero-shot pipeline. Blue and orange denote Spanish and English
prompts, respectively.

Zero-shot Task The original image undergoes a two-step process. Firstly, it is resized to dimensions
of 256× 256 and then center cropped to 224× 224. Subsequently, all pixel values are normalized
within the range of [0, 1], following [? ? ]. The resulting resized image is then passed through an
image encoder to generate an image embedding . Concurrently, the prompts are inputted into a text
encoder to obtain a text embeddings. To evaluate the classification, we measure the cosine similarity
between the image and text embeddings for each prompt associated with a specific class. This is

4



Table 4: Comparisons of different backbones on medical image segmentation tasks. Best results of
each setting are in boldface.

RSNA SIIM
Backbone 1% 10% 100% 1% 10% 100%

ResNet-50 72.6 74.4 76.7 56.7 62.2 64.4

ViT-B/16 75.6 76.6 77.9 62.1 67.3 71.5
ViT-L/32 74.4 77.5 78.7 64.5 68.7 73.3

computed using the equation:

sim(img, prompt) = Pv(ve,i)
TPl(le,i) (1)

where ve,i and le,i are image and text embeddings from visual and linguistic encoders, respectively.
Pv and Pl are visual and linguistic projectors. The classification outcome is determined based on
the comparison of cosine similarities. If the cosine similarity between the image embedding and the
positive prompt (e.g., disease) exceeds the cosine similarity between the image embedding and the
corresponding negative prompt (e.g., No disease), the outcome is considered positive. Conversely,
if the reverse is true, the outcome is negative. The pipeline is detailed in Fig 3. To compute the
performance metrics, the macro AUC score and F1 score, we calculate these scores for each category
individually and then average them across all categories.

5 Additional Experimental Analysis

5.1 Tokenization Analysis of Cross-lingual Medical LM

Huawei Proprietary - Restricted Distribution1

['infitr', 'alveor', 'amb', '##os', 'camp', 'pulmonar', 'predomini', 'derech', 'bibasal', 'sin', 'grand', 'cambi', 'relacion', 

'rx', 'previ', '11', '03', '2017', '.', 'derram', 'pleural', 'bilateral', '.', 'catet', 'venos', 'con', 'extrem', 'proyect', 'vcs', '.']

['inf', '##itr', 'alve', '##or', 'amb', '##os', 'camp', 'pulmon', '##ar', 'predom', '##ini', 'dere', '##ch', 'bibas', '##al',

'sin', 'grand', 'camb', '##i', 'rel', '##aci', '##on', 'rx', 'prev', '##i', '11', '03', '2017', '.', 'der', '##ram', 'pleural', 

'bilateral', '.', 'cat', '##et', 'veno', '##s', 'con', 'extrem', 'pro', '##ye', '##ct', 'vc', '##s', '.']

'infitr alveor ambos camp pulmonar predomini derech bibasal sin grand cambi relacion rx previ 11 03 2017 . 

derram pleural bilateral . catet venos con extrem proyect vcs .'

Input Spanish report:

Tokens of CXR-BERT tokenizer:

Tokens of Cross-lingual medical LM tokenizer:

Figure 4: Tokenization visualization of one report sample from PadChest dataset. Blue tokens
represent tokenized words in the Spanish medical vocabulary of cross-lingual medical LM.

In this section, we visualize the tokenization results of one random selected Spanish report generated
by CXR-BERT and Cross-lingual Medical LM’ tokenizers, respectively. As shown in Fig 4, compared
with CXR-BERT, Cross-lingual Medical LM’s tokenizer can handle the Spanish sentence correctly
and give a tokenized scheme without loss of Spanish words’ semantics. However, CXR-BERT’s
tokenizer uses tokens from its English medical vocabulary may deteriorate the original Spanish
semantics. The visualization results demonstrate the importance of building a cross-lingual lexicon
from Spanish medical reports.

5.2 Medical Image Segmentation with ViT Backbone

In this section, we adopt the ViT-B/16 and ViT-L/32 as the visual encoder of Med-UniC to compare
with ResNet-50 for medical image segmentation tasks on RSNA and SIIM datasets. As shown in
Tab 4, surprisingly, the ViT-B/16 backbone has noticeable improvement compared with the ResNet-
50 backbone, especially for SIIM. Additionally, the ViT-L/32 backbone shows better results than
ViT-B/16 in most settings, indicating that larger visual backbone can further improve the performance
of Med-UniC. We attribute this enhancement from the ViT backbone to the global attention capability
of the transformer-based visual encoder on segmentation [? ].
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Table 5: Ablation Study on CTR. Best results of each setting are in boldface, and the ’-’ denotes mAP
values smaller than 1%.

COVIDx(ACC) RSNA(Dice) Object CXR(mAP)
Backbone 1% 10% 100% 1% 10% 100% 1% 10% 100%

LCTR 76.5 89.0 92.8 72.6 74.4 76.7 6.6 13.3 21.6
LCTR (w/o LTF ) 74.9 86.2 92.3 72.2 72.9 74.4 - 12.3 19.9
LCTR (w/o LTT ) 75.8 87.4 92.5 71.6 73.5 75.6 4.5 12.9 20.5

Table 6: Ablation Study on VLP data, The best results for each setting are highlighted in bold, and
the ’-’ denotes mAP values smaller than 1%. Methods with ⋆ leverage disease-level annotations. †

denotes that Med-UniC only pre-trained on MIMIC dataset (En). Best results of each setting are in
boldface.

COVIDx(ACC) RSNA(Dice) Object CXR(mAP)
Backbone 1% 10% 100% 1% 10% 100% 1% 10% 100%

ConVIRT[? ] 67.3 77.8 89.0 55.0 67.4 67.5 - 8.6 15.9
GLoRIA-MIMIC[? ] 66.5 80.5 88.8 60.3 68.7 68.3 - 8.9 16.6
MGCA⋆ [? ] 74.5 85.2 90.3 63.0 68.3 69.8 - 12.1 19.2
MedKLIP⋆ [? ] 72.0 83.5 90.5 66.2 69.4 71.9 - 7.1 11.6

Med-UniC (En)† 74.7 85.5 91.3 70.4 71.2 73.5 3.4 12.5 19.5
Med-UniC 76.5 89.0 92.8 72.6 74.4 76.7 6.6 13.3 21.6

5.3 Ablation Study on Cross-lingual Text Alignment Regularization

In this part, we explore the influence of each sub-component belonging to Cross-lingual Text
Alignment Regularization LCTR, including text-feature alignment LTF and text-to-text alignment
LTT . As shown in Tab 5, reducing LTT or LTF can both lead to performance drop. Specifically,
removing LTF shows worse results than removing LTT on most of settings, demonstrating the
importance of learning cross-lingual invariance and reducing the languages bias through LTF .

5.4 Med-UniC Pre-training on Uni-lingual data

On the basis of Med-UniC paradigm, we further study the performance of only using the uni-lingual
MIMIC dataset for pre-training. The ablation results are shown in Tab 6, which reveals that although
using uni-lingual data to pre-train Med-UniC causes performance drop, compared to other baselines,
our framework can also bring benefits. We attribute this to the self-supervised vision alignment
(SSV) to learn more exhaustive visual representation and text-to-text alignment to keep in-modal
consistency.

Table 7: Dimension Analysis of Projector Pd. Best results of each setting are in boldface.

COVIDx(ACC) RSNA(Dice) Object CXR(mAP)
Dimension 1% 10% 100% 1% 10% 100% 1% 10% 100%

512 75.5 87.9 92.2 72.4 73.8 74.5 3.8 12.9 20.8
1024 76.5 89.0 92.8 72.6 74.4 76.7 6.6 13.3 21.6
2048 75.9 88.7 92.5 73.1 74.2 76.5 4.6 13.1 22.5

5.5 Embedding Dimension Analysis of Text Alignment Projector Pd

In this section, we investigate the impact of output dimension D′ from text alignment projector
Pd, since D′ determines the size of cross-correlation matrix Z̃e for text-feature alignment. We
experiment with linear classification, segmentation and object detection, respectively. Tab 7 shows
the corresponding results with different dimensions. When the dimension size is 1024, it can achieve
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better results on most of the experimental settings. Hence, we take D′ = 1024 as our default setting
during the pre-training.
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