
The Appendix is structured as follows:

• We provide a proof of conditional guarantees in EENNs for (hard) PoE in Appendix A.
• We present conditional monotonicity results using alternative estimators of performance

quality �m in Appendix B.1.
• We conduct an ablation study for our PA model in Appendix B.2.
• We propose two modifications to our PA that help with reducing the calibration gap in

Appendix B.3.
• We report results of NLP experiments in Appendix B.4.
• We delve into the connections between conditional monotonicity and previously introduced

concepts in EENNs literature in Appendix B.5.
• We discuss anytime regression and deep ensembles in Appendix B.6.
• We present conditional monotonicity results using uncertainty measures in Appendix B.7.
• We propose a technique for controlling the violations of conditional monotonicity in PA in

Appendix B.8.
• We study the impact of calibration on the conditional monotonicity in Appendix B.9.
• We provide budgeted batch classification results in Appendix B.10.
• We provide additional plots in Appendix B.11.

A Theoretical Results

In the following, we provide a proof for conditional monotonicity of (hard) Product-of-Experts
ensembles presented in Section 4.2.
Proposition. Let p⇧,m (y |x) represent the Product-of-Experts ensemble of the first m early-exits.

Furthermore, let y 2 Y denote any class that is present in the support of the full-NN product

distribution, i.e., p⇧,M (y |x) > 0. Under the assumption that the Heaviside activation function is

used to map logits to probabilities in each pm (y |x), it follows that:

p⇧,m (y |x)  p⇧,m+1 (y |x)
for every early-exit m and for every input x.

Proof. Using the definition of the PoE ensemble and that of the Heaviside activation function, the
predictive likelihood at the mth early exit can be written as

p⇧,m (y |x) := 1

Zm

mY

i=1

⇥
fi(x)y > b

⇤wi
, Zm =

X

y02{1,...,K}

mY

i=1

⇥
fi(x)y0 > b

⇤wi

where fi(x) 2 RK denotes a vector of logits at the i-th early-exit, b represents a chosen threshold,
and wi 2 R+ represent ensemble weights. Since we assume that class y is in the support of the full
NN ensemble, i.e., p⇧,M (y |x) > 0, it follows that

mY

i=1

⇥
fi(x)ỹ > b

⇤wi =
m+1Y

i=1

⇥
fi(x)ỹ > b

⇤wi = 1, 8m = 1, . . . ,M � 1 .

It then remains to show that the normalization constant is non-increasing, i.e., Zm � Zm+1, 8m. To
this end observe that

⇥
fm+1(x)y0 > b

⇤wm+1 2 {0, 1}, 8y0 2 Y , using which we proceed as

Zm =
X

y02{1,...,K}

mY

i=1

⇥
fi(x)y0 > b

⇤wi �

X

y02{1,...,K}

mY

i=1

⇥
fi(x)y0 > b

⇤wi ·
⇥
fm+1(x)y0 > b

⇤wm+1 = Zm+1,

where Zm = Zm+1 if
⇥
fm+1(x)y0 > b

⇤wm+1 = 1 8y0 2 Y and Zm > Zm+1 otherwise.
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B Additional Experiments

B.1 Conditional Monotonicity

In the main paper, the ground-truth probability was our focus when studying conditional monotonicity
in early-exit networks. Here, we supplement these findings with additional results, utilizing alternative
estimators of prediction quality �m.

B.1.1 Full-Model Prediction Probability

Suppose only an unlabeled hold-out dataset is available. In that case, the anytime properties of
EENNs can still be investigated by relying on the full model prediction ŷ := argmaxy pM (y |x),
instead of y⇤. Naturally, the merit of this alternative hinges on the underlying model being accurate
in most cases. Furthermore, besides serving as a substitute for the ground-truth probability in the
absence of a labeled dataset, the evolution of the full-model prediction probability can be used as a
stand-alone measure of how well early-exits in an EENN approximate the full model.

In Figure 7, we present conditional monotonicity results using ŷ probability as the prediction quality
measure. Similar to the results presented in Section 6.1 for y⇤ probability, we conclude that our PA
outperforms both the baseline models and CA approach across all datasets considered.
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Figure 7: The percentage of test examples with a full-model prediction probability drop exceeding a
specified threshold. PA significantly improves the conditional monotonicity properties of ground-truth
probabilities across various datasets and backbone models. To better illustrate the different behavior
of various methods, a log scale is used for y-axis. We report average monotonicity together with one
standard deviation based on n = 3 independent runs. For DViT [Wang et al., 2021], we were unable
to perform multiple independent runs and report the results for various model instantiations instead;
see Appendix B.11.

B.1.2 Correctness of Prediction

We next shift our focus to the correctness of prediction as an estimator of performance quality. Recall
from Section 2 its definition: �̂cm(x) := [argmaxy pm (y |x) = y

⇤]. It is a binary measure that can
only take on the values of 0 or 1, and thus provides a less nuanced signal about the evolution of the
performance quality compared to probability-based measures that evolve more continuously in the
interval [0, 1].

To aggregate the results of the conditional monotonicity analysis, we consider the following two
quantities:

• %mono: the percentage of test data points that exhibit fully monotone trajectories in the
correctness of the prediction, i.e., �̂cm(x)  �̂

c
m+1(x), 8m. This implies that if the model

managed to arrive at the correct prediction at the mth exit, it will not forget it at later exits.
An oracle model with perfect conditional monotonicity will result in %mono = 100%.

• %zero: the number of points for which the EENN model is wrong at all exits. This is used to
account for trivial solutions of the monotonicity desideratum: �̂cm(x) = 0, 8m. Naturally,
the smaller the %zero, the better.
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Table 1: Aggregated results of conditional monotonicity analysis based on correctness of prediction
as a performance quality measure. MSDNet [Huang et al., 2018] is used as a backbone model for PA
and CA for the results reported here. See Section B.1.2 for definition of %mono and %zero.

CIFAR-10 CIFAR-100 ImageNet

%mono (") %zero (#) %mono (") %zero (#) %mono (") %zero (#)
MSDNet 91.8 3.6 70.8 12.6 84.9 20.4
PA (ours) 96.2 4.6 87.2 16.4 93.5 24.1
CA 97.8 5.5 90.8 18.6 94.5 25.6

Results are displayed in Table 1. Comparing our PA model against the MSDNet baseline, we observe
a significant improvement in terms of the percentage of test data points that exhibit perfect conditional
monotonicity, i.e., %mono. However, this improvement comes at a cost, as fewer points have a correct
prediction for at least one exit. Despite this trade-off, the magnitude of improvement in %mono is
larger compared to the degradation of %zero across all datasets considered, which demonstrates that
our PA method improves the conditional monotonicity of �̂cm(x) in a non-trivial manner.

Although the Caching Anytime (CA) method outperforms PA in terms of %mono across all datasets,
it is worth noting that a considerable portion of CA’s outperformance can be attributed to trivial
solutions (i.e., �̂cm(x) = 0, 8m), which is reflected by CA’s poor performance in terms of %zero.
Furthermore, the fact that neither CA nor PA fully achieves conditional monotonicity in prediction
correctness (i.e., %mono = 100) highlights that there is still potential for further improvement in
endowing EENNs with conditional monotonicity.

B.2 Product Anytime (PA) Ablations

To better understand the role of different components in our proposed PA method, we conduct several
ablations and present the results in Figure 8. In accordance with the theoretical results we presented
in Section 4.2, we observe that the PoE ensemble combined with the Heaviside activation ( )
yields a model that exhibits complete conditional monotonicity in the full model prediction (i.e., ŷ)
probability.9 However, this combination also leads to a model with inferior performance in terms of
overall test accuracy (see left plot). As mentioned, this occurs because the model assigns an equal
probability to all classes in its support. The ReLU activation resolves this issue by performing on
par with Heaviside in terms of monotonicity and on par with exponential, i.e., softmax, in terms of
accuracy, thus combining the best of both worlds.
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Figure 8: Test accuracy and conditional monotonicity properties of various PA model instantiations
for the CIFAR-100 dataset using MSDNet as a backbone. Specifically, we vary (1) the type of
activation function for mapping logits to probabilities and (2) the type of ensembling. Our proposed
PA method uses ReLU activation function with product ensembling ( ) and is the only method to
perform well in terms of both accuracy and monotonicity.

9Note that ŷ := argmaxy pM (y |x) is by definition part of the support of the final classifier p⇧,M (unless
it degenerates to a zero distribution). However, this is not necessarily the case for y⇤, which is the reason for a
slight violation of conditional monotonicity in the PoE-Heaviside model, as seen in the right plot of Figure 8.
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Delving deeper into the ReLU activation function and examining various ensembling styles, we also
observe in Figure 8 that Mixture-of-Experts with ReLU (MoE-ReLU; ) demonstrates performance
comparable to our proposed PA (PoE-ReLU; ) in terms of both overall accuracy and conditional
monotonicity. The MoE predictive distribution at the mth exit is defined as:

pMoE,m (y |x) :=
mX

i=1

wi · pi (y |x) , pi (y |x) =
a
�
fi(x)y

�
P

y02{1,...,K} a
�
fi(x)y0

�

where a : RK ! R�0 represents a chosen activation function, such as ReLU, and we utilize uniform
weights wi = 1/m. Given this observation, one might question why we prefer PoE over MoE
in our final PA model. The rationale for this decision is two-fold. First, the proof presented in
Appendix A, which serves as the inspiration for our method, is only valid when PoE ensembling is
employed. Second, unlike the PoE-based model, the MoE-based model does not exhibit anytime
uncertainty. Instead, it demonstrates constant underconfidence across all exits, as illustrated in Figure
9. Considering these factors, we find PoE to be superior to MoE for anytime prediction purposes and
incorporate it into our final proposed solution.
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Figure 9: Expected Calibration Error (ECE; left) and average maximum class probability over the test
dataset (right) for various instantiations of our PA model using the MSDNet model as a backbone
on the CIFAR-100. Only product ensembling (PoE) gives rise to a model that gets progressively
more confident with more early exits, as exemplified by decreasing ECE and increasing magnitude of
probability. On the contrary, mixture ensembles (MoE) result in constant underconfidence.

Early-Exit Ensembles Baselines MoE-exponential ( ) and PoE-exponential ( ) can also be
interpreted as early-exit ensemble baselines for our PA approach. Instead of relying only on the
current predictive distributions (as we do when reporting backbone EENNs results in Section 6), we
ensemble distributions across all exits up to and including the current one. However, it is clear from
Figure 8 that ensembling softmax predictions is insufficient for achieving conditional monotonicity,
as both approaches significantly underperform compared to our PA. This underscores the importance
of the activation function that maps logits to probabilities for improving monotonicity properties in
EENNs. In Figure 10, we verify that these findings hold on the ImageNet dataset as well, where we
again find that our PA is the only configuration that performs well both in terms of marginal accuracy
and conditional monotonicity.

Sigmoid Activation Function So far, we have discussed why the ReLU function is preferred over
the Heaviside or exponential (softmax) functions for transforming logits into probabilities in our
setting. We also considered the sigmoid activation function; however, upon further examination, we
identified two drawbacks that make it less suitable in our context. Firstly, the sigmoid function lacks
the "nullifying" effect of ReLU. As a result, the support for classes diminishes more slowly, and we do
not observe the same anytime uncertainty behavior as we do with ReLU (see Section 6.2). Secondly,
logits with larger values all map to the same value, approximately 1, under the sigmoid function. This
can negatively impact accuracy, as it does not preserve the ranking. Figure 11 illustrates the results
using the sigmoid activation function for the CIFAR-100 dataset with MSDNet as a backbone: our
choice of ReLU clearly outperforms the sigmoid activation.
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Figure 10: Test accuracy and conditional monotonicity properties of various PA model instantiations
for the ImageNet dataset using MSDNet as a backbone. Our PA ( ) is the only method to perform
well in terms of both accuracy and monotonicity. Note that the monotonicity curves for ReLU and
Heaviside activation functions (almost perfectly) overlap at y = 0.
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Figure 11: Test accuracy, conditional monotonicity and ECE results for MSDNet model ( ) on
CIFAR-100 dataset. Using sigmoid activation function ( ) hurts both accuracy as well as calibration.
Hence, we utilize ReLU activation in our proposed PA ( ).

B.3 Closing the Calibration Gap

Here we outline two modifications to our proposed PA method aimed at reducing the calibration gap
reported in Section 6.3.

B.3.1 Adaptive Thresholds
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Figure 12: Calibration analysis for MSDNet on
CIFAR-100. Left: expected calibration error
(ECE) during anytime evaluation. Right: Oracle-
Collaborative AUROC with 0.5% deferral [OC AU-
ROC; Kivlichan et al., 2021], which simulates a
realistic scenario of human-algorithm collabora-
tion by measuring the performance of a classifier
when it is able to defer some examples to an oracle,
based on its maximum class probability.

We first introduce an extension of our Product
Anytime (PA) method, which enables navigating
the monotonicity-calibration trade-off in scenar-
ios when a hold-out validation dataset is avail-
able.

Recall that ReLU is used as an activation func-
tion in PA to map logits to probabilities. This
implies that 0 is used as a threshold, determining
which classes ‘survive’ and get propagated fur-
ther, and which do not. However, 0 is arguably
an arbitrary threshold, and one could consider
another positive constant b 2 R+ instead. It is
important to note that the choice of b directly
influences the size of the support of the predic-
tive likelihood. As illustrated in Figure 13, a
larger value of b results in a smaller number of
classes with positive probability (as expected).
This larger threshold does also lead to a reduc-
tion in the coverage of PA’s predictive sets with
respect to the ground-truth class. However, the
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Figure 13: Static threshold analysis for PA using MSDNet as a backbone on CIFAR-100 dataset.
PA’s predictive set is defined as: sm(xn) := {y 2 Y | pPA,m (y |xn) > 0}. Right: Average size of
PA’s predictive set at each exit. As expected, increasing b leads to smaller sets. Middle: (Empirical)
Coverage of ground-truth class at each exit: cm :=

P
n[yn 2 sm(xn)] / Ntest. As b increases, it

becomes more likely for the true class y
⇤ to fall outside of the support giving rise to a smaller

coverage. Left: The marginal test accuracy at each exit is shown as the threshold parameter b varies.
Increasing b negatively affects accuracy, though the impact is minor for smaller values of b.

decrease in coverage does not significantly af-
fect the overall accuracy of the model, as shown in the far right plot.

Expanding on this concept, one can also consider adaptive thresholding: rather than using the same
threshold value for all data points, the model could dynamically adjust the threshold in the activation
function based on the current example. Ideally, when the model is confident in its prediction, a higher
value of b is employed, resulting in smaller predictive sets. Conversely, when faced with a more
challenging example, a lower threshold is utilized to capture the model’s uncertainty.

Switching to ReLU with adaptive thresholding, the predictive likelihood at ith exit (before ensembling)
is given by:

pi (y |x) =
max

✓
fi(x)y, ⌧

�
fi(x)

�◆

P
y02{1,...,K} max

✓
fi(x)y0 , ⌧

�
fi(x)

�◆

where ⌧ : RK ! R+ maps the vector of logits f(x) 2 RK to a non-negative threshold.10

Here, we consider threshold functions of the form ⌧
�
f(x)

�
= C ·p 

�
f(x)

�
, where p : RK ! [0, 1]

is a model that estimates the probability of the datapoint x being classified correctly, and C is a
constant that ensures the outputs of ⌧ have a similar magnitude to that of logits. To estimate C and
 , we rely on the hold-out validation dataset. Specifically, we fit a binary logistic regression model
using labels y⌧n := [ŷn = y

⇤
n]. Additionally, we only use the K = 3 largest logits as input to the

regression model, as we have empirically found that excluding the rest does not significantly impact
the performance. To find C, we perform a simple grid search and select the value that yields the best
monotonicity-calibration trade-off on the validation dataset. We fit a thresholding model only at the
first exit and then reuse it at later exits, as this approach yielded satisfactory performance for the
purposes of our analysis. It is likely that fitting a separate thresholding model at each exit would lead
to further performance benefits.

In Figure 14, we observe that PA with adaptive thresholding still improves over baseline in terms of
monotonicity (middle plot, note the log-scale of y-axis). Although the adaptive thresholding approach
demonstrates worse monotonicity when compared to the PA algorithm with a static threshold (i.e.,
⌧ = 0), it outperforms the PA method in terms of calibration, as measured by the Expected Calibration
Error (ECE). To further elucidate the influence of adaptive thresholding, Figure 15 presents the ground-
truth probability trajectories for a random selection of test data points. In general, it is apparent

10In general, ⌧ could depend on the datapoint x itself; however, since we desire an efficient model (to avoid
adding excessive overhead during inference time), we opt for a more lightweight option based on the processed
input, i.e., logits.
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Figure 14: Results for CIFAR-100 using MSDNet as the backbone model. We see that adaptive
thresholding can be effective in reducing PA’s calibration gap, though at some cost to both test
accuracy and conditional monotonicity. Note that the baseline results in this figure differ slightly
from those in Figures 3 and 4, as less data (90%) was used to fit the model, with a portion of the
training dataset (10%) used to fit the thresholding model ⌧ .
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Figure 15: Ground-truth probability trajectories (i.e., {�̂pm(x)}Mm=1) for 10 random test CIFAR-100
data points using MSDNet as a backbone. Both instantiations of PA yield more monotone ground-
truth probability trajectories.

that adaptive thresholding can serve as an effective strategy for improving the calibration of the PA
method, albeit at some expense to both conditional monotonicity and overall accuracy.

B.3.2 PA Finetuning

The post-hoc nature of our proposed PA method is attractive due to its minimal implementation
overhead. However, as mentioned in Section 6.3, it seems to adversely affect calibration, according to
ECE-like metrics, when compared to baseline models. This discrepancy might be due to a mismatch
between the objectives during training and testing in the PA method. To examine this hypothesis, we
consider training our model using the PA predictive likelihood (as given by Equation 4) and assess its
effect on calibration.

Given the product structure and the non-smooth activation function (ReLU) employed in PA’s
likelihood, the training can be quite challenging. To enhance the stability of the training process, we
introduce two modifications. Firstly, instead of training the model from scratch, we begin by training
with a standard EENN objective (see Equation 1) with a softmax likelihood and then finetune the
model using the PA likelihood at the end.11 Secondly, we substitute the ReLU activation function with
a Softplus function12, which we found aids in stabilizing the model’s convergence during training.
Consequently, we also utilize Softplus to map logits to (unnormalized) probabilities during testing.
Moreover, we found that using ensemble weights wm = 1 is more effective for models finetuned

11We train with EENN objective for the first 2/3 of epochs and with PA objective for the last 1/3 of epochs.
12Softplus is a smooth approximation of the ReLU function: Softplus(x) := log(1 + expx)
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Figure 16: Results for various image classification datasets using MSDNet as the backbone model.
We see that finetuning with PA (as opposed to only applying it post-hoc) can be effective in reducing
PA’s calibration gap, though at some cost to both test accuracy and conditional monotonicity.

with the PA objective, as opposed to our default choice of wm = m/M presented in the main paper
for post-hoc PA.

The results are presented in Figure 16. Focusing initially on (marginal) test accuracy (right), we note
that PA training ( ) has a slight negative impact on performance, particularly when contrasted with
the post-hoc PA ( ). Similarly, it underperforms post-hoc PA in terms of conditional monotonicity
(middle), but it considerably surpasses the baseline MSDNet model ( ). When considering ECE,
it becomes clear that fine-tuning with PA leads to significant improvements over post-hoc PA, thus
substantiating our hypothesis that the calibration gap mainly arises from the discrepancy between
train-time and test-time objectives. On the CIFAR-100 dataset, PA with finetuning even outperforms
the baseline MSDNet in terms of ECE.

Based on these observations, we conclude that integrating PA during the training of EENNs is an
effective strategy for bridging the calibration gap, though it incurs a minor cost in terms of overall
accuracy and conditional monotonicity. We note that these costs could be mitigated (or ideally,
completely eliminated) through further stabilization of product training. As such, we view this as a
promising avenue for future research.

B.3.3 Relevance of ECE in Anytime Prediction Setting

In Section 6.3, we pointed out poor Expected Calibration Error (ECE) in the initial exits as one of
the limitations of our proposed PA method. It is important to note, however, that no decision in the
anytime setting is based on model (or prediction) confidence, i.e., maxy pm (y |x). This contrasts
with the budgeted batch classification setting [Huang et al., 2018], where the decision on when to
exit could be based on the model confidence. Thus, we believe that our PA potentially undermining
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model confidence, as evident by poor ECE in the earlier exits, is not a limitation that would seriously
impact the merit of our solution. Especially since we focus solely on the anytime setting, where, we
would argue, non-monotone behavior in terms of performance quality is a much more serious issue.

However, it is true that model/prediction confidence, i.e. maxy pm (y |x), could be useful in the
anytime scenario as a proxy for model uncertainty. This allows the model—when prompted by its
environment to make a prediction—to also offer an estimate of uncertainty alongside that prediction.
However, given that our PA potentially adversely affects model confidence in earlier exits, we caution
against its use. Instead, we recommend alternative measures of uncertainty that better align with our
model, such as the conformal set size (c.f., Section 6.2).

B.4 NLP Experiments

In this section, we conduct NLP experiments with the aim of demonstrating that our proposed ap-
proaches for adapting EENNs for anytime inference are generalizable across different data modalities.

Specifically, we employ an early-exit model from Schwartz et al. [2020], in which the BERT model
is adapted for accelerated inference. The considered datasets are (1) IMDB, a binary sentiment
classification dataset; (2) AG, a news topic identification dataset with |Y| = 4; and (3) SNLI, where
the objective is to predict whether a hypothesis sentence agrees with, contradicts, or is neutral in
relation to a premise sentence (|Y| = 3). We adhere to the same data preprocessing and model
training procedures as outlined in Schwartz et al. [2020].

To account for the smaller number of classes in these NLP datasets, we shift logits for a (small)
constant prior to applying ReLU activation function. Hence the PA likelihood at mth exit has the
form (before applying product ensembling):

pm (y |x) = max
�
fm(x)y + 1/C, 0

�wi
, (5)

where C represents the cardinality of Y . This helps with reducing the possibility of PA collapsing to
a zero distribution.

The results are depicted in Figure 17. Similar to our image classification experiments discussed in
Section 6.1, we find that our proposed modifications yield comparable overall accuracy, as shown in
the left plot. Considering conditional monotonicity (middle plot), at least one of our two suggested
methods outperforms the baseline model on every dataset. However, the degree of improvement in
monotonicity is considerably smaller in comparison to our image classification experiments, with
the PA model even failing to yield consistent improvement on certain datasets, such as IMDB. We
attribute this not to the change in data modality, but rather to the fewer number of classes in the NLP
datasets used in this section as compared to the image datasets used in Section 6.1.
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Figure 17: NLP experiments results using the BERT model from Schwartz et al. [2020] as the
backbone. Despite the findings being qualitatively similar to those presented in Figures 3 and 4 for
image classification datasets, the enhancement in terms of conditional monotonicity provided by our
proposed methods is less pronounced for the NLP classification tasks considered in this section.
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B.5 Overthinking and Hindsight Improvability

In this section, we delve deeper into concepts that have been previously introduced in EENN literature
and that share a connection with the idea of conditional monotonicity, which is the focus of our study.

In Kaya et al. [2019], the authors discovered that EENNs, for some data points, yield correct
predictions early on but then produce incorrect results at later exits13—a phenomenon they term
overthinking. Consequently, the authors noted that early-exiting in deep neural networks is not only
beneficial for speeding up inference but can sometimes even lead to improved overall test accuracy.
To measure overthinking, they considered the difference in performance between an oracle model that
exits at the first exit with the correct answer14 and the performance of the full EENN pM (y |x). In
the anytime setting, we desire a model with the lowest overthinking measure, i.e., 0, as this indicates
that evaluating more layers in the early-exit network does not negatively impact performance.

In Figure 18, we present the results of the overthinking analysis for the MSDNet [Huang et al.,
2018] model. We observe that both of our proposed methods significantly improve in terms of the
overthinking measure (left), making them more applicable in anytime scenarios.
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Figure 18: Overthinking analysis based on Kaya et al. [2019] using the MSDNet model. Our methods
substantially improve upon the baseline MSDNet in terms of the overthinking measure (left), making
them more suitable for an anytime setting. However, most of these improvements can be attributed to
a decrease in the theoretical performance of the oracle model (middle) rather than to the improvement
of the full EENN performance (right). For a more detailed explanation of the quantities depicted,
please refer to Section B.5.

We also note that a decrease in the overthinking measure can result from either (1) a reduction in the
(theoretical) performance of the oracle model or (2) an improvement in the (actual) performance of
the full EENN. As can be seen in Figure 18 (middle and right), our proposed modifications mainly
improve the overthinking measure through (1). To explore this further, in Figure 19 we plot the
number of test points that the model learned, i.e., correctly predicted for the first time, and the number
of points that the model forgot, i.e., incorrectly predicted for the first time, at each early exit. Both PA
and CA show a clear strength in minimizing forgetting, although they do so at the cost of diminishing
the baseline model’s ability to learn correct predictions. 15 These results indicate that there is further
room for improvement in the adaptation of EENNs for anytime computation, as the ideal model
would minimize forgetting without compromising its learning abilities.

13Using notation introduced in Section 2 this implies: �̂c
m(x) = 1 and �̂c

m0(x) = 0 for some m0 > m.
14Such a model cannot be implemented in practice, as it requires access to ground-truth values. Nevertheless,

it is interesting to study it as a way to better understand the upper bound on the achievable performance of the
underlying model.

15These observations are consistent with the analysis we presented in Section B.1.2 where we used correctness
of prediction as a measure for conditional monotonicity.
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Figure 20: Results for CIFAR-100 using Zero-Time-Waste (ZTW; Wolczyk et al. [2021]) model.
Applying our PA method to ZTW model leads to large improvements in terms of conditional
monotonicity (middle) and hindsight improvability (right), while only causing a minor decrease in
marginal accuracy (left).
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Figure 19: Learn-vs-forget analysis for the CIFAR-100 dataset using the MSDNet model. Specifically,
we plot the number of data points that are correctly classified for the first time (left) and the number
of data points that are incorrectly predicted for the first time (right) at each early exit. We observe
that our modifications help the model ‘forget’ less, though this comes with a minor trade-off in the
model’s ability to ‘learn’.

In a follow-up study by Wolczyk et al. [2021], the hindsight improvability (HI) measure is introduced.
For each early exit, this measure takes into account the set of incorrectly predicted points and
computes the percentage of those that were accurately predicted at any of the previous exits. In an
anytime setting, an ideal model would consistently exhibit an HI measure of 0. As evidenced by the
results in Figure 20, our post-hoc modifications substantially enhance the HI measure (right plot)
while only causing a minor negative impact on overall accuracy (left plot). Similar to the overthinking
measure, the observation that HI > 0 for our proposed methods suggests a potential for further
improvements.

24



B.6 Deep Ensembles and Regression

Although we have presented our results for classification with early-exit neural networks, we can
easily extend them to handle generic deep ensembles and regression settings.

Deep Ensembles While applying our method to deep ensembles might seem strange since they
have no implicit ordering as in the case of early-exit NNs, we note that ensembles are often evaluated
sequentially in low resource settings where there is not enough memory to evaluate all of the ensemble
members concurrently. In such settings, there is an implicit, if arbitrary, ordering, and we may still
require anytime properties so that we can stop evaluating additional ensemble members at any point.
Therefore, we can apply both Product Anytime and Caching Anytime—as in Section 4—to deep
ensembles, where pm (y |x) now represents the m-th ensemble member, rather than the m-the early
exit. An earlier version of this work [Allingham and Nalisnick, 2022] focused on product anytime
in the deep ensembles case. However, in that work, the focus was also on training from scratch
rather than the post-hoc setting we consider in this work. Training from scratch is challenging due
to, among other things,16 instabilities caused by the Product-of-Experts and the bounded support
of the likelihoods. Thus, the PA results from Allingham and Nalisnick [2022] are worse in terms
of predictive performance than the standard ensemble baseline. Note that our theoretical results in
Appendix A also apply in the deep ensembles case.17 Figure 21 shows qualitative results for our
anytime ensembles applied to a simple classification task. As expected, the support shrinks as we add
more multiplicands to the product.

Figure 21: Evolution of the support for each of 4-classes ( , , , ) in a spiral-arm classification task
with a 5-member anytime ensemble, as 1 to 5 (left to right) members are included in the prediction.

Regression Product Anytime can be applied to regression by using a uniform likelihood at each
early-exit (or ensemble member)

pm (y |x) = U(am, bm)

which results in a product likelihood

p1:m (y |x) = U(amax, bmin)

where amax = max({am}) and bmin = min({bm}). That is, the lower and upper bounds of the product
are, respectively, the maximum-lower and minimum-upper bounds of the multiplicands. As we add
more multiplicands, the width of the product density can only get smaller or stay the same, and thus
the probability of the modal prediction p1:m (ỹ |x) can only increase or stay the same, as in the
classification case. Figure 22 shows qualitative results for anytime ensembles applied to a simple
regression task. We see that the order of evaluation is unimportant. Firstly, as expected, the final
result is the same, and in both cases, the support size always decreases or is unchanged. Secondly,
the fit has almost converged within a few evaluations, and the last few multiplicands tend to have
smaller effects. Note that the prediction bounds cover the data well even for the poorer early fits.
Finally, note that there is no support outside of the training data range—we consider this data as
out-of-distribution.

16For example, Allingham and Nalisnick [2022] use a mixture of the product and individual likelihoods as
their loss function to encourage the individual ensemble members to fit the data well. However, they use the
standard softmax likelihood—with an exponential activation function—for the individual ensemble members,
which conflicts with the Heaviside activations in the product likelihood and results in reduced performance.

17We note that Allingham and Nalisnick [2022] neglect an important property required for monotonicity of
the modal probability: pm (y |x) must be uniform in addition to having finite support. I.e., in the classification
setting, the activation function used to map logits to probabilities must be the Heaviside function.
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Figure 22: Evolution of the the product support ( ) and mode ( ) for the simple 1d [Antorán
et al., 2020] regression task with a 5-member anytime ensemble, as 1 to 5 (left to right) members are
included in the prediction. In each column the support of the multiplicand to be included in the next
column’s product are shown ( ). The top and bottom show two different arbitrary orderings of the
ensemble members.

B.7 Anytime Uncertainty: Conditional Monotonicity

In Section 6.2, we presented the results of our uncertainty experiments where we observed that,
marginally, our PA model demonstrates an anytime uncertainty pattern: the model starts with high
uncertainty early on and then progressively becomes more confident at later exits.

In this section, we supplement these experiments with an analysis at the conditional level. Specif-
ically, for a given x 2 X , we compute the uncertainty (for instance, entropy) at each early exit:
{Um(x)}Mm=1. Following the approach we used in Section 3 for performance quality sequences, we
define a maximum increase in uncertainty as MUI(x) := maxm0>m

�
max(Um0(x) � Um(x), 0)

 
.

Next, for a range of suitably chosen thresholds ⌧ 2 R�0, we compute the number of test instances
that exhibit an uncertainty increase surpassing a given threshold N⌧ :=

P
n[MUI(xn) � ⌧ ]. Note

that a monotone oracle model would exhibit entirely non-increasing uncertainty trajectories, meaning
N⌧ = 0, 8⌧ .
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Figure 23: Conditional monotonicity using entropy as an uncertainty measure and MSDNet model as
a backbone. To better illustrate the different behavior of various methods, a log scale is used for the
y-axis. Our PA exhibits a significantly more monotone behavior compared to the baseline MSDNet
[Huang et al., 2018] model.

The results for entropy and conformal set size are depicted in Figures 23 and 24, respectively.
We observe that an EENN like MSDNet exhibits non-monotone behavior also in its uncertainty
estimates across different exits. This means that there are data points where the model starts with
high confidence in the initial exits but becomes less certain in subsequent stages. Such a trend is
problematic in the anytime setting, similar to the issues of non-monotonicity in performance quality
(c.f., Section 3). It suggests that the model expends additional computational resources only to
diminish its confidence in its response. Reassuringly, our PA aids in ensuring monotonicity not only
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in terms of performance quality (e.g., ground-truth probability) but also in its uncertainty estimates
(e.g., conformal set size) as evident in Figures 24 and 23.
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Figure 24: Conditional monotonicity using conformal set size as an uncertainty measure and MSDNet
model as a backbone. To better illustrate the different behavior of various methods, a log scale is
used for the y-axis. Same as in Figure 5, we used Regularized Adaptive Predictive Sets algorithm
[RAPS; Angelopoulos et al., 2021] to compute conformal scores. 20% of test examples were used
as a hold-out set to calculate conformal quantiles at each early exit. Our PA exhibits a significantly
more monotone behavior compared to the baseline MSDNet [Huang et al., 2018] model.

B.8 Controlling the Violations of Conditional Monotonicity

In Section 4.2, we introduced our Product Anytime (PA) method. It relies on the ReLU activation
function to map logits to (unnormalized) probabilities, which unfortunately compromises the strong
conditional monotonicity guarantees that are present when using the Heaviside activation function.

In this section, we propose a technique that allows for a more nuanced control of violations of
conditional guarantees. To illustrate this, observe first that ReLU and Heaviside are specific cases of
the following activation function:

a(x) := Cb · max
�
min(x, b), 0

�
(6)

where Cb := max(1, 1/b). Notice how limb!1 a(x) = ReLU(x) and limb!0+ a(x) =
Heaviside(x). Therefore, by adjusting the clipping threshold b, we can navigate the accuracy-
monotonicity trade-off as needed. This is demonstrated on the CIFAR-10 dataset in Figure 25.
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Figure 25: Test accuracy (left) and conditional monotonicity (middle and right) on CIFAR-10 dataset
for various instantiations of the PA model with the MSDNet backbone. We vary the clipping threshold
b used in the activation function when mapping logits to probabilities. When b is close to 0, the
activation function approximates the Heaviside function, resulting in more monotone behavior,
although this comes with a decrease in (marginal) accuracy. As b is increased, the activation function
moves closer to ReLU, leading to more violations of monotonicity, but also enhancing accuracy.
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B.9 Impact of Calibration on Conditional Monotonicity

In this section, we study whether monotonicity could be achieved by calibrating the underlying
EENN rather than employing our proposed PA. To answer this, we conducted an experiment where
we calibrated MSDNet and analyzed its effect on monotonicity. For the calibration, we utilized three
standard techniques: temperature scaling [Guo et al., 2017], deep ensembles [Lakshminarayanan
et al., 2017], and last-layer Laplace [Daxberger et al., 2021]. In Figure 26, we present results for
MSDNet on CIFAR-100. While all three approaches lead to better calibration in terms of ECE (right
plot), our PA significantly outperforms them in conditional monotonicity (middle plot). Moreover,
all three baselines are (arguably) more complex compared to our PA: temperature scaling requires
validation data, deep ensemble has M-times more parameters (M being the ensemble size), and
Laplace is significantly slower compared to PA since we need test-time sampling to estimate the
predictive posterior at each exit.

However, simply improving calibration might not be expected to improve monotonicity. Thus, in
Figure 26, we also provide results for combining the above uncertainty calibration techniques with our
CA baseline. We see that this combination provides further improvements w.r.t. monotonicity -– the
improved calibration allows for better caching of the correct prediction. However, the monotonicity
of these caching-and-calibrated methods still underperforms compared to PA despite being more
complicated. This demonstrates that monotonicity can not be achieved via calibration alone and
further underlines the value of our proposed approach.
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Figure 26: Comparison of our PA with calibrated baselines using MSDNet as a backbone on CIFAR-
100 dataset. For calibration, we use last-layer Laplace, deep ensembles with M = 5, and temperature
scaling. Additionally, we consider both caching ( ) and non-caching ( ) versions of calibrated
baselines. None of the considered calibrated baselines outperforms our PA in terms of monotonicity
(middle), despite being more complex. The blue and purple solid lines overlap in the accuracy plot
(left), indicating that the temperature scaling does not affect accuracy for the non-cached version, as
expected.

B.10 Budgeted Batch Classification

In this section, we conduct a budgeted batch classification experiment using MSDNet [Huang et al.,
2018] as the backbone. In budgeted batch classification, a limited amount of compute is available
to classify a batch of datapoints. The goal is to design a model that can allocate resources smartly
between easy and hard examples to maximize the overall performance, such as accuracy.

The results are shown in Figure 27. Since MSDNet outperforms our PA at most computational budgets,
we conclude that the monotonicity is less beneficial in budgeted batch classification. However, as
seen on CIFAR datasets, the non-monotonicity of MSDNet is also concerning in this setting –
for larger values of FLOPs, MSDNet performance starts to drop, while PA keeps monotonically
increasing and surpasses MSDNet. Based on these results, we suggest “turning on” our PA only for
anytime prediction and recommend that the user sticks to the original EENN in the budgeted batch
classification. However, this certainly warrants further investigation (as seen by the performance
benefits of our PA on CIFAR for larger FLOPs).

28



0.02 0.03 0.04 0.05 0.06

90

91

92
Te

st
A

cc
ur

ac
y

("
)

CIFAR-10

MSDNet
PA
CA

0.02 0.04 0.06

FLOPs [1e9]

65.0

67.5

70.0

72.5

CIFAR-100

MSDNet
PA
CA

0.4 0.6 0.8 1.0 1.2

60

65

70

ImageNet

MSDNet
PA
CA

Figure 27: Budgeted batch classification results for the MSDNet model. To measure the available
computational resources, we use FLOPs. Lower FLOPs will encourage the model to rely more on
initial exits, while a larger number of FLOPs will encourage the model to propagate more points to
the later exits. Our PA modification proves to be less beneficial in this setting, as seen by its inferior
performance compared to MSDNet for most of the computational budgets.

B.11 Additional Plots

Here, we provide additional results that were omitted in Section 6.1 to enhance the readability of the
plots there. Specifically, in Figure 28, we include test accuracy results, along with their respective
error bars, for the MSDNet [Huang et al., 2018] and IMTA [Li et al., 2019] models. In Figures 31
and 32, we present results for the L2W model [Han et al., 2022b]. We observe that our findings also
generalize to this EENN – our PA preserves the marginal accuracy while significantly improving
conditional monotonicity across all considered datasets.

As for the DViT [Wang et al., 2021] model, our attempts to train this model from scratch using the
published code18 were unsuccessful. Hence, we resorted to working with the pre-trained models
provided by the authors. They only published a single pre-trained model for each model version, and
as a result, instead of presenting results for independent runs with varying random seeds, we display
the results for all provided DViT model instantiations in Figure 29 and 30.
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Figure 28: Test accuracy on the CIFAR and ImageNet datasets. Our PA method maintains a
competitive performance compared to the baseline models. For each model and dataset, we use the
same number of early exits as proposed by the authors. We plot the average accuracy from n = 3
independent runs.

18https://github.com/blackfeather-wang/Dynamic-Vision-Transformer
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Figure 29: Test accuracy on the CIFAR and ImageNet datasets for various instantiations of DViT
model [Wang et al., 2021].
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Figure 30: The % of test examples with a ground-truth probability drop exceeding a particular
threshold for various instantiations of DViT model [Wang et al., 2021]. Our PA significantly improves
the conditional monotonicity of ground-truth probabilities across various datasets and backbone
models. To better illustrate the different behavior of various methods, a log scale is used for the
y-axis.
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Figure 31: Test accuracy on the CIFAR and ImageNet datasets for L2W model [Han et al., 2022b].
We plot the average accuracy from n = 3 independent runs.
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Figure 32: The % of test examples with a ground-truth probability drop exceeding a particular
threshold for L2W model [Han et al., 2022b]. Results are averaged over n = 3 independent runs. To
better illustrate the different behavior of various methods, a log scale is used for the y-axis.
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