
Towards Anytime Classification in Early-Exit
Architectures by Enforcing Conditional Monotonicity

Metod Jazbec
UvA-Bosch Delta Lab

University of Amsterdam
m.jazbec@uva.nl

James Urquhart Allingham
University of Cambridge
jua23@cam.ac.uk

Dan Zhang
Bosch Center for AI &
University of Tübingen

dan.zhang2@de.bosch.com

Eric Nalisnick
UvA-Bosch Delta Lab

University of Amsterdam
e.t.nalisnick@uva.nl

Abstract

Modern predictive models are often deployed to environments in which compu-
tational budgets are dynamic. Anytime algorithms are well-suited to such envi-
ronments as, at any point during computation, they can output a prediction whose
quality is a function of computation time. Early-exit neural networks have garnered
attention in the context of anytime computation due to their capability to provide
intermediate predictions at various stages throughout the network. However, we
demonstrate that current early-exit networks are not directly applicable to anytime
settings, as the quality of predictions for individual data points is not guaranteed
to improve with longer computation. To address this shortcoming, we propose an
elegant post-hoc modification, based on the Product-of-Experts, that encourages an
early-exit network to become gradually confident. This gives our deep models the
property of conditional monotonicity in the prediction quality—an essential step-
ping stone towards truly anytime predictive modeling using early-exit architectures.
Our empirical results on standard image-classification tasks demonstrate that such
behaviors can be achieved while preserving competitive accuracy on average.

1 Introduction

When deployed in the wild, predictive models are often subject to dynamic constraints on their com-
putation. Consider a vision system for an autonomous vehicle: the same system should perform well
in busy urban environments and on deserted rural roads. Yet the former environment often requires
quick decision-making, unlike the latter. Hence, it would be beneficial for our models to be allowed
to ‘think’ as long as its environment allows. Deploying models to resource-constrained devices
has similar demands. For example, there are roughly 25, 000 different computing configurations
of Android devices [Yu et al., 2019], and developers often need to balance poor user experience in
low-resource settings with under-performance in high-resource settings.

Anytime algorithms can ease, if not resolve, these issues brought about by dynamic constraints on
computations. An algorithm is called anytime if it can quickly produce an approximate solution and
subsequently employ additional resources, if available, to incrementally decrease the approximation
error [Dean and Boddy, 1988, Zilberstein, 1996].1 Anytime computation is especially valuable when
resources can fluctuate during test time. Returning to the example of mobile devices, an anytime

1We give a complete definition in Section 2.
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algorithm would be able to gracefully adapt to the computational budget of whatever class of device
it finds itself on: low-performing devices will depend on intermediate (but still good) solutions, while
high-performing devices can exploit the model’s maximum abilities.

Early-exit neural networks (EENNs) [Teerapittayanon et al., 2016] have attracted attention as anytime
predictors, due to their architecture that can generate predictions at multiple depths [Huang et al.,
2018]. However, as we demonstrate, EENNs do not exhibit anytime behavior. Specifically, current
EENNs do not possess conditional monotonicity, meaning that the prediction quality for individual
data points can deteriorate with longer computation at test time. This lack of monotonicity leads to a
decoupling of computation time and output quality—behavior that is decisively not anytime.

In this work, we improve EENNs’ ability to perform anytime predictive modeling. We propose a
lightweight transformation that strongly encourages monotonicity in EENNs’ output probabilities
as they evolve with network depth. Our method is based on a Product-of-Experts formulation
[Hinton, 1999] and exploits the fact that a product of probability distributions approximates an
‘and’ operation. Thus by taking the product over all early-exits computed thus-far, the aggregated
predictive distribution is gradually refined over time (exits) to have a non-increasing support. This
transformation has an inductive bias that encourages anytime uncertainty: the first exits produce high-
entropy predictive distributions—due to their large support—and the EENN becomes progressively
confident at each additional exit (by decreasing the support and reallocating probability).

In our experiments, we demonstrate across a range of vision classification tasks that our method
leads to significant improvements in conditional monotonicity in a variety of backbone models
without re-training. Moreover, our transformation preserves the original model’s average accuracy
and even improves it in some cases (e.g. CIFAR-100). Thus our work allows the large pool of
efficient architectures to be endowed with better anytime properties, all with minimal implementation
overhead.

2 Background & Setting of Interest

Data Our primary focus is multi-class classification.2 Let X ⊆ Rd denote the feature space,
and let Y denote the label space, which we assume to be a categorical encoding of multiple (K)
classes. x ∈ X denotes a feature vector, and y ∈ Y denotes the class (1 of K). We assume
x and y are realizations of the random variables x and y with the (unknown) data distribution
p(x,y) = p(y|x) p(x). The training data sample is D = {(xn, yn)}Nn=1. Our experiments focus on
vision tasks in which x is a natural image; in the appendix, we also report results on natural language.

Early-Exit Neural Networks: Model and Training Our model of interest is the early-exit neural
network [Teerapittayanon et al., 2016] (EENN). For a given data-point x, an EENN defines M total
models—p(y |x = x, ϕm, θm) , m = 1, . . . ,M , where ϕm denotes the parameters for the mth
classifier head and θm are the parameters of the backbone architecture. Each set of parameters
θm contains the parameters of all previous models: θ1 ⊂ θ2 ⊂ . . . ⊂ θM . Due to this nested
construction, each model can be thought of as a preliminary ‘exit’ to the full architecture defined by
θM . This enables the network’s computation to be ‘short-circuited’ and terminated early at exit m,
without evaluating later models. Training EENNs is usually done by fitting all exits simultaneously:

ℓ (ϕ1, . . . ,ϕM ,θ1, . . . ,θM ;D) = −
N∑
n=1

M∑
m=1

wm · log p(y = yn |x = xn, ϕm, θm) (1)

where wm ∈ R+ are weights that control the degree to which each exit is trained. The
weights are most often set to be uniform across all exits. For notational brevity, we will denote
p(y = y |x = x, ϕm, θm) as pm (y |x) henceforth.

Setting of Interest At test time, there are various ways to exploit the advantages of an EENN. For
example, computation could be halted if an input is deemed sufficiently easy such that a weaker
model (e.g. p1 or p2) can already make an accurate prediction, thus accelerating inference time.
Such efficient computation has been the central focus of the EENNs’s literature thus far [Matsubara
et al., 2023] and is sometimes referred to as budgeted batch classification [Huang et al., 2018].

2See Appendix B.6 for discussion of anytime regression.
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However, in this work we focus exclusively on the related, yet distinct, anytime setting motivated
in the Introduction. We assume computation is terminated when the current environment cannot
support computing and evaluating the (m + 1)th model. These constraints originate solely from
the environment, meaning the user or model developer has no control over them. We assume the
model will continue to run until it either receives such an external signal to halt or the final—i.e.,
M th—model is computed [Grubb and Bagnell, 2012]. Furthermore, in line with previous literature
on anytime algorithms [Huang et al., 2018, Hu et al., 2019], we assume the model sees one data point
at a time when deployed, i.e., the batch size is one at test time.

Anytime Predictive Models To have the potential to be called ‘anytime,’ an algorithm must
produce a sequence of intermediate solutions. In the case of classification, an anytime predictive
model must hence output a series of probability distributions over Y with the goal of forming
better and better approximations of the true conditional data distribution p(y |x). Specifically,
we are interested in the evolution of the conditional error for a given x ∈ X , defined here as
ϵt(x) := D

(
p(y |x) , pt (y |x)

)
where D denotes a suitable distance or divergence (e.g., KL-

divergence or total-variation), and pt represents a model’s predictive distribution after computing for
time t ∈ R≥0. In addition to conditional, i.e., instance-level, error we can also consider the evolution
of a marginal error defined as ϵ̄t := Ex∼p(x)

[
ϵt(x)

]
. For the remainder of this section, we will use

ϵt to refer to both versions of the error and revisit their difference in Section 3. Since this paper
focuses on anytime EENNs,3 we use the early-exit index m as the time index t.

Properties of Anytime Models Zilberstein [1996] enumerates properties that an algorithm should
possess to be anytime. Below we summarize Zilberstein [1996]’s points that are relevant to predictive
modeling with EENNs, ordering them in a hierarchy of necessity:

1. Interruptibility: The most basic requirement is that the model can be stopped and produce
an answer at any time. Traditional neural networks do not satisfy interruptibility since they
produce a single output after evaluating all layers. However, EENNs do by returning the
softmax probabilities for the mth model if the (m+ 1)th model has not been computed yet.

2. Monotonicity: The quality of the intermediate solutions should not decrease with computa-
tion time. Or equivalently, expending more compute time should guarantee performance
does not degrade. For EENNs, monotonicity is achieved if the error ϵm is non-increasing
across early-exits: ϵ1 ≥ . . . ≥ ϵM .

3. Consistency: The quality of the intermediate solutions should be correlated with computation
time. For EENNs, consistency is of most concern when the amount of computation varies
across sub-models. For example, if computing the (m+1)th model requires evaluating 10×
more residual blocks than the mth model required, then a consistent architecture should
produce a roughly 10× better solution (ϵm+1 ≈ ϵm/10).

4. Diminishing Returns: The difference in quality between consecutive solutions is gradu-
ally decreasing, with the largest jumps occurring early, e.g. (ϵ1 − ϵ2) ≫ (ϵM−1 − ϵM ).
Monotonicity and consistency need to be satisfied in order for this stronger property to be
guaranteed.

For a traditional EENN (trained with Equation 1), property #1 is satisfied by construction (by the
presence of early-exits). Property #2 is not explicitly encouraged by the typical EENN architecture or
training objective. Hence, we begin the next section by investigating if current EENNs demonstrate
any signs of monotonicity. Properties #3 and #4 are left to future work since, as we will demonstrate,
achieving property #2 is non-trivial and is thus the focus of the remainder of this paper.

Estimating Anytime Properties The error sequence {ϵm}Mm=1 is essential for studying the anytime
properties of EENNs. We can equivalently consider the evolution of prediction quality measures
γm and aim for a model that exhibits increasing quality, i.e., γm ≤ γm+1,∀m. For the remainder of
the paper, we will work with the notion of prediction quality unless otherwise stated. Observe that
each γm (and equivalently, ϵm) is always unknown, as it depends on the unknown data distribution
p(y |x). Consequently, we must rely on estimates γ̂m. In the presence of a labeled hold-out dataset,
we can use ground-truth labels y∗ ∈ Y and consider the correctness of the prediction as our estimator:

3While EENNs are the focus of our work, they are not the only model class that can be used for anytime
prediction. In theory, any model that yields a sequence of predictions could be considered.
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γ̂cm(x) := [argmaxy pm (y |x) = y∗] where [·] is the Iverson bracket.4 However, such an estimator
provides a crude signal (0 or 1) on a conditional level (per data point). As such, it is not congruent
with conditional monotonicity or consistency. Due to this, we focus primarily on the probability of
the ground-truth class γ̂pm(x) := pm (y∗ |x) when examining anytime properties at the conditional
level. Finally, estimating marginal prediction quality (error) requires access to p(x). Following
common practice, we approximate Ex∼p(x) by averaging over the hold-out dataset. Averaging γ̂cm(x)
and γ̂pm(x) corresponds to the test accuracy and the average ground-truth probability at the mth exit,
respectively.

3 Checking for Monotonicity in Early-Exit Neural Networks

In this section, we take a closer look at state-of-the-art early-exit neural networks and their mono-
tonicity, a key property of anytime models. Our results show that EENNs are marginally monotone
but lack conditional monotonicity in the prediction quality. For ease of presentation, we focus here on
a particular EENN (Multi-Scale Dense Net (MSDNet); Huang et al. [2018]) and dataset (CIFAR-100).
Section 6 shows that this observation generalizes across other EENNs and datasets.

Marginal Monotonicity The left plot of Figure 1 reports MSDNet’s test accuracy (blue) on CIFAR-
100 as a function of the early exits. Accuracy has been the primary focus in the anytime EENN
literature [Huang et al., 2018, Hu et al., 2019], and as expected, it increases at each early exit m.
Thus MSDNet clearly exhibits marginal monotonicity: monotonicity on average over the test set.
The same figure also shows that the average ground-truth probability (orange) increases at each m,
meaning that MSDNet demonstrates marginal monotonicity in this related quantity as well.

Conditional Monotonicity Yet for real-time decision-making systems, such as autonomous driving,
it is usually not enough to have marginal monotonicity. Rather, we want conditional monotonicity:
that our predictive model will improve instep with computation for every input. If conditional
monotonicity is achieved, then marginal monotonicity is also guaranteed. However, the converse is
not true, making conditional monotonicity the stronger property.

To check if MSDNet demonstrates conditional monotonicity, examine the middle plot of Figure
1. Here we plot the probability of the true label, i.e., γ̂pm(x), as a function of the early exits for
10 randomly sampled test points (again from CIFAR-100). We see that—despite MSDNet being
marginally monotonic—it is quite unstable in the probabilities it produces per exit. For example, the
purple line exhibits confidence in the correct answer (∼ 75%) at the second exit, drops to near zero
by the fourth exit, becomes confident again (∼ 80%) at exits 5 and 6, and finally falls to near zero
again at the last exit. Thus MSDNet clearly does not exhibit the stronger form of monotonicity.

We next quantify the degree to which MSDNet is violating conditional monotonicity. First, we define
the maximum decrease in the ground-truth probability as MPD∗(x) := maxm′>m

{
max(γ̂pm(x)−

γ̂pm′(x), 0)
}

. For various thresholds τ ∈ [0, 1], we count how many test instances exhibit a probability
decrease that exceeds the given threshold: Nτ :=

∑
n[MPD∗(xn) ≥ τ ]. The results are depicted

in the right panel of Figure 1. We see that for ∼ 25% of test points, the ground-truth probability
decreases by at least 0.5 at some exit. In a separate analysis (see Appendix B.1.2), when examining
the correctness of prediction measure γ̂cm(x), we find that ∼ 30% of test examples exhibit decreasing
trajectories across early exits.5 A similar finding was reported by Kaya et al. [2019]. Both observations
demonstrate that MSDNet, a state-of-the-art EENN, does not exhibit conditional monotonicity nor is
it close to achieving it.

4 Transformations for Conditional Monotonicity

In light of the aforementioned challenges with current EENNs in the anytime setting, we explore
potential lightweight modifications that could encourage, or even enforce, conditional monotonicity.
We first suggest a strong baseline for encouraging monotonicity, taking inspiration from Zilberstein
[1996]. We then introduce our primary methodology, which is based on product ensembles.

4The Iverson bracket [cond] is 1 if cond is true and 0 otherwise.
5This implies that the model incorrectly classifies the data point after correctly predicting it at some of the

earlier exits: γ̂c
m(x) = 1 and γ̂c

m′(x) = 0 for some m′ > m.
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Figure 1: Multi-Scale Dense Network (MSDNet; Huang et al. [2018]) results on the test set of CIFAR-
100. Left: test accuracy and average ground-truth probability at each early exit, the two measures
of marginal monotonicity we study in this work. Middle: ground-truth probability trajectories (i.e.,
{γ̂pm(x)}Mm=1) for 10 random test data points. Right: aggregation of analysis on conditional mono-
tonicity for MSDNet. Specifically, we compute the maximum decrease in ground-truth probability
for each test data point and then plot the percentage of test examples where the drop exceeds various
thresholds. A red dashed line denotes the performance of an oracle model with perfect conditional
monotonicity, i.e., none of the data points exhibit any decrease in the ground-truth probability.

4.1 Caching Anytime Predictors

As noted by Zilberstein [1996], conditional monotonicity can be encouraged by caching the best
prediction made so far and returning it (instead of the latest prediction). Yet this requires the ability
to measure the prediction quality of intermediate results. While previously introduced quantities,
such as ground-truth probability γ̂pm(x), can serve to examine anytime properties before deploying
the model, their reliance on the true label y∗ renders them unsuitable for measuring prediction quality
at test time. As a proxy, we propose using the EENN’s internal measure of confidence. We found
that simply using the softmax confidence performs well in practice. At an exit m, we compute
C(pm,x) := maxy pm(y|x) and overwrite the cache if C(pj ,x) < C(pm,x), where j is the exit
index of the currently cached prediction. We call this approach Caching Anytime (CA) and consider
it as a (strong) baseline. While CA is rather straightforward, it has been thus far overlooked in the
anytime EENN literature, as the standard approach is to return the latest prediction [Huang et al.,
2018, Hu et al., 2019]. Note that if the anytime model displays conditional monotonicity to begin
with, applying CA has no effect since the most recent prediction is always at least as good as the
cached one.

4.2 Product Anytime Predictors

Our proposed method for achieving conditional monotonicity in EENNs is motivated by the following
idealized construction.

Guaranteed Conditional Monotonicity via Hard Product-of-Experts Consider an EENN whose
sub-classifiers produce ‘hard’ one-vs-rest probabilities: each class has either probability 0 or 1 (before
normalization). Now define the predictive distribution at the mth exit to be a Product-of-Experts
[Hinton, 1999] (PoE) ensemble involving the current and all preceding exits:

pΠ,m (y |x) := 1

Zm

m∏
i=1

[
fi(x)y > b

]wi
, Zm =

∑
y′∈{1,...,K}

m∏
i=1

[
fi(x)y′ > b

]wi (2)

where b is a threshold parameter, [·] is an Iverson bracket, fi(x) ∈ RK represents a vector of logits at
ith exit, and wi ∈ R+ are ensemble weights. Assuming that a class y is in the support of the final
classifier for a given x, i.e. pΠ,M (y |x) > 0, then such a model is guaranteed to be monotone in the
probability of y:

pΠ,m (y |x) ≤ pΠ,m+1 (y |x) , ∀m . (3)
The formal proof can be found in Appendix A. Consequently, if the true class y∗ is in the final support,
an EENN with this construction is conditionally monotonic in the ground-truth probability γ̂pm(x) (as
defined in Section 2).

The intuition behind this construction is that at each exit, the newly computed ensemble member casts
a binary vote for each class. If a class has received a vote at every exit thus far, then it remains in the
support of pΠ,m (y |x). Otherwise, the label drops out of the support and never re-enters. At each
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exit, the set of candidate labels can only either remain the same or be reduced, thus concentrating
probability in a non-increasing subset of classes. This construction also has an underconfidence
bias: the probability of all labels starts small due to many labels being in the support at the earliest
exits. Consequently, the model is encouraged to exhibit high uncertainty early on and then to become
progressively confident at subsequent exits.

A Practical Relaxation using ReLU Although the above construction provides perfect conditional
monotonicity (for labels in the final support), it often results in a considerable decrease in marginal
accuracy (see Appendix B.2). This is not surprising since the 0 − 1 probabilities result in ‘blunt’
predictions. At every exit, all in-support labels have equal probability, and thus the model must select
a label from the support at random in order to generate a prediction. The support is often large,
especially at the early exits, and in turn the model devolves to random guessing.

To overcome this limitation, first notice that using 0−1 probabilities is equivalent to using a Heaviside
function to map logits to probabilities.6 In turn, we propose to relax the parameterization, replacing
the Heaviside with the ReLU activation function. The ReLU has the nice property that it preserves
the rank of the ‘surviving’ logits while still ‘nullifying’ classes with low logits. Yet this relaxation
comes at a price: using ReLUs allows conditional monotonicity to be violated. However, as we will
show in Section 6, the violations are rare and well worth the improvements in accuracy. Moreover,
the number of violations can be controlled by applying an upper limit to the logits, as detailed in
Appendix B.8.

Therefore our final Product Anytime (PA) method for conditional monotonicity is written as:

pPA,m (y |x) := 1

Zm

m∏
i=1

max
(
fi(x)y, 0

)wi
, Zm =

∑
y′∈{1,...,K}

m∏
i=1

max
(
fi(x)y′ , 0

)wi (4)

where max(·, ·) returns the maximum of the two arguments. We set the ensemble weights to
wi = i/M since we expect later experts to be stronger predictors. Note that PA’s predictive
distribution may degenerate into a zero distribution such that pPA,m (y |x) = 0, ∀ y ∈ Y . This
occurs when the ensemble’s experts have non-overlapping support and are thus unable to arrive at a
consensus prediction. If a prediction is required, we fall back on the softmax predictive distribution
based on the logits of the classifier at the current exit.
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Figure 2: Ground-truth probability trajectories (i.e.,
{γ̂pm(x)}Mm=1) for 10 random test data points after
applying our PA method. For comparison, MSD-
Net’s trajectories from Figure 1 are reproduced in
the background.

Learning and Post-Hoc Application Equa-
tion 4 can be used for training an EENN di-
rectly via the negative log-likelihood. However,
one can also take pre-trained EENNs (e.g., as
open-sourced by the original authors) and apply
Equation 4 post-hoc. For this post-hoc applica-
tion, the EENN’s logits are input into Equation
4 rather than into the usual softmax transfor-
mation. As we will demonstrate in the experi-
ments, post-hoc application endows the model
with conditional monotonicity without any sub-
stantial degradation to the original model’s ac-
curacy. In cases such as CIFAR-100, we find
that our method actually improves the accuracy
of the pre-trained model. The only metric we
find to be sensitive to training from scratch vs
post-hoc application is confidence calibration, with the former providing better calibration properties.
This result will be demonstrated in Figure 6. Thus, we currently recommend using our method via
post-hoc application, as it requires minimal implementation overhead (about three lines of code) and
allows the user to easily toggle between anytime and traditional behavior.

For a visualization of how our post-hoc PA affects probability trajectories, see Figure 2. PA manages
to rectify the backbone EENN’s non-monotone behavior to a large extent. As a concrete example
of how this can help with anytime predictions, we can consider again the scenario of Android

6In the most widely used softmax parameterization of the categorical likelihood, the exponential function is
used when transforming logits into probabilities.
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phones introduced in Section 1. Deploying the original MSDNet might result in certain data points
receiving inferior predictions on a higher-spec device compared to a device with limited computational
capabilities. However, if we apply our PA to an MSDNet, such inconsistencies become far less likely
due to the model’s monotonic behavior.

5 Related work

Anytime Algorithms [Dean and Boddy, 1988, Zilberstein, 1996] have long been studied outside the
context of neural networks. For instance, Wellman and Liu [1994] considered Bayesian networks in
anytime settings, while Grubb and Bagnell [2012] proposed an anytime Ada-Boost algorithm [Bishop,
2007] and also studied Haar-like features [Viola and Jones, 2001] for anytime object detection. More
recently, modern neural networks have been used in models with only marginal anytime properties
[Huang et al., 2018, Hu et al., 2019, Liu et al., 2022]. Our research improves upon this work by
bringing these models a step closer to having per-data-point anytime prediction, a much stronger
form of anytime computation.

Early-Exit Neural Networks [Teerapittayanon et al., 2016, Yang et al., 2020, Han et al., 2022a] have
been investigated for applications in computer vision [Huang et al., 2018, Kaya et al., 2019] and
natural language processing [Schwartz et al., 2020, Schuster et al., 2021, Xu and McAuley, 2023]. A
wide variety of backbone architectures has been explored, encompassing recurrent neural networks
[Graves, 2016], convolutional networks [Huang et al., 2018], and transformers [Wang et al., 2021].
Furthermore, ensembling of EENNs intermediate predictions has been considered [Qendro et al.,
2021, Wolczyk et al., 2021, Meronen et al., 2023], primarily to enhance their uncertainty quantification
capabilities. Our objective is to leverage the recent advancements in early-exit networks and make
them suitable for true (conditional) anytime predictive modeling.

Related to our critique of current EENNs, Kaya et al. [2019] and Wolczyk et al. [2021] also observed
that prediction quality can decline at later exits, calling the phenomenon ‘overthinking.’ These works
address the problem via methods for early termination. Our work aims to impose monotonicity on
the ground-truth probabilities, which eliminates ‘overthinking’ by definition. We further examine the
connection to Kaya et al. [2019] and Wolczyk et al. [2021] in Appendix B.5.

Product-of-Experts [Hinton, 1999, 2002] ensembles have been extensively studied in the generative
modeling domain due to their ability to yield sharper distributions compared to Mixture-of-Experts
ensembles [Wu and Goodman, 2018, Huang et al., 2022]. However, in the supervised setting, PoE
ensembles have received relatively little attention [Pignat et al., 2022]. PoE is often applied only
post-hoc, likely due to training difficulties [Cao and Fleet, 2014, Watson and Morimoto, 2022].

6 Experiments

We conduct two sets of experiments.7 First, in Section 6.1, we verify that our method (PA) maintains
strong average performance while significantly improving conditional monotonicity in state-of-the-art
EENNs making them more suitable for the anytime prediction task. To check that our findings
generalize across data modalities, we also conduct NLP experiments and present the results in
Appendix B.4. In the second set of experiments, detailed in Section 6.2, we move beyond prediction
quality and shift focus to monotonicity’s effect on uncertainty quantification in the anytime setting.
Lastly, we point out some limitations in Section 6.3.

Datasets We consider CIFAR-10, CIFAR-100 [Krizhevsky et al., 2009], and ILSVRC 2012 (Ima-
geNet; Deng et al. [2009]). The CIFAR datasets each contain 50k training and 10k test images, while
ImageNet is a larger dataset with 1.2M training and 50k test instances. The three datasets consist of
10, 100, and 1000 classes, respectively.

Baselines We use four state-of-the-art EENNs as baselines and backbone architectures. The
first is the Multi-Scale Dense Network (MSDNet; Huang et al. [2018]), which consists of stacked
convolutional blocks. To maximize performance at each early-exit, the authors introduce: (1) feature
maps on multiple scales, ensuring that coarse-level features are available all throughout the network,

7Our code is publicly available at https://github.com/metodj/AnytimeClassification.
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Figure 3: Test accuracy on the CIFAR and ImageNet datasets. Our PA method maintains a competitive
performance compared to the baseline models. For each model and dataset, we use the same number
of early exits as proposed by the authors. We plot the average accuracy from n = 3 independent runs.
To enhance the readability of the plot, we omit the error bars here as well as the results of the L2W
model and report them in Appendix B.11.

and (2) dense connectivity to prevent earlier classifiers from negatively impacting later ones. The
second baseline is the IMTA network [Li et al., 2019], which shares MSDNet’s architecture but is
trained with regularization that improves collaboration across the classifiers of each exit. The third
baseline is the L2W model [Han et al., 2022b], which enhances MSDNet by learning to weight easy
and hard samples differently at each exit during training. The intuition is that easier samples should
contribute more to the fitting of earlier exits, while harder samples should be more influential for
later exits. Lastly, we consider the Dynamic Vision Transformer (DViT; Wang et al. [2021]), which
is composed of stacked transformer networks that differ in the number of patches into which they
divide an input image. We report results for the T2T-ViT-12 instantiation of DViT. During testing, all
baselines employ a softmax parameterization for their categorical likelihood and solely rely on the
most recent prediction at each early exit.

6.1 Anytime Prediction with Conditional Monotonicity

Test Accuracy We first verify that post-hoc application of our PA transformation preserves the
original model’s test accuracy. Maintaining test accuracy is essential, as simply examining conditional
monotonicity in isolation does not provide a complete picture. For instance, a model that predicts a
ground-truth probability of zero at every exit would exhibit perfect conditional monotonicity while
being useless in practice. Figure 3 reports accuracy per exit for the three backbones models, comparing
the original model ( ) to our proposals PA ( ) and CA ( ). We find that our monotonicity methods
do not significantly degrade test accuracy in any case. In some instances, such as the MSDNet results
on CIFAR-100 (middle, blue), our PA even improves accuracy. Comparing our proposals, PA tends
to outperform CA in accuracy, although the advantage is often slight.

Conditional Monotonicity Next, we quantify the degree to which each model is conditionally
monotonic, again using the maximum probability decrease metric (MPD∗) used in Figure 1 (right).
Figure 4 reports the percentage of test cases that exhibit a drop in the ground-truth probability at any
exit. Firstly, we see that CA and PA drastically improve monotonicity in all cases. Moreover, PA is
clearly superior to CA for CIFAR-100 and ImageNet. On CIFAR-10, PA and CA perform on par
for smaller decrease thresholds, with PA outperforming CA again for larger thresholds. Notably, on
ImageNet, our PA method does not exhibit a drop in ground-truth probability larger than 0.01 for any
test example for all three models.

From the results in Figures 3 and 4, one might wonder if a simpler change to the backbone EENN
could lead to similar improvements in conditional monotonicity as our PA. To test this, we looked
at ‘vanilla’ early-exit ensembles where predictive distributions from different exits are combined
using either mixture-of-experts (MoE) or product-of-experts (PoE), see Appendix B.2 for the results.
While using ensembles is beneficial, it is insufficient to achieve improvements in monotonicity
similar to those of PA. This highlights the importance of the activation function (that maps logits
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Figure 4: The % of test examples with a ground-truth probability drop exceeding a particular threshold.
Our PA significantly improves the conditional monotonicity of ground-truth probabilities across
various datasets and backbone models. To better illustrate the different behavior of various methods, a
log scale is used for the y-axis. We report average monotonicity together with one standard deviation
based on n = 3 independent runs. For DViT [Wang et al., 2021], we were unable to perform multiple
independent runs, and report the results for various models instantiations instead, see Appendix B.11.
Note that for PA, the monotonicity curves on ImageNet (almost perfectly) overlap at y = 0 for all
backbone models considered. We also report results for the L2W model in Appendix B.11, which are
largely the same as for MSDNet.

to probabilities) when it comes to achieving more monotone behavior. We additionally explored if
calibrating the backbone EENN would be enough to make the underlying model monotone. While
post-hoc calibrating every exit does help with monotonicity, it does not perform as well as PA; see
Appendix B.9.

Monotonicity in Correctness Our PA approach yields close to perfect conditional monotonicity
when considering probability as the estimator of prediction quality. Yet it is also worth checking if
other estimators are monotonic, such as the correctness of the prediction, i.e., γ̂cm(x). For correctness,
we observe similar improvements in conditional monotonicity; see Appendix B.1.2 for a detailed
analysis. For example, on CIFAR-100, MSDNet ‘forgets’ the correct answer in ∼ 30% of test cases,
whereas applying post-hoc PA reduces these monotonicity violations to ∼ 13% of cases.

6.2 Anytime Uncertainty
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Figure 5: Uncertainty measures for the MSDNet
model on the CIFAR-100. Left: average test en-
tropy of (categorical) predictive distributions for
each early exit. Right: mean size of conformal sets
at each exit point. To obtain conformal scores, we
used Regularized Adaptive Predictive Sets algo-
rithm [RAPS; Angelopoulos et al., 2021]. 20% of
test examples were used as a hold-out set to calcu-
late conformal quantiles at each early exit.

We also examine the uncertainty quantification
abilities of these anytime models. Again con-
sider Figure 2, the probability trajectories ob-
tained from post-hoc PA. The probabilities start
low at first few exits, indicating high uncertainty
in the early stages of anytime evaluation. The
left plot of Figure 5 further supports this insight,
showing that the average entropy of the PA pre-
dictive distributions is high and reduces at each
early exit. Lastly, in the right plot, we present
the average size of conformal sets8 at each exit.
The set size reflects the model’s predictive un-
certainty, with larger sets indicating more uncer-
tainty. Thus we see that PA is best at uncertainty
quantification: it is quite uncertain at the earli-
est exits (set size of ∼ 11) but grows twice as
confident by the last exit (set size of ∼ 4). CA
and regular MSDNet keep a relatively constant
set size by comparison, only varying between

8Conformal sets are prediction sets over Y that are marginally guaranteed to contain the ground-truth label
(without making any assumptions on the underlying data distribution). For more on conformal sets, see Shafer
and Vovk [2008].
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11 and 7.5. Hence, the monotonicity properties of PA result in an appealing link between uncertainty
and computation time; and we term this property as anytime uncertainty. This is an appropriate
inductive bias for anytime predictive models since, intuitively, making quicker decisions should
entail a higher level of uncertainty. Lastly, in Appendix B.7, we present results of conditional level
experiments where we find that our PA yields significantly more monotone (i.e., non-increasing)
uncertainty patterns.

6.3 Limitations

Label Sets with Small Cardinality We observe that PA’s performance in terms of conditional
monotonicity improves as the number of classes |Y| increases. For instance, PA yields fully monotone
trajectories on ImageNet, but not for datasets with smaller number of classes like CIFAR-10, where
we detect small violations. This finding is further supported by our NLP experiments in Appendix
B.4, where |Y| is smaller compared to the image classification datasets considered in this section.
Based on this finding, we recommend using the CA approach over PA for scenarios in which |Y| < 5.
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Figure 6: Calibration analysis for MSDNet
on CIFAR-100. Left: expected calibration er-
ror (ECE) during anytime evaluation. Right:
Ground-truth probability trajectories for 10
random test data points after applying our PA
with finetuning (PA-FT) method. For compari-
son, MSDNet’s trajectories from Figure 1 are
reproduced in the background.

Calibration Gap Due to its aforementioned un-
derconfidence bias, post-hoc PA generates poorly
calibrated probabilities during the initial exits, as
illustrated in the left plot of Figure 6. Yet this is pri-
marily observed in expected calibration error (ECE)
and related metrics. It disappears when considering
some alternative metrics to ECE, as shown in the
right plot of Figure 12. Finetuning with PA as an
optimization objective, as opposed to applying it
post-hoc, closes the calibration gap in most cases,
albeit at some cost to accuracy and monotonicity.
See Figure 6 (right) for concrete examples of how
PA with finetuning affects ground-truth probability
trajectories. In addition, we experimented with adap-
tive thresholding in PA, using different thresholds b
for distinct data points, rather than employing 0 for
all data points as with ReLU, and found that it can
also be beneficial in terms of calibration. For more
details on finetuning and adaptive thresholding, as
well as a discussion on the relevance of ECE-like
metrics in the anytime setting, see Appendix B.3.

7 Conclusion

We have demonstrated that expending more time during prediction in current early-exit neural
networks can lead to reduced prediction quality, rendering these models unsuitable for direct ap-
plication in anytime settings. To address this issue, we proposed a post-hoc modification based on
Product-of-Experts and showed through empirical and theoretical analysis that it greatly improves
conditional monotonicity with respect to prediction quality over time while preserving competitive
overall performance.

In future work, we aim to further improve EENNs by imbuing them with other critical anytime
properties, such as diminishing returns and consistency. Moreover, it would be interesting to study
the impact of monotonicity in other settings, such as budgeted batch classification. We report some
preliminary results in Appendix B.10, finding the monotonicity to be less beneficial there compared
to the anytime setting, which was the focus of our work. We also plan to delve deeper into the concept
of anytime uncertainty. Although we have (briefly) touched upon it in this study, we believe a more
comprehensive and formal definition is necessary for the development of robust and reliable anytime
models.
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The Appendix is structured as follows:

• We provide a proof of conditional guarantees in EENNs for (hard) PoE in Appendix A.
• We present conditional monotonicity results using alternative estimators of performance

quality γm in Appendix B.1.
• We conduct an ablation study for our PA model in Appendix B.2.
• We propose two modifications to our PA that help with reducing the calibration gap in

Appendix B.3.
• We report results of NLP experiments in Appendix B.4.
• We delve into the connections between conditional monotonicity and previously introduced

concepts in EENNs literature in Appendix B.5.
• We discuss anytime regression and deep ensembles in Appendix B.6.
• We present conditional monotonicity results using uncertainty measures in Appendix B.7.
• We propose a technique for controlling the violations of conditional monotonicity in PA in

Appendix B.8.
• We study the impact of calibration on the conditional monotonicity in Appendix B.9.
• We provide budgeted batch classification results in Appendix B.10.
• We provide additional plots in Appendix B.11.

A Theoretical Results

In the following, we provide a proof for conditional monotonicity of (hard) Product-of-Experts
ensembles presented in Section 4.2.
Proposition. Let pΠ,m (y |x) represent the Product-of-Experts ensemble of the first m early-exits.
Furthermore, let y ∈ Y denote any class that is present in the support of the full-NN product
distribution, i.e., pΠ,M (y |x) > 0. Under the assumption that the Heaviside activation function is
used to map logits to probabilities in each pm (y |x), it follows that:

pΠ,m (y |x) ≤ pΠ,m+1 (y |x)
for every early-exit m and for every input x.

Proof. Using the definition of the PoE ensemble and that of the Heaviside activation function, the
predictive likelihood at the mth early exit can be written as

pΠ,m (y |x) := 1

Zm

m∏
i=1

[
fi(x)y > b

]wi
, Zm =

∑
y′∈{1,...,K}

m∏
i=1

[
fi(x)y′ > b

]wi

where fi(x) ∈ RK denotes a vector of logits at the i-th early-exit, b represents a chosen threshold,
and wi ∈ R+ represent ensemble weights. Since we assume that class y is in the support of the full
NN ensemble, i.e., pΠ,M (y |x) > 0, it follows that

m∏
i=1

[
fi(x)ỹ > b

]wi
=

m+1∏
i=1

[
fi(x)ỹ > b

]wi
= 1, ∀m = 1, . . . ,M − 1 .

It then remains to show that the normalization constant is non-increasing, i.e., Zm ≥ Zm+1,∀m. To
this end observe that

[
fm+1(x)y′ > b

]wm+1 ∈ {0, 1}, ∀y′ ∈ Y , using which we proceed as

Zm =
∑

y′∈{1,...,K}

m∏
i=1

[
fi(x)y′ > b

]wi ≥

∑
y′∈{1,...,K}

m∏
i=1

[
fi(x)y′ > b

]wi ·
[
fm+1(x)y′ > b

]wm+1
= Zm+1,

where Zm = Zm+1 if
[
fm+1(x)y′ > b

]wm+1
= 1 ∀y′ ∈ Y and Zm > Zm+1 otherwise.
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B Additional Experiments

B.1 Conditional Monotonicity

In the main paper, the ground-truth probability was our focus when studying conditional monotonicity
in early-exit networks. Here, we supplement these findings with additional results, utilizing alternative
estimators of prediction quality γm.

B.1.1 Full-Model Prediction Probability

Suppose only an unlabeled hold-out dataset is available. In that case, the anytime properties of
EENNs can still be investigated by relying on the full model prediction ŷ := argmaxy pM (y |x),
instead of y∗. Naturally, the merit of this alternative hinges on the underlying model being accurate
in most cases. Furthermore, besides serving as a substitute for the ground-truth probability in the
absence of a labeled dataset, the evolution of the full-model prediction probability can be used as a
stand-alone measure of how well early-exits in an EENN approximate the full model.

In Figure 7, we present conditional monotonicity results using ŷ probability as the prediction quality
measure. Similar to the results presented in Section 6.1 for y∗ probability, we conclude that our PA
outperforms both the baseline models and CA approach across all datasets considered.
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Figure 7: The percentage of test examples with a full-model prediction probability drop exceeding a
specified threshold. PA significantly improves the conditional monotonicity properties of ground-truth
probabilities across various datasets and backbone models. To better illustrate the different behavior
of various methods, a log scale is used for y-axis. We report average monotonicity together with one
standard deviation based on n = 3 independent runs. For DViT [Wang et al., 2021], we were unable
to perform multiple independent runs and report the results for various model instantiations instead;
see Appendix B.11.

B.1.2 Correctness of Prediction

We next shift our focus to the correctness of prediction as an estimator of performance quality. Recall
from Section 2 its definition: γ̂cm(x) := [argmaxy pm (y |x) = y∗]. It is a binary measure that can
only take on the values of 0 or 1, and thus provides a less nuanced signal about the evolution of the
performance quality compared to probability-based measures that evolve more continuously in the
interval [0, 1].

To aggregate the results of the conditional monotonicity analysis, we consider the following two
quantities:

• %mono: the percentage of test data points that exhibit fully monotone trajectories in the
correctness of the prediction, i.e., γ̂cm(x) ≤ γ̂cm+1(x),∀m. This implies that if the model
managed to arrive at the correct prediction at the mth exit, it will not forget it at later exits.
An oracle model with perfect conditional monotonicity will result in %mono = 100%.

• %zero: the number of points for which the EENN model is wrong at all exits. This is used to
account for trivial solutions of the monotonicity desideratum: γ̂cm(x) = 0, ∀m. Naturally,
the smaller the %zero, the better.
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Table 1: Aggregated results of conditional monotonicity analysis based on correctness of prediction
as a performance quality measure. MSDNet [Huang et al., 2018] is used as a backbone model for PA
and CA for the results reported here. See Section B.1.2 for definition of %mono and %zero.

CIFAR-10 CIFAR-100 ImageNet

%mono (↑) %zero (↓) %mono (↑) %zero (↓) %mono (↑) %zero (↓)
MSDNet 91.8 3.6 70.8 12.6 84.9 20.4
PA (ours) 96.2 4.6 87.2 16.4 93.5 24.1
CA 97.8 5.5 90.8 18.6 94.5 25.6

Results are displayed in Table 1. Comparing our PA model against the MSDNet baseline, we observe
a significant improvement in terms of the percentage of test data points that exhibit perfect conditional
monotonicity, i.e., %mono. However, this improvement comes at a cost, as fewer points have a correct
prediction for at least one exit. Despite this trade-off, the magnitude of improvement in %mono is
larger compared to the degradation of %zero across all datasets considered, which demonstrates that
our PA method improves the conditional monotonicity of γ̂cm(x) in a non-trivial manner.

Although the Caching Anytime (CA) method outperforms PA in terms of %mono across all datasets,
it is worth noting that a considerable portion of CA’s outperformance can be attributed to trivial
solutions (i.e., γ̂cm(x) = 0, ∀m), which is reflected by CA’s poor performance in terms of %zero.
Furthermore, the fact that neither CA nor PA fully achieves conditional monotonicity in prediction
correctness (i.e., %mono = 100) highlights that there is still potential for further improvement in
endowing EENNs with conditional monotonicity.

B.2 Product Anytime (PA) Ablations

To better understand the role of different components in our proposed PA method, we conduct several
ablations and present the results in Figure 8. In accordance with the theoretical results we presented
in Section 4.2, we observe that the PoE ensemble combined with the Heaviside activation ( )
yields a model that exhibits complete conditional monotonicity in the full model prediction (i.e., ŷ)
probability.9 However, this combination also leads to a model with inferior performance in terms of
overall test accuracy (see left plot). As mentioned, this occurs because the model assigns an equal
probability to all classes in its support. The ReLU activation resolves this issue by performing on
par with Heaviside in terms of monotonicity and on par with exponential, i.e., softmax, in terms of
accuracy, thus combining the best of both worlds.
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Figure 8: Test accuracy and conditional monotonicity properties of various PA model instantiations
for the CIFAR-100 dataset using MSDNet as a backbone. Specifically, we vary (1) the type of
activation function for mapping logits to probabilities and (2) the type of ensembling. Our proposed
PA method uses ReLU activation function with product ensembling ( ) and is the only method to
perform well in terms of both accuracy and monotonicity.

9Note that ŷ := argmaxy pM (y |x) is by definition part of the support of the final classifier pΠ,M (unless
it degenerates to a zero distribution). However, this is not necessarily the case for y∗, which is the reason for a
slight violation of conditional monotonicity in the PoE-Heaviside model, as seen in the right plot of Figure 8.
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Delving deeper into the ReLU activation function and examining various ensembling styles, we also
observe in Figure 8 that Mixture-of-Experts with ReLU (MoE-ReLU; ) demonstrates performance
comparable to our proposed PA (PoE-ReLU; ) in terms of both overall accuracy and conditional
monotonicity. The MoE predictive distribution at the mth exit is defined as:

pMoE,m (y |x) :=
m∑
i=1

wi · pi (y |x) , pi (y |x) =
a
(
fi(x)y

)∑
y′∈{1,...,K} a

(
fi(x)y′

)
where a : RK → R≥0 represents a chosen activation function, such as ReLU, and we utilize uniform
weights wi = 1/m. Given this observation, one might question why we prefer PoE over MoE
in our final PA model. The rationale for this decision is two-fold. First, the proof presented in
Appendix A, which serves as the inspiration for our method, is only valid when PoE ensembling is
employed. Second, unlike the PoE-based model, the MoE-based model does not exhibit anytime
uncertainty. Instead, it demonstrates constant underconfidence across all exits, as illustrated in Figure
9. Considering these factors, we find PoE to be superior to MoE for anytime prediction purposes and
incorporate it into our final proposed solution.
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Figure 9: Expected Calibration Error (ECE; left) and average maximum class probability over the test
dataset (right) for various instantiations of our PA model using the MSDNet model as a backbone
on the CIFAR-100. Only product ensembling (PoE) gives rise to a model that gets progressively
more confident with more early exits, as exemplified by decreasing ECE and increasing magnitude of
probability. On the contrary, mixture ensembles (MoE) result in constant underconfidence.

Early-Exit Ensembles Baselines MoE-exponential ( ) and PoE-exponential ( ) can also be
interpreted as early-exit ensemble baselines for our PA approach. Instead of relying only on the
current predictive distributions (as we do when reporting backbone EENNs results in Section 6), we
ensemble distributions across all exits up to and including the current one. However, it is clear from
Figure 8 that ensembling softmax predictions is insufficient for achieving conditional monotonicity,
as both approaches significantly underperform compared to our PA. This underscores the importance
of the activation function that maps logits to probabilities for improving monotonicity properties in
EENNs. In Figure 10, we verify that these findings hold on the ImageNet dataset as well, where we
again find that our PA is the only configuration that performs well both in terms of marginal accuracy
and conditional monotonicity.

Sigmoid Activation Function So far, we have discussed why the ReLU function is preferred over
the Heaviside or exponential (softmax) functions for transforming logits into probabilities in our
setting. We also considered the sigmoid activation function; however, upon further examination, we
identified two drawbacks that make it less suitable in our context. Firstly, the sigmoid function lacks
the "nullifying" effect of ReLU. As a result, the support for classes diminishes more slowly, and we do
not observe the same anytime uncertainty behavior as we do with ReLU (see Section 6.2). Secondly,
logits with larger values all map to the same value, approximately 1, under the sigmoid function. This
can negatively impact accuracy, as it does not preserve the ranking. Figure 11 illustrates the results
using the sigmoid activation function for the CIFAR-100 dataset with MSDNet as a backbone: our
choice of ReLU clearly outperforms the sigmoid activation.
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Figure 10: Test accuracy and conditional monotonicity properties of various PA model instantiations
for the ImageNet dataset using MSDNet as a backbone. Our PA ( ) is the only method to perform
well in terms of both accuracy and monotonicity. Note that the monotonicity curves for ReLU and
Heaviside activation functions (almost perfectly) overlap at y = 0.

2 4 6

Early Exit

0.60

0.65

0.70

0.75

Te
st

A
cc

ur
ac

y
(↑

)

baseline
ReLU (PA)
Sigmoid

0.0 0.1 0.2 0.3 0.4 0.5

Max Ground-Truth (y∗) Prob. Decrease

0

100

101

%
of

Te
st

Sa
m

pl
es

(↓
)

2 4 6

Early Exit

0.2

0.3

0.4

0.5

0.6

EC
E

(↓
)

Figure 11: Test accuracy, conditional monotonicity and ECE results for MSDNet model ( ) on
CIFAR-100 dataset. Using sigmoid activation function ( ) hurts both accuracy as well as calibration.
Hence, we utilize ReLU activation in our proposed PA ( ).

B.3 Closing the Calibration Gap

Here we outline two modifications to our proposed PA method aimed at reducing the calibration gap
reported in Section 6.3.

B.3.1 Adaptive Thresholds
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Figure 12: Calibration analysis for MSDNet on
CIFAR-100. Left: expected calibration error
(ECE) during anytime evaluation. Right: Oracle-
Collaborative AUROC with 0.5% deferral [OC AU-
ROC; Kivlichan et al., 2021], which simulates a
realistic scenario of human-algorithm collabora-
tion by measuring the performance of a classifier
when it is able to defer some examples to an oracle,
based on its maximum class probability.

We first introduce an extension of our Product
Anytime (PA) method, which enables navigating
the monotonicity-calibration trade-off in scenar-
ios when a hold-out validation dataset is avail-
able.

Recall that ReLU is used as an activation func-
tion in PA to map logits to probabilities. This
implies that 0 is used as a threshold, determining
which classes ‘survive’ and get propagated fur-
ther, and which do not. However, 0 is arguably
an arbitrary threshold, and one could consider
another positive constant b ∈ R+ instead. It is
important to note that the choice of b directly
influences the size of the support of the predic-
tive likelihood. As illustrated in Figure 13, a
larger value of b results in a smaller number of
classes with positive probability (as expected).
This larger threshold does also lead to a reduc-
tion in the coverage of PA’s predictive sets with
respect to the ground-truth class. However, the
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Figure 13: Static threshold analysis for PA using MSDNet as a backbone on CIFAR-100 dataset.
PA’s predictive set is defined as: sm(xn) := {y ∈ Y | pPA,m (y |xn) > 0}. Right: Average size of
PA’s predictive set at each exit. As expected, increasing b leads to smaller sets. Middle: (Empirical)
Coverage of ground-truth class at each exit: cm :=

∑
n[yn ∈ sm(xn)] / Ntest. As b increases, it

becomes more likely for the true class y∗ to fall outside of the support giving rise to a smaller
coverage. Left: The marginal test accuracy at each exit is shown as the threshold parameter b varies.
Increasing b negatively affects accuracy, though the impact is minor for smaller values of b.

decrease in coverage does not significantly af-
fect the overall accuracy of the model, as shown in the far right plot.

Expanding on this concept, one can also consider adaptive thresholding: rather than using the same
threshold value for all data points, the model could dynamically adjust the threshold in the activation
function based on the current example. Ideally, when the model is confident in its prediction, a higher
value of b is employed, resulting in smaller predictive sets. Conversely, when faced with a more
challenging example, a lower threshold is utilized to capture the model’s uncertainty.

Switching to ReLU with adaptive thresholding, the predictive likelihood at ith exit (before ensembling)
is given by:

pi (y |x) =
max

(
fi(x)y, τ

(
fi(x)

))
∑
y′∈{1,...,K} max

(
fi(x)y′ , τ

(
fi(x)

))
where τ : RK → R+ maps the vector of logits f(x) ∈ RK to a non-negative threshold.10

Here, we consider threshold functions of the form τ
(
f(x)

)
= C ·pψ

(
f(x)

)
, where pψ : RK → [0, 1]

is a model that estimates the probability of the datapoint x being classified correctly, and C is a
constant that ensures the outputs of τ have a similar magnitude to that of logits. To estimate C and
ψ, we rely on the hold-out validation dataset. Specifically, we fit a binary logistic regression model
using labels yτn := [ŷn = y∗n]. Additionally, we only use the K = 3 largest logits as input to the
regression model, as we have empirically found that excluding the rest does not significantly impact
the performance. To find C, we perform a simple grid search and select the value that yields the best
monotonicity-calibration trade-off on the validation dataset. We fit a thresholding model only at the
first exit and then reuse it at later exits, as this approach yielded satisfactory performance for the
purposes of our analysis. It is likely that fitting a separate thresholding model at each exit would lead
to further performance benefits.

In Figure 14, we observe that PA with adaptive thresholding still improves over baseline in terms of
monotonicity (middle plot, note the log-scale of y-axis). Although the adaptive thresholding approach
demonstrates worse monotonicity when compared to the PA algorithm with a static threshold (i.e.,
τ = 0), it outperforms the PA method in terms of calibration, as measured by the Expected Calibration
Error (ECE). To further elucidate the influence of adaptive thresholding, Figure 15 presents the ground-
truth probability trajectories for a random selection of test data points. In general, it is apparent

10In general, τ could depend on the datapoint x itself; however, since we desire an efficient model (to avoid
adding excessive overhead during inference time), we opt for a more lightweight option based on the processed
input, i.e., logits.
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Figure 14: Results for CIFAR-100 using MSDNet as the backbone model. We see that adaptive
thresholding can be effective in reducing PA’s calibration gap, though at some cost to both test
accuracy and conditional monotonicity. Note that the baseline results in this figure differ slightly
from those in Figures 3 and 4, as less data (90%) was used to fit the model, with a portion of the
training dataset (10%) used to fit the thresholding model τ .
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Figure 15: Ground-truth probability trajectories (i.e., {γ̂pm(x)}Mm=1) for 10 random test CIFAR-100
data points using MSDNet as a backbone. Both instantiations of PA yield more monotone ground-
truth probability trajectories.

that adaptive thresholding can serve as an effective strategy for improving the calibration of the PA
method, albeit at some expense to both conditional monotonicity and overall accuracy.

B.3.2 PA Finetuning

The post-hoc nature of our proposed PA method is attractive due to its minimal implementation
overhead. However, as mentioned in Section 6.3, it seems to adversely affect calibration, according to
ECE-like metrics, when compared to baseline models. This discrepancy might be due to a mismatch
between the objectives during training and testing in the PA method. To examine this hypothesis, we
consider training our model using the PA predictive likelihood (as given by Equation 4) and assess its
effect on calibration.

Given the product structure and the non-smooth activation function (ReLU) employed in PA’s
likelihood, the training can be quite challenging. To enhance the stability of the training process, we
introduce two modifications. Firstly, instead of training the model from scratch, we begin by training
with a standard EENN objective (see Equation 1) with a softmax likelihood and then finetune the
model using the PA likelihood at the end.11 Secondly, we substitute the ReLU activation function with
a Softplus function12, which we found aids in stabilizing the model’s convergence during training.
Consequently, we also utilize Softplus to map logits to (unnormalized) probabilities during testing.
Moreover, we found that using ensemble weights wm = 1 is more effective for models finetuned

11We train with EENN objective for the first 2/3 of epochs and with PA objective for the last 1/3 of epochs.
12Softplus is a smooth approximation of the ReLU function: Softplus(x) := log(1 + expx)
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Figure 16: Results for various image classification datasets using MSDNet as the backbone model.
We see that finetuning with PA (as opposed to only applying it post-hoc) can be effective in reducing
PA’s calibration gap, though at some cost to both test accuracy and conditional monotonicity.

with the PA objective, as opposed to our default choice of wm = m/M presented in the main paper
for post-hoc PA.

The results are presented in Figure 16. Focusing initially on (marginal) test accuracy (right), we note
that PA training ( ) has a slight negative impact on performance, particularly when contrasted with
the post-hoc PA ( ). Similarly, it underperforms post-hoc PA in terms of conditional monotonicity
(middle), but it considerably surpasses the baseline MSDNet model ( ). When considering ECE,
it becomes clear that fine-tuning with PA leads to significant improvements over post-hoc PA, thus
substantiating our hypothesis that the calibration gap mainly arises from the discrepancy between
train-time and test-time objectives. On the CIFAR-100 dataset, PA with finetuning even outperforms
the baseline MSDNet in terms of ECE.

Based on these observations, we conclude that integrating PA during the training of EENNs is an
effective strategy for bridging the calibration gap, though it incurs a minor cost in terms of overall
accuracy and conditional monotonicity. We note that these costs could be mitigated (or ideally,
completely eliminated) through further stabilization of product training. As such, we view this as a
promising avenue for future research.

B.3.3 Relevance of ECE in Anytime Prediction Setting

In Section 6.3, we pointed out poor Expected Calibration Error (ECE) in the initial exits as one of
the limitations of our proposed PA method. It is important to note, however, that no decision in the
anytime setting is based on model (or prediction) confidence, i.e., maxy pm (y |x). This contrasts
with the budgeted batch classification setting [Huang et al., 2018], where the decision on when to
exit could be based on the model confidence. Thus, we believe that our PA potentially undermining
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model confidence, as evident by poor ECE in the earlier exits, is not a limitation that would seriously
impact the merit of our solution. Especially since we focus solely on the anytime setting, where, we
would argue, non-monotone behavior in terms of performance quality is a much more serious issue.

However, it is true that model/prediction confidence, i.e. maxy pm (y |x), could be useful in the
anytime scenario as a proxy for model uncertainty. This allows the model—when prompted by its
environment to make a prediction—to also offer an estimate of uncertainty alongside that prediction.
However, given that our PA potentially adversely affects model confidence in earlier exits, we caution
against its use. Instead, we recommend alternative measures of uncertainty that better align with our
model, such as the conformal set size (c.f., Section 6.2).

B.4 NLP Experiments

In this section, we conduct NLP experiments with the aim of demonstrating that our proposed ap-
proaches for adapting EENNs for anytime inference are generalizable across different data modalities.

Specifically, we employ an early-exit model from Schwartz et al. [2020], in which the BERT model
is adapted for accelerated inference. The considered datasets are (1) IMDB, a binary sentiment
classification dataset; (2) AG, a news topic identification dataset with |Y| = 4; and (3) SNLI, where
the objective is to predict whether a hypothesis sentence agrees with, contradicts, or is neutral in
relation to a premise sentence (|Y| = 3). We adhere to the same data preprocessing and model
training procedures as outlined in Schwartz et al. [2020].

To account for the smaller number of classes in these NLP datasets, we shift logits for a (small)
constant prior to applying ReLU activation function. Hence the PA likelihood at mth exit has the
form (before applying product ensembling):

pm (y |x) = max
(
fm(x)y + 1/C, 0

)wi
, (5)

where C represents the cardinality of Y . This helps with reducing the possibility of PA collapsing to
a zero distribution.

The results are depicted in Figure 17. Similar to our image classification experiments discussed in
Section 6.1, we find that our proposed modifications yield comparable overall accuracy, as shown in
the left plot. Considering conditional monotonicity (middle plot), at least one of our two suggested
methods outperforms the baseline model on every dataset. However, the degree of improvement in
monotonicity is considerably smaller in comparison to our image classification experiments, with
the PA model even failing to yield consistent improvement on certain datasets, such as IMDB. We
attribute this not to the change in data modality, but rather to the fewer number of classes in the NLP
datasets used in this section as compared to the image datasets used in Section 6.1.

1 2 3 4

Early Exit

0.75

0.80

0.85

0.90

Te
st

A
cc

ur
ac

y
(↑

)

baseline
PA (ours)
CA

0.0 0.1 0.2 0.3 0.4 0.5

Max y∗ Probability Decrease

0

100

101

%
of

Te
st

Sa
m

pl
es

(↓
)

0.0 0.1 0.2 0.3 0.4 0.5
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Figure 17: NLP experiments results using the BERT model from Schwartz et al. [2020] as the
backbone. Despite the findings being qualitatively similar to those presented in Figures 3 and 4 for
image classification datasets, the enhancement in terms of conditional monotonicity provided by our
proposed methods is less pronounced for the NLP classification tasks considered in this section.
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B.5 Overthinking and Hindsight Improvability

In this section, we delve deeper into concepts that have been previously introduced in EENN literature
and that share a connection with the idea of conditional monotonicity, which is the focus of our study.

In Kaya et al. [2019], the authors discovered that EENNs, for some data points, yield correct
predictions early on but then produce incorrect results at later exits13—a phenomenon they term
overthinking. Consequently, the authors noted that early-exiting in deep neural networks is not only
beneficial for speeding up inference but can sometimes even lead to improved overall test accuracy.
To measure overthinking, they considered the difference in performance between an oracle model that
exits at the first exit with the correct answer14 and the performance of the full EENN pM (y |x). In
the anytime setting, we desire a model with the lowest overthinking measure, i.e., 0, as this indicates
that evaluating more layers in the early-exit network does not negatively impact performance.

In Figure 18, we present the results of the overthinking analysis for the MSDNet [Huang et al.,
2018] model. We observe that both of our proposed methods significantly improve in terms of the
overthinking measure (left), making them more applicable in anytime scenarios.
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Figure 18: Overthinking analysis based on Kaya et al. [2019] using the MSDNet model. Our methods
substantially improve upon the baseline MSDNet in terms of the overthinking measure (left), making
them more suitable for an anytime setting. However, most of these improvements can be attributed to
a decrease in the theoretical performance of the oracle model (middle) rather than to the improvement
of the full EENN performance (right). For a more detailed explanation of the quantities depicted,
please refer to Section B.5.

We also note that a decrease in the overthinking measure can result from either (1) a reduction in the
(theoretical) performance of the oracle model or (2) an improvement in the (actual) performance of
the full EENN. As can be seen in Figure 18 (middle and right), our proposed modifications mainly
improve the overthinking measure through (1). To explore this further, in Figure 19 we plot the
number of test points that the model learned, i.e., correctly predicted for the first time, and the number
of points that the model forgot, i.e., incorrectly predicted for the first time, at each early exit. Both PA
and CA show a clear strength in minimizing forgetting, although they do so at the cost of diminishing
the baseline model’s ability to learn correct predictions. 15 These results indicate that there is further
room for improvement in the adaptation of EENNs for anytime computation, as the ideal model
would minimize forgetting without compromising its learning abilities.

13Using notation introduced in Section 2 this implies: γ̂c
m(x) = 1 and γ̂c

m′(x) = 0 for some m′ > m.
14Such a model cannot be implemented in practice, as it requires access to ground-truth values. Nevertheless,

it is interesting to study it as a way to better understand the upper bound on the achievable performance of the
underlying model.

15These observations are consistent with the analysis we presented in Section B.1.2 where we used correctness
of prediction as a measure for conditional monotonicity.
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Figure 20: Results for CIFAR-100 using Zero-Time-Waste (ZTW; Wolczyk et al. [2021]) model.
Applying our PA method to ZTW model leads to large improvements in terms of conditional
monotonicity (middle) and hindsight improvability (right), while only causing a minor decrease in
marginal accuracy (left).
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Figure 19: Learn-vs-forget analysis for the CIFAR-100 dataset using the MSDNet model. Specifically,
we plot the number of data points that are correctly classified for the first time (left) and the number
of data points that are incorrectly predicted for the first time (right) at each early exit. We observe
that our modifications help the model ‘forget’ less, though this comes with a minor trade-off in the
model’s ability to ‘learn’.

In a follow-up study by Wolczyk et al. [2021], the hindsight improvability (HI) measure is introduced.
For each early exit, this measure takes into account the set of incorrectly predicted points and
computes the percentage of those that were accurately predicted at any of the previous exits. In an
anytime setting, an ideal model would consistently exhibit an HI measure of 0. As evidenced by the
results in Figure 20, our post-hoc modifications substantially enhance the HI measure (right plot)
while only causing a minor negative impact on overall accuracy (left plot). Similar to the overthinking
measure, the observation that HI > 0 for our proposed methods suggests a potential for further
improvements.
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B.6 Deep Ensembles and Regression

Although we have presented our results for classification with early-exit neural networks, we can
easily extend them to handle generic deep ensembles and regression settings.

Deep Ensembles While applying our method to deep ensembles might seem strange since they
have no implicit ordering as in the case of early-exit NNs, we note that ensembles are often evaluated
sequentially in low resource settings where there is not enough memory to evaluate all of the ensemble
members concurrently. In such settings, there is an implicit, if arbitrary, ordering, and we may still
require anytime properties so that we can stop evaluating additional ensemble members at any point.
Therefore, we can apply both Product Anytime and Caching Anytime—as in Section 4—to deep
ensembles, where pm (y |x) now represents the m-th ensemble member, rather than the m-the early
exit. An earlier version of this work [Allingham and Nalisnick, 2022] focused on product anytime
in the deep ensembles case. However, in that work, the focus was also on training from scratch
rather than the post-hoc setting we consider in this work. Training from scratch is challenging due
to, among other things,16 instabilities caused by the Product-of-Experts and the bounded support
of the likelihoods. Thus, the PA results from Allingham and Nalisnick [2022] are worse in terms
of predictive performance than the standard ensemble baseline. Note that our theoretical results in
Appendix A also apply in the deep ensembles case.17 Figure 21 shows qualitative results for our
anytime ensembles applied to a simple classification task. As expected, the support shrinks as we add
more multiplicands to the product.

Figure 21: Evolution of the support for each of 4-classes ( , , , ) in a spiral-arm classification task
with a 5-member anytime ensemble, as 1 to 5 (left to right) members are included in the prediction.

Regression Product Anytime can be applied to regression by using a uniform likelihood at each
early-exit (or ensemble member)

pm (y |x) = U(am, bm)

which results in a product likelihood

p1:m (y |x) = U(amax, bmin)

where amax = max({am}) and bmin = min({bm}). That is, the lower and upper bounds of the product
are, respectively, the maximum-lower and minimum-upper bounds of the multiplicands. As we add
more multiplicands, the width of the product density can only get smaller or stay the same, and thus
the probability of the modal prediction p1:m (ỹ |x) can only increase or stay the same, as in the
classification case. Figure 22 shows qualitative results for anytime ensembles applied to a simple
regression task. We see that the order of evaluation is unimportant. Firstly, as expected, the final
result is the same, and in both cases, the support size always decreases or is unchanged. Secondly,
the fit has almost converged within a few evaluations, and the last few multiplicands tend to have
smaller effects. Note that the prediction bounds cover the data well even for the poorer early fits.
Finally, note that there is no support outside of the training data range—we consider this data as
out-of-distribution.

16For example, Allingham and Nalisnick [2022] use a mixture of the product and individual likelihoods as
their loss function to encourage the individual ensemble members to fit the data well. However, they use the
standard softmax likelihood—with an exponential activation function—for the individual ensemble members,
which conflicts with the Heaviside activations in the product likelihood and results in reduced performance.

17We note that Allingham and Nalisnick [2022] neglect an important property required for monotonicity of
the modal probability: pm (y |x) must be uniform in addition to having finite support. I.e., in the classification
setting, the activation function used to map logits to probabilities must be the Heaviside function.
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Figure 22: Evolution of the the product support ( ) and mode ( ) for the simple 1d [Antorán
et al., 2020] regression task with a 5-member anytime ensemble, as 1 to 5 (left to right) members are
included in the prediction. In each column the support of the multiplicand to be included in the next
column’s product are shown ( ). The top and bottom show two different arbitrary orderings of the
ensemble members.

B.7 Anytime Uncertainty: Conditional Monotonicity

In Section 6.2, we presented the results of our uncertainty experiments where we observed that,
marginally, our PA model demonstrates an anytime uncertainty pattern: the model starts with high
uncertainty early on and then progressively becomes more confident at later exits.

In this section, we supplement these experiments with an analysis at the conditional level. Specif-
ically, for a given x ∈ X , we compute the uncertainty (for instance, entropy) at each early exit:
{Um(x)}Mm=1. Following the approach we used in Section 3 for performance quality sequences, we
define a maximum increase in uncertainty as MUI(x) := maxm′>m

{
max(Um′(x)− Um(x), 0)

}
.

Next, for a range of suitably chosen thresholds τ ∈ R≥0, we compute the number of test instances
that exhibit an uncertainty increase surpassing a given threshold Nτ :=

∑
n[MUI(xn) ≥ τ ]. Note

that a monotone oracle model would exhibit entirely non-increasing uncertainty trajectories, meaning
Nτ = 0, ∀τ .
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Figure 23: Conditional monotonicity using entropy as an uncertainty measure and MSDNet model as
a backbone. To better illustrate the different behavior of various methods, a log scale is used for the
y-axis. Our PA exhibits a significantly more monotone behavior compared to the baseline MSDNet
[Huang et al., 2018] model.

The results for entropy and conformal set size are depicted in Figures 23 and 24, respectively.
We observe that an EENN like MSDNet exhibits non-monotone behavior also in its uncertainty
estimates across different exits. This means that there are data points where the model starts with
high confidence in the initial exits but becomes less certain in subsequent stages. Such a trend is
problematic in the anytime setting, similar to the issues of non-monotonicity in performance quality
(c.f., Section 3). It suggests that the model expends additional computational resources only to
diminish its confidence in its response. Reassuringly, our PA aids in ensuring monotonicity not only
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in terms of performance quality (e.g., ground-truth probability) but also in its uncertainty estimates
(e.g., conformal set size) as evident in Figures 24 and 23.
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Figure 24: Conditional monotonicity using conformal set size as an uncertainty measure and MSDNet
model as a backbone. To better illustrate the different behavior of various methods, a log scale is
used for the y-axis. Same as in Figure 5, we used Regularized Adaptive Predictive Sets algorithm
[RAPS; Angelopoulos et al., 2021] to compute conformal scores. 20% of test examples were used
as a hold-out set to calculate conformal quantiles at each early exit. Our PA exhibits a significantly
more monotone behavior compared to the baseline MSDNet [Huang et al., 2018] model.

B.8 Controlling the Violations of Conditional Monotonicity

In Section 4.2, we introduced our Product Anytime (PA) method. It relies on the ReLU activation
function to map logits to (unnormalized) probabilities, which unfortunately compromises the strong
conditional monotonicity guarantees that are present when using the Heaviside activation function.

In this section, we propose a technique that allows for a more nuanced control of violations of
conditional guarantees. To illustrate this, observe first that ReLU and Heaviside are specific cases of
the following activation function:

a(x) := Cb · max
(
min(x, b), 0

)
(6)

where Cb := max(1, 1/b). Notice how limb→∞ a(x) = ReLU(x) and limb→0+ a(x) =
Heaviside(x). Therefore, by adjusting the clipping threshold b, we can navigate the accuracy-
monotonicity trade-off as needed. This is demonstrated on the CIFAR-10 dataset in Figure 25.
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Figure 25: Test accuracy (left) and conditional monotonicity (middle and right) on CIFAR-10 dataset
for various instantiations of the PA model with the MSDNet backbone. We vary the clipping threshold
b used in the activation function when mapping logits to probabilities. When b is close to 0, the
activation function approximates the Heaviside function, resulting in more monotone behavior,
although this comes with a decrease in (marginal) accuracy. As b is increased, the activation function
moves closer to ReLU, leading to more violations of monotonicity, but also enhancing accuracy.
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B.9 Impact of Calibration on Conditional Monotonicity

In this section, we study whether monotonicity could be achieved by calibrating the underlying
EENN rather than employing our proposed PA. To answer this, we conducted an experiment where
we calibrated MSDNet and analyzed its effect on monotonicity. For the calibration, we utilized three
standard techniques: temperature scaling [Guo et al., 2017], deep ensembles [Lakshminarayanan
et al., 2017], and last-layer Laplace [Daxberger et al., 2021]. In Figure 26, we present results for
MSDNet on CIFAR-100. While all three approaches lead to better calibration in terms of ECE (right
plot), our PA significantly outperforms them in conditional monotonicity (middle plot). Moreover,
all three baselines are (arguably) more complex compared to our PA: temperature scaling requires
validation data, deep ensemble has M-times more parameters (M being the ensemble size), and
Laplace is significantly slower compared to PA since we need test-time sampling to estimate the
predictive posterior at each exit.

However, simply improving calibration might not be expected to improve monotonicity. Thus, in
Figure 26, we also provide results for combining the above uncertainty calibration techniques with our
CA baseline. We see that this combination provides further improvements w.r.t. monotonicity -– the
improved calibration allows for better caching of the correct prediction. However, the monotonicity
of these caching-and-calibrated methods still underperforms compared to PA despite being more
complicated. This demonstrates that monotonicity can not be achieved via calibration alone and
further underlines the value of our proposed approach.
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Figure 26: Comparison of our PA with calibrated baselines using MSDNet as a backbone on CIFAR-
100 dataset. For calibration, we use last-layer Laplace, deep ensembles with M = 5, and temperature
scaling. Additionally, we consider both caching ( ) and non-caching ( ) versions of calibrated
baselines. None of the considered calibrated baselines outperforms our PA in terms of monotonicity
(middle), despite being more complex. The blue and purple solid lines overlap in the accuracy plot
(left), indicating that the temperature scaling does not affect accuracy for the non-cached version, as
expected.

B.10 Budgeted Batch Classification

In this section, we conduct a budgeted batch classification experiment using MSDNet [Huang et al.,
2018] as the backbone. In budgeted batch classification, a limited amount of compute is available
to classify a batch of datapoints. The goal is to design a model that can allocate resources smartly
between easy and hard examples to maximize the overall performance, such as accuracy.

The results are shown in Figure 27. Since MSDNet outperforms our PA at most computational budgets,
we conclude that the monotonicity is less beneficial in budgeted batch classification. However, as
seen on CIFAR datasets, the non-monotonicity of MSDNet is also concerning in this setting –
for larger values of FLOPs, MSDNet performance starts to drop, while PA keeps monotonically
increasing and surpasses MSDNet. Based on these results, we suggest “turning on” our PA only for
anytime prediction and recommend that the user sticks to the original EENN in the budgeted batch
classification. However, this certainly warrants further investigation (as seen by the performance
benefits of our PA on CIFAR for larger FLOPs).
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Figure 27: Budgeted batch classification results for the MSDNet model. To measure the available
computational resources, we use FLOPs. Lower FLOPs will encourage the model to rely more on
initial exits, while a larger number of FLOPs will encourage the model to propagate more points to
the later exits. Our PA modification proves to be less beneficial in this setting, as seen by its inferior
performance compared to MSDNet for most of the computational budgets.

B.11 Additional Plots

Here, we provide additional results that were omitted in Section 6.1 to enhance the readability of the
plots there. Specifically, in Figure 28, we include test accuracy results, along with their respective
error bars, for the MSDNet [Huang et al., 2018] and IMTA [Li et al., 2019] models. In Figures 31
and 32, we present results for the L2W model [Han et al., 2022b]. We observe that our findings also
generalize to this EENN – our PA preserves the marginal accuracy while significantly improving
conditional monotonicity across all considered datasets.

As for the DViT [Wang et al., 2021] model, our attempts to train this model from scratch using the
published code18 were unsuccessful. Hence, we resorted to working with the pre-trained models
provided by the authors. They only published a single pre-trained model for each model version, and
as a result, instead of presenting results for independent runs with varying random seeds, we display
the results for all provided DViT model instantiations in Figure 29 and 30.
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Figure 28: Test accuracy on the CIFAR and ImageNet datasets. Our PA method maintains a
competitive performance compared to the baseline models. For each model and dataset, we use the
same number of early exits as proposed by the authors. We plot the average accuracy from n = 3
independent runs.

18https://github.com/blackfeather-wang/Dynamic-Vision-Transformer
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Figure 29: Test accuracy on the CIFAR and ImageNet datasets for various instantiations of DViT
model [Wang et al., 2021].
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Figure 30: The % of test examples with a ground-truth probability drop exceeding a particular
threshold for various instantiations of DViT model [Wang et al., 2021]. Our PA significantly improves
the conditional monotonicity of ground-truth probabilities across various datasets and backbone
models. To better illustrate the different behavior of various methods, a log scale is used for the
y-axis.
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Figure 31: Test accuracy on the CIFAR and ImageNet datasets for L2W model [Han et al., 2022b].
We plot the average accuracy from n = 3 independent runs.
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Figure 32: The % of test examples with a ground-truth probability drop exceeding a particular
threshold for L2W model [Han et al., 2022b]. Results are averaged over n = 3 independent runs. To
better illustrate the different behavior of various methods, a log scale is used for the y-axis.
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