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A Detailed results

Table SUP-1 shows the CPU EQCs in full detail, including information on hardware, model, and
input. Table SUP-2 shows the same information for GPUs. This data is the source for Figure 1 in
the main paper.

Table SUP-3 lists all observed CPU flags and their corresponding cluster index. Some flags were
present on all machines, and were thus filtered from Table 1 in the main paper. These are marked
with C, for common.

B Methodology

Our experiments require instrumentation at various levels of the ML software stack, shown in Fig-
ure SUP-1. The interfaces to the ML framework use different programming languages. Parts of the
stack are not accessible for analysis (e. g., microcode on CPUs, vendor libraries for GPUs).

Information extraction We captured as much information about the entire inference pipeline as
possible, using TensorFlow’s own profiler. It includes underlying tools like NVidia’s nvprof pro-
filer, and allows us to investigate function calls in the accelerator libraries. Information about the
computing devices is taken from /proc/cpuinfo and the TensorFlow device information, respec-
tively. For CPUs we fill the microarchitecture field by cross-referencing the family and model
fields of the CPUID. GPUs are uniquely identifiable by their names, including the microarchitec-
ture. Device names are given with as much detail as provided by the machine; due to shared tenancy,
device information for cloud CPUs may be reported with less detail. Memory sizes are taken from
the psutil Python module for CPUs, and from the TensorFlow reported memory_limit for GPUs.

Containerization To ensure that the same experiments are run on a large number of cloud in-
stances, we use Docker to fix the software environment and package versions. The Docker image is
built locally and uploaded to image registries of both cloud providers used. From there, the image is
pulled to the respective target machines and used to run the experiments.

Our experiments run in a Docker container based on the tensorflow:2.5.0-gpu image. This
image runs Python version 3.6.9, and we additionally install clang version 6.0.0. The TensorFlow
version is 2.5.0. In this version, XLA is not enabled by default, and was not explicitly activated.
The container already handles the GPU setup, and no additional steps are necessary. For the cloud
instances with GPUs, we forward them to the container using Docker’s --gpus flag.
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Table SUP-1: Full results for CPU instances. EQCs are assigned increasing integers from top to
bottom. Table cells identical with their left neighbor are slightly faded. CPUs are separated into
CPU classes (CCs) based on available x86 extensions and clustered core count. The first occurrence
of an EQC per column is marked in bold.

Dataset CIFAR-10 DeepWeeds

Model size Small Medium Large

Sample index 0 1 6 0 1 6 0 1 6

Vendor Cores Generation Device name Mem. Cloud CC

(1) AMD 2 Milan 7B13 7.8 GCP 0 1 1 1 1 1 1 1 1 1
AMD 2 Rome 7B12 7.8 GCP 0 1 1 1 1 1 1 1 1 1
AMD 4 Milan 7B13 15.6 GCP 1 1 1 1 2 2 2 2 2 2
AMD 4 Rome 7B12 15.6 GCP 1 1 1 1 2 2 2 2 2 2
AMD 8 Milan 7B13 31.4 GCP 2 1 1 1 3 3 3 3 3 3

(6) AMD 8 Rome 7B12 31.4 GCP 2 1 1 1 3 3 3 3 3 3
AMD 16 Milan 7B13 62.8 GCP 3 1 1 1 4 4 4 4 4 4
AMD 16 Rome 7B12 62.8 GCP 3 1 1 1 4 4 4 4 4 4
AMD 32 Milan 7B13 125.9 GCP 4 1 1 1 4 4 4 5 5 5
AMD 32 Rome 7B12 125.9 GCP 4 1 1 1 4 4 4 5 5 5

(11) Intel 2 Sandy Br. Xeon 7.3 GCP 5 2 2 2 5 5 5 6 6 6
Intel 2 Ivy Br. Xeon 7.3 GCP 5 2 2 2 5 5 5 6 6 6
Intel 2 Haswell Xeon 7.3 GCP 6 1 1 1 6 6 6 7 7 7
Intel 2 Haswell E5-2676 3.8 AWS 6 1 1 1 6 6 6 7 7 7
Intel 2 Broadwell Xeon 7.3 GCP 6 1 1 1 6 6 6 7 7 7

(16) Intel 2 Broadwell E5-2686 7.8 AWS 6 1 1 1 6 6 6 7 7 7
Intel 2 Skylake 8175M 15.3 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake Xeon 7.8 GCP 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake Xeon 7.3 GCP 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake 8175M 7.5 AWS 7 3 3 3 7 7 7 8 8 8

(21) Intel 2 Skylake 8259CL 7.6 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake 8259CL 15.3 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake 8259CL 7.7 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Skylake 8151 15.3 AWS 7 3 3 3 7 7 7 8 8 8
Intel 2 Ice Lake Xeon 7.8 GCP 8 3 3 3 8 8 8 8 8 8

(26) Intel 4 Sandy Br. Xeon 14.7 GCP 9 2 2 2 9 9 9 6 6 6
Intel 4 Ivy Br. Xeon 14.7 GCP 9 2 2 2 9 9 9 6 6 6
Intel 4 Haswell E5-2666 7.3 AWS 10 1 1 1 10 10 10 7 7 7
Intel 4 Haswell Xeon 14.7 GCP 10 1 1 1 10 10 10 7 7 7
Intel 4 Haswell E5-2676 15.6 AWS 10 1 1 1 10 10 10 7 7 7

(31) Intel 4 Haswell E7-8880 119.9 AWS 10 1 1 1 10 10 10 7 7 7
Intel 4 Broadwell Xeon 14.7 GCP 10 1 1 1 10 10 10 7 7 7
Intel 4 Skylake 8124M 7.4 AWS 11 3 3 3 11 11 11 8 8 8
Intel 4 Skylake 8275CL 7.5 AWS 11 3 3 3 11 11 11 8 8 8
Intel 4 Skylake 8124M 9.9 AWS 11 3 3 3 11 11 11 8 8 8

(36) Intel 4 Skylake Xeon 15.6 GCP 11 3 3 3 11 11 11 8 8 8
Intel 4 Skylake Xeon 14.7 GCP 11 3 3 3 11 11 11 8 8 8
Intel 4 Ice Lake Xeon 15.6 GCP 12 3 3 3 11 11 11 8 8 8
Intel 8 Sandy Br. Xeon 29.4 GCP 13 2 2 2 12 12 12 6 6 6
Intel 8 Ivy Br. Xeon 29.4 GCP 13 2 2 2 12 12 12 6 6 6

(41) Intel 8 Haswell Xeon 29.4 GCP 14 1 1 1 13 13 13 7 7 7
Intel 8 Broadwell Xeon 29.4 GCP 14 1 1 1 13 13 13 7 7 7
Intel 8 Skylake Xeon 31.4 GCP 15 3 3 3 14 14 14 8 8 8
Intel 8 Skylake Xeon 29.4 GCP 15 3 3 3 14 14 14 8 8 8
Intel 8 Coffee Lake i7-9700 31.2 local 16 1 1 1 13 13 13 9 9 9

(46) Intel 8 Coffee Lake E3-1270 31.3 local 16 1 1 1 13 13 13 9 9 9
Intel 8 Ice Lake Xeon 31.4 GCP 17 3 3 3 14 14 14 8 8 8
Intel 12 Ivy Br. i7-4930K 62.8 local 18 2 2 2 15 15 15 10 10 10
Intel 12 Ivy Br. i7-4930K 3.8 local 18 2 2 2 15 15 15 10 10 10
Intel 16 Sandy Br. Xeon 58.9 GCP 19 2 2 2 15 15 15 11 11 11

(51) Intel 16 Ivy Br. Xeon 58.9 GCP 19 2 2 2 15 15 15 11 11 11
Intel 16 Haswell Xeon 58.9 GCP 20 1 1 1 16 16 16 12 12 12
Intel 16 Broadwell Xeon 58.9 GCP 20 1 1 1 16 16 16 12 12 12
Intel 16 Skylake Xeon 62.8 GCP 21 3 3 3 16 16 16 13 12 13
Intel 16 Skylake Xeon 58.9 GCP 21 3 3 3 16 16 16 13 13 13

(56) Intel 16 Ice Lake Xeon 62.8 GCP 22 3 3 3 16 16 16 13 13 13
Intel 32 Sandy Br. Xeon 117.9 GCP 23 2 2 2 15 15 15 14 14 14
Intel 32 Ivy Br. Xeon 117.9 GCP 23 2 2 2 15 15 15 14 14 14
Intel 32 Haswell Xeon 117.9 GCP 24 1 1 1 16 16 16 15 15 15
Intel 32 Broadwell Xeon 117.9 GCP 24 1 1 1 16 16 16 15 15 15

(61) Intel 32 Skylake Xeon 125.9 GCP 25 3 3 3 16 16 16 16 16 16
Intel 32 Skylake Xeon 117.9 GCP 25 3 3 3 16 16 16 16 16 16
Intel 32 Ice Lake Xeon 125.8 GCP 26 3 3 3 16 16 16 16 16 16
Intel 48 Skylake 8275CL 92.2 AWS 25 3 3 3 16 16 16 16 16 16
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Table SUP-2: Full results for GPU instances. EQCs are assigned increasing integers from top to
bottom. Table cells identical with their left neighbor are slightly faded. The first occurrence of an
EQC per column is marked in bold. Cells marked with an asterisk (*) indicate that indeterminsm
was observed. The equivalence class is based on the most frequently observed output.

Dataset CIFAR-10 DeepWeeds

Model size Small Medium Large

Sample index 0 1 6 0 1 6 0 1 6

Vendor Generation Device name Cloud

NVidia Kepler K80 GCP 1 1 1 1* 1* 1* 1 1 1
NVidia Maxwell GTX 970 local 2* 2 2 2 2 2* 2 2 2
NVidia Maxwell GTX 980 local 3* 3 3 3 3 3 3 3 3
NVidia Maxwell M60 AWS 3 3 3 3* 4 4* 4 4 4

(5) NVidia Pascal P100 GCP 4* 4* 4* 4* 5* 5* 5 5 5
NVidia Volta V100 GCP 5* 5* 5* 5* 6* 6* 6* 6* 6*
NVidia Turing GTX 1650 local 6 6 6 6 7 7 7 7 7
NVidia Turing RTX 2070 local 7 7 7 7 8 8* 8 8 8
NVidia Turing T4 AWS 7* 7* 7* 8 9 9 9* 9* 9

(10) NVidia Turing T4 GCP 7 7 7 8* 9* 9 9* 9* 9*
NVidia Ampere A100 GCP 8 8 8 9 10* 10* 10* 10* 10*

To ensure a clean tensor graph for each experiment, we create a new Python session for each infer-
ence. To this end we create a small CLI application that takes the model name and input path as
arguments and computes the inference inside the container.

Dead ends In additional but eventually unsuccessful steps, we aimed to fully understand the paths
taken during execution by instrumenting TensorFlow with the gdb debugger, as well as the perf
and valgrind profiling tools. We specifically hoped that valgrind’s [7] cachegrind tool would
provide insight into the actual code executed on CPU, but the tremendous amount of inlining in
TensorFlow’s codebase yielded no usable results. Outputs from perf were too noisy to be useful.
TensorFlow’s codebase was too large for gdb [12] analysis to be useful, both in interactive and
automated scenarios. The record-and-replay debugger rr [9] could not deal with the complexities
of TensorFlow’s codebase and could not successfully record a single inference.

C Convolution algorithms and functions

We summarize the main approaches for computing convolutions.

General matrix multiplication (GEMM) Convolution can be calculated via matrix multiplica-
tion by extracting the relevant parts of the image into a Toeplitz matrix, replicating the filter as
needed, and multiplying the two matrices. This is equivalent to an unrolled loop variant of the naive
implementation with data replication for better access [1]. Even with data structures optimized
for sparse matrices, the Toeplitz matrix has many duplicate entries, producing significant memory
overhead. A divide-and-conquer alternative reduces the memory overhead by utilizing the fact that
matrices are stored in memory as contiguous 1-dimensional arrays [1]. The full convolution is split
into multiple smaller convolutions, and the results are reconstructed afterwards. The divide-and-
conquer approach causes a different order of aggregations, which can lead to numerically different
results.

Winograd algorithm Winograd short convolution [3] is a fast convolution algorithm that trans-
forms both inputs and filters to achieve a lower number of multiplications. Its transformation is
inherently lossy and involves multiple rounding steps. The Winograd algorithm exists in fused
and non-fused variants. The fused variant performs transformation, point-wise multiplication, and
inverse transformation in a single step, reducing the number of memory accesses, whereas the non-
fused variant performs all steps separately.
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Table SUP-3: Full list of CPU flags in alphabetical order and their corresponding cluster index.
Flags with cluster index C (common) are present on all CPUs and are not show in the original table.

Flag Cluster Flag Cluster Flag Cluster

3dnowext 3 fma 0 pse36 C
3dnowprefetch 7 fpu C pti 14
abm 0 fsgsbase 10 rdpid 3
adx 7 fxsr C rdrand 10
aes C fxsr_opt 3 rdrnd 10
apic C gfni 2 rdseed 7
arat C hle 11 rdtscp C
arch_capabilities 4 ht C rep_good C
avx C hypervisor C rtm 11
avx2 0 ibpb C sep C
avx512_bitalg 2 ibrs C sha 6
avx512_vbmi2 2 ibrs_enhanced 8 sha_ni 6
avx512_vnni 8 invpcid 12 smap 7
avx512_vpopcntdq 2 invpcid_single 12 smep 10
avx512bitalg 2 lahf_lm C ss 4
avx512bw 1 lm C ssbd C
avx512cd 1 mca C sse C
avx512dq 1 mce C sse2 C
avx512f 1 md_clear 4 sse4_1 C
avx512ifma 2 misalignsse 3 sse4_2 C
avx512vbmi 2 mmx C sse4a 3
avx512vbmi2 2 mmxext 3 ssse3 C
avx512vl 1 movbe 0 stibp C
avx512vnni 8 mpx 13 syscall C
avx512vpopcntdq 2 msr C topoext 3
bmi1 0 mtrr C tsc C
bmi2 0 nonstop_tsc C tsc_adjust C
clflush C nopl C tsc_known_freq C
clflushopt 5 npt 3 umip 6
clwb 5 nrip_save 3 vaes 2
clzero 3 nx C vme C
cmov C osvw 3 vmmcall 3
cmp_legacy 3 osxsave C vpclmulqdq 2
constant_tsc C pae C x2apic 4
cpuid C pat C xgetbv1 5
cr8_legacy 3 pcid 9 xsave C
cx16 C pclmulqdq C xsavec 5
cx8 C pdpe1gb C xsaveerptr 3
de C pge C xsaveopt C
erms 9 pni C xsaves 1
extd_apicid 3 popcnt C xtopology 4
f16c 10 pse C
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Figure SUP-1: Visualization of the ML software stack. Instrumentation and tools shown in red.

Fourier transformation approaches Approaches using fast Fourier transformation (FFT) exploit
the fact that spatial convolution is equivalent to point-wise multiplication in the frequency domain.
As FFT is also used in many other contexts, especially in signal processing, optimized implementa-
tions are commonly available. The transformation to and from the frequency domain is inherently
lossy for finite numerical precision [6].

Most algorithms come in two major variants: an explicit variant, where precomputations happen in
a separate step, and an implicit variant, where precomputations happen right in the algorithm (e. g.,
input replication for the im2 algorithm). In addition to the above mentioned algorithms, modern
GPUs also include special hardware to compute convolution directly [8]. The performance of the
above algorithms varies with the use case. Table SUP-4 compares advantages and disadvantages of
each approach based on the literature [2].

D Datasets and preprocessing

We use the CIFAR-10 [5] and Deep Weeds [10] datasets for our experiments, both obtained from the
tensorflow_datasets Python package. CIFAR-10 has ten classes and consists of 50 000 training
and 10 000 test samples. Deep Weeds has nine classes and consists of 17 509 samples, which we
split into training (first 85 %) and test set (final 15 %). We transform all samples from their integer
range [0, 255] to floating-point numbers in the range [0, 1] by dividing by 255. All training and test
sets are shuffled using the TensorFlow dataset.shuffle function with a buffer size of the entire
dataset, and random seed 42. We batch the samples with a batch size of 32 for all datasets.

Table SUP-5 provides a summary of all models used in this paper.

For CIFAR-10 we use a small custom CNN with two convolutional layers (similar to the VGG
architecture [11]), a ResNet18, and a ResNet50v2 [4] followed by a flatten and dense layer with the
required 10 neurons and softmax activation. The small custom CNN is documented in Table SUP-6.
For Deep Weeds we use the pre-trained model provided by the authors at https://github.com/
AlexOlsen/DeepWeeds.

Training The CIFAR-10 models are trained for 30 epochs. The entire training set is used for every
epoch. The models were trained on an RTX 3080 GPU.
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Table SUP-4: Overview of convolution algorithms. Characteristics based on [2].

Approach Time Memory Strided Generation Name

direct loop − ++ ++ Volta fused conv/ReLU
grouped naive kernel

GEMM + −− / + ++ / −− Ampere implicit
Kepler GEMM
generic explicit single precision
generic implicit
generic precomputed

Winograd ++ − − Ampere Winograd
Maxwell Winograd
Maxwell non-fused

Turing non-fused
Volta compiled
Volta non-fused

FFT − + FFT GEMM

Table SUP-5: Summary of models used.
Parameters

Dataset ResNet[4] Convolution layers Total Test set set accuracy

CIFAR-10 [5] 18 11,170,816 11,191,306 60 %
DeepWeeds [10] 50v2 23,556,608 24,744,457 95 %
CIFAR-10 Cifar10-small Custom (cf. Table SUP-6) 464 59,354

Table SUP-6: Summary of model Cifar10-small. ReLU activation and max pooling are used
except for the experiments in Section E.

Layer name Layer type Output shape # params

input InputLayer 32× 32× 3 0
conv2d Conv2D 32× 32× 3 84
activation Activation 32× 32× 3 0
pooling2d Pooling2 16× 16× 3 0
conv2d_1 Conv2D 16× 16× 5 380
activation Activation 32× 32× 3 0
pooling2d_1 Pooling2 8× 8× 5 0
flatten_1 Flatten 320 0
dense_1 Dense 128 41088
dense_2 Dense 128 16512
dense_3 Dense 10 1290

6



Evaluation The Deep Weeds model reaches 95 % accuracy on the test set, as reported in the
original paper [10]. For CIFAR-10, model Cifar10-small reaches 53.18 % accuracy, and the
Cifar10-R18 reaches 60.25 % accuracy. These accuracies are not competitive with the state of
the art, but sufficiently better than random guessing. We can safely assume that the kernels learn
meaningful weights.

Experiment samples We process three samples for each of our models to measure the consistency
of our results. The first sample is the first test sample (for simplicity); we additionally use a sample
from a different class (sample index 1 for CIFAR-10, and index 6 for Deep Weeds), a sample from
the same class as the first sample is also used (index 6 for CIFAR-10, and index 1 for Deep Weeds).
All sample indexes refer to the unshuffled test set of the respective dataset.

E Experiments supporting the rebuttal and author response phase

Switching precision for all models

Request: “Maybe other Neural Networks could be tested to see if they follow the same pattern for
single-point precision.”

We repeat the experiments producing Figure 6 in the main paper for both the Cifar10-small and
DeepWeeds-R50v2 models. Results for Cifar10-small are shown in Figure SUP-2, and results
for DeepWeeds-R50v2 are shown in Figure SUP-3. The figures are structured in the same way as
Figure 6 in the main paper.
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(a) Half precision: 1 EQC.
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(b) Single precision: 3 EQCs.
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(c) Double precision: 2 EQCs.

Figure SUP-2: Influence of casting the Cifar10-small model to different floating-point precisions.
Both half and double precision floating-point generate fewer deviations than single precision.
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(a) Half precision: 3 EQCs.
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(b) Single precision: 7 EQCs.
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(c) Double precision: 4 EQCs.

Figure SUP-3: Influence of casting the DeepWeeds-R50v2 model to different floating-point preci-
sions. Both half and double precision floating-point generate fewer deviations than single precision.
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Table SUP-7: Validation accuracy of modified models used for Figures SUP-4 and SUP-5.
Model name Activation Pooling Validation accuracy

Cifar10-R18 Sigmoid AvgPool 47.7 %
Cifar10-small Sigmoid AvgPool 54.6 %
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Figure SUP-4: Influence of activation and pooling functions for ResNet-18 architecture. Activation
layers are indicated on the x-axis by red upward-facing arrows; pooling layers are indicated by
blue downward-facing arrows. Model variants with sigmoid activation use Xavier initialization
(glorot_uniform).

Again, the number of EQCs is largest for single precision, and decreases for both half and double
precision. The distribution of EQCs for single precision is similar to the Cifar10-R18 model.
Changes for double precision are less clear cut, and CPUs with different core counts fall into the
same EQC. We conclude that the pattern of EQCs is similar for all models: single precision generates
the most EQCs, and half and double precision generate fewer EQCs, but still more than one.

Weight distribution and stable remaining precision

Request: “can the authors try Xavier initialization + sigmoid activation (instead of He + ReLU in
typical Resnet) or replace MaxPool to MeanPool to see if this behavior still holds. This should tell
which is the cause of non-diminishing remaining precision.”

To answer this question we modify models Cifar10-small and Cifar10-R18 to use sigmoid
activation with Xavier initialization for all activation layers. MaxPool layers are replaced with
AvgPool1 layers. The resulting models are trained for 30 epochs on the CIFAR-10 training set,
using the same code as the ReLU models. No tuning of hyperparameters is performed. Table SUP-7
reports the final validation accuracy of the models. As with the ReLU models, this is not competitive
with the state of the art, but significantly better than random guessing. Figures SUP-4 and SUP-5
show the results for the modified models. Because the reviewer specifically mentions the initializa-
tion we include an untrained version of the model in the results, shown in Figures SUP-6 and SUP-7

We follow the same experimental procedure as in Section 3.3 in the paragraph “Architecture and
layer types” to obtain the remaining precision and number of EQCs. Figure SUP-4 show the results
for model Cifar10-R18. The tick marks indicating the activation layers have been replaced by red
upward-facing arrows. Blue downward-facing arrows indicate pooling layers.

The remaining precision for ReLU activation in Figure SUP-4 is the same as in Figure 5 in the
main paper, and activation layers either increase the remaining precision or leave it unaffected. In
contrast, the first and last sigmoid activation layers decrease the remaining precision. The remaining
sigmoid activation layers also either increase the remaining precision or leave it unaffected, same as
the ReLU activation layers.

The single pooling layer after the first convolution increases the remaining precision for both
MaxPool and AvgPool. The number of EQCs is the same for both variants of the model, and is
not shown to save space.

1We stay consistent with TensorFlow naming and refer to MeanPool as AvgPool.
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Figure SUP-5: Influence of activation and pooling functions for Cifar10-small (cf. Table SUP-
6). Activation layers are indicated on the x-axis by red upward-facing arrows; pooling layers are
indicated by blue downward-facing arrows. Model variants with sigmoid activation use Xavier
initialization (glorot_uniform).
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Figure SUP-6: Variant of Figure 5 of the main paper, with initialized weights and no training.
Sigmoid uses Xavier initialization, ReLU uses He. Linear uses initialized weights of the sigmoid
model.

Figure SUP-5 shows the results for model Cifar10-small, which features a second pooling layer.
The figure is structured the same way as Figure SUP-4. For the Cifar10-small model, sigmoid
activation reduces the remaining precision in three out of four cases. MaxPool increases the remain-
ing precision for both layers, whereas AvgPool increases it for one and leaves it unaffected for the
other.

Because the reviewer explicitly mentioned activation functions, we also include a variant of the
graphic with initialized weights and no training, shown in Figure SUP-6 for the Cifar10-R18
model, and in Figure SUP-7 for the Cifar10-small model. Remaining precision for the
Cifar10-R18 model without training fluctuates across the entire possible range [0, 23]. A remaining
precision of 23 indicates only a single EQC. The EQC plot in Figure SUP-6b shows that even after
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Figure SUP-7: Variant of Figure SUP-5 with initialized weights and no training. Methodology is
identical to Figure SUP-6.

Table SUP-8: Number of deviations before and after activation layers in Cifar10-R18 and
Cifar10-small. Deviations are counted over the flattened output of the layer, and averaged across
used in Tables SUP-1 and SUP-2. A value deviates if it is not identical for all hardware platforms.

Model name Deviations
ReLU Sigmoid

Layer index Before After Before After

Cifar10-R18
5 95.3 % 38.4 % 94.1 % 79.5 %
9 97.5 % 34.6 % 97.7 % 87.8 %
12 98.5 % 33.8 % 89.9 % 80.8 %
18 99.3 % 49.7 % 99.5 % 91.7 %
23 98.6 % 43.1 % 98.4 % 88.2 %
26 97.9 % 35.2 % 96.4 % 87.9 %
32 97.9 % 47.2 % 98.5 % 91.8 %
37 93.9 % 43.3 % 93.1 % 70.8 %
40 75.6 % 30.8 % 19.9 % 7.2 %
46 90.8 % 61.0 % 96.5 % 96.0 %
51 71.4 % 54.8 % 97.9 % 97.5 %
54 79.9 % 30.1 % 12.5 % 8.9 %

Cifar10-small
2 86.4 % 49.8 % 72.3 % 44.0 %
5 97.0 % 37.6 % 91.7 % 71.2 %
9 96.6 % 26.8 % 82.3 % 63.8 %
11 99.2 % 30.5 % 93.2 % 77.1 %

all EQCs collapse, new EQCs can arise. This implies that similar behavior is possible for trained
weights, and having identical results in intermediate layers does not guarantee identical results in
subsequent layers.

Notably, we find more cases where sigmoid activation increases remaining precision for the un-
trained model. A possible cause for this is the fact that the initialized weights have a lower energy
(sum of values), which causes the sigmoid activation to be closer to its linear regime.

In addition to the figures, we count the ratio of deviating values before and after activation. Ta-
ble SUP-8 shows the results for the trained models.
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Table SUP-9: Number of layers that increase, decrease, or leave the remaining precision unaffected.
Results are averaged over all samples used in Tables SUP-1 and SUP-2.

ReLU Sigmoid

Model name Increase Unaffected Decrease Increase Unaffected Decrease

Cifar10-R18 6.000 6.000 0.000 7.667 2.000 2.333
Cifar10-small 3.000 1.000 0.000 1.000 0.333 2.667

Altering the network’s size

Request: “Was any experiment performed to alter the depth/size of the network under test, to see
if that would impact the probability of a divergence occurring as depth increased?”

There is no experiment that explicitly cuts, shrinks or enlarges middle layers to investigate the ef-
fects. However, the results in Figure 5 were obtained by outputting intermediate layer results, and
the results in Figure 4 can be interpreted as varying the size of a single convolutional layer. Both
figures show clear trends on how the size affects the number of EQCs as well as the remaining pre-
cision. Our analysis of TensorFlow and its underlying Eigen library tells us that actually cutting
the layers would result in the same remaining precision and EQCs as shown in Figure 5 because
implementation choice on CPUs depends only on the hardware and not on the model. On GPUs,
cutting layers will affect these metrics, as early layers will take up memory on the GPU and affect
the microbenchmarks of subsequent layers.
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