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Abstract

Simulation of autonomous vehicle systems requires that simulated traffic partici-
pants exhibit diverse and realistic behaviors. The use of prerecorded real-world
traffic scenarios in simulation ensures realism but the rarity of safety critical events
makes large scale collection of driving scenarios expensive. In this paper, we
present DJINN – a diffusion based method of generating traffic scenarios. Our
approach jointly diffuses the trajectories of all agents, conditioned on a flexible
set of state observations from the past, present, or future. On popular trajectory
forecasting datasets, we report state of the art performance on joint trajectory
metrics. In addition, we demonstrate how DJINN flexibly enables direct test-time
sampling from a variety of valuable conditional distributions including goal-based
sampling, behavior-class sampling, and scenario editing.

1 Introduction

Accurate simulations are critical to the development of autonomous vehicles (AVs) because they
facilitate the safe testing of complex driving systems [15]. One of the most popular methods of
simulation is virtual replay [46], in which the performance of autonomous systems are evaluated
by replaying previously recorded traffic scenarios. Although virtual replay is a valuable tool for
AV testing, recording diverse scenarios is expensive and time consuming, as safety-critical traffic
behaviors are rare [17]. Methods for producing synthetic traffic scenarios of specific driving behaviors
are therefore essential to accelerate AV development and simulation quality.

Producing these synthetic traffic scenarios involves generating the joint future motion of all the
agents in a scene, a task which is closely related to the problem of trajectory forecasting. Due to the
complexity of learning a fully autonomous end-to-end vehicle controller, researchers often opt to split
the problem into three main tasks [52]: perception, trajectory forecasting, and planning. In trajectory
forecasting, the future positions of all agents are predicted up to a specified future time based on
the agent histories and the road information. Due to the utility of trajectory forecasting models
in autonomous vehicle systems along with the availability of standard datasets and benchmarks to
measure progress [4, 53], a variety of effective trajectory forecasting methods are now available.
Unfortunately, most methods produce deterministic sets of trajectory forecasts per-agent [47, 9]
which are difficult to combine to produce realistic joint traffic scenes [30].

Generative models of driving behavior have been proposed as an alternative to deterministic trajectory
forecasting methods for traffic scene generation [40, 46]. These models re-frame trajectory forecasting
as modeling the joint distribution of future agent state conditioned on past observations and map
context. However, given that the distribution of traffic scenes in motion forecasting datasets are
similar to real-world driving, modelling the data distribution does not ensure that models will generate
rare, safety critical events.
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To alleviate these issues we propose DJINN, a model which generatively produces joint traffic
scenarios with flexible conditioning. DJINN is a diffusion model over the joint states of all agents in
the scene. Similar to [30], our model is conditioned on a flexible set of agent states. By modifying
the conditioning set at test-time, DJINN is able to draw traffic scenarios from a variety of conditional
distributions of interest. These distributions include sampling scenes conditioned on specific goal
states or upsampling trajectories from sparse waypoints. Additionally, the joint diffusion structure of
DJINN enables test-time diffusion guidance. Utilizing these methods enables further control over the
conditioning of traffic scenes based on behavior modes, agent states, or scene editing.

We evaluate the quality of sampled trajectories with both joint and ego-only motion forecasting on the
Argoverse [4] and INTERACTION [53] datasets. We report excellent ego-only motion forecasting
and outperform Scene Transformer on joint motion forecasting metrics. We further demonstrate
both DJINN’s flexibility and compatibility with various forms of test-time diffusion guidance by
generating goal-directed samples, examples of cut-in driving behaviors, and editing replay logs.

2 Related Work

Trajectory Forecasting: A wide variety of methods have been proposed to address the problem of
trajectory forecasting. Two attributes which divide this area of work are the output representation type
and the agents for which predictions are made. The most common class of models deterministically
predict the distribution of ego agent trajectories using a weighted trajectory set either with or without
uncertainties. Due to the applicability of this representation as the input for real-time self-driving
planners, there are numerous prior methods of this type. Some approaches rasterize the scene into a
birdview image and use CNNs to predict a discrete set of future trajectories for the ego agent [5, 3, 32].
The convolutional architecture of these methods captures local information around the agent well,
but the birdview image size and resolution limit the ability to capture high speed and long-range
interactions. To address these challenges, other prior approaches encode agent states directly either
by using RNNs [47, 39, 27], polyline encoders [7, 9] or 1D convolutions [24]. Agent features can be
combined with roadgraph information in a variety of ways including graph convolutional networks
[24, 1] or attention [29, 27].

To control the distribution of predicted trajectories, several methods have utilized mode or goal
conditioning. One approach is to directly predict several goal targets before regressing trajectories to
those targets [54, 9, 51, 8]. An alternate approach is to condition on trajectory prototypes [3] or latent
embeddings [47].

Predicting joint traffic scenes using per-agent marginal trajectory sets is challenging due to the
exponential growth of trajectory combinations. Recent approaches aim to rectify this by producing
joint weighted sets of trajectories for all agents in a scene. M2I [45] generates joint trajectory sets by
producing “reactor” trajectories which are conditioned on marginal “influencer” trajectories. Scene
Transformer [30], which uses a similar backbone architecture to our method, uses a transformer [48]
network to jointly produce trajectory sets for all agents in the scene.

As an alternative to deterministic predictions, multiple methods propose generative models of agent
trajectories. A variety of generative model classes have been employed including Normalizing Flows
[36], GANs [10, 38] or CVRNNs [40, 46]. Joint generative behavior models can either produce
entire scenarios in one shot [10, 38, 36], or produce scenarios by autoregressively “rolling-out” agent
trajectories [40, 46].

Diffusion Models: Diffusion models, proposed by Sohl-Dickstein et al. [41] and improved by Ho
et al. [12] are a class of generative models which approximate the data distribution by reversing
a forward process which gradually adds noise to the data. The schedule of noise addition can be
discrete process or represented by a continuous time differential equation [44, 21].We utilize the
diffusion parameterization introduced in EDM [21] in our work for its excellent performance and
separation of training and sampling procedures.

This class of models have shown excellent sample quality in a variety of domains including images
[12, 6], video [11, 14] and audio [22]. In addition, diffusion models can be adapted at test-time
through various conditioning mechanisms. Classifier [6] and classifier-free guidance [13] have
enabled powerful conditional generative models such as text conditional image models [34, 37] while
editing techniques [26, 31] have enabled iterative refinement of generated samples.

2



Time

Ag
en

ts

Predictive Goal Conditioning Agent Reactive Up-Sampling Impuation

observed generated

Figure 1: Top: Five example observation masks O demonstrating potential conditioning inputs
to DJINN. Each element of each mask corresponds to the boolean value of O for that agent state.
Individual agents are shown in rows, with timesteps as columns. Bottom: Generated traffic scenes
corresponding to the type of observation masks above.

One recent application of diffusion models is planning. Diffuser [20] uses diffusion models to generate
trajectories for offline reinforcement learning tasks. They condition their samples using classifier
guidance to achieve high rewards and satisfy constraints. Trace and Pace [35] utilizes diffusion
planning for guided pedestrian motion planning. In the vehicle planning domain, Controllable Traffic
Generation (CTG) [55] builds on Diffuser, using diffusion models to generate trajectories which
satisfy road rule constraints. Like CTG, our method also models the future trajectories of road users
using diffusion models. However, our approach differs from CTG in terms of output and our methods
of conditioning. In CTG, marginal per-agent trajectory samples are combined into a joint scene
representation by “rolling-out” a portion of each agent’s trajectory before drawing new samples
per-agent. By contrast, DJINN models the full joint distribution of agent trajectories in one shot,
with no re-planning or roll-outs required. The authors of CTG condition their model exclusively on
the past states of other agents and the map, and use classifier-guidance to condition their samples
to follow road rules. In our method, we demonstrate conditioning on scene semantics via classifier
guidance as well as conditioning on arbitrary state observations, including the past or future states of
each agent, and control the strength of conditioning using classifier-free guidance as demonstrated in
Fig. 1.

3 Background

3.1 Problem Formulation

Our work considers traffic scenarios consisting of A agents across T discrete timesteps driving on
a roadway described by a set of roadgraph features M. Each agent a ∈ {1 . . . , A} in the scene at
time t ∈ {1, . . . T} is represented by a state sat = {xa

t , y
a
t , θ

a
t } consisting of its 2D position (xt, yt)

and heading θt. The joint representation of the scene x is the combination of all agents across all
timesteps x = {sat |a ∈ {1, . . . , A} , t ∈ {1, . . . , T}} ∈ RA×T×3. We assume scenes are distributed
according to an unknown distribution pdata(x).

We introduce a model which is conditioned on the map features M and can moreover be flexibly
conditioned on arbitrary set of observed agent states. For the latter purpose, we consider a boolean
variable O ∈ {0, 1}A×T . We denote that a state in the scene is observed if Oa

t = 1. Using
O, we partition the scene into two components. The observed portion of the scene is defined as
xobs = {sat |sat ∈ x,Oa

t = 1} while the unobserved, latent portion is xlat = x \ xobs. Figure 1
shows five choices for O and their corresponding tasks. Our ultimate goal is to learn a conditional
distribution over the set of all latent agent states xlat given the observed states xobs and the map
M, by modelling p(xlat|xobs,M). Using this probabilistic framework, we can represent conditional
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distributions corresponding to various trajectory forecasting tasks by modifying the observation mask
O and the corresponding conditioning set xobs.

3.2 Diffusion Models

Diffusion models [41, 12] are a powerful class of generative models built upon a diffusion process
which iteratively adds noise to the data. In the continuous time formulation of this process [44, 21],
this iterative addition is described by a stochastic differential equation (SDE)

dxτ = µ(xτ , τ)dτ − σ(τ)dw. (1)

Here, τ ∈ [0, τmax] where τmax is a fixed, large constant, µ(xτ , τ) is the drift function and σ(τ) is the
diffusion coefficient which scales standard Brownian motion w. Note that our work has two notions
of time. Throughout we will use t to denote the “scenario time” and τ to represent “diffusion time”.
We express the marginal distribution of xτ at diffusion time τ as p(xτ ), with p(x0) corresponding to
the data distribution pdata(x). Typically, µ(xτ , τ), σ(τ), and τmax are chosen such the conditional
density p(xτ |x0) is available in closed form and that p(xτmax

) approximates a tractable Gaussian
distribution π(x). Notably, for every diffusion SDE, there exists a corresponding probability flow
(PF) ordinary differential equation (ODE) [44] whose marginal probability densities p(xτ ) match the
densities of Eq. (1)

dxτ =

[
µ(xτ , τ)−

1

2
σ(τ)2∇x log p(xτ )

]
dτ. (2)

Using the PF ODE, samples are generated from a diffusion model by integrating Eq. (2) from
τ = τmax to τ = 0 with initial condition xτmax

∼ π(xτmax
) using an ODE solver. Typically

integration is stopped at some small value ϵ for numerical stability. Solving this initial value problem
requires evaluation of the score function ∇xτ

log p(xτ ). Since p(xτ ) is not known in closed form,
diffusion models learn an approximation of the score function sθ(xτ , τ) ≈ ∇xτ

log p(xτ ) via score
matching [16, 43, 44].

A useful property of diffusion models is the ability to model conditional distributions p(x0|y) at
test-time using guidance. Given some conditional information y, the key idea of guidance is to replace
the score function in the PF ODE with an approximate conditional score function ∇xτ

log p(xτ |y).
By using the gradient of a pretrained classifier pϕ(y|xτ ), glassifier guidance [6] approximates the
conditional score function through the a linear combination of the unconditional score function and
the classifier gradient. The parameter α controls the strength of the guidance

∇xτ
log p(xτ |y) ≈ sθ(xτ , τ) + α∇xτ

log pϕ(y|xτ ). (3)

One major drawback of classifier guidance is the need to train an external classifier. Instead, classifier-
free guidance [13], utilizes a conditional score network sθ(xτ , τ, y). Then, a weighted average of the
conditional and unconditional scores is used to estimate the conditional score function.

∇xτ
log p(xτ |y) ≈ λsθ(xτ , τ, y) + (1− λ)sθ(xτ , τ). (4)

Here λ is a scalar parameter which controls the strength of the guidance. In both cases, the approxi-
mate conditional score can be substituted into Eq. (2) to draw conditional samples from p(x0|y).

4 DJINN

Our approach models the joint distribution agent states p(xlat|xobs,M) conditioned on a set of
observed states and the map context. For this purpose, we employ a diffusion model which diffuses
directly over xlat – the unobserved states of each agent in the scene for t = {1, . . . T}. An important
aspect of our method is the choice of observation mask O and observation set xobs on which we
condition. For this purpose we introduce a distribution over observation masks p(O) which controls
the tasks on which we train our model.

In the design of our diffusion process, we follow the choices from EDM [21], setting µ(xlat,τ , τ) = 0

and σ(τ) =
√
2τ from Eq. (2). We also utilize their score function parameterization

4



∇xlat,τ
log p(xlat,τ |xobs,M, c) =

Dθ (xlat,τ ,xobs,M, c, τ)− xlat,τ

τ2
. (5)

Here Dθ is a neural network which approximates the latent portion of the noise free data xlat,0. In
addition to xlat,τ and τ , in our work Dθ also receives the map context M, the clean observed states
xobs and c, a collection of unmodelled agent features per observed agent timestep such as velocity,
vehicle size, or agent type. We train our network on a modification of the objective from EDM [21]

Ex0,τ,O,xlat,τ
∥Dθ (xlat,τ ,xobs,M, c, τ)− xlat,0∥22. (6)

Here, x0 ∼ pdata(x), xτ ∼ p(xτ |x0) = N (x, τ2I) and O ∼ p(O). We compute our loss over
τ ∼ ptrain – a log normal distribution which controls the variance of the noise added to the data. We
set the mean and variance of ptrain according to [21].

We use the Heun 2nd order sampler from [21] to sample traffic scenarios with no changes to the
reported hyperparameters. Empirically, we found that deterministic sampling, corresponding to
integrating the PF ODE, leads to higher quality samples than using an SDE solver. Unless otherwise
noted all samples are produced using 50 iterations of the ODE solver, which produces the highest
quality samples as measured by ego and joint minADE and minFDE.

Input Representation An important choice for trajectory forecasting models is the reference frame
for the agent states. In our work, the diffused agent states and observations xobs are centered around
an “ego agent,” which is often specified in trajectory forecasting datasets as the primary agent of
interest. We transform x0 such that the scene is centered on the last observed position of this arbitrary
“ego agent” and rotated so the last observed heading of the ego agent is zero. We scale the positions
and headings of all agents in each ego-transformed scene to a standard deviation of 0.5.

We represent the map M as an unordered collection of polylines representing the center of each lane.
Polylines are comprised of a fixed number of 2D points. We split longer polylines split into multiple
segments and pad shorter polylines padded to the fixed length. Each point has a boolean variable
indicating whether the element is padding. Polyline points are represented in the same reference
frame as the agent states and are scaled by the same amount as the agent position features.

Model Architecture Our score estimator network Dθ is parameterized by a transformer-based
architecture similar to [30]. The network operates on a fixed [A, T, F ] shaped feature tensor composed
of one F dimensional feature vector per agent timestep. We use sinusoidal positional embeddings
[48] to produce initial feature tensors. Noisy and observed agent states xτ , xobs, the time indices
t = {1, . . . , T}, and diffusion step τ are all embedded into F dimensional embeddings. xlat,τ and
xobs are padded with zeros for observed and latent states respectively prior to embedding. A shared
MLP projects the concatenated positional embeddings into a F dimensional vector for each agent.

The main trunk of the network is comprised of a series of transformer layers [48]. Attention between
all pairs of feature vectors is factorized into alternating time and agent transformer layers. In time
transformer layers, self-attention is performed per-agent across each timestep of that agent’s trajectory,
allowing for temporal consistency along a trajectory. In agent transformer layers, self-attention is
computed across all agents at a given time, updating each agent’s features with information about
the other agents at that time. We encode the map information M with a shared MLP that consumes
flattened per-point and per-lane features to produce a fixed size embedding per lane. Cross attention
between the collection of lane embeddings and agent states incorporates map information into the
agent state features. Our network is comprised of 15 total transformer layers with a fixed feature
dimension of 256. We use an MLP decoder after the final transformer layer to produce our estimate
of xlat,0. A full representation of our architecture is available in Appendix A.

5 Guidance for Conditional Scene Generation

So far, we have outlined our method for generating joint traffic scenes using DJINN. Next, we
describe how the diffusion nature of DJINN enables fine-grained control over the generation and
modification of driving scenarios.
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Table 1: Ego-only motion forecasting performance on Argoverse and INTERACTION datasets.
minADE and minFDE metrics on both datasets indicate that DJINN produces ego samples which
closesly match the distribution of ego agent trajectories.

(a) Argoverse test set

Method minADE6 minFDE6

Jean [27] 0.98 1.42
mmTransformer [25] 0.87 1.34
DenseTNT [9] 0.88 1.28
MultiPath++[47] 0.79 1.214
DCMS [50] 0.77 1.14
SceneTransformer [30] 0.80 1.23
Ours 1.02 1.65

(b) INTERACTION validation set

Method minADE6 minFDE6

DESIRE [23] 0.32 0.88
TNT [54] 0.21 0.67
ReCoG [28] 0.19 0.65
ITRA [40] 0.17 0.49
StarNet [19] 0.13 0.38
SAN [18] 0.10 0.29
Ours 0.14 0.39

Table 2: Ego-only and joint metrics comparing DJINN to a jointly trained Scene Transformer model
on the Argoverse validation set. DJINN produces better joint samples than SceneTransformer when
measured by minSceneADE and minSceneFDE.

Method minADE6 minFDE6 minSceneADE6 minSceneFDE6

Scene Transformer (Joint) 0.848 1.398 1.019 1.835
Ours 0.871 1.409 0.895 1.758

5.1 Classifier-free Guidance

In Scene Transformer [30], a masked sequence modelling framework is introduced for goal-directed
and agent-reactive scene predictions. One limitation of this approach is that conditioning is performed
on precise agent states while future agent states or goals are usually uncertain. We mitigate this
limitation through the use of classifier-free guidance.

We assume access to a set of precise observations xobs, and some set of additional agent states xcond

on which we wish to condition our sample. For instance, xcond may include agent goals upon which
we wish to condition. Let x′

obs = {xobs ∪ xcond}. Based on Eq. (4), the conditional score is through
a weighted average of the score estimate conditioned on xobs and the estimated conditioned on x′

obs

∇xlat,τ
log p(xlat,τ |x′

obs) ≈λ
Dθ (xlat,τ ,x

′
obs,M, c, τ)− xlat,τ

τ2

+ (1− λ)
Dθ (xlat,τ ,xobs,M, c, τ)− xlat,τ

τ2
.

(7)

To facilitate classifier-free conditioning, we train DJINN on a p(O) representing varied conditioning
tasks. These tasks include conditioning on agent history, agent goals, windows of agent states, and
random agent states. A full overview of our task distribution is given in Appendix B.

5.2 Classifier Guidance

Many driving behaviors of individual or multiple agents can be categorized by a class y based
on their geometry, inter-agent interactions or map context. Examples of classes include driving
maneuvers such as left turns, multi agent behaviors such as yielding to another agent, or constraints
such as trajectories which follow the speed limit. DJINN uses classifier guidance to conditioned
scenes on these behavior classes. Given a set of example scenes corresponding to a behavior class
y, we train a classifier to model pϕ(y|x). Using Eq. (3) we approximate the conditional score
for conditional sampling. Importantly, due to the joint nature of our representation, classifiers for
per-agent, multi-agent or whole-scene behaviors can be all used to condition sampled traffic scenes.

5.3 Scenario Editing

One benefit of sampling traffic scenes at once instead of autoregressively is the ability to edit generated
or recorded traffic scenarios through stochastic differential editing [26]. Given a traffic scene x, a user
can manually modify the trajectories in the scene to produce a "guide" scene x′ which approximates
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Figure 2: The effect of classifier-free guidance weight on the spread of trajectories for goal conditioned
sampling. Samples drawn from the INTERACTION validation set conditioned using classifier-free
guidance on a goal state (star). As the guidance weight increases, deviation from the goals decreases.

the desired trajectories in the scene. The guide scene is used to condition the start of a truncated
reverse diffusion process by sampling xτedit ∼ N (x′, τeditI) where τedit is an intermediate time in
the diffusion process between 0 and τmax. Then, the edited scene is produced by integrating the
PF ODE using the same ODE solver, starting from initial condition τedit. Through the stochastic
differential editing, the guide scene is translated into a realistic traffic scene with agent trajectories
which approximate the guide trajectories. We empirically find τedit = 0.8 to be a good trade-off
between generating realistic trajectory scenes and maintaining the information of the guide scene.

6 Experiments

6.1 Motion Forecasting Performance

To measure the quality of the samples from DJINN, we evaluate our method on two popular motion
prediction datasets, matching O during training to match each dataset. For the INTERACTION
dataset [53] scenes, we observe the state of all agents over the first second of the scene and generate
the next three seconds. On the Argoverse dataset [4] our model observes agent states over the first
two seconds of the scene and generates the next three seconds. Training hyperparameters for both
models are found in Appendix A.

We note that both INTERACTION and Argoverse metrics measure an ego-only trajectory-set using
minADE and minFDE over 6 trajectories. Since DJINN produces stochastic samples of entire traffic
scenes, a set of 6 random trajectories may not cover all future trajectory modes. To alleviate this, we
draw a collection of 60 samples for each scenario and fit a 6 component Gaussian mixture model
with diagonal covariances using EM in a method similar to [47]. We use the means of the mixture
components as the final DJINN prediction for motion forecasting benchmarks.

We present DJINN’s performance on motion forecasting in Table 1 with Argoverse results in Table 1a
and INTERACTION results in Table 1b. On INTERACTION, DJINN generates excellent ego vehicle
trajectories, with similar minFDE and minADE to state of the art methods on this dataset. On the
Argoverse test set we produce competitive metrics, although our results lag slightly behind top motion
forecasting methods. We hypothesize that our lower performance on Argoverse is due to the lower
quality agent tracks in this dataset when compared to INTERACTION.

We further analyze the joint motion forecasting performance of DJINN. To this end, we measure the
Scene minADE and minFDE proposed by [2] which measures joint motion forecasting performance
over a collection of traffic scenes. We compare DJINN against a reproduction of Scene Transformer
trained for joint motion forecasting, using their reported hyperparameters. Ego-only and Scene motion
forecasting performance is shown in Table 2. Although Scene Transformer predicts slightly better
ego vehicle trajectories, we demonstrate DJINN has superior joint motion forecasting capabilities.

6.2 State-conditioned Traffic Scene Generation

While DJINN is able to draw samples for motion forecasting benchmarks by conditioning on past
observations of the scene, a key benefit of our approach is the ability to flexibly condition at test-time
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Figure 3: Examples of synthetic cut-in behaviors generated using classifier guidance. Samples are
generated from the INTERACTION validation set conditioned on the first 10 agent states. Applying
classifier guidance causes the other agent (green) to cut in front of the ego agent (purple). We generate
trajectories for all agents in the scene, but other agent trajectories have been omitted for clarity

based on arbitrary agent states. We illustrate this test-time conditioning in Fig. 1 by generating
samples from five conditional distributions which correspond to use-cases for our model.

Specifying exact agent states on which to condition can be challenging. One approach is to utilize the
states of a prerecorded trajectory to produce conditioning inputs. However, if one wishes to generate
a trajectory which deviates from a recorded trajectory, there is uncertainty about the exact states on
which to condition. In Fig. 2, we demonstrate how classifier-free guidance can be utilized to handle
user uncertainty in conditioning agent states. In this example, we set the observation set xobs to
the first ten states of each agent’s recorded trajectory. Further, we create a conditional observation set
x′
obs by augmenting xobs with a goal state for each agent drawn from a normal distribution centered

on the ground-truth final position of each agent, with 1m variance. We sample traffic scenes with
varying levels of classifier-free guidance strength, drawing two conclusions. First, DJINN is robust
to goals which do not match the recorded final agent states. Secondly, the strength of the classifier
guidance weight controls the emphasis of the goal conditioning, resulting in trajectory samples
which cluster more tightly around the specified goal as the guidance strength is increased. With low
guidance weight, the samples are diverse, and do not closely match the specified goal position. As
the weight increases, the spread of the trajectory distribution tightens, especially for fast, longer
trajectories. These properties give users finer control over the distribution of traffic scenes when
there is uncertainty over the conditioning states.

6.3 Conditional Generation from Behavior Classes

We now continue to demonstrate the flexibility of our approach by considering test-time conditioning
of our model on specific driving behaviors through classifier guidance. Specifically, we highlight
the ability to condition DJINN on the behavior class of cut-in trajectories by conditioning our
INTERACTION trained model with a cut-in classifier.

A “cut-in” occurs when one vehicle merges into the path of another, often requiring intervention by the
cut-off driver. We selected this behavior to demonstrate how classifier guidance can be used with our
joint representation to sample scenes conditioned on the behavior of multiple agents. We condition
DJINN trained on INTERACTION using a simple cut-in classifier. To train the classifier, we first
mined a dataset of cut-in behaviors trajectory pairs from the "DR_CHN_Merging_ZS" location – a
highway driving scene with some cut-in examples. Each trajectory pair is comprised of an “ego" and
an “other" agent. We define a positive cut-in as a case where the future state of the other agent at time
tother overlaps with a future state of the ego agent at time tego such that tego − 3s < tother < tego.
Further, we filter cases where the initial state of the other agent overlaps with any part of the ego
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Figure 4: Two scenario fine-tuning examples (one per row) based on Argoverse validation set
scenarios. Left: original scene with ground-truth trajectories shown for two interacting vehicles,
vehicle positions at the same time index for all agents. Middle: a manual edit of one agent’s trajectory
in each scene. One (top) replaces a right turn with a forward continuation, the other (bottom) shifts
a trajectory back in space to cause a complex interaction to occur near the end of the trajectory.
Right: the resulting stochastic differential edit of the original scenario. Both rows of the last column
illustrate joint reactivity to the new trajectories arising from the edit; in the top row the left-turning
vehicle yields and in the bottom row both trajectories shift to avoid collision.

trajectory to eliminate lane following cases. We label a negative cut-in case as any other pair of
trajectories in which the minimum distance between any pair of ego and other states is less than 5m.

Using these heuristics, we collect a dataset of 2013 positive and 296751 negative examples. We
trained a two layer MLP classifier with 128 dimensions per hidden layer. The classifier takes as
input the diffused trajectories of each agent, the validity of each timestep and the diffusion time τ .
Using this classifier, we generate synthetic cut-in scenarios via Eq. (3). Examples of our synthetic
cut-in scenarios are found in Fig. 3. The generated scenarios clearly demonstrate our model can be
conditioned to create synthetic cut-in behaviors. These synthetic examples provide evidence that
given a collection of trajectories exemplifying a behavior mode, or a heuristic which can be used to
generate example trajectories, DJINN can be conditioned to generate synthetic examples representing
that behavior mode. This finding further expands the flexibility of our model to generate trajectory
samples from valuable conditional distributions.

6.4 Scenario Fine-Tuning

We exhibit another method of controlling the traffic scenarios generated with DJINN through fine-
tuning. Since DJINN diffuses entire traffic scenes without iterative replanning, we are able to use
stochastic differential editing to modify the sampled scenes. Given a recorded or sampled traffic
scene, differential stochastic editing can be used to fine-tune the scene through the use of a manually
specified guide. In Fig. 4, we demonstrate how DJINN can fine-tune existing scenarios to produce
new scenarios with realistic trajectories but complex interactions. Using two recorded validation set
scenes from Argoverse, we aim to edit the scenes to generate more interactive trajectories between the
agents. For this purpose, we generate an guide scene xguide by manually adjusting the trajectories in
each scene so that the future paths of two of the agents will intersect. Through stochastic differential
editing, we show that DJINN is able to produce realistic driving scenes which shift the guide scene
trajectories to maintain their interactivity but avoid collisions between agents.
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7 Conclusions

In this work, we present DJINN – a diffusion model of joint traffic scenes. By diffusing in a joint
agent state representation, DJINN can be adapted at test time to a variety of modeling tasks through
guidance methods and scenario editing. The power of this scenario generation model opens exciting
possibilities. Future research may expand the variety of guidance classifiers such as utilizing the
classifiers proposed in [55] for traffic-rule constraint satisfaction. Another promising avenue of
research is scaling DJINN for faster scenario generation. Although flexible, the diffusion structure of
DJINN makes scenario generation relatively slow due to the iterative estimation of the score function.
Distillation techniques such as consistency models [42] may be helpful in this regard to improve the
number of score estimates required per sample. Future work may also consider scaling the length and
agent count in generated scenarios to improve the complexity of behaviors which can be generated.
Other areas of future work include using DJINN in a model predictive control setting (hinted at in the
predictive mask of Fig. 1) in which an ego action is scored using statistics of ego-action conditioned
joint trajectories from DJINN.
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Appendix

A Model Details

A.1 Preconditioning

Following EDM [21], we precondition Dθ by combining xlat,τ and the output of our network Fθ

using scaling factors

Dθ(xlat,τ ,xobs,M, c, τ) = cskip(τ)xlat,τ + cout(τ)Fθ(cinxlat,τ ,xobs,M, c, cnoise(τ)). (8)

We use the scaling values reported in [21] without modification but report them in Table 3 for
convenience.

Table 3: Scaling Functions for Preconditioning
Scaling Factor Function
cskip σ2

data/(τ
2 + σ2

data)

cout τ · σdata/
√
τ2 + σ2

data

cin 1/
√
τ2 + σ2

data
cnoise

1
4 ln(τ)

Here, σdata is the standard deviation of the diffusion features. We scale the positions and headings of
the agent so that σdata is 0.5 for all diffusion features.

A.2 Architecture

DJINN utilizes a transformer based architecture for Fθ. An overview of the model structure is shown
in Fig. 5.

Feature Encoding

We encode the observed agent states xobs, the noisy latent states xlat,τ , the scenario time t and the
diffusion time τ using sinusoidal positional encoding [48]. We represent the scenario time as an
integer index increasing from 0 to T with 0 corresponding to the earliest agent states. For each of the
encoded features, we produce a 256-dimensional encoding vector. An important hyperparameter for
sinusoidal positional embeddings are the maximum and minimum encoding periods which we report
in Table 4.

Table 4: Maximum and minimum positional encoding periods for DJINN input features
Feature Minimum Period Maximum Period
xobs,xlat,τ 0.01 10
t 1 100
τ 0.1 10,000

The concatenation of the positional encodings with additional agent state features c are fed through
an MLP to form the input to the main transformer network. The additional agent state features consist
of the agent velocity, the observed mask, and the agent size which is available for INTERACTION
only. The input MLP is shared across all agent states and contains two linear layers with hidden
dimension 256 and ReLU non-linearities.

Roadgraph Encoding

DJINN is conditioned on the geometry of the roadgraph through a collection of lane center polylines.
Each polyline is comprised of an ordered series of 2D points which represent the approximate center
of each driving lane. We fix the length of each polyline to 10 points. We split polylines longer than
this threshold into approximately equal segments, and pad shorter polylines with zeros. We utilize a
boolean feature to indicate which polyline points are padded. Unlike [30], we do not use a PointNet
[33] to encode the roadgraph polylines. Instead, we encode the polylines into a 256-dimensional
vector per polyline using a simple MLP. To generate the input to this MLP, we concatenate the position
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Figure 5: An overview of the DJINN architecture. The main network structure is comprised of time,
agent and roadgraph attention layers. Features are encoded using positional encodings and MLPs.
The output of the network is an estimate of the de-noised agent states.

and padding mask for each polyline, along with any additional per-polyline features present in the
dataset. For both datasets, the MLP is comprised of four linear layers, with a hidden dimensionality
of 256 and ReLU non-linearities.

Transformer Network

The main transformer backbone of DJINN is comprised of 15 transformer layers which perform
self-attention over the time and agent dimension, and cross attention with the roadgraph encodings.
We utilize the same transformer layers as those proposed in [30], but modify the number of layers
and their ordering. Specifically, include more time transformer layers as we found this produced
smoother trajectories. All attention layers consume and produce 256 dimensional features per-agent
state. We use four heads for each attention operation, and a 1024 dimensional hidden state for in the
feed forward network. In the transformer layers, we use the pre-layernorm structure described in
[49].

Due to batching and agents which are not tracked for the duration of the traffic scene, there is padding
present in the agent feature tensor. The transformer layers account for padding in the scene by
modifying the attention masks so that padded agent states are not attended to.

Output MLP

We use a two layer MLP with hidden dimension 256 to produce the final output for Fθ. We produce
a three dimensional vector per agent state for INTERACITON and two-dimensional vector for
Argoverse since headings are not provided in the dataset.
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A.3 Training details

We train DJINN on two A100 GPUs for 150 epochs. We utilize the Adam optimizer with learning
rate of 3E-4 and default values for β1 and β2. We use a linear learning rate ramp up, scaling from 0
to 3E-4 over 0.1 epochs. We set the batch size to 32. We clip gradients to a maximum norm of 5.
Training takes approximately 6 days to complete from scratch.

B Observation Distribution

We train DJINN over a variety of observation masks O by randomly drawing masks from a training
distribution p(O). Table 5 outlines this training task distribution. We refer to the length of agent state
history observation for each dataset as tobs and the total number of timesteps as T . U indicates a
uniform distribution over integers.

Table 5: Task distribution for training DJINN. The training observation mask O is sampled from this
distribution with probabilities given in the rightmost column.

Task Description Probability

Predictive Observe states where t ∈ [0, tobs]. 50%

Goal-Conditioned Observe states where t ∈ [0, tobs] and the final state of
3 random agents.

25%

Agent-Conditioned Observe states where t ∈ [0, tobs] and the entire trajec-
tory of 3 random agents.

10%

Ego-Conditioned Observe states where t ∈ [0, tobs] and the entire ego-
agent trajectory.

10%

Windowed Observe states where t ∈ [0, tstart] and t ∈ (tstart +
tobs, T ] where tstart ∼ U(0, tobs).

5%

Upsampling Observe every tobs/T states, starting from
tstart ∼ U(0, tobs/T ).

5%

Imputation Randomly sample observing each state with
probability tobs/T .

5%

C Additional Qualitative Results

Fig. 6 shows additional qualitative samples from DJINN on the INTERACTION dataset for a subset
of the observation masks outlined in Fig. 1. Each row in the figure corresponds to a different tasks,
abd each element of the row is a sampled traffic scene.

D Additional Quantitative Results

D.1 Effect of Observation Distribution

To enable test-time conditioning through classifier-free guidance as outlined in section 6.2, we train
DJINN on the observation distribution described in Appendix B. To quantify the effect of training
on this distribution, we compare the sample quality of a DJINN model trained trained on the full
observation distribution to one which is trained exclusively on the "Predictive Task." Table 6 shows
the impact of the observation distribution as measured by trajectory forecasting metrics on samples
drawn from INTERACTION dataset scenes.

Table 6 demonstrates that training on the full mixture of observation masks somewhat reduces the
predictive performance of DJINN when compared to the model trained exclusively on the predictive
task. However, the diversity of trajectories measured using MFD [40] increases when training on the
more diverse distribution.
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Figure 6: Additional generated traffic scenes from the INTERACTION validation set. Each row
demonstrates samples generated using a different observation mask.

Table 6: Comparison of trajectory forecasting performance for models trained with varying observa-
tion distributions. Trajectory metrics are measured using 6 samples per scene on the INTERACTION
validation set.

Observations minADE minFDE Scene minADE Scene minFDE MFD
Predictive 0.21 0.49 0.35 0.91 2.33
Mixture 0.26 0.63 0.45 1.17 3.11

D.2 Effect of Reduced Sampling Steps

The continuous time training procedure of DJINN enables test-time variation in the number of
sampling steps. Table 7 outlines the effect of reducing the number of sampling steps from the 50
steps which are used in all other experiments.

Table 7 shows that reducing the number of sampling steps results in modest trajectory forecasting
performance reductions up to 20 sampling steps across all metrics. Using 10 steps severely impacts
the quality of sampled scenes across all metrics. As sampling time scales linearly with the number of
sampling steps, reducing the number of sampling steps allows for a performance runtime tradeoff.
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Table 7: Trajectory forecasting performance versus the number of timesteps used in the diffusion
sampling procedure. Trajectory forecasting performance is measured using 6 samples per scene on
the INTERACTION validation set.

Diffusion Steps minADE minFDE Scene minADE Scene minFDE
10 0.28 0.64 0.45 1.135
20 0.22 0.51 0.37 0.95
30 0.22 0.50 0.36 0.92
40 0.21 0.50 0.35 0.92
50 0.21 0.49 0.35 0.92

D.3 Model Runtime

We compare DJINN’s runtime to SceneTransformer [30], varying the input size as measured by the
number of agents in the scene. Runtimes are measured across 1000 samples on a GeForce RTX 2070
Mobile GPU.

Table 8: Average scenario generation time for DJINN and Scene Transformer across varying scene
sizes.

Agent Count Scene Transformer DJINN - 50 Steps DJINN - 25 Steps
8 0.0126s 0.574s 1.15s
16 0.0140s 0.611s 1.24s
32 0.017s 0.844s 1.69s
64 0.026s 1.40s 2.89s
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