
A Annotations

Table 1: Glossary of notations

Notation Description
i; j; k;m;n Symbol of atoms
N Number of neighbors
N(i) Neighborhood of node i

�i,�j ,�ij Cluster i, j and their merged cluster
� Polynomial degree
��(·) Basis function
c� Expansion coefficients
Ei Potential of cluster �i

A� Atomic base for single cluster
✏ Order of expansion for single cluster
Av A-basis for single cluster
Bv B-basis for single cluster
Ã� Atomic base for merged cluster
⌘ Order of expansion for merged cluster
Ãv A-basis for merged cluster
B̃v B-basis for merged cluster
Ẽij Potential of merged cluster �ij

⌧ Specific expansion order
Av⌧ Matrix of A-basis for single cluster on order ⌧
Ãv⌧ Matrix of A-basis for merged cluster on order ⌧
B̃v⌧ Matrix of B-basis for merged cluster on order ⌧
↵ Matrix of attention score
C⌘ Interatomic Positional Encoding
l;L Index of blocks; Number of blocks
F Hidden dimension
X Atomic featuresP

· Reduce function
k · k Vector Norm
Z Atom type
R̂ Matrix of relative positions
g(·), g(·) Radial basis functions
embed(·) Embedding operation
LayerNorm Layer normalization operation
h·, ·i Dot (Inner) product
SiLU(·) SiLU activation function
W Learnable weight matrix
Yl⇤,m(·) Spherical harmonics with order l⇤ and degree m

Cvv⌧ Clebsch-Gordan coefficients
AttnV (·) Attention values weighed by attention scores before sum
Attn(·) Attention values weighed by attention scores after sum
FFN(·) Feed-forward layer
� Hadamard product
⌦ Kronecker product or Tensor product
� Entry-wise Kronecker product
⇤ Batched tensor product
> Matrix transpose
� Residual
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B Detailed Proof of Interatomic Positional Encoding

By setting � = 1 and ⌘ = 1, we have the basis function ��(·) to be its unit vector in Cartesian space
(setting order l⇤ = 1 and degree m = 3 in spherical harmonics). Consequently, the atom base could
be represented as:
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The components of B-basis for the merged cluster �ij can be written as:
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where h·, ·i denotes the inner product. We treat Ai as complex spherical harmonics 4. cos ✓im1m2

represents the cosine value of angles formed by atom i,m1,m2. We simplify the r̂im/kr̂imk as ûim.
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with C denoting an vector offset and could be integrated into neural network. ŵim denotes the vectors
vertical to the intersection line between two planes for calculating the cos'mijn with hŵij , ûiji = 0.
The inner product of ŵim and ŵjn represents the cosine value of proper dihedral angles formed by
plane i, j, n and plane i, j,m.

In a nutshell, we make a straightforward illustration of the relation between our basis functions and
geometric information within molecular structures.

Theorem 3 Given matrix Am⇥n, Bn⇥k, Cl⇥p, Dp⇥q , we have

A⌦ C 2 Rml⇥np (4)

(A⌦B)> = A
>
⌦B

> (5)

(A⌦ C)(B ⌦D) = (AB)⌦ (CD) (6)

where ⌦ denotes the Kronecker Product.

4https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
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Given Theorem 3, the proof of Interatomic Positional Encoding (IPE) could be written as at length:
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where � is the entry-wise Kronecker Product and ⌦ is Kronecker Product.
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C Experiments on the MD17 Dataset

Geoformer is also evaluated on the MD17 dataset [6, 40, 7]. The MD17 dataset comprises MD
trajectories of 7 small organic molecules, and the number of conformations for each molecule varies
between 133,700 and 993,237. The objective is to predict potential energy and forces. Geoformer is
trained in scenarios with limited data, using only 950 samples for training, 50 for validation, and the
remaining for testing following the previous studies [39, 43]. As demonstrated in Appendix Table 2,
it is noteworthy that Geoformer surpasses a series of EGNNs by achieving the lowest mean absolute
errors (MAE) for predicted energy and forces on the majority of molecules.

Table 2: Mean absolute errors (MAE) of energy (kcal/mol) and force (kcal/mol/Å) for 7 small
organic molecules on MD17 compared with state-of-the-art EGNNs. The best one in each category is
highlighted in bold.

Molecule PaiNN [39] TorchMD-Net [43] GemNet [12] NequIP [3] Geoformer

Aspirin energy 0.167 0.123 - 0.131 0.116
forces 0.338 0.253 0.217 0.184 0.169

Ethanol energy 0.064 0.052 - 0.051 0.051
forces 0.224 0.109 0.085 0.071 0.063

Malondialdehyde energy 0.091 0.077 - 0.076 0.074
forces 0.319 0.169 0.155 0.129 0.115

Naphthalene energy 0.116 0.085 - 0.113 0.087
forces 0.077 0.061 0.051 0.039 0.043

Salicylic Acid energy 0.116 0.093 - 0.106 0.093
forces 0.195 0.129 0.125 0.090 0.088

Toluene energy 0.095 0.074 - 0.092 0.078
forces 0.094 0.067 0.060 0.046 0.044

Uracil energy 0.106 0.095 - 0.104 0.095
forces 0.139 0.095 0.097 0.076 0.066
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D Computational Efficiency

We conducted experiments about computational efficiency of Geoformer on a NVIDIA V100 GPU
and compared the model sizes and training times reported in Equiformer [24] and Transformer-M [28].
As shown in Appendix Table 3, compared to the Transformer-based approach, our method increases
the number of parameters by approximately 8%. Comparing to the EGNNs, although our number
of parameters of the model is much larger than theirs, we can achieve faster training speed because
some operators in EGNNs slow down training. Furthermore, to confirm that the improved model
performance is not solely attributed to the larger model size, we experimented with a model with a
similar size to EGNNs. Although the performance decreases compared to the larger model, it remains
generally better and significantly faster than the other methods.

Table 3: Comparison of model size, training time, and performance between Geoformer and other
models.

Model Size Overall Training Time (GPU-hours) MAE on U0 MAE on U MAE on H MAE on G

SEGNN [4] 1.03M 81 15 13 16 15
TorchMD-NET [43] 6.86M 92 6.15 6.38 6.16 7.62
Equiformer [24] 3.53M 61 6.59 6.74 6.63 7.63
Transformer-M [28] 47.4M - 9.37 9.41 9.39 9.63
Geoformer 50.1M 55 4.43 4.41 4.39 6.13
Geoformer-S 6.4M 20 5.20 5.12 5.19 6.78
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E More Visualizations about Learned Interatomic Positional Encoding

Figure 4: Visualization of IPE C⌘ on molecules GDB75026, GDB9016, GDB52502, GDB126609,
GDB106484, GDB24003, GDB23802 and GDB14823 in QM9 test set.
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F Hyperparameters of Geoformer

Table 4: Hyperparameters for Geoformer trained on QM9 and Molecule3D

Hyperparameters QM9 Molecule3D

Splits Random Random Scaffold
Init learning rate {1e-4, 1e-5, 2e-5} 2e-4 2e-4
Maximum epochs 600 300 300
LR warmup steps 20000 10000 10000
LR decay factors 0.8 0.8 0.8
LR patience 15 5 5
Early stopping patience 150 30 30
Weight decay 0.0 0.0 0.0
Batch size 32 256 256
RBF dimension 64 32 32
No. heads H 32 8 8
No. layers L 12 9 9
Embedding dimension F 512 256 256
FFN embedding dimension D 2048 1024 1024
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G Details of Decoder

On QM9 and Molecule3D dataset, the property µ is calculated as follows:

µ =

�����

NX

i=1

x
out
i (~ri � ~rc)

����� (8)

where ~rc denotes the center of mass, xout
i denotes the Encoder representation x

L
i after passing through

a two linear layers with SiLU activation function. Similarly, for the prediction of electronic spatial
extent hR2

i, we use the following equation:
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2
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For the remaining 10 properties y, we simply aggregate the final representation x
out
i of atoms as

follows:

y =
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i=1

x
out
i (10)
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