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Abstract

In this paper, we propose binary radiance fields (BiRF), a storage-efficient radiance
field representation employing binary feature encoding in a format of either +1 or
−1. This binarization strategy lets us represent the feature grid with highly compact
feature encoding and a dramatic reduction in storage size. Furthermore, our 2D-3D
hybrid feature grid design enhances the compactness of feature encoding as the 3D
grid includes main components while 2D grids capture details. In our experiments,
binary radiance field representation successfully outperforms the reconstruction
performance of state-of-the-art (SOTA) storage-efficient radiance field models with
lower storage allocation. In particular, our model achieves impressive results in
static scene reconstruction, with a PSNR of 32.03 dB for Synthetic-NeRF scenes,
34.48 dB for Synthetic-NSVF scenes, 28.20 dB for Tanks and Temples scenes
while only utilizing 0.5 MB of storage space, respectively. We hope the proposed
binary radiance field representation will make radiance fields more accessible
without a storage bottleneck.

1 Introduction

In recent years, the emergence of Neural Radiance Fields (NeRF) [1] has greatly impacted 3D
scene modeling and novel-view synthesis. The methodology models a complex volumetric scene
as an implicit function that maps positional and directional information of sampled points to the
corresponding color and density values, enabling the rendering of photo-realistic novel views from
any desired viewpoints. Subsequent advancements [2, 3, 4, 5, 6, 7, 8, 9, 10] have demonstrated their
ability to reconstruct various 3D scenes using images and corresponding camera poses, which opens
radiance fields as a promising approach for representing the real 3D world.

Despite the significant progress, the computational burden of utilizing large-scale multi-layer percep-
trons (MLPs) remains a critical challenge, leading to a speed issue in both training and rendering
radiance fields. To tackle this issue, an auxiliary explicit voxel grid has been utilized for encoding
local features, denoting a voxel-based method. While the implicit radiance field representations
should update all shared learnable parameters in MLPs, parametric encoding calculates only a small
local part of encoded features leading to less computational cost. The voxel-based feature encoding
has been implemented in various data structures, such as dense grids [11, 12], octrees [13, 14], sparse
voxel grids [15], decomposed grids [16, 17, 18, 19], and hash tables [20]. These representations
succeed in efficiently reducing the time required for convergence and inference. Nonetheless, explicit
feature encoding methods have a significant disadvantage: their excessive storage usage. Now, we
are facing a new bottleneck that restricts accessibility. Consequently, the desire for a new radiance
field representation to implement a realistic 3D scene with little storage has been raised.

This paper introduces a new binary feature encoding to represent storage-efficient radiance fields
with binary feature grids, referred to as binary radiance fields (BiRF). Here, we focus on embedding
sufficient feature information restricted in binary format. We achieve this by adopting a binarization-

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://seungjooshin.github.io/BiRF


aware training scheme, binary feature encoding, that constraints feature encoding parameters to either
+1 or −1 and update them during optimization, inspired by Binarized Neural Networks (BNNs) [21].
Accordingly, our radiance field representation can successfully reconstruct complicated 3D scenes
with binary encoding parameters that can be represented using compact data resulting in a storage-
efficient radiance field model. Furthermore, we extend the modern multi-resolution hash encoding
architecture to a 3D voxel grid and three orthogonal 2D plane grids. This hybrid structure allows for
more efficient feature capture in a more compact manner.

As a result, our radiance field model achieves superior reconstruction performance compared to
prior efficient and lightweight methods. To be specific, our model attains outstanding performance
in static scene reconstruction, with a PSNR of 32.03 dB for Synthetic-NeRF scenes, 34.48 dB for
Synthetic-NSVF scenes, 28.20 dB for Tanks and Temples scenes while only utilizing 0.5 MB of
storage space, respectively.

We summarize our contributions as follows:

• We propose binary radiance fields (BiRF), a binary radiance field representation that concisely
encodes the binary feature values of either +1 or −1 in 2D-3D hybrid feature grid to represent
storage-efficient radiance fields.

• Our binarization-aware training scheme, binary feature encoding, allows us to effectively encode
the feature information with binary parameters and update these parameters during optimization.

• We demonstrate that our representation achieves superior performance despite requiring only
minimal storage space, even in 0.5 MB for Synthetic-NeRF scenes.

2 Related Work

Neural Radiance Fields Neural radiance fields (NeRF) [1] is a leading method for novel-view
synthesis by reconstructing high-quality 3D scenes. To achieve scene representation, it optimizes
coordinate-based multi-layer perceptrons (MLPs) to estimate the color and density values of the 3D
scene via differentiable volume rendering.

Improving radiance field representations begins with embracing diverse scenarios where the scene is
intricate. The sampling strategy used in the original NeRF assumes that the entire scene can fit within
a bounded volume, which limits its ability to capture background elements in an unbounded scene.
To address this issue, several works [2, 3] have separately modeled foreground and background by
re-parameterizing the 3D space. These parameterizations have been primarily applied in unbounded
360◦ view captured scenes. Additionally, due to insufficient capacity, NeRF’s lighting components
have limitations in dealing with glossy surfaces. To address this challenge, transmitted and reflected
radiance are optimized separately [4, 5]. Furthermore, there are approaches to extend to a dynamic
domain with object movements [6, 7, 8, 22, 23].

Despite performing impressive results, it has limitations, including slow training and rendering
speed. It relies solely on utilizing implicit functions for 3D scene representation, which may lead to
computational inefficiencies [20].

Radiance Fields Representations NeRF methods can be categorized into three types: implicit [1,
2, 3, 24, 25, 26, 27], explicit [14, 15, 18, 28], and hybrid representations [11, 12, 13, 17, 20, 23, 29,
30, 31], depending on how the approach represent the scenes.

Implicit representations extensively use neural networks to represent radiance fields, as done in the
pioneering method [1]. The network has a simple structure and can render photo-realistic images
with few parameters. However, they take a lot of time to converge and require significant inference
time because they share the entire weight and bias parameters of the MLPs for an arbitrary input
coordinate, resulting in a significant computational cost. Therefore, recent studies have proposed
explicit and hybrid radiance field representations to overcome the slow speed by incorporating explicit
data structures (such as 2D/3D grids or 3D points) for local feature encoding.

Explicit representations directly encode view-dependent color and opacity values with basis functions
(e.g., spherical harmonics). For instance, PlenOctrees [14] bakes implicit radiance fields into an
octree structure for rendering speed acceleration. Plenoxels [15] uses a sparse voxel structure, and the
approach by Zhang et al. [28] utilize a point cloud. Similarly, CCNeRF [18] employs low-rank tensor
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grids for 3D scene manipulation. On the other hand, hybrid representations utilize encoded local
features as input for the MLPs. NSVF [13] achieves fast rendering speed thanks to the octree structure.
To store local features, Point-NeRF [29] uses a point cloud, DVGO [11, 12] employs two dense voxel
grids, and TensoRF [17] makes use of a factorized tensor grid. More recently, Instant-NGP [20]
introduces a multi-resolution hash encoding technique that has demonstrated exceptional effectiveness
in terms of convergence and rendering speed, achieving superior performance. Additionally, Zhan et
al. [32] introduce a learning method of the gauge transformation in radiance fields.

While explicit and hybrid representations boost training time and rendering speed, they inevitably
suffer from the critical disadvantage of large storage consumption due to excessive local features. In
this study, we construct a multi-resolution 2D-3D hybrid grid by combining 2D planes and 3D grids
and binarizing their encoding parameters to fully leverage their minimal information.

Radiance Fields Compression Despite the acceleration of training and rendering, the explicit and
the hybrid radiance fields have difficulties utilized in various applications due to their large storage.
Consequently, there are several attempts to reduce the storage of the models.

For instance, PlenOctrees [14] and Plenoxels [15] filter the voxels using weight-based thresholding
for leaving only the set of sparse voxels, which are sufficient to represent the scene. The distortion
loss in DVGO-v2 [12] enables it to achieve better quality and greater resolution compactness. Other
approaches apply bit quantization after the training. PlenOctrees [14], PeRFception [33], and
Re:NeRF [34] all apply low-bit quantization of trained local features. VQAD [35] compresses the
feature grid parameters into a small codebook with learned indices. Re:NeRF [34] and VQRF [36]
have proposed methods for compressing existing explicit or hybrid radiance field models, including
post-optimization processes. Also, Rho et al. [37] achieve high storage efficiency by applying wavelet
transform on hybrid radiance field models with learnable masks.

Although the post-processing approaches above successfully reduce the storage requirements of the
radiance field models, they have several disadvantages. Firstly, they require additional optimization
steps for compression, which can be time-consuming. Also, their performance is bounded by the
performance of the pre-trained models. In contrast, our approach performs binarization during
training with the efficient 2D/3D feature grid representation. Our approach does not require any
post-optimization processes and shows better rendering quality with even smaller storage space.

3 Preliminaries

The methodology of NeRF [1] optimizes a 5D function, as a radiance field representation, to model a
continuous volumetric scene with a view-dependent effect. The implicit 5D function, which consists
of MLPs, maps a 3D coordinate x ∈ (x, y, z) and a 2D viewing direction d = (θ, ϕ) to an emitted
color c = (r, g, b) and a volume density σ:

(c, σ) = MLPΘ(x,d). (1)

Due to the use of an implicit function, updating all the weight and bias parameters of MLPs is
necessary to train a single point. Consequently, this leads to slow convergence, requiring more than a
day to optimize a scene.

For volume rendering, the colors {ci} and densities {σi} of sampled points along a ray r(t) = o+ td
are accumulated to obtain the color of the ray:

Ĉ(r) =

i=1∑
N

Tiαici, Ti =

i−1∏
j=1

(1− αj), αi = 1− exp(−σiδi), (2)

where Ti and αi represent accumulated transmittance and alpha of i-th sampled point, respectively.
δi = ti+1 − ti denotes the distance between adjacent points. Recently, an occupancy grid [20] is
adopted to skip non-empty space for efficient ray sampling, leading to an advance in rendering speed.

To accelerate the rendering process, the hybrid representations [11, 17, 20] have been developed to
encode local features in explicit data structures Φθ (e.g., 2D/3D grid). These features are then linearly
interpolated and used as inputs for small MLPs to predict colors and densities:

f = interp(x,Φθ), (c, σ) = MLPΘ(f ,d), (3)
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Figure 1: Illustration of overall framework: (a) binary feature encoding, and (b) binary radiance field
representation. (a) Our binary feature encoding begins with applying binarization operation to the
real-valued grid. Next, we linearly interpolate the binary parameters to obtain feature values. (b)
Our radiance field representation comprises a 3D and three 2D feature grids. Given a 3D coordinate,
the corresponding feature values are computed from each grid using binary feature encoding. The
concatenated feature values are then fed as input to shallow density MLP with positional encoded
coordinates. Then we can obtain the density value and embedding features that are further provided
as input to shallow color MLPs to acquire color value.

where interp means a linear interpolation operator, and f denotes a interpolated feature. The choice
of explicit data structure Φθ significantly affects the number of learnable parameters and hence
decides the total storage size of the radiance field representation. Therefore, we need to consider an
efficient data structure.

4 Method

In this section, we introduce binary radiance fields that require only a small storage space by adopting
binary feature grids. Fig. 1 shows the overall scheme of our radiance field reconstruction. We first
introduce how to encode the binary parameters in the feature grid during optimization. Furthermore,
we present our 2D-3D hybrid feature grid, which enhances the feature encoding by leveraging the
strengths of both 2D plane and 3D voxel.

4.1 Binarization

Binarization of learnable parameter The binarization procedure of real-valued variables is
achieved using a deterministic binarization operator [21], the sign function, which transforms a
real-valued variable into either +1 or −1:

θ′ = sign(θ) =

{
+1 if θ ≥ 0,
−1 otherwise,

(4)

where θ denotes the real-valued variable, and θ′ represents binary variable.

Since the derivative of the sign function is zero almost everywhere, we cannot use traditional
backpropagation to compute gradients for real-valued parameters. Instead, we use the straight-
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through estimator (STE) [38], which is a simple but effective technique for backpropagating through
threshold functions (e.g., the sign function):

∂L
∂θ

=
∂L
∂θ′

1|θ|≤1, (5)

where L is the loss function. This strategy allows us to maintain the gradient flow and ensure the
differentiability of our framework. During training, we maintain and update real-valued parameters
rather than directly learning binary parameters. We stop propagating gradients when θ is a large
value. This also constrains the value to the range {−1, 1} preventing the divergence of the scale.

Binary feature encoding We propose binary feature encoding, a feature encoding scheme with
binary parameters. Instead of real-valued parameters, binary parameters are used for encoding local
features in a specific data structure, which are then employed to represent the radiance fields. While
real-valued parameters require expensive floating-point data for representation, binary parameters can
be expressed in a single bit (1-bit), leading to a significant reduction in storage overhead. Here, we
describe how to implement this strategy in the feature grid Φθ. We first adopt binarization operation,
described in Eq. 4, to the real-valued grid parameter θ:

θ′ = sign(θ) → Φθ′ = sign(Φθ), (6)

where θ′ denotes the binary grid parameter of binary feature grid Φθ′ . Next, we linearly interpolate
these binary parameters depending on the given coordinate x:

f = interp(x,Φθ′) = interp(x, sign(Φθ)), (7)

where x is an input coordinate, and f denotes the encoded feature value. We utilize the STE [38] to
propagate the gradients into the feature grid and update the grid parameters, as described in Eq. 5.

Now, our system is capable of training the feature encoding using binary parameters. This enables us
to represent the feature grid with compact data, instead of using expensive floating-point data (16-bit
or 32-bit). As a result, there is a tremendous reduction in the total storage size, making our radiance
field representation storage-efficient.

4.2 Radiance Field Representation

For effective binary feature encoding, we design our multi-resolution feature grids with a 3D voxel
grid Φθxyz , and three additional multi-resolution 2D planes Φθxy ,Φθxz ,Φθyz , designated to capture
features along z-, y-, and x-axis respectively, inspired by NVP [39]. Upon this architectural design,
we efficiently encode the local features and use them as inputs of MLPs to predict color and density
that represent the radiance fields via volumetric rendering. Note that all feature grids are implemented
using a hash encoding [20] for efficiency.

2D-3D hybrid multi-resolution feature grid We intend two types of feature grids to contain the
feature information in different manners. Despite the effectiveness of the 3D feature grid, the 3D
grid is more severely impacted by hash collisions at higher resolutions [20], which leads to limited
performance. Thus, we still need to supplement fine-grained components to improve the performance
further and incorporate 2D feature grids that alleviate hash collision impact. Since the 3D feature
grid encodes the main components, the 2D feature grids efficiently reinforce the feature information
with fewer parameters.

Feature evaluation Here, we describe the details of binary feature encoding processes to derive the
local features, based on an input 3D coordinate x = (x, y, z).

For the 3D feature grid, we compute the local feature by tri-linearly interpolating binary parameters
for each level of resolutions, and concatenating them:

fxyz = {interp(x, sign(Φl
θxyz))}

L
l=1, (8)

where fxyz is the computed feature from the 3D grid, l denotes the grid level and L indicates the
number of grid levels.

In a different way, we perform the binary feature encoding across each axis for the 2D feature
grids. Firstly, we project the 3D coordinate x along each axis to obtain the projected 2D coordinates
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xxy = (x, y), xxz = (x, z), and xyz = (y, z). Next, we adopt bi-linear interpolation to extract
features from these three projected 2D coordinates. Then, we acquire the feature value for each level
of resolutions and concatenate them:

fxy = {interp(xxy, sign(Φ
m
θxy))}

M
m=1, (9)

where fxy is the computed feature from the 2D grid across z-axis, m denotes the grid level, and M
indicates the number of grid levels. The feature encoding steps for other features fxz and fyz operate
in the similar manner.

Network architecture Finally, all these features are concatenated as f and fed into MLPs to
predict the color c and density values σ. We utilize two MLPs each for density prediction and color
prediction:

f = {fxyz, fxy, fxz, fyz}, (σ, e) = MLPdensity(γ(x), f), c = MLPcolor(e,d), (10)

where e presents embedded feature and γ(x) is the sinusoidal positional encoding [1].

4.3 Loss

Reconstruction loss According to the volumetric rendering process described in Sec. 3, we can
render the RGB pixel values along the sampled rays and optimize them through the color and density
values in Eq. 10:

Lrecon =
∑
r∈R

||Ĉ(r)− C(r)||22, (11)

where r denotes the sampled ray encouraged by the occupancy grid. The efficient ray sampling
through the occupancy grid allows us to focus on non-empty space.

Sparsity loss For accelerating the rendering speed, it is important to model the volumetric scene
sparsely to skip the ray sampling in the empty area using the occupancy grid. Thus, we regularize the
sparsity with Cauchy loss [15, 40]:

Lsparsity =
∑
i,k

log(1 + 2σ(ri(tk))
2). (12)

The overall training loss for our radiance field model is defined as L = Lrecon +λsparsityLsparsity, where
λsparsity is the hyper-parameter for sparsity loss. We set λsparsity = 2.0× 10−5 in this work.

5 Experiments

We conduct experiments on various benchmark datasets to verify the compactness of our radiance
field representation. We evaluate the quantitative and qualitative results against prior works and
analyze different architectural design choices.

5.1 Experimental Settings

Datasets We adopt representative benchmark novel-view synthesis datasets. We use two synthetic
datasets: the Synthetic-NeRF dataset [1] and the Synthetic-NSVF dataset [13]. Both datasets consist
of eight object scenes rendered with 100 training views and 200 test views at a resolution of 800×800
pix. We also employ the Tanks and Temples dataset [41] that consists of five real-world captured
scenes whose backgrounds are masked [13]. The training and test views are rendered at a resolution
of 1920× 1080 pix.

Baselines We have three types of baseline methods, (a) data structure-based methods, (b)
compression-based methods, and (c) implicit-based methods. Firstly, we compare our radiance fields
with state-of-the-art radiance field representations adopting efficient data structures (DVGO [11, 12],
Plenoxels [15], TensoRF [17], CCNeRF [18], Instant-NGP [20], and K-Planes [19]), which succeed
to reconstruct high-quality 3D scenes with fast convergence speed. Specifically, we are interested in
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Figure 2: Comparison with baseline radiance field models on the Synthetic-NeRF dataset, Synthetic-
NSVF dataset, and Tanks and Temples dataset. We utilize different dot shapes depending on the
model categories: squares (■) for our models, circles (●) for data structure-based models, crosses
(✖) for compression-based models, and triangles (▼) for implicit-based models.

the models that demonstrate stable performance across multiple datasets and can train within one
hour when running on a conventional single GPU. Moreover, we evaluate the compression methods
that require post-optimization steps (Re:NeRF [34] and VQRF [36]) and masked wavelet transform
(DWT-NeRF [37]) to compress existing voxel-based models. Furthermore, we also compare with
representative implicit radiance field models (NeRF [1] and mip-NeRF [24]).

Implementation details We implement our feature grid using hash encoding [20]. We use 16 levels
of multi-resolution 3D feature grids with resolutions from 16 to 1024, while each grid includes up to
T3D feature vectors. We also utilize four levels of multi-resolution 2D feature grids with resolutions
from 64 to 512, while each grid includes up to T2D feature vectors. We use {log2(T2D), log2(T3D)} =
{15, 17} for our small model denoting Ours-S and {log2(T2D), log2(T3D)} = {17, 19} for our base
model denoting Ours-B. Our model variants are scaled by the dimension of feature vectors per level of
2, 4, and 8. For instance, Ours-B2 denotes a base variant with feature dimension F = 2. We exploit
two types of MLPs with 128-channel hidden layers and rectified linear unit activation on them, one
for density prediction with one hidden layer and another for color prediction with two hidden layers.
The total storage capacity of MLPs varies from 0.06 to 0.11 MB, depending on the input feature
dimension. The spherical harmonics basis function is used to encode the directional information. Our
implementation is based on Instant-NGP [20] using the occupancy grid implemented in NerfAcc [42].
We optimize all our models for 20K iterations on a single GPU (NVIDIA RTX A6000). It takes
approximately 6, 9, and 14 min of average time to train scenes of the Synthetic-NeRF dataset for
Ours-B2 to Ours-B8 models, respectively. We use the Adam [43] optimizer with an initial learning
rate of 0.01, which we decay at 15K and 18K iterations by a factor of 0.33. Furthermore, we adopt a
warm-up stage during the first 1K iterations to ensure stable optimization.

5.2 Comparison

We measured the storage size of each method and evaluated the reconstruction quality (PSNR, SSIM)
on various datasets. Note that we present the average scores of all scenes in each dataset; scene-wise
full scores are reported in the appendix. Fig. 2 summarizes quantitative evaluations of our radiance
field representation, compared to baseline data structure-based, compression-based methods, and
implicit-based methods.

Data structure-based approaches Fig. 3 shows the qualitative evaluations of our model, compared
to data structure-based methods. Our method successfully demonstrates superior reconstruction
performance against SOTA data structure-based methods with comparable training time and remark-
ably small storage size; especially Ours-S2 requires only within 0.5 MB. While baseline approaches
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mic

Figure 3: Qualitative comparison of reconstruction quality using the mic scene of the NeRF-Synthetic
dataset. For each subfigure, PSNR and storage size are shown on the right upper.

require large storage space to achieve high performance, all our models are sufficient to exceed them
by less than 6 MB. In particular, Ours-B2 outperforms the reconstruction quality of almost baselines
with a much smaller storage size of within 1.5 MB. It takes 6.1 min to accomplish this without any
temporal burden to train our model in a compact manner. Although our small models are enough to
accomplish outstanding performance, we adopt larger models to attain higher quality. As a result,
both Ours-B4 and Ours-B8 jump to excessive reconstruction quality, outperforming state-of-the-art
models. Accordingly, the results indicate that our model contains the most storage-efficient data
structure for radiance field representation, which also does not require much computational cost.

Compression-based approaches We also compare our models with SOTA compression-based
methods. Although these approaches make the existing data structure-based models (e.g., DVGO,
Plenoxels, and TensoRF-VM) highly compact by compressing the optimized model, our binary
feature encoding model outperforms highly compressed data structure-based models in terms of
reconstruction performance and storage usage. Specifically, while compressed TensoRF-VM models
(Re:TensoRF-High [34], VQ-TensoRF [36], and DWT-TensoRF [37]) preserve most high performance
among these compression works, Ours-B4 model has superior reconstruction quality only with 2.8 MB
of storage capacity, which is smaller than the compressed TensoRF-VM models. Consequently, the
results verify that our binary radiance field models accomplish higher compactness than compression-
based models.

Implicit-based approaches In addition, we evaluate implicit representations with a few number of
parameters due to the efficient structure of MLPs. Although their simple structure results in a small
storage size, our models achieve significantly higher performance with a similar storage size.

Benefits of binary radiance field Note that our approach differs from post quantization-based
approaches [14, 33, 34] that demonstrate bounded performance from original features and necessitate
additional pre-/post-processing. It is noteworthy that our method learns binary features during
training without sacrificing the rendering quality. Our approach also differs from compression-based
approaches [34, 36, 37] that require additional computations to compress or decompress the radiance
field. Instead, our learned binary feature can be directly interpolated to render realistic scenes.

5.3 Ablation Study

Feature grid design We analyze the impact of the feature grid designs for scene representation and
verify that our 2D-3D hybrid feature grid effectively improves the reconstruction performance. We
compare three architectures with similar sizes: (a) tri-plane representation, (b) voxel representation,
and (c) our 2D-3D hybrid representation. Table 1 demonstrates the effectiveness of our 2D-3D
hybrid representation. Compared to the tri-plane and voxel grid, our hybrid feature grid enhances the
radiance field reconstruction quality with a similar number of parameters. As a result, this confirms
that our architectural choice for the feature grid allows us to achieve more compact feature encoding.
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Table 1: Ablation study on the feature grid de-
sign. Results are averaged over all scenes of the
Synthetic-NeRF dataset. We highlight the best
scores in bold.

Design # Params PSNR↑ SSIM↑
Tri-plane (only 2D) 13.7 M 31.44 0.949
Voxel (only 3D) 13.6 M 32.35 0.956
Hybrid (2D + 3D) 13.2 M 32.64 0.958

Table 2: Ablation study on the use of sparsity loss.
We report train time and inference speed with re-
construction quality. Results are averaged over all
scenes of the Synthetic-NeRF dataset.

Train↓ Inference↑ PSNR↑ SSIM↑
Ours-B2 (w/o Lsparsity) 6.4 m 3.3 fps 32.69 0.958
Ours-B2 (w/ Lsparsity) 6.1 m 3.8 fps 32.64 0.958

Ours-B8 (w/o Lsparsity) 14.7 m 2.2 fps 33.60 0.964
Ours-B8 (w/ Lsparsity) 13.9 m 2.7 fps 33.59 0.964

(a) w/o sparsity loss (b) w/ sparsity loss

Figure 4: Visualization of a 2D slice of occupancy
grid for chair scene of the Synthetic-NeRF dataset
according to the use of sparsity loss Lsparsity.

B1

B2

B4
B8

S1

S2

S4

S8

Figure 5: Ablation study on the hash table
size. Results are averaged over all scenes of
the Synthetic-NeRF dataset.

Sparsity loss We investigate the effectiveness of sparsity loss that accelerates the rendering speed
by regularizing the radiance fields more sparsely. We evaluate the train time and inference speed of
our radiance field model, according to the use of sparsity loss. As shown in Table 2, we can improve
the rendering time in both training and inference with a minor decrease in reconstruction quality. In
particular, we can accelerate the 23% of rendering speed for Ours-B8 model by adopting sparsity
loss. The visualization of the occupancy grid, including the bitmap for the empty or non-empty area,
also demonstrates that our model is trained sparsely due to sparsity loss, as shown in Fig. 4.

Hash table size We use hash encoding to construct our 2D/3D feature grids, which are restricted in
their scale by the hash table size and the number of feature vectors per level. In other words, we can
further reduce the storage size for compactness or increase the storage size to improve performance
by scaling the number of feature vectors in the hash table. As shown in Fig. 5, we evaluate the storage
size and the reconstruction performance of different hash table sizes {log2(T2D), log2(T3D)}, where
T2D and T3D denote the hash table size of the 2D and 3D grid, respectively.

Computational cost for binarization We evaluate the training time and memory requirement of
a real-valued feature grid and a binary feature grid. The binarization procedure in our model adds
only a small portion of training time compared to the real-valued feature grid, as shown in Table 3.
Also, there is no noticeable increase in memory usage due to binarization, as shown in Table 4.
This is because we binarize only several grid parameters corresponding to a ray, not a whole grid.
Furthermore, there are some cases where the binary grid converges faster or requires less memory
than the real-valued grid since the sparsity of the optimized scene affects the computational cost.

Table 3: Evaluation on the training time for 20K iterations of a real-valued feature grid and a binary
feature grid.

Method Synthetic-NeRF Synthetic-NSVF Tanks and Temples

Ours-B2 Ours-B4 Ours-B8 Ours-B2 Ours-B4 Ours-B8 Ours-B2 Ours-B4 Ours-B8

Real-valued 6.02 min 8.42 min 13.31 min 6.23 min 8.77 min 14.08 min 5.93 min 8.41 min 13.46 min
Binary 6.10 min 8.66 min 13.86 min 6.22 min 8.93 min 14.53 min 6.00 min 8.59 min 14.04 min
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Table 4: Evaluation on the memory requirement of a real-valued feature grid and a binary feature
grid.

Method Synthetic-NeRF Synthetic-NSVF Tanks and Temples

Ours-B2 Ours-B4 Ours-B8 Ours-B2 Ours-B4 Ours-B8 Ours-B2 Ours-B4 Ours-B8

Real-valued 5.46 GB 6.70 GB 10.04 GB 5.47 GB 6.02 GB 10.04 GB 6.52 GB 7.09 GB 11.10 GB
Binary 5.45 GB 6.58 GB 10.06 GB 5.47 GB 6.30 GB 10.02 GB 6.51 GB 7.92 GB 11.10 GB

Table 5: Quantitative evaluations of dynamic scene
reconstruction using binary feature encoding. Re-
sults are averaged over all scenes of D-NeRF
dataset [6] and HyperNeRF dataset [8]. † denotes
that binary feature encoding is applied.

Method D-NeRF [6] (synthetic)

Size (MB)↓ PSNR↑ SSIM↑
TiNeuVox-S 7.63 31.03 0.957
TiNeuVox-S† 0.59 28.68 0.938

TiNeuVox-B 47.51 33.02 0.972
TiNeuVox-B† 3.88 31.23 0.961

Method HyperNeRF [8] (real)

Size (MB)↓ PSNR↑ MS-SSIM↑
TiNeuVox-B 47.85 24.20 0.835
TiNeuVox-B† 3.90 23.87 0.826

w
/o

 b
in

ar
y 

fe
at

ur
e 

en
c.

(a) TiNeuVox-S 
(synthetic)

(b) TiNeuVox-B
(synthetic)

(c) TiNeuVox-B 
(real) 

w
/ b

in
ar

y 
fe

at
ur

e 
en

c.
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Figure 6: Qualitative evaluations of dynamic
scene reconstruction on the use of binary fea-
ture encoding. Original (up) and binary feature
encoding (bottom). PSNR and storage size are
shown on the right upper.

5.4 Applications

Dynamic scene reconstruction We finally adopted our binarization strategy in dynamic scene
reconstruction. We employ TiNeuVox [22], as our base model, one of the most efficient approaches,
which utilizes time-aware voxel features. Instead of conventional feature encoding for the voxel
grid, we apply the binary feature encoding on the time-aware voxel features and this leads to a
highly compact reconstruction of dynamic scenes, even in 0.6 MB of storage space for the synthetic
jumpingjacks scene. Table 5 and Fig. 6 demonstrate that our approach is easily applicable to various
feature encoding tasks, and it enables remarkably efficient representation in terms of storage size.

6 Conclusion

In this work, we have introduced binary radiance fields, a storage-efficient radiance field repre-
sentation that significantly reduces the storage capacity by adopting binary feature encoding. Our
experiments have verified that our approach is the most storage-efficient representation outperforming
recent data structure-based models, compression-based models, and implicit-based models in terms
of reconstruction quality and storage consumption. This capability enables us to access numerous
radiance fields without a storage burden and leads to the expansion of the applications, such as
dynamic scenes.

Limitations Despite the binarization of learnable parameters, any bit-wise operations in multi-
layered perception would lead to more efficient computation, requiring fewer GPU resources. We
expect our approach can be boosted for the rendering by adopting the baking process.
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