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Abstract

Differentially private mechanisms restrict the membership inference capabilities of
powerful (optimal) adversaries against machine learning models. Such adversaries
are rarely encountered in practice. In this work, we examine a more realistic threat
model relaxation, where (sub-optimal) adversaries lack access to the exact model
training database, but may possess related or partial data. We then formally charac-
terise and experimentally validate adversarial membership inference capabilities in
this setting in terms of hypothesis testing errors. Our work helps users to interpret
the privacy properties of sensitive data processing systems under realistic threat
model relaxations and choose appropriate noise levels for their use-case.

1 Introduction

Machine learning (ML) offers a powerful set of techniques for addressing complex problems across
various fields, including fields where sensitive data is processed, e.g. medicine or finance. However,
the use of sensitive data in ML comes with privacy challenges: It is known that ML models memorise
their training data [1], and that some degree of memorisation may be necessary for the best model
performance [2]. When a model memorises private information, it can reveal this information when
attacked by adversaries. A very important class of attack is Membership Inference (MI) [3], which
aims to determine whether the data of a specific individual was used to train a machine learning
model. MI can lead to the disclosure of highly sensitive information about the individual, e.g. that
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they are part of a database of cancer patients which was used to train a predictive medical ML system.
The importance of studying MI is furthermore derived from the fact that a successful MI attack
signifies that the model is also vulnerable to all other attacks such as data reconstruction or attribute
inference (“most significant bit” property [4]).

Differential Privacy (DP) [5] is a formal framework and collection of techniques to furnish objective
privacy guarantees for ML model training. It is a natural counterpart to MI, and it is possible to
interpret DP entirely through the MI lens, which is known as the hypothesis testing interpretation of
DP [6, 7]. Given a database D and a database D′ which differ in exactly one record, hypothesis testing
DP quantifies the trade-offs between the Type-I and Type-II errors of an adversary using a hypothesis
test to determine whether a model was trained on D or on D′. This hypothesis test is considered
to be optimal in the sense of the Neyman-Pearson (NP) lemma [8], which makes the DP Threat
Model (DPTM) very strong: It assumes that the adversary has full access to the training database,
knowledge of the specifications of the DP mechanism and can even deeply manipulate the process
of ML model training itself to their advantage [9]. Although this has the benefit that DP is a true
“worst-case” guarantee and thus holds for all weaker adversaries, it may be unnecessarily conservative
in practice. For instance, the assumption that the adversary has full access to the training data may
be unrealistic in settings where this data is tightly access-restricted. As a consequence, previous
works also considered threat models with weaker adversaries, i.e. Relaxed Threat Models (RTMs),
and experimentally showed that the empirical protection against MI offered by DP mechanisms is
much stronger than the upper bound predicted by the DP analysis [9, 10, 11]. While such empirical
investigations provide valuable initial insights, we contend that an additional formal analysis of
specific, practically relevant RTMs can greatly benefit stakeholders in conducting a thorough privacy
analysis of ML systems. For example, a “privacy certificate” for an ML model can include both (1)
the MI risk under the DPTM (which holds when “all bets are off”) but also (2) the more realistic MI
risk under whichever RTM is applicable to the actual model training conditions.

In this work, we study MI in the context of a specific RTM with high practical relevance, in which
the adversary has incomplete access to the model’s training data. An example of this RTM is the
training of a predictive ML model on medical data which is generated and stored at a single hospital
and never released, whereas the model is shared with third parties. Here, an MI adversary must
resort to leveraging auxiliary data from the same distribution as the hospital’s target database. A
similar attack (offline MI) was studied in [12, 13, 14], and also does not use the full database for the
attack (albeit for reasons of computational efficiency). As MI is equivalent to a hypothesis testing
problem, the aforementioned works demonstrate that the Type-I and Type-II errors (i.e. the false
positive/false negative rates) of offline MI attacks are higher than MI attacks assuming the DPTM. In
this work, we formally derive and validate exact bounds on the error rates of MI attacks against DP
noise mechanisms in the aforementioned RTM (which we will refer to as “the RTM” from now on).

Contributions Our contributions are as follows: (1) Since MI can be fully characterised using
hypothesis testing, we begin by formalising the RTM as a hypothesis testing security game and
show that the RTM adversary is strictly sub-optimal in terms of error rates compared to the DPTM
adversary; (2) Next, we formally derive the “best sub-optimal” hypothesis testing MI strategy in the
RTM; (3) We then analyse the error rates associated with this strategy against common additive noise
mechanisms used in DP under the RTM. (4) We express these error rates using trade-off functions,
which parameterise all achievable Type-I/Type-II error combinations, similar to the approach taken
by [7] in defining f-DP. (5) Additionally, we introduce a new metric, λ-Detection Resilience (λ-DR),
which allows us to compare the hypothesis testing capabilities of the RTM and DPTM adversaries,
despite their differing threat models. (6) We conclude our study by empirically auditing the proposed
bounds and demonstrating accuracy advantages in the training of deep neural networks with DP-SGD.

2 Background

Related work Our work contributes to the ongoing research in three distinct, yet related areas of
privacy-preserving ML. Firstly, we aim to augment empirical investigations which use MI to establish
lower bounds on the privacy guarantees of ML systems, with formal guarantees. For instance, [9]
experimentally evaluate several types of adversaries against DP ML workflows, [10, 11] present
empirical privacy analyses of DP-SGD [15], while [16] focus on federated learning. Such empirical
privacy auditing techniques have found their way into software tools such as ML-Doctor [17] or ML
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Privacy Meter [14]. As mentioned above, our RTM considers an adversary performing MI without
access to the (complete) model’s training data. This type of MI attack has been studied in several
prior works, most notably by Watson et al. [13], Ye et al. [14] and Carlini et al. [12], who find the
adversary’s hypothesis testing capabilities to be substantially diminished compared to the DPTM. The
second line of work related to our paper are formal analyses of MI in the DPTM, such as [18], who
consider a Bayesian adversary or [4], who bypass the DP analysis and directly study the properties
of the underlying distributions. Moreover, [19] and [20] are rooted in hypothesis testing theory like
our work, but only consider threat models equivalent to the DPTM, while [21] consider restricted
adversaries, albeit not through the hypothesis testing lens. Lastly, we adopt the recent development
of using functions (rather than numbers) to parameterise privacy guarantees, which is becoming
common practice in the DPTM [7, 22, 23], but has not yet been used to study threat model relaxations.
Our paper unifies these strands of work by introducing a formal guarantee in the RTM, which allows
for a more nuanced analysis of the privacy risks associated with machine learning models.

Differential privacy DP [5] is a stability condition on randomised mechanisms requiring that
their outcomes should be approximately equally likely when the data of a single individual is
added or removed from the input database. Throughout this work, we will consider the scenario
of ML model training, where DP is realised through an additive noise mechanism. We consider
a deterministic model training function q. The global sensitivity ∆ > 0 of q is defined as ∆ =
supD,D′:D≃D′∥q(D) − q(D′)∥ where the sup is taken over all pairs of neighbouring databases
D ≃ D′ which differ in a single record. 2 ∆ is measured in some norm, which we will indicate
by subscript wherever relevant (e.g. ∆1). An additive noise mechanism (or just mechanism)M
maps databases and probability distributions to a (model) parameter space Θ. Its outputs are of
the form θ = q(X) + z, z ∼ Z , where Z is a noise distribution. Since q and the database are
considered deterministic, θ is a random variable induced by the randomness of Z . Unless otherwise
indicated,M will be realised through distributions Z(µ, ξ) supported on the real line which admit a
density. We assume that ξ is fixed and public information and that Z is shift invariant. In other words,
M(D) = (q(D) + Z(0, ξ)) ∼ Z(q(D), ξ) andM(D′) = (q(D′) + Z(0, ξ)) ∼ Z(q(D′), ξ).

In the hypothesis testing interpretation of DP [6, 7, 24], the adversary attempts to determine whether
θ was trained on D or D′ using a classical/frequentist hypothesis test. The adversary considers the
hypothesesH0 : θ ∼M(D) vs. H1 : θ ∼M(D′) and their reverse, i.e. H0 : θ ∼M(D′) vs. H1 :
θ ∼ M(D). H0 and H1 are called the null and alternative hypothesis, respectively. The aim
of the hypothesis testing problem is to distinguish between M(D) and M(D′) using a pair of
decision rules (tests). Let ϕ, ϕ′ be tests with Type-I error rate αϕ = EM(D)(ϕ) and Type-II error
rate βϕ = 1− EM(D′)(ϕ) (identical for ϕ′). The adversary’s goal will be to maximise their power
1− β at a fixed level α, since the fundamental trade-off in hypothesis testing is that α and β cannot
be minimised simultaneously [25]. All achievable α/β pairs for a given adversary/test combination
are expressed by a pair of functions on the unit square, called the trade-off functions T and T−1.

T is defined through the test ϕ:M(D) vs.M(D′) as T (M(D),M(D′))(α) = infϕ {βϕ : αϕ ≤ α},
whereas T−1 = T (M(D′),M(D)) is defined using ϕ′. The inf is taken over the set of tests which
can be constructed in a given threat model, in this case the DPTM. For mechanisms with symmetric
noise density, T = T−1, allowing us to consider only a single trade-off function. In general, one
takes the symmetrisation/convexification of T and T−1, denoted C(T, T−1) which creates a single,
symmetric trade-off function. Since trade-off functions fully characterise the adversary’s error rates,
they can be used to compare the privacy guarantees of different mechanisms and/or different threat
models. In particular, the closer the trade-off function’s graph is to the line β(α) = 1− α, i.e. the
off-diagonal of the unit square, the stronger the implied privacy guarantee of the mechanism is. The
notion of expressing DP guarantees based on a comparison of C(T, T−1) with a “reference” trade-off
function f is called f-DP [7]:

Definition 1. A mechanismM satisfies f -DP, if ∀D,D′ : D ≃ D′ it holds that C(T, T−1)(α) ≥
f(α)∀α ∈ [0, 1] for a reference trade-off function f (see Figure 2 of [7] for an example).

A pair of distributions Z(µ1, ξ),Z(µ2, ξ) is called a dominating pair [22] forM if, ∀D,D′ : D ≃
D′, C(T, T−1)(α) ≥ C(T (Z(µ1, ξ),Z(µ2, ξ)), T (Z(µ2, ξ),Z(µ1, ξ)))(α)∀α ∈ [0, 1].

2In particular, we will assume databases are true sets and that D′ is constructed from D by adding or
removing a single record. The neighbouring relation is denoted ≃.
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For example, the dominating pair for the Gaussian Mechanism (GM) is (N (0, σ2),N (∆2, σ
2)) and

for the Laplace Mechanism (LM), it is (Lap(0, b),Lap(∆1, b)). The dominating pair distributions
thus exhibit the greatest effect size (in this case ∆1/b or ∆2/σ), allowing for the construction of the
trade-off functions whose graphs are farthest from the off-diagonal of the unit square. In other words:
the construction of the trade-off functions is determined by the hypothesis tests with the greatest
power 1− β under a specific threat model, evaluated at the dominating pair distributions.

In the DPTM, H0 and H1 are both simple hypotheses of the form H0 : θ ∈ Θ0 ⊂ Θ vs. H1 : θ ∈
Θ1 ⊂ Θ with ∥Θ0∥ = ∥Θ1∥ = 1 and Θ0 ∩ Θ1 = ∅. The reason is that the distributions ofM(D)
andM(D′) are fully specified because the adversary can evaluate q(D) and q(D′). The NP lemma
[8] states that, for simple vs. simple hypothesis tests such as the ones in the DPTM, the uniformly
most powerful (UMP) level α tests ϕ and ϕ′ (with the highest power 1 − β at a specified level α
over the entire range of θ, in this case q(D) or q(D′)) can be constructed by thresholding the (log-)
Likelihood Ratio (LRs) Λ/Λ′ of the mechanism’s outputs θ under D and D′:

Λ(θ) = log
L(θ | M(D′))

L(θ | M(D))
≶ c and Λ′(θ) = log

L(θ | M(D))

L(θ | M(D′))
≶ c,

where c ∈ R is the critical value. The trade-off functions in the DPTM are then constructed from the
distributions of Λ/Λ′ evaluated at the dominating pairs under the respectiveH0 andH1 (also called
privacy loss distributions [23]). Since the DPTM adversary enjoys the optimality properties of the
NP lemma, we will refer to this adversary as ANP.

3 Hypothesis testing in the RTM

The trade-off function’s form for a given threat model depends only on the test statistic’s distributions
under H0 and H1. Our strategy for the rest of the paper is thus: (1) Derive the optimal tests the
adversary can construct in the RTM; (2) Specify the test statistic distributions for these tests, and
(3) Construct the trade-off functions for a given mechanism using these test statistics, which will
allow us to tightly bound the adversary’s error rates and compare them to the DPTM. We first recall a
general result, specifying how trade-off functions are constructed from test statistics.
Definition 2 (Trade-off function construction). Let P,Q be the distributions of a test statistic under
H0 andH1, respectively and let ΦP/Q denote their cumulative distribution function (CDF), ΨP/Q

their survival function (SF) and Φ−1
P/Q,Ψ

−1
P/Q their respective inverses (iCDF, iSF). Then, we define:

T (α) = ΦQ(Ψ
−1
P (α)) and T−1(α) = ΨP (Φ

−1
Q (α)). (1)

For example, in experimental studies, empirical proxies of the test statistic distributions are evaluated
by training shadow models [3]. Then, the empirical trade-off functions are constructed, which
parameterise the error rates of the empirical adversary under a specific threat model [11, 12, 14]. We
will utilise this strategy later to validate our theoretical bounds empirically. For our formal analysis
on the other hand, we will derive exact expressions for T and T−1.

RTM security game For reasons which will soon become clear, we will refer to the adversary
under our RTM as a sub-optimal adversary (ASO) and use a formal security game, similar to the one
used to define the DPTM (see e.g. Section 3.1. of [4]), which proceeds between a neutral/trusted
curator C and ASO. We consider a single-round, non-interactive protocol.

Step 1: The adversary ASO constructs a database D = {x1, . . . xn} ⊆ D, decides on a training
function q, a DP mechanismM and sends them to the curator C;

Step 2: C flips a bit b. If b = 0, they fix X = D. If b = 1, they choose a singleton {x∗} ⊂ D′,
where D ⊂ D′ and D ∩ D′ = {x∗} and fix X = D ∪ {x∗}. They then train a model θ ∈ Θ
on X using q andM (θ may also be a gradient) and send θ to ASO;

Step 3: ASO decides ifH0 : θ ∼M(D) orH1 : θ ∼M(D′);
Step 4: If ASO is correct, the MI attack is successful, privacy is breached and the game is won.

The key difference between the RTM and the DPTM is step 2: ASO has no access to the point x∗

which may be added by C, and by extension, no knowledge of the exact value of q(D′). In step
3, ASO can therefore only decide θ ∼ M(D′) by rejecting that θ ∼ M(D), but not by directly
confirming that θ ∼M(D′).
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The hypothesis testing capabilities of the RTM adversary are identical to those of an offline MI
adversary. Offline MI attacks are used in previous works to audit the privacy of ML model training
[12, 13, 14] and decide whether x∗ is part of the training data or not without actively training
shadow models on databases containing it. Equivalently, offline MI is MI by exclusion (i.e. inferring
θ ∼M(D′) by rejectingH0 : θ ∼M(D)). In offline MI, this is done for reasons of practicality and
computational efficiency [12], while in the RTM, it by design. Nonetheless, the resulting error rates
are identical and our bounds thus can be used to characterise offline MI.

RTM: Formal analysis M is an additive noise mechanism based on the distribution Z , thus
H0 : θ ∼M(D) is equivalent toH0 : θ ∼ Z(q(D), ξ). Since q(D) is computable by ASO through
access to D, the likelihood L(θ | Z(q(D), ξ)) is also computable andH0 is a simple hypothesis of
the form θ ∈ Θ0, ∥Θ0∥ = 1, exactly like the DPTM. However, the likelihood L(θ | Z(q(D′), ξ))
is not computable without access to D′ and H0 is a composite hypothesis of the form θ ∈ Θ \Θ0

with ∥Θ \ Θ0∥ > 1 because it depends on the unknown value of q(D′). The following is a direct
consequence of the NP lemma, which holds only for simple vs. simple hypotheses [25].

Lemma 1. In the RTM, no UMP level α test exists for all possible values of q(D′), i.e. ∀θ ∈ Θ \Θ0.
Thus,H0 vs. H1 (andH1 vs. H0) are each not decidable by a single test.

This implies that ASO is necessarily weaker than ANP, i.e. cannot achieve the same power 1− β at
a given level α for all values of the parameter of interest; to thus establish the optimal tests in this
sub-optimal setting, ASO must consider specific value ranges of q(D′) separately. In the following,
we will call two tests equivalent if they have the same power at a level α for all values of the tested
parameter. Moreover, we will limit our description toH0 : θ ∼M(D) vs. H1 : θ ∼M(D′), asH1

vs. H0 is handled identically.

Lemma 2. The composite LR testH0 : θ ∼ Z(q(D), ξ) vs. H1 : θ ∼ Z(q(D′), ξ) is equivalent to
letting θ ∼ Z(µ, ξ) and simultaneously conducting two individual one-sided LR tests r and r′ with
null hypothesis µ = 0 and alternative hypotheses −∆ ≤ µ < 0 for r and 0 < µ ≤ ∆ for r′, where
µ = q(D′)− q(D) and ∆ is the global sensitivity of q.

Thus, ASO can leverage known facts about q andM to limit the value ranges for the alternative
hypothesis, but, as q(D′) is unknown, must “split the problem” into two individual tests. The
individual tests are then UMP level α under the following pre-condition.

Lemma 3. The individual LR tests r and r′ are UMP level α if the noise distribution Z has the
monotone likelihood ratio property (MLRP). The Laplace Mechanism (LM), Gaussian Mechanism
(GM) and the Poisson-Subsampled Gaussian Mechanism (SGM) all have the MLPR. Moreover, the
power of both tests is maximised when ∥µ∥ = ∥q(D′)− q(D)∥ = ∆.

This lemma intuitively states that, while there is an optimality condition associated with the tests that
can be constructed in the RTM, it is not the same optimality condition as the NP lemma guarantees in
the DPTM. In particular, although ASO can construct a pair of tests which are optimal (UMP level α),
they are only optimal for specific parameter value ranges rather than for all possible parameter values.
The lemma also states that it suffices to consider the tests µ = 0 vs. µ = ±∆ when constructing
the trade-off functions, as these correspond to the highest effect size at a fixed ξ. In other words,
dominating pairs remain dominating pairs in the RTM. Next, we provide two convenience lemmata,
which allow ASO to conduct both tests simultaneously.

Lemma 4. If the density of Z is additionally symmetric about the location parameter, the simulta-
neous individual LR tests r and r′ are equivalent to performing a single test using the magnitude
of the observation as a test statistic, i.e. letting ∥θ∥ ∼ ∥Z(µ, ξ)∥ and testing H0 : ∥µ∥ = 0 vs.
H1 : ∥µ∥ > 0. The power of this “combined” test is maximised at ∥µ∥ = ∆.

Lemma 5. For a (not necessarily symmetric) Z the Generalised Likelihood Ratio Test (GLRT) using
the test statistic log L(θ|Z(µ̂,ξ))

L(θ|Z(0,ξ)) , where µ̂ is the maximum likelihood estimate of µ is equivalent to
simultaneously conducting r and r′. The GLRT’s power is maximised at µ̂ = ∆.

We stress that, while the two tests are UMP level α and can be “combined” into one test, the combined
test is not UMP level α over the whole range (by Lemma 1). To construct both trade-off functions,
the steps above are either repeated forH1 vs. H0, or the trade-off function forH0 vs. H1 is inverted
directly, i.e. in closed form or numerically.
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λ-Detection resilience Next, we introduce a measure forASO’s optimal achievable error rates under
the RTM, inspired by f-DP: For each mechanism, we create a pair of trade-off functions j and j−1.
These parameterise the error rates of the UMP level α tests against the dominating pair distributions of
a given mechanismM in the RTM. Next, we “unify” the functions by symmetrisation/convexification
to obtain a single, symmetric trade-off function J : α 7→ β, which expresses all optimal error rates of
ASO againstM. Finally, we compare J to a reference trade-off function λ. If J lies on or above λ,
ASO cannot achieve lower β for any α in the task of detecting the presence of x∗ in D′ by observing
θ, and we say thatM satisfies λ-Detection Resilience (λ-DR).

Definition 3. Let r ∈ R be a test for M(D) vs. M(D′) and r′ ∈ R be a test for M(D′) vs.
M(D), where R is the set of LR tests which are computable in the RTM. To construct J , fix a level
α, then obtain j = infr∈R{βr : αr ≤ α} and j−1 = infr′∈R{βr′ : αr′ ≤ α}. Then compute the
symmetrisation/convexification J = C(j, j−1). We say that a mechanismM satisfies λ-DR, if for
some reference function λ and ∀D,D′ : D ≃ D′, it holds that J(α) ≥ λ(α) ∀α ∈ [0, 1].

We remark that computing the symmetrisation/convexification C(j, j−1) is only a convenience
measure to circumvent the necessity to work with both j and j−1 separately. The concrete algorithm
for computing C for any trade-off function pair can be found in Definition E.1 of the Appendix to [7].

Since ASO is weaker than ADP, we expect the trade-off functions characterising their error rates to
lie on or above the trade-off functions for the same mechanism under the DPTM (see Figure 1).
However, it is important to remark that λ-DR is not a DP guarantee, although the opposite holds true.

Lemma 6. If a mechanism satisfies f -DP, it also satisfies f ′-DR, with f ′(α) ≥ f(α) ∀α ∈ [0, 1].

Moreover, since λ-DR is defined conditional on a restriction of ASO’s background knowledge, it is
not resilient to post-processing through auxiliary information. However, a weaker condition holds:

Lemma 7. If a mechanism satisfies f -DP and f ′-DR with f ′ ≥ f , arbitrary post-processing can
only deteriorate privacy up to the f -DP guarantee.

It follows that λ-DR is not closed under adaptive composition. In fact, no privacy relaxation assuming
restricted background knowledge is closed under adaptive composition [26]. However, mechanism-
specific guarantees can be given for non-adaptive composition, where the data/mechanism parameters
are fixed in advance and all intermediate models/gradients are released to ASO. This covers the
standard DP-SGD setting and is studied below.

4 Mechanism-specific analysis

Since precisely quantifying DR for a specific noise mechanism requires knowledge of the RTM
trade-off functions, we now provide methods to compute j and j−1 for various DP mechanisms. The
construction of J = C(j, j−1) is independent of the specific form of j, j−1. By definition for all
j, j−1: j(0) = j−1(0) = 1, j(1) = j−1(1) = 0 and α ∈ [0, 1].

Laplace Mechanism The LM with scale b on a function q with global ℓ1-sensitivity ∆1 outputs
q(X) + Lap(0, b). The LM has a symmetric noise density, thus, the magnitude distributions can
be used as test statistics according to Lemma 4. UnderH0, the test statistic follows an exponential
distribution, while under H1, it follows the (uncommon) folded Laplace distribution [27]. Both
distributions admit closed-form expressions for their CDF, SF, iCDF and iSF, thus the trade-off
functions can also be characterised in closed form.

Theorem 1. Let µ1 = ∆1/b. The LM satisfies C(jLap(α), j−1
Lap(α))-DR with:

jLap(α) =

{− exp (−µ1) sinh (log (α)), α ≥ exp (−µ1)

1− α cosh (µ1), otherwise,
(2)

and

j−1
Lap(α) =

{
1

α exp (µ1)+
√

α2 exp (2µ1)+1
, α < 1/2− 1/2 exp (−µ1)

− α−1
cosh (µ1)

, otherwise.
(3)
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Gaussian Mechanism The GM with covariance matrix σ2Id on a d-dimensional function q with
global ℓ2 sensitivity ∆2 outputs q(X) +N (0, σ2Id). Like the LM, it also has a symmetric noise
density, thus the (squared) magnitude distributions can be used as a test statistic. Let χ2

d(0, σ
2) be

the chi-squared distribution with d degrees of freedom, i.e. the distribution of ∥N (0, σ2Id)∥22. Let
χ2
d

(
µ2
2, σ

2
)

be the noncentral chi-squared distribution with d degrees of freedom and noncentrality
parameter µ2

2 = ∆2
2/σ2, i.e. the distribution of ∥N (ν, σ2Id)∥22 with ∥ν∥2 = ∆. As in Definition 2,

Φ,Ψ,Φ−1 and Ψ−1 denote the CDF, SF, iCDF and iSF of the subscripted distribution, respectively.

Theorem 2. Let µ2 = ∆2/σ. The GM satisfies C(jGM(α), j−1
GM(α))-DR with:

jGM(α) = Φχ2
d(µ2

2,σ
2)

(
Ψ−1

χ2
d(0,σ

2)
(α)
)

and j−1
GM(α) = Ψχ2

d(0,σ
2)

(
Φ−1

χ2
d(µ2

2,σ
2)
(α)

)
. (4)

These functions have no general analytic representation, but are easy to evaluate numerically. However,
an analytic representation is available for j(α) at d = 1. We discuss the importance of d = 1 below.

Corollary 1. For d = 1, j(α) admits the following closed-form representation:

jGM(α | d = 1) = ΦN (0,1)

(
Ψ−1

N (0,1) (
α/2)− µ2

)
−ΨN (0,1)

(
Ψ−1

N (0,1) (
α/2) + µ2

)
. (5)

Next, we study non-adaptive composition, where a database and mechanism parameters are fixed
ahead of time, and all intermediate results are released to ASO. This setting is often encountered, e.g.
in standard DP-SGD.

Lemma 8. Let GMa,GMb be GMs with noise variances σ2
aI

d, σ2
b I

d on functions with sensitivities
∆2a,∆2b, respectively. Then, the non-adaptively composed mechanism GMC has trade-off functions:

jGMC(α) = Φχ2
d(κc,σ2

c )

(
Ψ−1

χ2
d(0,σ

2
c )
(α)
)

and j−1
GMC(α) = Ψχ2

d(0,σ
2
c )

(
Φ−1

χ2
d(κc,σ2

c )
(α)
)
. (6)

with κc = (∆2a+∆2b)
2
/σ2

a+σ2
b and σ2

c = σ2
a+σ2

b/4.

The GM moreover exhibits specific asymptotic behaviour when the query dimensionality d and/or
the number of non-adaptive compositions increase.

Theorem 3 (Blessing of dimensionality in the RTM). Consider a GM on a function with sensitivity
∆2 and noise variance σ2Id such that ∆2/σ ≪ 1. Let µ2 = ∆2/σ. As d and/or as the number of
non-adaptive compositions N increase, jGM and j−1

GM tend to the common form:

ΦN (0,1)

 Ψ−1
N (0,1)(α)√
2Nµ2

2

d + 1
−

√
2Nµ2

2

2d

√
2Nµ2

2

d + 1

 ≈ ΦN (0,1)

(
Ψ−1

N (0,1)(α)−N

√
µ2

2d

)
. (7)

As d increases for fixed N , jc and j−1
c become symmetric and eventually both tend to

ΦN (0,1)

(
Ψ−1

N (0,1)(α)
)

= 1 − α, i.e. the Type-I and Type-II errors are equal and ASO’s test is
no better than random guessing. Intuitively, this can be understood by considering that the magnitude
of θ (i.e. the test statistic) is influenced less by its individual components as dimensionality increases
[28]. Therefore, at d > 1, the GM provides progressively stronger λ-DR guarantees than for scalar
queries. However, as the adversary can leverage their knowledge of the model to design a database
which influences only a single coordinate of the weight/gradient vector, we mostly use d = 1 as
a worst-case scenario below. In practice, such a worst-case database may be unrealistic, and the
aforementioned result can thus be applied to obtain tighter bounds on MI success in specific scenarios.
We note that, in the DPTM, the trade-off function of the GM is always independent of d and has
the form f⊗N

GM = ΦN (0,1)

(
Ψ−1

N (0,1)(α)− µ
)

, 3 µ =
√
N∆2/σ, ⊗N denotes N -fold composition.

The similarity between fGM and Equation (7) is a consequence of the central limit theorem-like
phenomenon [7]. Despite the similarity between the functional forms, we stress that this does not
mean that the asymptotic λ-DR guarantee implies a GDP guarantee, although the converse holds.

3We say that this mechanism satisfies µ-Gaussian DP (GDP).
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Poisson-Subsampled Gaussian Mechanism (SGM) The SGM is relevant in private deep learning
[15]. On a d-dimensional function q with global ℓ2-sensitivity ∆2, the SGM with diagonal covariance
matrix σ2Id samples a mask S ∼ Ber(p)d, where S ∈ {0, 1}d and Ber(p) denotes a Bernoulli
distribution with probability p and outputs q(X) + S ⊙ Z,Z ∼ N (0, σ2Id), where ⊙ is the
Hadamard product. The dominating pairs are (N (0, σ2), (1 − p)N (0, σ2) + pN (∆2, σ

2)) and
((1− p)N (∆2, σ

2) + pN (0, σ2),N (∆2, σ
2)) [22]. Although we have shown in Lemma 3 that the

SGM satisfies the MLRP, the test statistic distributions under H0 and H1 do not have a tractable
form. We thus proceed numerically: First, we instantiate jGM and j−1

GM for the standard GM as shown
above, then use the following general result to amplify the trade-off functions directly.

Lemma 9. Let T (A,B)(α) be a trade-off function between two general distributions A,B repre-
senting mechanism outputs. The trade-off functions for the sub-sampled mechanisms are given by
T (A, (1− p)A+ pB)(α) = pT (A,B)(α) + (1− p)(1− α) and by its inverse.

We thus obtain the amplified functions jp and j−1
p from which we compute JSGM = C(jp, j

−1
p ). It

follows that the SGM satisfies JSGM-DR. This subsampling technique can also be applied to other
mechanisms [22, 23]. An example for the LM is shown in the Appendix. Composition of mechanisms
other than the GM is also handled numerically through direct composition of the test statistics as
described in [7], Definition 3.1. ff.

5 Experimental evaluation

RTM/DPTM trade-off function comparisons Figure 1 shows trade-off functions for the LM, GM
and SGM in low privacy (low noise) and high privacy (high noise) settings to compare the error rates
in the RTM to the DPTM. The pair of asymmetric DPTM trade-off functions j, j−1, is combined
into a single symmetric function J = C(j, j−1) (symmetrisation/convexification). We also plot the
(symmetrified) trade-off function f for the same mechanism under the DPTM for reference. All
RTM curves (j, j−1, J) are closer to the off-diagonal than f , indicating that ASO has lower MI attack
success than ADP. The “blessing of dimensionality” is shown in subfigure (f): at d = 30, stronger
λ-DR is preserved compared to d = 1. In the DPTM, the GM enjoys no such privacy amplification.
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(a) LM, high privacy.
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Figure 1: Exemplary trade-off functions for various mechanisms: (a) and (b): LM at ∆1/b = 0.6 and
∆1/b = 1.5, respectively. (c) and (d): GM at ∆2/σ = 0.6, d = 1 and ∆2/σ = 1.5, d = 1, respectively,
(e): SGM at ∆2/σ = 0.2, d = 1, N = 30, p = 0.4, (f): GM at ∆2/σ = 1 at d = 1 vs. d = 30.
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Asymptotic behaviour and power function of the GM Figure 2a shows the asymptotic behaviour
of a GM with ∆2/σ = 1/5, d = 300 and N = 150. The computed trade-off functions become
symmetric, approach the off-diagonal and match the plot of the analytic form in Equation (7) exactly,
even at a modest number of compositions. Figure 2b plots the power 1− β of an MI adversary vs.
the ∆2/σ-ratio at a fixed α = 10−3 for the GM and Figure 2c for the SGM assuming the worst case
of a one-dimensional learning task and a sampling rate of 0.3. The curve for the DPTM in 2c was
created using the formula from [29]. As anticipated, the adversary has lower power throughout in the
RTM compared to the DPTM, and the loss of power is amplified through subsampling.
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(c) SGM: Power vs. ∆2/σ

Figure 2: Asymptotic behaviour of the GM and power analyses of the GM/SGM.

MI attacks on DP ML models To test the tightness of our theoretical bounds, we now perform an
empirical audit using state-of-the-art offline MI attacks on ML models trained with DP. Recall that,
despite the nominal difference in the threat model, the offline MI adversary and the RTM adversary
compute the same tests and thus have the same capabilities. Each auditing run produces a pair of
empirical trade-off functions shown in green and blue. These are compared to the theoretical bound,
shown in orange. If the empirical curves crossed below the theoretical one, this would indicate a
lack of tightness in our theoretical bounds. All results are shown as averages with standard deviation
across 1024 runs for a single step of a one-dimensional synthetic binary classification task, since we
are interested in the worst-case scenario under the RTM. Figure 3a shows the results of the LiRa
offline MI attack introduced in [12], where ASO trains shadow models on D and fits a Gaussian
likelihood to their confidence scores. At ∆2/σ = 1, this logit space auditing technique already nearly
perfectly matches the theoretical bound. A further improvement is achieved by implementing the
very recent auditing technique presented in [11], also at ∆2/σ = 1. Here, a worst-case gradient with
magnitude ∆ (“Dirac canary”) is inserted and the hypothesis test takes place in gradient space instead
of logit space. As seen in Figure 3b, the theoretical curve is matched exactly by the empirical one.

So far, we have assumed that ASO can leverage their knowledge of the model to design a worst-
case database which influences only a single coordinate of the gradient. This is useful for auditing
purposes, but does not necessarily mirror real-life training. We therefore also repeat the gradient
space attack against a linear neural network with a 50-dimensional latent space trained on the diabetes
dataset [30]. Figure 3c shows that, when the adversary cannot reduce the effective dimensionality of
the gradient, the hypothesis test loses substantial power compared to d = 1 (dashed line) at ∆2/σ = 2
and the trade-off functions become symmetric, exactly verifying Theorem 3.

Additional results for auditing the LM and SGM are shown in the Appendix.

Benefits for ML model training We next demonstrate that the tighter privacy bounds of the
RTM translate to tangible improvements in terms of accuracy/privacy trade-offs in deep learning
applications. We performed experiments on three classification tasks: CIFAR-10 using ResNet-9,
ImageNet using ResNet-18, and Stanford SNLI using a BERT transformer. In each case, we fixed
a final privacy guarantee (in terms of (ε, δ(ε)) or equivalently (α, β(α))) for the DPTM and then
trained a set of models up to this privacy guarantee. We then computed the DP-SGD noise scale
corresponding to the same hypothesis testing privacy guarantee for the RTM, and re-trained the
models for the same number of steps. For all datasets, the enhanced privacy guarantees of the RTM
allowed us to obtain models with higher out-of-sample accuracy (e.g. up to 14% higher on CIFAR-10
at ε ≈ 1) for the nominally same membership inference guarantee by lowering the DP-SGD noise
scale. These results are illustrated in Figure 4 and experimental details can be found in the Appendix.
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Figure 3: Auditing our theoretical bounds using offline MI attacks.
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Figure 4: Deep learning with DP-SGD. Calibrating the noise scale to the RTM privacy guarantee
results in substantially improved Top-1 validation set accuracy compared to calibrating to the DPTM
guarantee. (a) CIFAR-10: 0.81± 0.01 vs. 0.67± 0.01 at (1, 10−5)-DP, (b) SNLI: 0.80± 0.005 vs.
0.78± 0.005 at (1, 1.8 · 10−6)-DP, (c) ImageNet: 0.48 vs. 0.46 at (10, 10−6)-DP. Error bars denote
standard deviation across 5 runs.

Improved bounds on data reconstruction attacks As discussed above, successfully defending
against MI attacks implies that all weaker attacks such as data reconstruction will also be unsuccessful.
In the Appendix, we demonstrate that, in the RTM, data reconstruction adversaries also suffer a
diminished success rate compared to the DPTM, as measured in terms of Reconstruction Robustness
[31, 32], which can be bounded directly through its relationship to hypothesis testing [33].

6 Conclusion

In this work, we consider a threat model relaxation of high practical relevance, where the adversary
does not have access to the candidate record in question when performing an MI attack. Our results
provide a complete characterisation of the adversary’s optimal error rates under the restrictions of
the RTM, including at a fixed low Type-I error rate which is particularly meaningful for privacy-
sensitive applications such as medical or financial data [12]. Moreover, they allow for a fair and
direct comparison between the privacy properties of noise mechanisms under different threat models.
Our results can thus guide individuals who train ML systems on sensitive data in the selection of the
appropriate noise magnitude to better balance model accuracy vs. privacy protection.

We acknowledge the following limitations. We focused on additive noise mechanisms and the global
model of DP in this work. An extension of our results to local DP, mechanisms, mechanisms with
discrete outputs and private selection mechanisms is a natural next step. Moreover, our analysis
considers the case of non-adaptive composition, which applies to some, but not all, relevant ML
tasks. An investigation of adaptive composition scenarios (considering potential correlations between
mechanism outputs) would be of interest to expand the scope of our guarantees. Last but not least, we
regard the analysis of adversaries who are even more limited in their background knowledge (e.g. no
knowledge of the sensitivity, noise magnitude or noise type) as a promising avenue for future work.

10



Acknowledgements

This work was supported by a Helmholtz Junior Research Group grant to GK. This work has been
funded by the German Federal Ministry of Education and Research and the Bavarian State Ministry
for Science and the Arts through the Munich Centre for Machine Learning (MCML) . The authors of
this work take full responsibility for its content. This research was supported by the German Ministry
of Education and Research (BMBF) under Grant Number 01ZZ2316C (PrivateAIM). This research
was supported by the Konrad Zuse School of Excellence in Reliable AI (RelAI).

References
[1] Nicholas Carlini et al. “The Secret Sharer: Evaluating and Testing Unintended Memorization

in Neural Networks.” In: USENIX Security Symposium. Vol. 267. 2019.
[2] Vitaly Feldman. “Does learning require memorization? a short tale about a long tail”. In:

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 2020,
pp. 954–959.

[3] Reza Shokri et al. “Membership inference attacks against machine learning models”. In: 2017
IEEE symposium on security and privacy (S&P). IEEE. 2017, pp. 3–18.

[4] Saeed Mahloujifar et al. “Optimal Membership Inference Bounds for Adaptive Composition
of Sampled Gaussian Mechanisms”. In: arXiv preprint arXiv:2204.06106 (2022).

[5] Cynthia Dwork et al. “Calibrating noise to sensitivity in private data analysis”. In: Theory of
Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3. Springer. 2006, pp. 265–284.

[6] Larry Wasserman and Shuheng Zhou. “A statistical framework for differential privacy”. In:
Journal of the American Statistical Association 105.489 (2010), pp. 375–389.

[7] Jinshuo Dong, Aaron Roth, and Weijie Su. “Gaussian Differential Privacy”. In: Journal of the
Royal Statistical Society (2021).

[8] Jerzy Neyman and Egon Sharpe Pearson. “IX. On the problem of the most efficient tests
of statistical hypotheses”. In: Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character 231.694-706 (1933),
pp. 289–337.

[9] Milad Nasr et al. “Adversary instantiation: Lower bounds for differentially private machine
learning”. In: 2021 IEEE Symposium on Security and Privacy (SP). IEEE. 2021, pp. 866–882.

[10] Matthew Jagielski, Jonathan Ullman, and Alina Oprea. “Auditing differentially private machine
learning: How private is private SGD?” In: Advances in Neural Information Processing Systems
33 (2020), pp. 22205–22216.

[11] Milad Nasr et al. “Tight Auditing of Differentially Private Machine Learning”. In: arXiv
preprint arXiv:2302.07956 (2023).

[12] Nicholas Carlini et al. “Membership inference attacks from first principles”. In: 2022 IEEE
Symposium on Security and Privacy (SP). IEEE. 2022, pp. 1897–1914.

[13] Lauren Watson et al. “On the importance of difficulty calibration in membership inference
attacks”. In: arXiv preprint arXiv:2111.08440 (2021).

[14] Jiayuan Ye et al. “Enhanced membership inference attacks against machine learning models”.
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 2022, pp. 3093–3106.

[15] Martin Abadi et al. “Deep learning with differential privacy”. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. 2016, pp. 308–318.

[16] Samuel Maddock, Alexandre Sablayrolles, and Pierre Stock. “CANIFE: Crafting Canaries for
Empirical Privacy Measurement in Federated Learning”. In: arXiv preprint arXiv:2210.02912
(2022).

[17] Yugeng Liu et al. “{ML-Doctor}: Holistic Risk Assessment of Inference Attacks Against
Machine Learning Models”. In: 31st USENIX Security Symposium (USENIX Security 22).
2022, pp. 4525–4542.

[18] Alexandre Sablayrolles et al. “White-box vs black-box: Bayes optimal strategies for member-
ship inference”. In: International Conference on Machine Learning. PMLR. 2019, pp. 5558–
5567.

11



[19] Zuxing Li, Tobias J Oechtering, and Deniz Gündüz. “Privacy against a hypothesis testing ad-
versary”. In: IEEE Transactions on Information Forensics and Security 14.6 (2018), pp. 1567–
1581.

[20] Benedetta Tondi, Mauro Barni, and Neri Merhav. “Detection games with a fully active attacker”.
In: 2015 IEEE International Workshop on Information Forensics and Security (WIFS). IEEE.
2015, pp. 1–6.

[21] Kamalika Chaudhuri, Jacob Imola, and Ashwin Machanavajjhala. “Capacity bounded differen-
tial privacy”. In: Advances in Neural Information Processing Systems 32 (2019).

[22] Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. “Optimal accounting of differential pri-
vacy via characteristic function”. In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2022, pp. 4782–4817.

[23] Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. “Numerical composition of differential
privacy”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 11631–11642.

[24] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. “The composition theorem for differential
privacy”. In: International conference on machine learning. PMLR. 2015, pp. 1376–1385.

[25] E.L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. 4th ed. Singapore:
Springer Nature, 2022. ISBN: 978-3-030-70578-7.

[26] Damien Desfontaines and Balázs Pejó. “Sok: differential privacies”. In: Proceedings on privacy
enhancing technologies 2020.2 (2020), pp. 288–313.

[27] Yucui Liu and Tomasz J Kozubowski. “A folded Laplace distribution”. In: Journal of Statistical
Distributions and Applications 2.1 (2015), pp. 1–17.

[28] H. Urkowitz. “Energy detection of unknown deterministic signals”. In: Proceedings of the
IEEE 55.4 (1967), pp. 523–531.

[29] Zhiqi Bu et al. “Deep learning with gaussian differential privacy”. In: Harvard data science
review 2020.23 (2020), pp. 10–1162.

[30] Bradley Efron et al. “Least angle regression”. In: The Annals of Statistics 32.2 (2004), pp. 407–
499.

[31] Borja Balle, Giovanni Cherubin, and Jamie Hayes. “Reconstructing training data with informed
adversaries”. In: 2022 IEEE Symposium on Security and Privacy (SP). IEEE. 2022, pp. 1138–
1156.

[32] Jamie Hayes, Saeed Mahloujifar, and Borja Balle. “Bounding Training Data Reconstruction in
DP-SGD”. In: arXiv preprint arXiv:2302.07225 (2023).

[33] Georgios Kaissis et al. “Bounding data reconstruction attacks with the hypothesis testing
interpretation of differential privacy”. In: arXiv preprint arXiv:2307.03928 (2023).

[34] Samuel Karlin and Herman Rubin. “The theory of decision procedures for distributions with
monotone likelihood ratio”. In: The Annals of Mathematical Statistics (1956), pp. 272–299.

[35] Antonio De Maio, Steven M Kay, and Alfonso Farina. “On the invariance, coincidence, and
statistical equivalence of the GLRT, Rao test, and Wald test”. In: IEEE Transactions on Signal
Processing 58.4 (2009), pp. 1967–1979.

[36] Jess Marcum. “A statistical theory of target detection by pulsed radar”. In: IRE Transactions
on Information Theory 6.2 (1960), pp. 59–267.

[37] Helena Klause et al. “Differentially private training of residual networks with scale normalisa-
tion”. In: arXiv preprint arXiv:2203.00324 (2022).

[38] Soham De et al. “Unlocking high-accuracy differentially private image classification through
scale”. In: arXiv preprint arXiv:2204.13650 (2022).

[39] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language under-
standing”. In: arXiv preprint arXiv:1810.04805 (2018).

[40] Alexey Kurakin et al. “Toward training at imagenet scale with differential privacy”. In: arXiv
preprint arXiv:2201.12328 (2022).

[41] Qinqing Zheng et al. “Sharp composition bounds for Gaussian differential privacy via Edge-
worth expansion”. In: International Conference on Machine Learning. PMLR. 2020, pp. 11420–
11435.

[42] Alexandre Lacoste et al. “Quantifying the Carbon Emissions of Machine Learning”. In: arXiv
preprint arXiv:1910.09700 (2019).

12



7 Supplementary Material

7.1 Additional results

Subsampling and auditing the Laplace Mechanism As mentioned in the section on the SGM,
numerical subsampling can also be applied to mechanisms other than the GM. Figure 5a shows the
trade-off function curves for the LM without subsampling in orange and the subsampled curve for
∆1/b = 1, p = 0.3 in blue. Similar to the GM, the MI error rates in the RTM (and thus the privacy
guarantees) are amplified with sub-sampling.

Figure 5b complements the results on empirical privacy auditing for the LM from the main manuscript.
The gradient space auditing technique [11] is again applied to a one-dimensional learning task as
described in the main manuscript, however the LM is used instead of the GM. Once more, the
empirical privacy audit (green and blue curves) exactly matches the theoretical bounds (shown in
orange). As in the main manuscript, curves are averages and standard deviations of 1024 repetitions.
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Figure 5: Subsampled Laplace Mechanism and auditing results.

Auditing the SGM Figure 6 shows additional results on privacy auditing when the SGM is used.
Here, a single step of DP-SGD with ∆2/σ2 = 1.5 and p = 0.3 is audited using the gradient space
auditing technique from [11] as described above. Once more, the empirical privacy audit (green and
blue curves) exactly matches the theoretical bounds (shown in orange). As in the main manuscript,
curves are averages and standard deviations of 1024 repetitions.
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Figure 6: Auditing results for the SGM.
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Bounding data reconstruction As discussed in the main manuscript, successfully bounding MI
implies an ability of the mechanism to also bound all weaker attacks. It is thus possible to translate
our MI bounds into a direct and tight bound the probability of a successful data reconstruction
attack by using the Reconstruction Robustness (ReRo) framework [31, 32]. In brief, the goal of the
ReRo adversary is to obtain a successful reconstruction (from model weights/gradients), defined as a
reconstruction loss ≤ η, for example mean squared error or perceptual loss. The ReRo framework
models the adversary’s prior knowledge as the probability κ(η) of a successful reconstruction
before/without observing the model weights/gradients. Satisfying ReRo then requires the probability
of reconstruction after observing the model weights/gradients to be ≤ γ. In summary, a privacy
mechanism satisfies (η, γ)-ReRo against an adversary, if, given a prior probability κ(η) of successful
reconstruction (i.e. of reconstruction error ≤ η), the probability of reconstruction after seeing the
mechanism’s outputs (e.g. model weights or gradients) is no larger than γ. In recent work, [33] show
that, if the trade-off function of a privacy mechanism is known, the probability of reconstruction γ
can be computed directly, allowing us to extend our theoretical membership inference guarantees to
tight bounds on the probability of success of reconstruction attacks. Concretely, it is shown that, if a
privacy mechanism’s trade-off function f is known, then γ = 1− f(κ(η)). Since λ-DR is expressed
in terms of trade-off functions, the relaxed threat model we study extends naturally to this type
of attack. We conducted experiments under (highly) pessimistic assumptions about the adversary:
We assume that the adversary has a prior probability of successful reconstruction κ(η) = 0.1 (a
more optimistic baseline would be a uniform prior over the entire dataset, for example ≈ 10−6 for
ImageNet). Moreover, following the pessimistic assumption made above, i.e. that the adversary can
design a database which influences only a single entry in the weight/gradient vector, we assumed
d = 1 for the construction of all trade-off functions in the experiments. We then analysed the
DP-SGD applications mentioned above (CIFAR-10, ImageNet and Stanford SNLI), whereby we
used the Edgeworth expansion technique introduced in [33] to estimate the ReRo upper bound. Even
under these permissive assumptions, our findings, detailed in the Figure below, show that the relaxed
threat model adversary has a substantially lower probability of success in reconstructing model inputs
compared to the DP adversary. For details on the computation of ε, see below.
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Figure 7: Application to data reconstruction attacks. Panels show the upper bound estimates on
the probability of a successful reconstruction attack on the architectures in Figure S1 for increasing
privacy budgets ε. Under the assumptions of the RTM, the adversary has a substantially lower
probability of reconstruction compared to the DPTM.

7.2 Proofs

Lemma 1. In the RTM, no UMP level α test exists for all possible values of q(D′), i.e. ∀θ ∈ Θ \Θ0.
Thus,H0 vs. H1 (andH1 vs. H0) are each not decidable by a single test.

Proof. The claim follows immediately from the Neyman-Pearson Lemma [8]. For a detailed treat-
ment, we refer to Section 3.2. of [25].

Lemma 2. The composite LR testH0 : θ ∼ Z(q(D), ξ) vs. H1 : θ ∼ Z(q(D′), ξ) is equivalent to
letting θ ∼ Z(µ, ξ) and simultaneously conducting two individual one-sided LR tests r and r′ with
null hypothesis µ = 0 and alternative hypotheses −∆ ≤ µ < 0 for r and 0 < µ ≤ ∆ for r′, where
µ = q(D′)− q(D) and ∆ is the global sensitivity of q.
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Proof. We will first show that testingH0 : Z(q(D), ξ) vs. H1 : Z(q(D′), ξ) is equivalent to testing
Z(0, ξ) vs. Z(q(D′)−q(D), ξ). We know that Z(µ, ξ) is a shift invariant probability measure which
admits a density. Thus, for any c, θ ∈ R:

Z(µ+ c, ξ)(θ) = Z(µ, ξ)(θ − c)⇔ Z(µ− c, ξ)(θ) = Z(µ, ξ)(θ + c). (8)

The LR for Z(q(D), ξ) vs. Z(q(D′), ξ) is:

log
Z(q(D′), ξ)(θ)

Z(q(D), ξ)(θ)
. (9)

Since the LR may be evaluated at an θ, we can evaluate it at θ + q(D), since q(D) is a known
constant:

log
Z(q(D′), ξ)(θ + q(D))

Z(q(D), ξ)(θ + q(D))
= log

Z(q(D′)− q(D), ξ)(θ)

Z(q(D)− q(D), ξ)(θ)
= log

Z(q(D′)− q(D), ξ)(θ)

Z(0, ξ)(θ) . (10)

Therefore, we have shown that testing Z(q(D), ξ) vs. Z(q(D′), ξ) is equivalent to testing Z(0, ξ) vs.
Z(q(D′)− q(D), ξ), as the LR for any θ under both hypothesis testing problems will be the same.
Now, let µ = q(D′)− q(D). Since ASO does not know the value of q(D′), they can only deduct that
∥µ∥ ≤ ∆. Thus, the two cases µ > 0 and µ < 0 must be considered simultaneously and individually.
The claim follows. Observe that the proof is identical for the reversed testH0 : Z(q(D′)− q(D), ξ)
vs. H1 : Z(0, ξ), i.e. with the null and alternative hypothesis switched.

Lemma 3. The individual LR tests r and r′ are UMP level α if the noise distribution Z has the
monotone likelihood ratio property (MLRP). The Laplace Mechanism (LM), Gaussian Mechanism
(GM) and the Poisson-Subsampled Gaussian Mechanism (SGM) all have the MLPR. Moreover, the
power of both tests is maximised when ∥µ∥ = ∥q(D′)− q(D)∥ = ∆.

Proof. The existence of an UMP level α LR test for distributions with the MLRP is justified by the
Karlin-Rubin Theorem [34], which states that, when the null hypothesis is simple, the alternative
hypothesis is one-sided and the LR is a monotone function of the parameter of interest (MLRP), the
LR test is UMP level α ∀θ ∈ Θ \Θ0.

More precisely, the MLRP implies that the LR is non-decreasing or non-increasing in the parameter
of interest (in this case θ) of a test. We must consider the cases µ < 0 and µ > 0 individually for
each mechanism. Throughout, let P = Z(0, ξ) and Q = Z(µ, ξ). We will replace the placeholder Z
with the distribution of interest as required and consider both tests P vs. Q and Q vs. P .

For the Laplace Mechanism (LM), we have:

log
P (θ)

Q(θ)
= log e−

|θ|
b e

|θ−µ|
b =

|θ − µ| − |θ|
b

and (11)

log
Q(θ)

P (θ)
= log e

|θ|
b e−

|θ−µ|
b =

− |θ − µ|+ |θ|
b

. (12)

For µ > 0, log P (θ)
Q(θ) is non-increasing in θ and for µ < 0 it is non-decreasing in θ. The opposite

holds for log Q(θ)
P (θ) by symmetry.

For the Gaussian Mechanism (GM), we have:

log
P (θ)

Q(θ)
= log e−

∥θ∥22
2σ2 e

∥θ−µ∥22
2σ2 =

∥θ − µ∥22 − ∥θ∥22
2σ2

and (13)

log
Q(θ)

P (θ)
= log e

∥θ∥22
2σ2 e−

∥θ−µ∥22
2σ2 =

−∥θ − µ∥22 + ∥θ∥22
2σ2

. (14)

For µ > 0, log P (θ)
Q(θ) is non-increasing in θ and for µ < 0, it is non-decreasing in θ. Again, the

opposite holds for log Q(θ)
P (θ) by symmetry. Observe that the LRs are independent of dimensionality

for the (S)GM, hence it suffices to consider the scalar case.
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Finally, for the Poisson-Subsampled Gaussian mechanism (SGM), we have:

log
P (θ)

Q(θ)
= log

(
1

pe
θ2

2σ2 − (p− 1) e
(θ−µ)2

2σ2

)
+

(θ − µ)
2

2σ2
and (15)

log
Q(θ)

P (θ)
= log

(
pe

θ2

2σ2 − (θ−µ)2

2σ2 − p+ 1

)
. (16)

The computation here is slightly more involved. Taking the derivatives, we have:

d

dθ
log

P (θ)

Q(θ)
=

µpe
µθ

σ2

σ2
(
pe

µ2

2σ2 − pe
µθ

σ2 − e
µ2

2σ2

) and (17)

d

dθ
log

Q(θ)

P (θ)
=

µpe
θ2−(θ−µ)2

2σ2

σ2

(
pe

θ2−(θ−µ)2

2σ2 − p+ 1

) . (18)

Both numerators are positive when µ is positive and negative otherwise. For d
dθ log

P (θ)
Q(θ) , the

denominator is negative when µ is positive, while for d
dθ log

Q(θ)
P (θ) , it is negative. Thus, when µ

is positive, log P (θ)
Q(θ) is non-increasing in θ and non-decreasing otherwise. Conversely, log Q(θ)

P (θ) is
non-decrasing with µ positive and non-increasing otherwise.

So far, we have proven that (1) the LM, GM and SGM have the MLRP and (2) thus, by Karlin-Rubin,
there exists an UMP level α test for Z(0, ξ) vs. Z(µ, ξ) as well as for the reverse Z(µ, ξ) vs. Z(0, ξ)
for both r′ (µ > 0) and r (µ < 0). We note that the proof could have also been achieved by using the
fact that the Laplace and Gaussian distributions with known scale are part of a specific one-parameter
exponential family, which has the MLRP property. Compare [25], Section 4.2. It remains to show
that the power is maximised for µ = ∆ or µ = −∆, i.e. that the power increases with the effect size,
in this case ∆/ξ, with ξ assumed fixed.

First, observe that we can reduce our workload by half as, by shift invariance, the tests r′ : Z(0, ξ)
vs. Z(µ, ξ) and r : Z(0, ξ) vs. Z(−µ, ξ) as well as their reverses are all equivalent. It remains to
show that the power function (i.e. 1− β(µ) at a fixed α) is maximised at µ = ∆. In fact, it suffices
to show that the power function is strictly increasing as a function of µ, since ∆ is the largest value µ
can take. The power function is a re-parameterised version of the trade-off function for the one-sided
UMP level α test (note that this is not the combined test but one of the individual component tests –
the combined test is equivalent to performing the two component tests simultaneously and necessarily
loses power as it represents multiple testing which increases the false discovery rate). Fix a level α.

For the LM, we have [7]:

β(Lap(0, b),Lap(µ, b) | α) =


1− eµ/bα, α < e−µ/b/2,
e−

µ/b
/4α, e−µ/b/2 ≤ α ≤ 1/2,

e−µ/b(1− α), α > 1/2.

(19)

It is easily verified that 1− β(Lap(0, b),Lap(µ, b) | α) is strictly increasing in µ∀α.

For the GM, we have [7]:

β
(
N (0, σ2),N (µ, σ2) | α

)
= ΦN (0,1)

(
Ψ−1

N (0,1)(α)− µ/σ
)
, (20)

where Φ,Ψ−1 are the CDF and and iSF, respectively. Recall that the function is defined on [0, 1]×
[0, 1]. Taking the derivative with respect to µ and observing that Ψ−1(x) = Φ−1(1− x) we obtain:

d

dµ
Φ
(
Φ−1(1− α)− µ/σ

)
= g

(
Φ−1(1− α)− µ/σ

) d

dµ

(
Φ−1(1− α)− µ/σ

)
, (21)

where g is the PDF of the standard normal. The second term simplifies to:

d

dµ

(
Φ−1(1− α)− µ/σ

)
= − 1

σ
. (22)
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Thus, we obtain:

d

dµ
Φ
(
Φ−1(1− α)− µ/σ

)
= − 1

σ
g
(
Φ−1(1− α)− µ/σ

)
. (23)

Since σ is a positive constant and g(x) > 0 ∀x, the derivative is negative for all values of µ. Thus,
β
(
N (0, σ2),N (µ, σ2) | α

)
is decreasing in µ and thus 1− β is increasing in µ as required.

Finally, for the SGM, we can invoke Lemma 9 below and re-use the proof for the GM. Fix 0 < p < 1.
Lemma 9, specialised to the SGM, states:

β
(
N (0, σ2), pN (µ, σ2) + (1− p)N (0, σ2) | α

)
= pΦN (0,1)

(
Ψ−1

N (0,1)(α)− µ/σ
)
+(1−p)(1−α).

(24)
The second term is independent of µ, thus the claim follows from the proof for the GM.

In conclusion, we have shown that, in the RTM, the adversary must conduct two pairs of individual
and simultaneous UMP level α LR tests whose power is maximised when µ = ±∆, i.e. at the
dominating pair distributions [22]. This conforms to the intuition that the power of the test should
increase when the distributions are “further apart”, i.e. when the effect size increases. Moreover,
identically to the DPTM, it allows us to consider only the dominating pairs when constructing
the trade-off functions, since no other test between the distributions of the mechanism on the two
databases can have higher power at the same level α than the test(s) between the dominating pair(s).
We have thus established that the optimal tests the sub-optimal adversary ASO can construct against
the aforementioned noise mechanisms in the RTM are UMP level α tests. These tests are necessarily
less powerful than the uniformly most powerful tests that ANP can construct because they are only
optimal for a subset of the values of q(D′) at a time, whereas the uniformly most powerful tests of
ANP are optimal for all values of q(D′) simultaneously.

Lemma 4. If the density of Z is additionally symmetric about the location parameter, the simulta-
neous individual LR tests r and r′ are equivalent to performing a single test using the magnitude
of the observation as a test statistic, i.e. letting ∥θ∥ ∼ ∥Z(µ, ξ)∥ and testing H0 : ∥µ∥ = 0 vs.
H1 : ∥µ∥ > 0. The power of this “combined” test is maximised at ∥µ∥ = ∆.

Proof. Observe that H1 can be split up into two hypotheses: H1a : µ > 0 and H1b : µ < 0. Now,
we can conduct two simultaneous tests E1 : H0 vs.H1a and E2 : H0 vs.H1b. The LRs are:

• For E1: Λ1(θ) = log L(θ|H1a)
L(θ|H0)

.

• For E2: Λ2(θ) = log L(θ|H1b)
L(θ|H0)

.

The rejection region for these tests will be {Λ1 > c1} and {Λ2 > c2}, where c1, c2 are the critical
values. The distributions for both Λ1 and Λ2 under H0 are identical. It thus suffices to consider
the numerator of the LR, which, from the MLRP, is monotone in θ. Cancelling the logarithms, we
may thus simplify and consider Λ1 = θ and Λ2 = −θ. To maintain the same level α for all tests,
the critical values should be equal: c = ĉ1 = ĉ2, where the hat denotes the new critical values after
simplification. We remark for completeness that this will render the tests unbiased. Since these tests
are UMP and unbiased, they are also called UMP unbiased (i.e. the tests with the greatest power in
the set of unbiased tests). For further details, we refer to [25], Section 4. For the combined test, the
rejection region is thus: {Λ1 > ĉ1} ∪ {Λ2 > ĉ2} = {θ > c} ∪ {−θ > c} = {|θ| > c}. This proves
the first claim. The claim that the power is maximised when ∥µ∥ = ∆ follows from the previous
observation and the proof to Lemma 3. For the reverse tests, the proof is identical.

Lemma 5. For a (not necessarily symmetric) Z the Generalised Likelihood Ratio Test (GLRT) using
the test statistic log L(θ|Z(µ̂,ξ))

L(θ|Z(0,ξ)) , where µ̂ is the maximum likelihood estimate of µ is equivalent to
simultaneously conducting r and r′. The GLRT’s power is maximised at µ̂ = ∆.

Proof. For the concrete problem µ = 0 vs ∥µ| > 0, the GLRT test statistic can be written:

Λ(θ) = log
supµ∈Θ\Θ0

L(θ|Z(µ, ξ))
L(θ|Z(0, ξ)) (25)
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For a single observation θ (i.e. absent other information) the MLE for the mean µ̂ is equal to the
observed value of θ. Thus, the GLRT becomes:

Λ(θ) = log
L(θ|Z(µ̂, ξ))
L(θ|Z(0, ξ)) (26)

Compare the GLRT to the two simultaneous tests:

• r: The LR test statistic is Λ1(θ) = log L(θ|Z(µ,ξ))
L(θ|Z(0,ξ)) for µ > 0;

• r′: The LR test statistic is Λ2(θ) = log L(θ|Z(µ,ξ))
L(θ|Z(0,ξ)) for µ < 0.

Observe that these are identical to Λ(θ) when the restricted MLE is used, provided the same critical
value is chosen. Thus, the tests are equivalent at the same level α. The claim that the power is
maximised when µ̂ = ∆ then follows from the previous lemma. For the reverse tests, the proof is
identical. We note for completeness that the same result could have been achieved using the Wald or
Rao tests, which are derived differently, but are statistically equivalent to the GLRT [35].

Lemma 6. If a mechanism satisfies f -DP, it also satisfies f ′-DR, with f ′(α) ≥ f(α) ∀α ∈ [0, 1].

Proof. The lemma is essentially a re-stating of Lemma 1 in the language of f-DP. Since a UMP
level α test does not exist for all values of q(D′), any test that ASO constructs is less powerful for at
least a subset of the parameter space, and thus the resulting trade-off function in the RTM will be
on or above (dominating) the trade-off function in the DPTM. An alternative way to look at this is
through the post-processing guarantee of f-DP. As an example, consider using the test statistic ∥θ∥ as
discussed above. As θ is the output of a mechanism, we can consider it a post-processing step on
M(D/D′). For f-DP, it holds that [7]:

T (Proc(M(D)),Proc(M(D′))) ≥ T (M(D),M(D′)) (27)

for any trade-off function T . The claim follows by setting the LHS to f ′, which is the trade-off
function constructed using the test statistic ∥θ∥ in the RTM and the RHS to f , which is the trade-off
function of the (NP) UMP level α test in the DPTM.

Lemma 7. If a mechanism satisfies f -DP and f ′-DR with f ′ ≥ f , arbitrary post-processing can
only deteriorate privacy up to the f -DP guarantee.

Proof. This is essentially the contrapositive to Lemma 6. Since f-DP is resilient to post-processing,
the worst deterioration of the λ-DR-guarantee can never exceed the f-DP guarantee.

Before proceeding with the proofs about the closed-form/numerical expressions of the trade-off
functions, we re-state Definition 2 and provide a brief derivation.
Definition 2 (Trade-off function construction). Let P,Q be the distributions of a test statistic under
H0 andH1, respectively and let ΦP/Q denote their cumulative distribution function (CDF), ΨP/Q

their survival function (SF) and Φ−1
P/Q,Ψ

−1
P/Q their respective inverses (iCDF, iSF). Then, we define:

T (α) = ΦQ(Ψ
−1
P (α)) and T−1(α) = ΨP (Φ

−1
Q (α)). (1)

Proof. The proof is standard. We reproduce it here for the purpose of being self-contained. Consider
a one-tailed test for a parameter θ. From basic hypothesis testing theory, given a test statistic Λ(θ) and
a critical value c, α = Pr(Λ(θ) > c | H0) and β = Pr(Λ(θ) < c | H1). Letting P be the distribution
of the test statistic underH0 and Q its distribution underH0, we have:

β(c) = ΦQ(c) and α(c) = ΨP (c). (28)

Since the trade-off function is T : α 7→ β(α), we solve the RHS for c and have:

c = Ψ−1(α)⇒ T (α) = ΦQ(Ψ
−1
P (α)). (29)

T−1 follows by inverting T . The same form manifests by considering T−1 the trade-off function
for the test with the null and alternative hypotheses exchanged (the reverse test). The role of P and
Q will be played by the test statistics for the various mechanisms below. We note that, since the
functions are inverses of each other, we may arbitrarily designate one as T and the other as T−1.

18



Theorem 1. Let µ1 = ∆1/b. The LM satisfies C(jLap(α), j−1
Lap(α))-DR with:

jLap(α) =

{− exp (−µ1) sinh (log (α)), α ≥ exp (−µ1)

1− α cosh (µ1), otherwise,
(2)

and

j−1
Lap(α) =

{
1

α exp (µ1)+
√

α2 exp (2µ1)+1
, α < 1/2− 1/2 exp (−µ1)

− α−1
cosh (µ1)

, otherwise.
(3)

Proof. j(α) is the trade-off function corresponding to the test r : Lap(0, b) vs. Lap(∆1, b) and
j−1(α) is the trade-off function for r′ : Lap(∆1, b) vs. Lap(0, b). Since the density of the Laplace
distribution is symmetric, we can invoke Lemma 4 and use the absolute value of the observation as a
test statistic.

For r, under H0, the test statistic ∥θ∥ follows an exponential distribution with scale parameter b.
UnderH1, the test statistic ∥θ∥ follows a folded Laplace (FoldL) distribution [27] with mean ∆1 and
scale parameter b. For r′, the hypotheses and distributions are reversed. To construct the trade-off
functions, we require the CDF Φ, and iCDF Φ−1. From these, we can construct Ψ(x) = 1− Φ(x)
and Ψ−1(x) = Φ−1(1− x). All are available for both distributions in closed form. We have:

ΦExp(b)(x) = 1− exp (−x/b),

Φ−1
Exp(b)(x) = −b log (1− x)

and

ΦFoldL(∆1,b)(x) =

{
exp (−∆1/b) sinh

(
x
b

)
, 0 ≤ x < ∆1

1− exp (−x/b) cosh (∆1/b) , x ≥ ∆1,

Φ−1
FoldL(∆1,b)

(x) =

{
b log

(
x exp (∆1/b) +

√
x2 exp (2∆1/b) + 1

)
, 0 ≤ x ≤ 1/2− 1/2 exp (−2∆1/b)

b log (cosh(∆1/b)/(1−x)) , 1 > x ≥ (1/2− 1/2 exp (−2∆1/b)) .

j and j−1 then follow by substitution in the expressions for the trade-off functions from Definition 2
above:

j(α) = ΦFoldL(∆1,b)(Ψ
−1
Exp(b)(α)) and j−1(α) = ΨExp(b)(Φ

−1
FoldL(∆1,b)

(α)). (30)

Theorem 2. Let µ2 = ∆2/σ. The GM satisfies C(jGM(α), j−1
GM(α))-DR with:

jGM(α) = Φχ2
d(µ2

2,σ
2)

(
Ψ−1

χ2
d(0,σ

2)
(α)
)

and j−1
GM(α) = Ψχ2

d(0,σ
2)

(
Φ−1

χ2
d(µ2

2,σ
2)
(α)

)
. (4)

Proof. The proof is similar to Theorem 1. j(α) is the trade-off function corresponding to the test
r : N (0, σ2). vs. N (∆2, σ

2) and j−1(α) corresponds to the test r′ : N (∆2, σ
2) vs. r : N (0, σ2).

The Gaussian density is also symmetric, hence we can appeal to Lemma 4 and use the magnitude of
θ as the test statistic once more. In fact, we will use the squared magnitude for numerical reasons,
which does not change the monotonicity behaviour of the test statistics.

For r, under H0, the test statistic ∥θ∥2 follows a central chi-squared distribution with d degrees
of freedom scaled by σ2, i.e. χ2

d(0, σ
2). Under H1, the test statistic ∥θ∥2 follows a noncentral

chi-squared distribution with d degrees of freedom and noncentrality parameter µ2
2 = ∆2

2/σ2, i.e.
χ2
d

(
µ2
2, σ

2
)
. For r′, the hypotheses and distributions are reversed. To construct the trade-off

functions, we require the CDF Φ, and iCDF Φ−1. From these, we can construct Ψ(x) = 1− Φ(x)
and Ψ−1(x) = Φ−1(1−x) as above. For the central chi-squared distribution, Φ has an analytic form,
but Φ−1 does not. For the non-central chi-squared distribution, Φ is expressed in terms of the Marcum
Q-function [36], while Φ−1 once again has no analytic form. However, high-precision numerical
implementations of all the aforementioned functions are widely available. We thus express j and
j−1 in terms of these abstract functions and implement them numerically throughout. The concrete
expressions follow directly from Definition 4. Moreover, for d = 1, a closed form is available for j,
which is shown in the upcoming Corollary.
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Corollary 1. For d = 1, j(α) admits the following closed-form representation:

jGM(α | d = 1) = ΦN (0,1)

(
Ψ−1

N (0,1) (
α/2)− µ2

)
−ΨN (0,1)

(
Ψ−1

N (0,1) (
α/2) + µ2

)
. (5)

Proof. For this proof, it helps to picture Definition 2 with the role of the test statistic played once
again by ∥θ∥2. Thus, α = Pr(∥θ∥2 > c2 | H0) and β = Pr(∥θ∥2 < c2 | H1). We can take the square
of the critical value since the magnitude is always non-negative and we may choose the critical value
arbitrarily; it will also simplify the computations below. Recall that d = 1 because θ is now a scalar.

From the proof to Theorem 2, we have: α(c2) = Ψχ2
1(0,σ

2)(c
2) and β(c2) = Φχ2

1(µ2
2,σ

2)(c
2).

Ψχ2
1(0,σ

2) admits an analytical form:

Ψχ2
1(0,σ

2)(c
2) = 1−

γ
(

1
2 ,

c2

2σ2

)
Γ
(
1
2

) =1−

√
π erf

(√
c2

2σ2

)
√
π

= (31)

= erfc

(
c√
2σ

)
, (32)

where γ is the lower incomplete gamma function, Γ the gamma function and erf, erfc are the error
function and complementary error function of the Gaussian distribution, respectively. We can now
exploit the following pattern:

ΨN (0,1)(k) =
1

2
erfc

(
k√
2

)
, (33)

so the term in Equation (31) can be written as 2ΨN (0,1)

(
c
σ

)
. Since ΨN (0,1) is invertible, we have

that c = σΨ−1
N (0,1)

(
α
2

)
.

Similarly, Φχ2
1(µ2

2,σ
2)(c

2) admits a closed-form representation. Recall that µ2
2 = ∆2

2/σ2.

1− QM 1
2

(√
∆2

2

σ2
,

√
c2

σ2

)
= (34)

=1− QM 1
2

(
∆2

σ
,
c

σ

)
, (35)

where QM 1
2

is the Marcum Q-function of order 1
2 [36].

Substituting the expression for c from above, we obtain:

1− QM 1
2

(
∆2

σ
,
σΨ−1

N (0,1)

(
α
2

)
σ

)
= (36)

=1− QM 1
2

(
∆2

σ
,Ψ−1

N (0,1)

(α
2

))
. (37)

The Marcum Q-function of order 1
2 also admits a closed form:

QM 1
2
(a, b) =

1

2

(
erfc

(
b− a√

2

)
+ erfc

(
b+ a√

2

))
. (38)

Using the pattern 1
2 erfc

(
k√
2

)
= ΨN (0,1)(k) as above, we rewrite Equation (38) as:

QM 1
2
(a, b) = ΨN (0,1)(b− a) + ΨN (0,1)(a+ b). (39)

Finally, we substitute the arguments from Equation 37 and obtain:

1−
(
ΨN (0,1)

(
Ψ−1

N (0,1) (
α/2)− ∆2

σ

)
+ΨN (0,1)

(
Ψ−1

N (0,1) (
α/2) +

∆2

σ

))
= (40)

=ΦN (0,1)

(
Ψ−1

N (0,1) (
α/2)− µ2

)
−ΨN (0,1)

(
Ψ−1

N (0,1) (
α/2) + µ2

)
, (41)

which is the desired form and completes the proof.
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Lemma 8. Let GMa,GMb be GMs with noise variances σ2
aI

d, σ2
b I

d on functions with sensitivities
∆2a,∆2b, respectively. Then, the non-adaptively composed mechanism GMC has trade-off functions:

jGMC(α) = Φχ2
d(κc,σ2

c )

(
Ψ−1

χ2
d(0,σ

2
c )
(α)
)

and j−1
GMC(α) = Ψχ2

d(0,σ
2
c )

(
Φ−1

χ2
d(κc,σ2

c )
(α)
)
. (6)

with κc = (∆2a+∆2b)
2
/σ2

a+σ2
b and σ2

c = σ2
a+σ2

b/4.

Proof. Let θa,θb ∈ Rd be uncorrelated mechanism outputs on two independent queries. Since ASO

passively observes both outputs before testing, the test statistic becomes:

Λ(θ)c = ∥θc∥22 =

∥∥∥∥12 (θa + θb)

∥∥∥∥2
2

≶ c2. (42)

Of note, the reason why the mean of the observations is the correct choice here follows from Lemma
5, as the MLE of the mean of a normal distribution for > 1 observation is the sample average. By the
additive properties of isotropic Gaussian noise, the distributions of the observations thus are:

H0 : θc ∼ N
(
0,

σ2
a + σ2

b

4
Id
)

vs. (43)

H1 : θc ∼ N
(
∆2a +∆2b

2
,
σ2
a + σ2

b

4
Id
)
. (44)

UnderH0, the test statistic is thus distributed as:

χ2
d

(
0,

σ2
a + σ2

b

4

)
(45)

while underH1 it is distributed as:

χ2
d

((
∆2a+∆2b

2

)2
σ2
a+σ2

b

4

,
σ2
a + σ2

b

4

)
= χ2

d

(
(∆2a +∆2b)

2

σ2
a + σ2

b

,
σ2
a + σ2

b

4

)
. (46)

From here, the proof continues identically to the proof to Theorem 2 above, from which the claim fol-
lows. The generalisation to > 2 compositions follows inductively. In particular, for N homogeneous
compositions (i.e. with identical sensitivity ∆2 and noise variance σ2), the test statistic underH0 is
distributed as:

χ2
d

(
0,

σ2

N

)
(47)

while underH1 it is distributed as:

χ2
d

(
N∆2

2

σ2
,
σ2

N

)
, (48)

which follows directly from the above. We will use this property in the following proof.

Theorem 3 (Blessing of dimensionality in the RTM). Consider a GM on a function with sensitivity
∆2 and noise variance σ2Id such that ∆2/σ ≪ 1. Let µ2 = ∆2/σ. As d and/or as the number of
non-adaptive compositions N increase, jGM and j−1

GM tend to the common form:

ΦN (0,1)

 Ψ−1
N (0,1)(α)√
2Nµ2

2

d + 1
−

√
2Nµ2

2

2d

√
2Nµ2

2

d + 1

 ≈ ΦN (0,1)

(
Ψ−1

N (0,1)(α)−N

√
µ2

2d

)
. (7)

Proof. To prove the claim, we will appeal to the central limit theorem (CLT). We will use the facts
that the mean of the central chi-squared distribution with d degrees of freedom is d and its variance
is 2d. The noncentral chi-squared distribution with d degrees of freedom and noncentrality κ has
mean d + κ and variance 2d + 4κ. Under the CLT, as N → ∞ and/or as d → ∞, we thus have
convergence in distribution as follows. Letting σ2

N = δ (compare Equations (47) and (48)):

χ2
d(0, δ)→ N (δd, 2δ2d) and (49)

χ2
d(κ, δ)→ N (δ(d+ κ), δ2(2d+ 4κ)). (50)

21



We now proceed as in the proofs above and consider the test statistic under the null and alternative
hypotheses and a critical value c We have:

α(c) = ΨN (0,1)

(
c− δd

δ
√
2d

)
⇒ c = Ψ−1

N (0,1)(α)δ
√
2d+ δd (51)

and

β(c) = ΦN (0,1)

(
c− δ(d+ κ)

δ
√
2d+ 4κ

)
. (52)

For the trade-off function, we substitute to obtain:

ΦN (0,1)

(
Ψ−1

N (0,1)(α)δ
√
2d+ δd− δd− δκ

δ
√
2d+ 4κ

)
= (53)

=ΦN (0,1)

(
Ψ−1

N (0,1)(α)
√
2d− κ

δ
√
2d+ 4κ

)
= (54)

=ΦN (0,1)

Ψ−1
N (0,1)(α)−

√
d
2
κ
d√

1 + 2κ
d

 . (55)

Substituting κ← N∆2
2/σ2 (i.e. the degrees of freedom, compare Equation (48)) and separating the

terms, we obtain:

ΦN (0,1)

 1√
2∆2

2N
dσ2 + 1

Ψ−1
N (0,1)(α)−

√
2∆2

2N

2dσ2

√
2∆2

2N
dσ2 + 1

 . (56)

Letting µ2 = ∆2/σ, we obtain the form of the LHS of Equation (7).

To obtain the RHS of Equation (7), we further massage Equation (55). Concretely, we let κ/d := ζ
and Taylor expand the equation around ζ = 0 to obtain:

ΦN (0,1)

(
Ψ−1

N (0,1)(α)− ζ

(√
d

2
+ Ψ−1

N (0,1)(α)

)
+O(ζ2)

)
. (57)

When d is large, O(ζ2) vanishes and
√

d
2 dominates the term in the parentheses, yielding:

ΦN (0,1)

(
Ψ−1

N (0,1)(α)− ζ

√
d

2

)
. (58)

Finally, recursively substituting ζ ← κ/d and κ← N∆2
2/σ2, we get:

ΦN (0,1)

(
Ψ−1

N (0,1)(α)−
N∆2

2

σ2

√
1

2d

)
. (59)

Letting ∆2
2/σ2 = µ2

2, we obtain the RHS of Equation (7). The fact that the two trade-off functions
become symmetrical follows this equation’s functional form, which corresponds to the trade-off
function between two Gaussians with the same variance, i.e. fGM.

Lemma 9. Let T (A,B)(α) be a trade-off function between two general distributions A,B repre-
senting mechanism outputs. The trade-off functions for the sub-sampled mechanisms are given by
T (A, (1− p)A+ pB)(α) = pT (A,B)(α) + (1− p)(1− α) and by its inverse.

Proof. Of note, this fact was first observed in [7] and also proved in [22]. We provide a more concise
proof here for the purpose of self-containedness. Let Φ, Ψ and their inverses be defined for A and B
as above. By Definition 2, we have:

T (A,B)(α) = ΦB(Ψ
−1
A (α)), (60)
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where T is a generic trade-off function, in our case j or j−1. We want to show that for a mixture of
distributions A and B, with mixture coefficient p ∈ (0, 1):

T (A, (1− p)A+ pB)(α) = pT (A,B)(α) + (1− p)(1− α). (61)
Define the CDF of the mixture distribution C as ΦC = (1− p)ΦA + pΦB . Now, we have:

T (A,C)(α) =ΦC(Ψ
−1
A (α)) =

=(1− p)ΦA(Ψ
−1
A (α)) + pΦB(Ψ

−1
A (α)) =

=(1− p)ΦA(Φ
−1
A (1− α)) + pΦB(Ψ

−1
A (α)) =

=(1− p)(1− α) + pT (A,B).

The inverse T−1 is not always easy to construct and, in practice, is usually computed numerically.
We have thus shown that we can construct the trade-off functions of a sub-sampled mechanism
directly from the trade-off functions of the original mechanism, even if none of them has an analytical
form.

7.3 Experimental details

Privacy auditing experiments All experiments were conducted on a single workstation computer
equipped with 64 GB of RAM and a 12-core Intel Xeon CPU with a Thermal Design Power of
105 W and implemented in the Python programming language. For the synthetic learning tasks,
a dataset of 1025 samples with one feature each, split evenly across two classes, was generated
using scikit-learn’s make_classification method. Of these, 1024 samples were used for
shadow model training and a single example (x∗) was held out and its label flipped, similarly to the
data poisoning technique of [12] to maximise the point’s impact on the model’s confidence. This
process was repeated for 1024 iterations, and shadow models were trained. No fixed random seed
was used. Shadow models were trained in pytorch using full-batch DP gradient descent for the
experiments in the main manuscript and Poisson sampling for the experiment in the Appendix, with
a sample-wise ℓ2 norm bound of 1, a noise scale of 1 and implemented using a single linear layer
with a single unit. Models were trained to convergence on the training database, at which point the
training loss was < 0.1. In every case, we considered a single step of model training, i.e. disregarded
all previous model updates. For the logit-space auditing, logits were transformed by applying the
logistic sigmoid activation function, converted to confidence scores and a Gaussian likelihood fitted
as described in the Likelihood Ratio Attack Section IV.C of [12]. For executing the offline MI
attacks, we followed Algorithm 1 of [12] with the modifications described to implement offline MI.
In brief, likelihoods were fitted to the so-called IN models, i.e. the ones the adversary is assumed to
have access to in the RTM. The models’ confidence was then measured on the unseen sample x∗ to
determine its membership status by implementing the one-sided hypothesis test described in [12] for
offline MI. To compute the trade-off functions, the test statistic was evaluated at 50 critical values
using scikit-learn’s ROC functionality, as the ROC and the trade-off function are complements
of each other. Results are reported as averages and standard deviations over the β at each critical
value α, whereby the critical values were chosen identically for each repetition. For the gradient
space auditing, the gradients of the final training iteration, when norms were lowest, were used as
a reference “database” (D). To these, a gradient with a magnitude of ∆2, i.e. equal to the clipping
threshold was added to simulate the maximal effect of x∗, similar to the Dirac canary technique
described in [11]. Noise was then added to all gradient samples. Then, the magnitude of the gradients
was used as a test statistic as discussed in Appendix A.B. of [12], and as proven to correspond to the
optimal hypothesis test under the RTM in Lemma 4. Similar to above, the test statistic was evaluated
at 50 critical value settings and the ROCs were computed. For the high-dimensional experiment, we
utilised the diabetes dataset [30], a 10-dimensional regression dataset with 442 samples. The same
strategy was followed as in the gradient space auditing section above, but this time, a model with a
latent space dimensionality of 50 was implemented. The noise multiplier was set to 0.5. Once again,
a single Dirac canary gradient was added to the gradient “database” and the ROCs were computed as
above. The experiments did not require a graphics processing unit and required approximately 60
minutes of net computation time on a CPU. At an assumed carbon efficiency of 0.432 kg/kWh, the
computation of these experiments caused approximately 0.04 kg of CO2 equivalent emissions.

Deep learning with DP-SGD CIFAR-10 was trained from scratch using the ResNet-9 architecture
from [37] and a subset of the techniques presented in [38] (2 augmentations per draw but no expo-
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nential moving average on the weights) to (1, 10−5)-DP. We used a sampling rate of 4 096/50 000, a
noise scale of 10.5 and trained for 1 000 steps in total. For SNLI, we fine-tuned the final 3 layers of a
105M-parameter pre-trained BERT Transformer [39] to (1, 1.8 · 10−6)-DP using a sampling rate of
4 096/549 361, a noise scale of 1.15 and 405 steps. For ImageNet, we fine-tuned the final 12 layers
of a ResNet-18 architecture pre-trained on Places365 following the exact hyperparameters from [40]
to (10, 10−6)-DP. For DP accounting, we used the Rényi-DP accountant from the Google Differential
Privacy library, whereas for acounting for privacy loss in the RTM, we computed the product distribu-
tions of the test statistics as described in [7], Definition 3.1. ff. using direct numerical integration to
50 digits of precision using the mpmath library. To determine the noise scale for training the models
under the RTM, we adapted the technique described in [41]. In brief, we determined the upper and
lower noise scale values for which the RTM trade-off functions (λ-functions) optimally “sandwich”
the f -DP trade-off function and then chose the more pessimistic of the two noise scales to train the
model, keeping all other hyperparameters constant. As a point of comparison, if (hypothetically)
one would convert the RTM noise scales to the DPTM in terms of ε, this would result in ε-values of
≈ 6, 2.5 and 19 at the same δ for CIFAR-10, SNLI and ImageNet, respectively. We remark that this
conversion does not imply that these models satisfy DP for these ε-values, just that a hypothetical
(ε, δ)-analogue of λ-DR would achieve these ε-values. The true worst-case (ε, δ)-DP guarantees
remain the same in both cases. The experiments were performed on a GPU cluster using NVidia RTX
A6000 GPUs and required a total of 212 GPU hours. At the carbon efficiency assumed above, the
computation of these experiments caused approximately 27.5 kg of CO2 equivalent emissions. All
emission computations were computed as described in [42].

7.4 Ethics statement

Our study focuses on the relaxation of the differential privacy (DP) threat model and provides formal
bounds on membership hypothesis testing error rates. We acknowledge that our work has positive
and potential negative ethical implications, and we strive to address these concerns as thoroughly as
possible.

Positive implications of our study include the following:

1. Improved privacy guarantees and higher utility in machine learning models, which may
encourage privacy sceptics to adopt DP.

2. Acknowledging that the standard DP threat model may not always be applicable in practice
and providing a more realistic alternative.

3. Enhancing our understanding of privacy dynamics in systems by introducing relaxations
incrementally, which can demonstrate how privacy guarantees improve as the adversary’s
power decreases.

4. Providing formal bounds, which offer a more rigorous understanding of the sub-optimal
adversary’s membership inference capabilities in the relaxed threat model.

Despite these positive implications, we recognise potential drawbacks and have identified mitigations
for each:

1. Our guarantees may not hold if the assumptions of the relaxed threat model are violated. To
mitigate this, the relaxed threat model guarantee should only be reported alongside the full
DP guarantee, which holds in the worst case.

2. If stakeholders or users misunderstand the circumstances under which the relaxed threat
model’s guarantees break down, they may come away with a false sense of security. To
address this, we ensure a comprehensive understanding of the threat model through formal
characterisation and clear communication of the exact guarantees provided by the mechanism
in the relaxed threat model, and the situations in which they don’t hold, e.g. post-processing.
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