
Importance-aware Co-teaching for Offline
Model-based Optimization

Ye Yuan1∗, Can (Sam) Chen1,2∗†, Zixuan Liu3, Willie Neiswanger4, Xue Liu1

1 McGill University, 2 MILA - Quebec AI Institute,
3 University of Washington, 4 Stanford University

ye.yuan3@mail.mcgill.ca, can.chen@mila.quebec,
zucksliu@cs.washington.edu, neiswanger@cs.stanford.edu,

xueliu@cs.mcgill.ca

Abstract

Offline model-based optimization aims to find a design that maximizes a property
of interest using only an offline dataset, with applications in robot, protein, and
molecule design, among others. A prevalent approach is gradient ascent, where a
proxy model is trained on the offline dataset and then used to optimize the design.
This method suffers from an out-of-distribution issue, where the proxy is not
accurate for unseen designs. To mitigate this issue, we explore using a pseudo-
labeler to generate valuable data for fine-tuning the proxy. Specifically, we propose
Importance-aware Co-Teaching for Offline Model-based Optimization (ICT). This
method maintains three symmetric proxies with their mean ensemble as the final
proxy, and comprises two steps. The first step is pseudo-label-driven co-teaching.
In this step, one proxy is iteratively selected as the pseudo-labeler for designs near
the current optimization point, generating pseudo-labeled data. Subsequently, a
co-teaching process identifies small-loss samples as valuable data and exchanges
them between the other two proxies for fine-tuning, promoting knowledge transfer.
This procedure is repeated three times, with a different proxy chosen as the pseudo-
labeler each time, ultimately enhancing the ensemble performance. To further
improve accuracy of pseudo-labels, we perform a secondary step of meta-learning-
based sample reweighting, which assigns importance weights to samples in the
pseudo-labeled dataset and updates them via meta-learning. ICT achieves state-of-
the-art results across multiple design-bench tasks, achieving the best mean rank of
3.1 and median rank of 2, among 15 methods. Our source code can be found here.

1 Introduction

A primary goal in many domains is to design or create new objects with desired properties [1].
Examples include the design of robot morphologies [2], protein design, and molecule design [3, 4].
Numerous studies obtain new designs by iteratively querying an unknown objective function that
maps a design to its corresponding property score. However, in real-world scenarios, evaluating
the objective function can be expensive or risky [3–7]. As a result, it is often more practical to
assume access only to an offline dataset of designs and their property scores. This type of problem is
referred to as offline model-based optimization (MBO) [1]. The goal of MBO is to find a design that
maximizes the unknown objective function using solely the offline dataset.
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Gradient ascent is a common approach to address the offline MBO problem. For example, as
illustrated in Figure 2 (a), the offline dataset may consist of three robot size and robot speed pairs
p1,2,3. A simple DNN model, referred to as the vanilla proxy and represented as fθ(·), is trained
to fit the offline dataset as an approximation to the unknown objective function. Gradient ascent is
subsequently applied to existing designs with respect to the vanilla proxy fθ(·), aiming to generate
a new design with a higher score. However, the gradient ascent method suffers from an out-of-
distribution issue, where the vanilla proxy cannot accurately estimate data outside of the training
distribution, leading to a significant gap between the vanilla proxy and the ground-truth function, as
shown in Figure 2 (a). As a consequence, the scores of new designs obtained via gradient ascent can
be erroneously high [8, 9].

To mitigate the out-of-distribution issue, recent studies have suggested applying regulariza-
tion techniques to either the proxy itself [8–10] or the design under consideration [11, 12].
These methods improve the proxy’s robustness and generalization ability. However, a yet un-
explored approach in this domain is using a pseudo-labeler to assign pseudo-labels to designs
near the current point. Fine-tuning the proxy on this pseudo-labeled dataset can lead to im-
provement, provided that we can identify the valuable portion of the pseudo-labeled dataset.

Figure 1: Pseudo-label-driven co-teaching.

Inspired by this, we propose Importance-aware
Co-Teaching for Offline Model-based Optimiza-
tion (ICT). This approach maintains three sym-
metric proxies, and their mean ensemble acts as
the final proxy. ICT consists of two main steps
with the first step being pseudo-label-driven
co-teaching as illustrated in Figure 1. During
this step, one proxy is iteratively selected as
the pseudo-labeler, followed by a co-teaching
process [13] that facilitates the exchange of
valuable data between the other two proxies
for fine-tuning. As depicted in Figure 1, there
are three symmetric proxies, fθ1

(·), fθ2
(·), and

fθ3
(·). The entire learning cycle (the larger tri-

angle) can be divided into three symmetric parts
(sub-triangles), with one proxy chosen to be the
pseudo-labeler in turn. Taking the top triangle as an example, we select fθ1

(·) as the pseudo-labeler
to generate pseudo labels for a set of points in the neighborhood of the current optimization point
xt. The other two proxies, fθ2(·) and fθ3(·), then receive the pseudo-labeled dataset. They compute
the sample loss for each entry in the dataset and exchange small-loss samples between them for
fine-tuning. This co-teaching process encourages knowledge transfer between the two proxies, as
small losses are typically indicative of valuable knowledge. The symmetric nature of the three proxies
allows the above process to repeat three times, with each proxy—fθ1

(·), fθ2
(·), and fθ3

(·)—taking
turns as the pseudo-label generator. This learning cycle promotes the sharing of valuable knowl-
edge among the three symmetric proxies, allowing them to collaboratively improve the ensemble
performance in handling out-of-distribution designs.

Figure 2: Meta-learning-based sample reweighting.
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Despite the efforts made in the first step, small-loss data may still contain inaccurate labels. During
the first step, small-loss data (pa and pb) from the pseudo-labeled dataset produced by fθ1(·) are
identified based on the predictions of proxy fθ3(·) and fed to proxy fθ2(·). However, as shown
in Figure 2 (a), the less accurate point pb deviates noticeably from the ground-truth, causing the
fine-tuned proxy fθ2

(·) to diverge from the ground-truth function. To address this, we introduce the
second step of ICT, meta-learning-based sample reweighting, which aims to assign higher weights to
more accurate points like pa and lower weights to less accurate ones like pb. To accomplish this, we
assign an importance weight for every sample yielded by the first step (ωa for pa and ωb for pb) and
propose a meta-learning framework to update these sample weights (ωa and ωb) automatically by
leveraging the supervision signals from the offline dataset p1,2,3. Specifically, the proxy fine-tuned on
the weighted small-loss data (pa and pb) is expected to perform well on the offline dataset, provided
the weights are accurate, i.e., large ωa and small ωb. We can optimize the sample weights by
minimizing the loss on the offline dataset as a function of the sample weights. As illustrated in
Figure 2 (b), the weight of pa is optimized to be high, while the weight of pb is optimized to be low.
Consequently, the proxy f

(b)
θ2

(·) fine-tuned on the weighted samples in Figure 2 (b) is brought closer

to the ground-truth objective function f(·), compared to the case where the fine-tuned proxy f
(a)
θ2

(·)
is far from f(·) in Figure 2 (a). Through extensive experiments across various tasks [1], ICT proves
effective at mitigating out-of-distribution issues, delivering state-of-the-art results.

In summary, our paper presents three main contributions:

• We introduce Importance-aware Co-Teaching (ICT) for offline MBO. ICT consists of two steps.
In the pseudo-label-driven co-teaching step, a proxy is iteratively chosen as the pseudo-labeler,
initiating a co-teaching process that facilitates knowledge exchange between the other two proxies.

• The second step, meta-learning-based sample reweighting, is introduced to alleviate potential
inaccuracies in pseudo-labels. In this step, pseudo-labeled samples are assigned importance
weights, which are then optimized through meta-learning.

• Extensive experiments demonstrate ICT’s effectiveness in addressing out-of-distribution issues,
yielding state-of-the-art results in multiple MBO tasks. Specifically, ICT secures the best mean
rank of 3.1 and median rank of 2, among 15 methods.

2 Preliminaries

Offline model-based optimization (MBO) targets a variety of optimization problems with the goal
of maximizing an unknown objective function using an offline dataset. Consider the design space
X = Rd, where d represents the design dimension. Formally, the offline MBO can be expressed as:

x∗ = argmax
x∈X

f(x), (1)

where f(·) denotes the unknown objective function, and x ∈ X denotes a candidate design. In this
scenario, an offline dataset D = {(xi, yi)}Ni=1 is available, where xi represents a specific design,
such as robot size, and yi represents the corresponding score, like robot speed. In addition to robot
design, similar problems also include protein and molecule design.

A common strategy for tackling offline MBO involves approximating the unknown objective function
f(·) using a proxy function, typically represented by a deep neural network (DNN) fθ(·), which is
trained on the offline dataset:

θ∗ = argmin
θ

1

N

N∑
i=1

(fθ(xi)− yi)
2
. (2)

With the trained proxy, design optimization is performed using gradient ascent steps:

xt = xt−1 + η∇xfθ(x)
∣∣∣
x=xt

, for t ∈ [1, T ]. (3)

Here, T denotes the number of steps, and η signifies the learning rate. The optimal design x∗ is
acquired as xT . This gradient ascent approach is limited by an out-of-distribution issue, as the proxy
fθ(x) may not accurately predict scores for unseen designs, leading to suboptimal solutions.
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3 Method

In this section, we introduce Importance-aware Co-Teaching (ICT), which consists of two steps. We
maintain three symmetric proxies and compute the mean ensemble as the final proxy. In Sec 3.1, we
describe the first step, pseudo-label-driven co-teaching. This step involves iteratively selecting one
proxy as the pseudo-label generator and implementing a co-teaching process to facilitate the exchange
of valuable data between the remaining two proxies. Nevertheless, the samples exchanged during co-
teaching might still contain inaccurate labels, which necessitates the second step meta-learning-based
sample reweighting in Sec 3.2. During this step, each sample from the previous step is assigned an
importance weight and updated via meta-learning. Intuitively, the ICT process can be likened to an
enhanced paper peer review procedure between three researchers preparing for submission. Each
researcher, acting as an author, presents his/her paper to the other two. These two serve as reviewers
and co-teach each other important points to better comprehend the paper, ultimately providing their
feedback to the author. A detailed depiction of the entire algorithm can be found in Algorithm 1.

3.1 Pseudo-label-driven Co-teaching

Vanilla gradient ascent, as expressed in Eq. (3), is prone to out-of-distribution issues in offline
model-based optimization. One potential yet unexplored solution is using a pseudo-labeler to
provide pseudo-labels to designs around the optimization point. By fine-tuning the proxy using the
valuable portion of the pseudo-labeled dataset, we can enhance the proxy’s performance. To achieve
this, we maintain three proxies simultaneously, computing their mean ensemble as the final proxy,
and iteratively select one proxy to generate pseudo-labeled data. The other two proxies exchange
knowledge estimated to have high value, by sharing small-loss data. Due to the symmetric nature of
the three proxies, this process can be repeated three times for sharing valuable knowledge further.

Pseudo-label. We initially train three proxies fθ1
(·), fθ2

(·), and fθ3
(·) on the whole offline dataset

using Eq. (2) with different initializations, and conduct gradient ascent with their mean ensemble,

xt = xt−1 + η∇x
1

3
(f1(xt−1) + f2(xt−1) + f3(xt−1)), (4)

where η is the gradient ascent learning rate. Given the current optimization point xt, we sample
M points xt,1,xt,2, . . . ,xt,M around xt as xt,m = xt + γϵ, where γ is the noise coefficient and
ϵ is drawn from the standard Gaussian distribution. An alternative way is to directly sample the
M points around the offline dataset, rather than the current optimization point. We detail this
option in Appendix A.1. We iteratively choose one proxy, for example fθ1

(·), to label these points,
creating a pseudo-labeled dataset D1 = {(xt,j , fθ1

(xt,j))}Mj=1. Lines 5 to 6 of Algorithm 1 detail
the implementation of this segment.

Co-teaching. For each sample in the pseudo-labeled dataset D1, we compute the sample loss
for fθ2

(·) and fθ3
(·). Specifically, the losses are calculated as L2,i = (fθ2

(xt,i) − fθ1
(xt,i))

2

and L3,i = (fθ3
(xt,i) − fθ1

(xt,i))
2, respectively. Small-loss samples typically contain valuable

knowledge, making them ideal for enhancing proxy robustness [13]. Proxies fθ2
(·) and fθ3

(·)
then exchange the top K small-loss samples as valuable data to teach each other where K is a
hyperparameter. The co-teaching process enables the exchange of valuable knowledge between
proxies fθ2

(·) and fθ3
(·). This part is implemented as described in Lines 7 to 8 of Algorithm 1. The

symmetric design of the three proxies, fθ1(·), fθ2(·), and fθ3(·), enables the entire process to be
iterated three times with one proxy chosen as the pseudo-labeler every time.

3.2 Meta-learning-based Sample Reweighting

While the previous step effectively selects samples for fine-tuning, these samples may still contain
inaccuracies. To mitigate this, we introduce a meta-learning-based sample reweighting step. In
this step, each sample obtained from the prior step is assigned an importance weight, which is then
updated using a meta-learning framework. Without loss of generality, we use fθ(·) to represent any
of fθ1(·), fθ2(·) and fθ3(·) as this step applies identically to all three proxies. The top K small-loss
samples selected from the previous step for fine-tuning fθ(·) are denoted as Ds = {(xs

i , ȳ
s
i )}Ki=1.

Sample Reweighting. We assign an importance weight ωi to the ith selected sample and initialize
these importance weights to ones. We expect smaller importance weights for less accurate samples
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and larger importance weights for more accurate samples to improve proxy fine-tuning. With these
weights, we can optimize the proxy parameters as follows:

θ∗(ω) = argmin
θ

1

K

K∑
i=1

ωi(fθ(x
s
i )− ȳsi )

2. (5)

Since we only want to perform fine-tuning based on Ds, we can adopt one step of gradient descent:

θ∗(ω) = θ − α

K

K∑
i=1

ωi
∂(fθ(x

s
i )− ȳsi )

2

∂θ⊤ , (6)

where α is the learning rate for fine-tuning. This part is presented in Line 10 in Algorithm 1.

Meta-learning. The challenge now is finding a group of proper weights ω. We achieve this by
leveraging the supervision signals from the offline dataset, which are generally accurate. If the sample
weights are accurate, the proxy fine-tuned on the weighted samples is expected to perform well on
the offline dataset. This is because the weighted samples aim to reflect the underlying ground-truth
function that the offline dataset already captures, and both sets of data share common patterns. We
can optimize the sample weights by minimizing the loss of the offline dataset in a meta-learning
framework. The loss on the offline dataset can be written as:

L(θ∗(ω)) = argmin
ω

1

N

N∑
i=1

(fθ∗(ω)(xi)− yi)
2. (7)

The sample weight ωi for the ith sample can be updated by gradient descent:

ω
′

i = ωi − β
∂L(θ∗(ω))

∂θ

∂θ∗(ω)

∂ωi

= ωi +
αβ

K

∂L(θ∗(ω))

∂θ

∂(fθ(x
s
i )− ȳsi )

2

∂θ⊤ ,

(8)

where β is the learning rate for the meta-learning framework. From Eq. (8), it is worth mentioning
that ∂L(θ∗(ω))

∂θ
∂(fθ(x

s
i )−ȳs

i )
2

∂θ⊤ represents the similarity between the gradient of the offline dataset and
the gradient of the ith sample. This implies that a sample with a gradient similar to the offline dataset
will receive a higher weight and vice versa, revealing the inner mechanism of this framework. By
applying the updated sample weights to Eq. (6) for fine-tuning, we improve the proxy’s performance.
This process is iteratively applied to each proxy, yielding a stronger ensemble. Lines 11 to 13 of
Algorithm 1 showcase the execution of this part.

4 Experimental Results

4.1 Dataset and Evaluation

Dataset and Tasks. In this study, we conduct experiments on four continuous tasks and three discrete
tasks. The continuous tasks include: (a) Superconductor (SuperC)[5], where the objective is to
develop a superconductor with 86 continuous components to maximize critical temperature, using
17, 010 designs; (b) Ant Morphology (Ant)[1, 14], where the aim is to design a quadrupedal ant
with 60 continuous components to improve crawling speed, based on 10, 004 designs; (c) D’Kitty
Morphology (D’Kitty)[1, 15], where the focus is on shaping a quadrupedal D’Kitty with 56 continuous
components to enhance crawling speed, using 10, 004 designs; (d) Hopper Controller (Hopper)[1],
where the aim is to identify a neural network policy with 5, 126 weights to optimize return, using
3, 200 designs. Additionally, our discrete tasks include: (e) TF Bind 8 (TF8)[6], where the goal is to
discover an 8-unit DNA sequence that maximizes binding activity score, utilizing 32, 898 designs;
(f) TF Bind 10 (TF10)[6], where the aim is to find a 10-unit DNA sequence that optimizes binding
activity score, using 50, 000 designs; (g) NAS [16], where the objective is to find the optimal neural
network architecture to enhance test accuracy on the CIFAR-10 [17] dataset, using 1, 771 designs.

Evaluation and Metrics. In accordance with the evaluation protocol used in [1, 11], we identify the
top 128 designs from the offline dataset for each approach and report the 100th percentile normalized
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Algorithm 1 Importance-aware Co-teaching
Input: Proxies fθ1

, fθ2
, fθ3

with parameters θ1,θ2,θ3; Offline dataset D = {(xi, yi)}Ni=1.
Output: High-scoring design x∗.

1 /* Start the main steps of ICT */
2 x0 ←− the design with highest score in D.
3 for t = 1, 2, ..., T do
4 /* Pseudo-label-driven Co-teaching */
5 Sample M points xt,1,xt,2, . . . ,xt,M around xt.
6 Choose a proxy, such as fθ1

(·), to pseudo-label: D1 ←− {(xt,j , fθ1
(xt,j))}Mj=1.

7 Identify the top K small-loss samples in D1 using fθ3
(·) and feed them to fθ2

(·).
8 Identify the top K small-loss samples in D1 using fθ2

(·) and feed them to fθ3
(·).

9 /* Meta-learning-based Sample Reweighting */
10 Initialize the sample weights ω(2),ω(3) as ones and perform fine-tuning with Eq. 6).
11 Update ω(2) for fθ2

(·) and ω(3) for fθ3
(·) with Eq. (8).

12 Update θ2 using updated weights ω(2) and θ3 for ω(3) with Eq. (6).
13 Repeat Line 6 - 12 with fθ2

(·), fθ3
(·) iteratively as pseudo-labeler in Line 6.

14 /* Finished ICT, start to optimize designs */
15 for t = 1, 2, ..., T do
16 Optimize xt with Eq. (4) based on the mean ensemble of fine-tuned fθ1

, fθ2
, fθ3

.
17 return x∗ ←− xT

ground-truth score. This score is computed as yn = y−ymin

ymax−ymin
, where ymin and ymax represent

the minimum and maximum scores within the entire unobserved dataset, respectively. The 50th

percentile (median) normalized ground-truth scores are included in Appendix A.2. For a better
comparison, we report the best design in the offline dataset, denoted as D(best). We also provide
mean and median rankings across all seven tasks for a broad performance assessment.

4.2 Comparison Methods

We compare our approach with two categories of baselines: (1) those that use generative models for
sampling purposes, and (2) those that apply gradient updates derived from existing designs. The
generative model-based methods learn and sample from the distribution of high-scoring designs,
including: (i) MIN [18], which maps scores to designs and searches this map for optimal designs; (ii)
CbAS [19], which uses a VAE model to adapt the design distribution towards high-scoring areas; (iii)
Auto.CbAS [20], which employs importance sampling to retrain a regression model based on CbAS.

The second category encompasses: (i) Grad: carries out a basic gradient ascent on existing designs
to generate new ones; (ii) Grad. Min: optimizes the lowest prediction from an ensemble of learned
objective functions; (iii) Grad. Mean: optimizes the ensemble’s mean prediction; (iv) ROMA [8]:
applies smoothness regularization on the DNN; (v) COMs [9]: uses regularization to assign lower
scores to designs obtained through gradient ascent; (vi) NEMO [10]: constrains the gap between the
proxy and the ground-truth function via normalized maximum likelihood before performing gradient
ascent; (vii) BDI [11] uses forward and backward mappings to distill knowledge from the offline
dataset to the design; (viii) IOM [21]: enforces representation invariance between the training dataset
and the optimized designs.

We also compare with traditional methods in [1]: (i) CMA-ES [22]: gradually adjusts the distribution
towards the optimal design by modifying the covariance matrix. (ii) BO-qEI [23]: executes Bayesian
Optimization to maximize the proxy, suggests designs through the quasi-Expected-Improvement
acquisition function, and labels the designs using the proxy function. (iii) REINFORCE [24]:
optimizes the distribution over the input space using the learned proxy.

4.3 Training Details

We adopt the training settings from [1] for all comparison methods unless otherwise specified. We
use a 3-layer MLP (MultiLayer Perceptron) with ReLU activation for all gradient updating methods,
and set the hidden size to 2048. Additional hyperparameter details are elaborated in Appendix A.3.
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One of the top 128 designs from the offline dataset is iteratively selected as the starting point, as
outlined in Line 2 of Algorithm 1. We reference results from [1] for non-gradient-ascent methods
such as BO-qEI, CMA-ES, REINFORCE, CbAS, and Auto.CbAS. For gradient-based methods, we
run each setting over 8 trials and report the mean and standard error. All experiments are run on a
single NVIDIA GeForce RTX 3090 GPU.

4.4 Results and Analysis

Performance in Continuous Tasks. Table 1 presents the results across different continuous domains.
In all four continuous tasks, our ICT method achieves the top performance. Notably, it surpasses
the basic gradient ascent, Grad, demonstrating its ability to mitigate the out-of-distribution issue.
The superior performance of Grad.mean over Grad can be attributed to the ensemble model’s
robustness in making predictions [25]. Furthermore, ICT generally outperforms ensemble methods
and other gradient-based techniques such as COMs and ROMA, demonstrating the effectiveness of
our strategy. Generative model-based methods, such as CbAS and MINs, however, struggle with the
high-dimensional task Hopper Controller. Interestingly, ICT necessitates only three standard proxies
and avoids the need for training a generative model, which can often be a challenging task. These
results indicate that ICT is a simple yet potent baseline for offline MBO.

Table 1: Experimental results on continuous tasks for comparison.
Method Superconductor Ant Morphology D’Kitty Morphology Hopper Controller
D(best) 0.399 0.565 0.884 1.0
BO-qEI 0.402± 0.034 0.819± 0.000 0.896± 0.000 0.550± 0.018

CMA-ES 0.465± 0.024 1.214± 0.732 0.724± 0.001 0.604± 0.215
REINFORCE 0.481± 0.013 0.266± 0.032 0.562± 0.196 −0.020± 0.067

CbAS 0.503± 0.069 0.876± 0.031 0.892± 0.008 0.141± 0.012
Auto.CbAS 0.421± 0.045 0.882± 0.045 0.906± 0.006 0.137± 0.005

MIN 0.499± 0.017 0.445± 0.080 0.892± 0.011 0.424± 0.166
Grad 0.483± 0.025 0.920± 0.044 0.954± 0.010 1.791± 0.182
Mean 0.497± 0.011 0.943± 0.012 0.961± 0.012 1.815± 0.111
Min 0.505± 0.017 0.910± 0.038 0.936± 0.006 0.543± 0.010

COMs 0.472± 0.024 0.828± 0.034 0.913± 0.023 0.658± 0.217
ROMA 0.510± 0.015 0.917± 0.030 0.927± 0.013 1.740± 0.188
NEMO 0.502± 0.002 0.952± 0.002 0.950± 0.001 0.483± 0.005

BDI 0.513± 0.000 0.906± 0.000 0.919± 0.000 1.993± 0.000
IOM 0.520± 0.018 0.918± 0.031 0.945± 0.012 1.176± 0.452

ICT(ours) 0.503± 0.017 0.961± 0.007 0.968± 0.020 2.104± 0.357

Table 2: Experimental results on discrete tasks, and ranking on all tasks for comparison.
Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
D(best) 0.439 0.467 0.436
BO-qEI 0.798± 0.083 0.652± 0.038 1.079± 0.059 9.9/15 11/15

CMA-ES 0.953± 0.022 0.670± 0.023 0.985± 0.079 6.1/15 3/15
REINFORCE 0.948± 0.028 0.663± 0.034 −1.895± 0.000 11.3/15 15/15

CbAS 0.927± 0.051 0.651± 0.060 0.683± 0.079 9.1/15 9/15
Auto.CbAS 0.910± 0.044 0.630± 0.045 0.506± 0.074 11.6/15 12/15

MIN 0.905± 0.052 0.616± 0.021 0.717± 0.046 11.0/15 12/15
Grad 0.906± 0.024 0.635± 0.022 0.598± 0.034 7.7/15 9/15
Mean 0.899± 0.025 0.652± 0.020 0.666± 0.062 6.6/15 6/15
Min 0.939± 0.013 0.638± 0.029 0.705± 0.011 7.3/15 8/15

COMs 0.452± 0.040 0.624± 0.008 0.810± 0.029 10.3/15 12/15
ROMA 0.924± 0.040 0.666± 0.035 0.941± 0.020 5.1/15 5/15
NEMO 0.941± 0.000 0.705± 0.000 0.734± 0.015 5.0/15 4/15

BDI 0.870± 0.000 0.605± 0.000 0.722± 0.000 7.9/15 8/15
IOM 0.878± 0.069 0.648± 0.023 0.274± 0.021 7.6/15 6/15

ICT(ours) 0.958± 0.008 0.691± 0.023 0.667± 0.091 3.1/15 2/15

Performance in Discrete Tasks. Table 2 showcases the outcomes across various discrete domains.
ICT attains top performances in two out of the three tasks, TF Bind 8 and TF Bind 10. These results
suggest that ICT is a powerful method in the discrete domain. However, in NAS, the performance of
ICT is not as strong, which can be attributed to two factors. Firstly, the neural network design in NAS,
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represented by a 64-length sequence of 5-categorical one-hot vectors, has a higher dimensionality
than TF Bind 8 and TF Bind 10, making the optimization process more complex. Furthermore, the
simplistic encoding-decoding strategy in design-bench may not accurately capture the intricacies of
the neural network’s accuracy, which can only be determined after training on CIFAR10.

Summary. ICT attains the highest rankings with a mean of 3.1/15 and median of 2/15 as shown
in Table 2 and Figure 3, and also secures top performances in 6 out of the 7 tasks. We have further
run a Welch’s t-test between our method and the second-best method, obtaining p-values of 0.437
on SuperC, 0.004 on Ant, 0.009 on D’Kitty, 0.014 on Hopper, 0.000 on TF8, 0.045 on TF10, 0.490
on NAS. This demonstrates statistically significant improvement in 5 out of 7 tasks, reaffirming the
effectiveness of our method.

4.5 Ablation Studies

Table 3: Ablation studies on two core steps of ICT.

Task D ICT w/o co-teaching w/o reweighting
TF8 8 0.958 ± 0.008 0.905± 0.042 0.910± 0.024
TF10 10 0.691 ± 0.023 0.653± 0.018 0.654± 0.023
NAS 64 0.667± 0.091 0.779 ± 0.071 0.666± 0.090

SuperC 86 0.503 ± 0.017 0.500± 0.017 0.501± 0.017
Ant 60 0.961 ± 0.007 0.927± 0.033 0.914± 0.015

D’Kitty 56 0.968 ± 0.020 0.962± 0.021 0.959± 0.013
Hopper 5126 2.104 ± 0.357 1.453± 0.734 1.509± 0.166

To better understand the im-
pact of pseudo-label-driven co-
teaching (co-teaching) and meta-
learning-based sample reweighting
(reweighting) on the performance
of our proposed ICT method, we
conduct ablation studies by remov-
ing either co-teaching or reweight-
ing from the full ICT approach. Ta-
ble 3 presents the results. Beyond
just assessing these performance indicators, we also verify the accuracy of the samples chosen by
co-teaching, as well as the efficacy of the sample weights we have calculated. We do this by referring
to the ground truth, with further details provided in Appendix A.4. Our reweighting module is also
compared with the recently proposed RGD method [26] as detailed in the Appendix A.5.

For two of the discrete tasks (TF8 and TF10), the ICT method consistently exceeds the performance
of both its ablated versions. This highlights the efficacy of the two steps when handling discrete
tasks. Conversely, the exclusion of the co-teaching in NAS leads to an increase in performance. This
could be attributed to the fact that the encoding-decoding strategy of NAS in design-bench is unable
to accurately capture the inherent complexity of neural networks. As such, the co-teaching step,
reliant on this strategy, might not be as effective. For the continuous tasks (SuperC, Ant, D’Kitty, and
Hopper), we observe that the complete ICT method consistently achieves superior performance. This
underlines the effectiveness of the two steps when dealing with continuous tasks. The performance
gains are particularly substantial in the Hopper task when the complete ICT method is compared
with the ablated versions, illustrating the power of the two steps in managing high-dimensional
continuous tasks. Overall, our ablation studies demonstrate that the inclusion of both co-teaching
and reweighting in the ICT method generally enhances performance across diverse tasks and input
dimensions, underscoring their integral role in our approach.

4.6 Hyperparameter Sensitivity

We first assess the robustness of our ICT method by varying the number of samples (K) selected
during the co-teaching process on the continuous D’Kitty Morphology task. For this analysis, K
is varied among K = 8, 16, 32, 64. In Figure 4 (a), we illustrate the 100th percentile normalized
ground-truth score as a function of time step T , for each of these K values. The results demonstrate
that the performance of ICT is resilient to variations in K, maintaining performances within a certain
range. Additionally, ICT is capable of generating high-scoring designs early on in the process,
specifically achieving such designs around the time step t = 50, and sustains this performance
thereafter, demonstrating its robustness against the number of optimization steps T .

We further evaluate the robustness of our ICT method against the learning rate (β) for the meta-
learning framework. As depicted in Figure 4 (b), ICT’s performance remains relatively consistent
across a variety of β values, further demonstrating ICT’s robustness with respect to the hyperparameter
β. We explore the fine-tuning learning rate α and conduct further experiments and analysis on TF
Bind 8. Details can be found in Appendix A.6.
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Figure 4: Ground-truth score of the design evolves as a function
of step T , under different values of K (subplot (a)) and β (subplot
(b)), in the D’Kitty task. These results indicate that ICT attains
optimal designs swiftly and maintains them stably, as well as
exhibits robustness to various choices of K and β.

5 Related Works

Offline Model-based Optimization. Contemporary offline model-based optimization methods can be
generally classified into two primary groups: (i) generating novel designs through generative models,
and (ii) conducting gradient ascent on existing designs. The former methods learn and sample
from the distribution of high-scoring designs including MIN [18], CbAS [19], Auto.CbAS [20]
and BootGen [27]. Recently, gradient-based methods have gained popularity due to their ability
to leverage deep neural networks (DNNs) for improved design generation. These methods apply
regularization techniques to either the proxy itself [8–10] or the design under consideration [11, 12],
enhancing the proxy’s robustness and generalization capabilities. An interesting subfield of offline
MBO includes biological sequence design, which has potential applications such as designing drugs
for treating diseases [27, 28]. In particular, the work [27] also adopts a proxy as a pseudo-labeler
and aligns the generator with the proxy, a technique that resonates with our method. ICT falls under
this category, but adopts a unique approach to improve proxy performance: it incorporates valuable
knowledge from a pseudo-labeled dataset into other proxies for fine-tuning, thereby enhancing the
ensemble performance. Notably, while the concurrent work of parallel mentoring [29] also employs
pseudo-labeling, it focuses on pairwise comparison labels, potentially sacrificing some information
due to its discrete nature.

Sample Reweighting. Sample reweighting is commonly utilized to address the issue of label
noise [30, 31], where each sample is assigned a larger weight if it is more likely to be accurate,
using a carefully designed function. Recent studies [32–34] suggest using a meta-set to guide the
learning of sample weights, which can enhance model training. Such an approach is grounded in a
meta-learning framework which can be used to learn hyperparameters [35–37, 34, 38–43]. Inspired
by distributionally robust optimization, recent work [26] proposes a re-weighted gradient descent
algorithm that provides an efficient and effective means of reweighting. In this paper, the pseudo-
labeled dataset generated by co-teaching may still contain some inaccuracies, while the offline dataset
is generally accurate. We propose a sample reweighting framework to reduce the inaccuracies in the
pseudo-labeled dataset by leveraging the supervision signals from the offline dataset.

Co-teaching. Co-teaching [13] is an effective technique for mitigating label noise by leveraging
insights from peer networks. It involves the concurrent training of two proxies where one proxy
identifies small-loss samples within a noisy mini-batch for fine-tuning the other. Co-teaching bears
similarities to decoupling [44] and co-training [45], as they all involve the interaction between
two models to enhance the training process. In this study, we adapt co-teaching to work with a
pseudo-labeled dataset generated by a trained proxy, instead of relying on a noisy original dataset.
Specifically, we employ one proxy to select accurate samples from this pseudo-labeled dataset for
fine-tuning the other, and vice versa.

6 Conclusion and Discussion
In this study, we introduce the ICT (Importance-aware Co-Teaching) method for mitigating the
out-of-distribution issue prevalent in offline model-based optimization. ICT is a two-step approach.
The first step is pseudo-label-driven co-teaching, which iteratively selects a proxy to generate pseudo-
labeled data. Valuable data are identified by co-teaching to fine-tune other proxies. This process,
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repeated three times with different pseudo-labelers, facilitates knowledge transfer. In the second step,
meta-learning-based sample reweighting assigns and updates importance weights to samples selected
by the co-teaching process, further improving the proxy fine-tuning. Our experimental findings
demonstrate the success of ICT. We discuss its limitations in Appendix A.7

Future Work. Though we initially design ICT with three proxies, the method’s inherent scalability
and flexibility make it applicable to scenarios involving N proxies. In such a scenario, we can
iteratively select one proxy out of N as the pseudo-labeler to generate data. Then, each of the
remaining N − 1 proxies could select small-loss samples from its perspective and provide these
samples to the other N − 2 proxies for fine-tuning. This process enhances knowledge transfer and
facilitates cooperative learning among the proxies. Looking to the future, we plan to conduct further
research into the dynamics of such an expanded ensemble of proxies.

Negative Impact. It is crucial to recognize that ICT’s potential benefits come with possible negative
consequences. Advanced optimization techniques can be applied for both constructive and destructive
purposes, depending on their use. For example, while drug development and material design can have
a positive impact on society, these techniques could also be misused to create harmful substances or
products. As researchers, we must remain attentive and strive to ensure that our work is employed for
the betterment of society while addressing any potential risks and ethical concerns.
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A Appendix

A.1 Considerations for Sampling Around the Offline Dataset

In this subsection, we explore an alternative sampling strategy for the pseudo-labeling process. Instead
of generating new samples around the current optimization point, this strategy generates samples
directly around the offline dataset D. To ascertain the effectiveness of our chosen strategy against this
alternative, we perform experiments on two tasks: D’Kitty (continuous) and TF8 (discrete).

Table 4 showcases the results. For both tasks, our strategy consistently yields higher scores, affirming
its superior performance over the alternative. The advantage of our chosen strategy can be attributed
to its dynamic nature. By sampling around the current optimization point, we gather more insightful
information for the local fine-tuning of the proxy. This strategy allows the co-teaching process to
adapt and evolve according to the optimization trajectory, leading to improved performances.

Table 4: Comparison of Sampling Strategies.
Method Sampling along Gradient Path (Ours) Sampling from D

TF8 0.958± 0.008 0.871± 0.067
D’Kitty 0.968± 0.020 0.955± 0.006

A.2 Comparative Performance Analysis using Median Scores

In addition to the maximum scores discussed in the main paper, we also present the median (50th
percentile) scores across all seven tasks. The best design in the offline dataset, denoted as D(best),
along with the mean and median rankings are provided for comprehensive comparison.

Performance in Continuous Tasks. Table 5 illustrates the performances of ICT compared with other
methods in continuous tasks. It is noteworthy that ICT exhibits performance on par with the best-
performing methods. Compared with the vanilla gradient ascent (Grad), ICT demonstrates superior
performance, thus affirming its effectiveness in addressing out-of-distribution issues. Moreover, ICT
is generally better than the mean ensemble (Mean), which demonstrates the effectiveness of our
strategy. These results support the use of ICT as a robust baseline for offline MBO.

Table 5: Experimental results on continuous tasks for comparison (median).
Method Superconductor Ant Morphology D’Kitty Morphology Hopper Controller
D(best) 0.399 0.565 0.884 1.0
BO-qEI 0.300± 0.015 0.567± 0.000 0.883± 0.000 0.343± 0.010

CMA-ES 0.379± 0.003 −0.045± 0.004 0.684± 0.016 −0.033± 0.005
REINFORCE 0.463± 0.016 0.138± 0.032 0.356± 0.131 −0.064± 0.003

CbAS 0.111± 0.017 0.384± 0.016 0.753± 0.008 0.015± 0.002
Auto.CbAS 0.131± 0.010 0.364± 0.014 0.736± 0.025 0.019± 0.008

MIN 0.336± 0.016 0.618± 0.040 0.887± 0.004 0.352± 0.058
Grad 0.321± 0.010 0.559± 0.032 0.856± 0.009 0.354± 0.010
Mean 0.334± 0.003 0.569± 0.010 0.876± 0.003 0.386± 0.003
Min 0.354± 0.026 0.571± 0.011 0.883± 0.000 0.359± 0.004

COMs 0.316± 0.026 0.560± 0.002 0.879± 0.002 0.341± 0.009
ROMA 0.372± 0.019 0.479± 0.041 0.853± 0.007 0.389± 0.005
NEMO 0.318± 0.008 0.592± 0.000 0.880± 0.000 0.355± 0.002

BDI 0.412± 0.000 0.474± 0.000 0.855± 0.000 0.408± 0.000
IOM 0.352± 0.021 0.509± 0.033 0.876± 0.006 0.370± 0.009

ICT(ours) 0.399± 0.012 0.592± 0.025 0.874± 0.005 0.362± 0.004

Performance in Discrete Tasks. The median scores for discrete tasks are reported in Table 6.
ICT consistently demonstrates high performance for both TF Bind 8 and TF Bind 10. However,
for the NAS task, which has a higher dimensionality than the two tasks, the optimization process
becomes notably more complex. Further, the simplistic encoding-decoding strategy employed in the
design bench may not accurately capture the intricacies of the neural network’s accuracy, potentially
contributing to ICT’s suboptimal performance on the NAS task.
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Table 6: Experimental results on discrete tasks & ranking on all tasks for comparison (median).
Method TF Bind 8 TF Bind 10 NAS Rank Mean Rank Median
D(best) 0.439 0.467 0.436
BO-qEI 0.439± 0.000 0.467± 0.000 0.544± 0.099 7.7/15 8/15

CMA-ES 0.537± 0.014 0.484± 0.014 0.591± 0.102 8.4/15 6/15
REINFORCE 0.462± 0.021 0.475± 0.008 −1.895± 0.000 10.9/15 14/15

CbAS 0.428± 0.010 0.463± 0.007 0.292± 0.027 12.9/15 13/15
Auto.CbAS 0.419± 0.007 0.461± 0.007 0.217± 0.005 13.4/15 13/15

MIN 0.421± 0.015 0.468± 0.006 0.433± 0.000 7.7/15 9/15
Grad 0.528± 0.021 0.519± 0.017 0.438± 0.110 7.7/15 8/15
Mean 0.539± 0.030 0.539± 0.010 0.494± 0.077 5.3/15 5/15
Min 0.569± 0.050 0.485± 0.021 0.567± 0.006 3.7/15 4/15

COMs 0.439± 0.000 0.467± 0.002 0.525± 0.003 8.4/15 8/15
ROMA 0.555± 0.020 0.512± 0.020 0.525± 0.003 5.6/15 5/15
NEMO 0.438± 0.001 0.454± 0.001 0.564± 0.016 7.7/15 7/15

BDI 0.439± 0.000 0.476± 0.000 0.517± 0.000 6.7/15 8/15
IOM 0.439± 0.000 0.477± 0.010 −0.050± 0.011 7.9/15 7/15

ICT(ours) 0.551± 0.013 0.541± 0.004 0.494± 0.091 4.3/15 3/15

Summary. ICT excels by achieving the best median ranking and a top-two mean ranking. These
rankings consolidate ICT’s standing as a strong method for both continuous and discrete tasks.

A.3 Hyperparameter Setting

We report the details of hyperparameters in our experiments. The number of iterations, T , is set
to 200 for continuous tasks and 100 for discrete tasks. For most continuous and discrete tasks, we
employ the Adam optimizer [46] to fine-tune the proxies. The learning rates are set at 1e− 3 and
1e − 1 for continuous tasks and discrete tasks, respectively. In the case of the Hopper Controller
task, the input dimension is significantly larger, at 5126, and we adopt a smaller learning rate 1e− 4
for fine-tuning to ensure stability of the optimization process. Regarding the learning rate for the
meta-learning framework, we use the Adam optimizer [46] with a learning rate 2e− 1 for continuous
tasks and 3e− 1 for discrete tasks, respectively.

A.4 Analysis of Co-teaching and Sample Reweighting Efficacy

In our analysis, we focus on two key steps of our method: (1) pseudo-label-driven co-teaching and
(2) meta-learning-based sample reweighting. We evaluate the efficacy of these steps by comparing
generated samples with their corresponding ground truth. It’s important to note that during the training
phase, ground-truth scores are inaccessible to all algorithms and are used strictly for evaluation. Our
method incorporates three proxies fθ1(·), fθ2(·), and fθ3(·). We employ fθ1(·) for pseudo-labeling
and fθ2(·), fθ3(·) for co-teaching. We run ICT over 50 time steps for both D’Kitty (continuous) and
TF8 (discrete) tasks.

Pseudo-label-driven co-teaching. The step involves selecting 64 samples with smaller losses for
fine-tuning the proxies while ignoring the remaining 64 samples. To assess the effectiveness of
this strategy, we calculate LSel, the mean squared error (MSE) between the pseudo-labeled and
ground truth scores of the selected 64 samples, and LIgn, the MSE for the ignored samples. These
calculations are averaged over 50 steps. We find that for D’Kitty, LSel is 0.124 lower than LIgn and
for TF8, it’s 0.006 less than LIgn. These results validate the efficacy of this step, as the selected
samples more closely align with the ground truth.

Meta-learning-based sample reweighting. In this step, we aim to assign larger weights to cleaner
samples and smaller weights to noisier ones among the total of 64 samples. We measure the efficacy
of this step by calculating LLarge, the MSE between the pseudo-labeled and ground-truth scores of
the 32 samples with larger weights, and LSmall, the MSE for the 32 samples with smaller weights.
These calculations are averaged over 50 steps. We observe that for D’Kitty, LLarge is 0.010 lower
than LIgn. For TF8, LLarge is 0.005 less than LSmall. These findings indicate that the samples with
larger weights are indeed closer to the ground truth, substantiating the effectiveness of this step.
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A.5 Comparison with RGD

We conduct a deeper analysis comparing our sample reweighting method with the RGD method, as
proposed in [26]. The RGD method, drawing inspiration from distributionally robust optimization,
aims to provide an efficient and theoretically sound way to reweight samples during training.

To ensure a fair comparison, we perform additional experiments, keeping the dataset and experimental
conditions consistent for both methods. Two benchmarks, TFB8 and D’Kitty, are evaluated.

Table 7: Comparison between Sample Reweighting (Ours) and RGD-EXP.
Method TFB8 D’Kitty

Sample Reweighting (Ours) 0.958± 0.008 0.968± 0.020
RGD-EXP 0.906± 0.058 0.955± 0.014

Our results in Table 7 indicate that while RGD is efficient and provides a theoretically effective
solution, our approach delivers slightly superior performance. This performance edge might stem
from our method’s capability to utilize information from the static dataset.

A.6 Examining Hyperparameter Sensitivity Further

Figure 5: Extended Analysis on Hyperparameter Sensitivity.

Building on the analysis from Sec 4.6, we delve deeper into hyperparameter sensitivity, focusing on
the TF8 task. Specifically, we investigate the influence of the number of selected samples (K) in the
first step, and the learning rate (β) in the second step.

• Figure 5 (a) displays the 100th percentile normalized ground-truth score as a function of the time
step T for different K values (8, 16, 32, 64). ICT demonstrates stability over a specific range for
varying K values, showcasing its robustness. Notably, ICT reaches optimal designs around t = 20
and maintains this level, further validating its resilience against different optimization steps T .

• Figure 5 (b) plots the 100th percentile normalized ground-truth score as a function of the learning
rate (β) in TF8. ICT maintains a consistent performance across diverse β values, corroborating its
robustness concerning the hyperparameter β in TF8.

Furthermore, we evaluate the effect of the fine-tuning learning rate α in both TF8 and D’Kitty
tasks. Figures 5 (c) and 5 (d) reveal a consistent performance across varied α values for both tasks,
highlighting ICT’s robustness towards the fine-tuning learning rate.
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A.7 Limitation

We validate the effectiveness of ICT across a broad spectrum of tasks. Nevertheless, certain evaluation
methodologies do not completely represent authentic situations. For instance, in the superconductor
task [5], we adhere to the established convention of utilizing a random forest regression model as
the oracle, in line with previous studies [1]. Regrettably, this model may not perfectly mirror the
complexities of real-world cases, resulting in discrepancies between our oracle and the ground-truth.
Future collaborations with domain experts can potentially refine these evaluation methods. Overall,
given the straightforward formulation of ICT, combined with empirical proof of its robustness and
effectiveness across diverse tasks in the design-bench [1], we maintain confidence in its capability to
effectively generalize to other scenarios.
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