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Abstract

Reward specification is a notoriously difficult problem in reinforcement learning,
requiring extensive expert supervision to design robust reward functions. Imi-
tation learning (IL) methods attempt to circumvent these problems by utilizing
expert demonstrations but typically require a large number of in-domain expert
demonstrations. Inspired by advances in the field of Video-and-Language Models
(VLMs), we present RoboCLIP, an online imitation learning method that uses
a single demonstration (overcoming the large data requirement) in the form of
a video demonstration or a textual description of the task to generate rewards
without manual reward function design. Additionally, RoboCLIP can also utilize
out-of-domain demonstrations, like videos of humans solving the task for reward
generation, circumventing the need to have the same demonstration and deploy-
ment domains. RoboCLIP utilizes pretrained VLMs without any finetuning for
reward generation. Reinforcement learning agents trained with RoboCLIP rewards
demonstrate 2-3 times higher zero-shot performance than competing imitation
learning methods on downstream robot manipulation tasks, doing so using only
one video/text demonstration. Visit our website for experiment videos.

1 Introduction
Sequential decision-making problems typically require significant human supervision and data. In
the context of online reinforcement learning [Sutton and Barto, 2018], this manifests in the design of
good reward functions that map transitions to scalar rewards [Amodei et al., 2016, Hadfield-Menell
et al., 2017]. Extant approaches to manual reward function definition are not very principled and
defining rewards for complex long-horizon problems is often an art requiring significant human
expertise. Additionally, evaluating reward functions often requires knowledge of the true state of the
environment. For example, imagine a simple scenario where the agent must learn to lift an object off
the ground. Here, a reward useful for task success would be proportional to the height of the object
from the ground — a quantity non-trivial to obtain without full state information. Thus, significant
effort has been expounded in developing methods that can learn reward functions either explicitly
or implicitly from demonstrations, i.e., imitation learning [Pomerleau, 1988, Ng and Russell, 2000,
Abbeel and Ng, 2004, Ziebart et al., 2008]. With these methods, agent policies can either be directly
extracted from the demonstrations or trained to optimize rewards functions learned from them.

Imitation learning (IL), however, only somewhat alleviates the need for expert human intervention.
First, instead of designing complex reward functions, expert supervision is needed to collect massive

∗corresponding author: ssontakk@usc.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://sites.google.com/view/roboclip/home


Environment

S3D-v

S3D
Policy

Task Descriptor
(video or text)

Similarity

Every
timestep

End of the 
episode

“Robot opening drawer”

Figure 1: RoboCLIP Overview. A Pretrained Video-and-Language Model is used to generate rewards via the
similarity score between the encoding of an episode of interaction of an agent in its environment, zv with the
encoding of a task specifier zd such as a textual description of the task or a video demonstrating a successful
trajectory. The similarity score between the latent vectors is provided as reward to the agent.

datasets such as RT-1 [Brohan et al., 2022], Bridge Dataset [Ebert et al., 2021], D4RL [Fu et al., 2020],
or Robonet [Dasari et al., 2019]. The performance of imitation learning algorithms and their ability to
generalize hinges on the coverage and size of data [Kumar et al., 2019, 2022], making the collection
of large datasets imperative. Second and most importantly, the interface for collecting demonstrations
for IL is tedious, requiring expert robot operators to collect thousands of demonstrations. On the
contrary, a more intuitive way to define rewards would be in the form of a textual description (e.g.,
“robot grasping object”), or in the form of a naturalistic video demonstration of the task performed by
a human actor in an environment separate from the robotic environment. For example, demonstrating
to a robot how to open a cabinet door in one’s own kitchen is more naturalistic than collecting many
thousands of trajectories via teleoperation in the target robotic environment.

Thus, there exists an unmet need for IL algorithms that 1) require very few demonstrations and
2) allow for a natural interface for providing these demonstrations. For instance, algorithms that
can effectively learn from language instructions or human demonstrations without the need for full
environment state information. Our key insight is that by leveraging Video-and-Language Models
(VLMs)—which are already pretrained on large amount of video demonstration and language pairs—
we do not need to rely on large-scale and in-domain datasets. Instead, by harnessing the power of
VLM embeddings, we treat the mismatch between a single instruction’s embedding (provided as a
language command or a video demonstration) and the embedding of the video of the current policy’s
rollout as a proxy reward that will guide the policy towards the desired instruction.

To this end, we present RoboCLIP, an imitation learning algorithm that learns and optimizes a reward
function based on a single language or video demonstration. The backbone model used in RoboCLIP
is S3D [Xie et al., 2018] trained on the Howto100M dataset [Miech et al., 2019], which consists of
short clips of humans performing activities with textual descriptions of the activities. These videos
typically consist of a variety of camera angles, actors, lighting conditions, and backgrounds. We
hypothesize that VLMs trained on such diverse videos are invariant to these extraneous factors and
generate an actor-agnostic semantically-meaningful representation for a video, allowing them to
generalize to unseen robotic environments.

We present an overview of RoboCLIP in Figure 1. RoboCLIP computes a similarity score between
videos of online agent experience with a task descriptor, i.e., a text description of the task or a single
human demonstration video, to generate trajectory-level rewards to train the agent. We evaluate
RoboCLIP on the Metaworld Environment suite [Yu et al., 2020] and on the Franka Kitchen Environ-
ment [Gupta et al., 2019], and find that policies obtained by pretraining on the RoboCLIP reward
result in 2− 3× higher zero-shot task success in comparison to state-of-the-art imitation learning
baselines. Additionally, these rewards require no experts for specification and can be generated using
naturalistic definitions like natural language task descriptions and human demonstrations.

2 Related Work
Learning from Human Feedback. Learning from demonstrations is a long-studied problem that
attempts to learn a policy from a dataset of expert demonstrations. Imitation learning (IL) methods,
such as those based on behavioral cloning [Pomerleau, 1988], formulate the problem as a supervised
learning over state-action pairs and typically rely on large datasets of expert-collected trajectories
directly demonstrating how to perform the target task [Brohan et al., 2022, Lynch et al., 2022].
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However, these large demonstration datasets are often expensive to collect. Another IL strategy
is inverse RL, i.e., directly learning a reward function from the demonstrations [Ng and Russell,
2000, Abbeel and Ng, 2004, Ziebart et al., 2008, Finn et al., 2016]. Inverse RL algorithms are
typically difficult to apply when state and action spaces are high-dimensional. Methods such as
GAIL [Ho and Ermon, 2016], AIRL [Fu et al., 2017], or VICE [Fu et al., 2018] partially address
these issues by assigning rewards which are proportional to the probability of a given state being
from the demonstration set or a valid goal state as estimated by a learned discriminator network.
However these discriminator networks still require many demonstrations or goal states to train to
effectively distinguish between states from agent-collected experience and demonstration or goal
states. On the other hand, RoboCLIP’s use of pretrained video-and-language models allows us to
train agents that learn to perform target tasks with just one demonstration in the form of a video or a
language description. Other works instead use human feedback in the form of pairwise comparisons
or rankings to learn preference reward functions [Christiano et al., 2023, Sadigh et al., 2017, Biyik
et al., 2019, Myers et al., 2021, Bıyık et al., 2022, Brown et al., 2019, Biyik et al., 2020, Lee et al.,
2021, Hejna and Sadigh, 2022]. These preferences may require less human effort to obtain than
reward functions, e.g., through querying humans to simply rank recent trajectories. Yet individual
trajectory preferences convey little information on their own (less than dense reward functions) and
therefore humans need to respond to many preference queries for the agent to learn useful reward
functions. In contrast, RoboCLIP is able to extract useful rewards from a single demonstration or
single language instruction.

Large Vision and Language Models as Reward Functions. Kwon et al. [2023] and Hu and
Sadigh [2023] propose using large language models (LLMs) for designing and regularizing reward
functions that capture human preferences. These works study the reward design problem in text-based
games such as negotiations or card games, and thus are not grounded in the physical world. RoboCLIP
instead leverages video-and-language models to assess if video demonstrations of robot policies align
with an expert demonstration. Prior work has demonstrated that video models can be used as reward
functions. For example, Chen et al. [2021] learn a visual reward function using human data and
then utilize this reward function for visual model-based control of a robot. However, they require
training the reward model on paired human and robot data from the deployment environment. We
demonstrate that this paired data assumption can be relaxed by utilizing large-scale vision-language
models pretrained on large corpora of human-generated data. The most well-known of these is
CLIP [Radford et al., 2021], which is trained on pairs of images and language descriptions scraped
from the internet. While CLIP is trained only on images, video-language-models (VLMs) trained on
videos of humans performing daily tasks such as S3D [Xie et al., 2018] or XCLIP [Ni et al., 2022]
are also widely available. These models utilize language descriptions while training to supervise
their visual understanding so that semantically similar vision inputs are embedded close together in
a shared vector space. A series of recent works demonstrate that these VLMs can produce useful
rewards for agent learning. Fan et al. [2022] finetune CLIP on YouTube videos of people playing
Minecraft and demonstrate that the finetuned CLIP model can be used as a language-conditioned
reward function to train an agent. DECKARD [Nottingham et al., 2023] then uses the fine-tuned
reward function of Fan et al. [2022] to reward an agent for completing tasks proposed by a large-
language model and abstract world model. PAFF [Ge et al., 2023] uses a fine-tuned CLIP model
to align videos of policy rollouts with a fixed set of language skills and relabel experience with the
best-aligned language label. We demonstrate that videos and multi-modal task specifications can be
utilized to learn reward functions allowing for training agents. Additionally, we present a method to
test the alignment of pretrained VLMs with deployment environments.

3 Method
Overview. RoboCLIP utilizes pretrained video-and-language models to generate rewards for online
RL agents. This is done by providing a sparse reward to the agent at the end of the trajectory which
describes the similarity of the agent’s behavior to that of the demonstration. We utilize video-and-
language models as they provide the flexibility of defining the task in terms of natural language
descriptions or video demonstrations sourced either from the target robotic domain or other more
naturalistic domains like human actors demonstrating the target task in their own environment. Thus,
a demonstration (textual or video) and the video of an episode of robotic interaction are embedded
into the semantically meaningful latent space of S3D [Xie et al., 2018], a video-and-language model
pretrained on diverse videos of human actors performing everyday tasks taken from the HowTo100M
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dataset [Miech et al., 2019]. The two vectors are subsequently multiplied using a scalar product
generating a similarity score between the 2 vectors. This similarity score (without scaling) is returned
to the agent as a reward for the episode.

Notation. We formulate the problem in the manner of a POMDP (Partially Observable Markov
Decision Process) with (O, S, A, ϕ, θ, r, T , γ) representing an observation space O, state space
S, action space A, transition function ϕ, emission function θ, reward function r, time horizon T ,
and discount factor γ. An agent in state st takes an action at and consequently causes a transition
in the environment through ϕ(st+1 | st,at). The agent receives the next state st+1 and reward
rt = r(ot,at) calculated using the observation ot. The goal of the agent is to learn a policy π which
maximizes the expected discounted sum of rewards, i.e.,

∑T
t=0 γ

trt. Note that all of our baselines
utilize the true state for reward generation and for policy learning. To examine the effect of using a
video-based reward, we also operate our policy on the state space while using the pixel observations
for reward generation. Thus, rt uses ot while π uses st for RoboCLIP while for all other baselines,
both rt and π utilize st. This of course is unfair to our method, but we find that in spite of the
advantage provided to the baselines, RoboCLIP rewards still generate higher zero-shot success.

Reward Generation. During the pretraining phase, we supply the RoboCLIP reward to the agent
in a sparse manner at the end of each episode. This is done by storing the video of an episode of
the interaction of the agent with the environment into a buffer as seen in Figure 1. A sequence of
observations of length 128 are saved in a buffer corresponding to the length of the episode. S3D is
trained on videos length 32 frames and therefore the episode video is subsequently downsampled to
result in a video of length T = 32. The video is subsequently center-cropped to result in frames of size
(250, 250). This is done to ensure that the episode video is preprocessed to match the specifications
of the HowTo100M preprocessing used to train the S3D model. Thus the tensor of a sequence of T
observations o0:T is encoded as the latent video vector zv using

zv = S3Dvideo-encoder(o0:T ) (1)

The task specification is also encoded into the same space. If it is defined using natural language, the
language encoder in S3D encodes a sequence of K textual tokens d0:K into the latent space using:

zd = S3Dtext-encoder(d0:K) (2)

If the task description is in the form of a video of length K, then we preprocess and encode it using
the video-encoder in S3D just as in Equation (1). For intermediate timesteps, i.e., timesteps other
than the final one in an episode, the reward supplied to the agent is zero. Subsequently, at the end of
the episode, the similarity score between the encoded task descriptor zd and the encoded video of the
episode zv is used as reward rRoboCLIP(T ). Thus the reward is:

rRoboCLIP(t) =

{
0, t ̸= T

zd · zv t = T

where zd · zv corresponds to the scalar product between vectors zd and zv .

Agent Training. Using rRoboCLIP defined above, we then train an agent online in the deployment
environment with any standard reinforcement learning (RL) algorithm by labeling each agent experi-
ence trajectory with rRoboCLIP after the agent collects it. In our paper, we train with PPO [Schulman
et al., 2017], an on-policy RL algorithm, however, RoboCLIP can also be applied to off-policy
algorithms. After training with this reward, the agent can be zero-shot evaluated or fine-tuned on true
environment reward on the target task in the deployment environment.

4 Experiments
We test out each of the hypotheses defined in Section 1 on simulated robotic environments. Specifi-
cally, we ask the following questions:

1. Do existing pretrained VLMs semantically align with robotic manipulation environments?
2. Can we utilize natural language to generate reward functions?
3. Can we use videos of expert demonstrations to generate reward functions?
4. Can we use out-of-domain videos to generate reward functions?
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5. Can we generate rewards using a combination of demonstration and natural language?
6. What aspects of our method are crucial for success?

We arrange this section to answer each of these questions. Both RoboCLIP and baselines utilize
PPO [Schulman et al., 2017] for policy learning.

Baselines. We use 2 state-of-the-art methods in inverse reinforcement learning: GAIL, or Gen-
erative Adversarial Imitation Learning [Ho and Ermon, 2016] and AIRL or Adversarial Inverse
Reinforcement Learning [Fu et al., 2017]. Both of these methods attempt to learn reward functions
from demonstrations provided to the agent. Subsequently, they train an agent using this learned reward
function to imitate the expert behavior. Both methods receive a single demonstration, consistent with
our approach of using a single video imitation. However, since they both operate on the ground-truth
environment state, we provide them with a trajectory of states, instead of images, thereby providing
them privileged state information that our method does not receive.

4.1 Domain Alignment

Pretrained vision models are often trained on a variety of human-centric activity data, such as Ego4D
[Grauman et al., 2022]. Since we are interested in solving robotic tasks with view from third person
perspectives, we utilize the S3D [Xie et al., 2018] VLM pretrained on HowTo100M [Miech et al.,
2019], a dataset of short third-person clips of humans performing everyday activities. This dataset,
however, contains no robotic manipulation data.

Robot closin
g green drawer

Robot pushing red butto
n

Robot opening green drawer

Robot tu
rning faucet

Figure 2: Domain Alignment Confusion Matrix.
We perform a confusion matrix analysis on a subset of
the data on collected on Metaworld [Yu et al., 2020]
environments by comparing the pair-wise similarities
between the latent vectors of the strings describing the
videos and those of the videos. We find that Metaworld
is well-aligned with higher scores along the diagonal
than along the off-diagonal elements.

To analyze the alignment of the VLM to different
domains, we perform a confusion matrix analysis
using videos from Metaworld [Yu et al., 2020].
We collect 10 videos per task with varying values
of true reward. For each video, we also collect
the true reward. We then compute the RoboCLIP
reward for each video using VLM alignment be-
tween the textual description of the task and the
video. We visualize the correlations between the
RoboCLIP and true rewards in the form of an n×n
matrix where entry (i, j) corresponds to the corre-
lation between the true reward and the RoboCLIP
reward generated for the ith task using the jth text
description. As one can see, for a given task, the
highest correlation in the matrix is for the correct
textual description. We visualize one such simi-
larity matrix in Figure 2 for Metaworld. We find
that Metaworld seems to align well in the latent
space of the model with a more diagonal-heavy
confusion matrix. The objects are all correctly
identified.

4.2 Language for Reward Generation

The most naturalistic way to define a task is through natural language. We do this by generating a
sparse reward signal for the agent as described in Section 3: the reward for an episode is the similarity
score between its encoded video and the encoded textual description of the expected behavior in the
VLM’s latent space. The reward is provided to the agent at the end of the episode. For RoboCLIP,
GAIL, and AIRL, we first pretrain the agents online with their respective reward functions and
then perform finetuning with the true task reward in the deployment environment. We perform this
analysis on 3 Metaworld Environments: Drawer-Close, Door-Close and Button-Press. We use
the textual descriptions, “robot closing green drawer”, “robot closing black box”, and “robot pushing
red button” for each environment, respectively. Figure 3 plots returns on the target tasks while
finetuning on the depoloyment environment after pretraining (with the exception of the Dense Task
Reward baseline). Our method outperforms the imitation learning baselines with online exploration
in terms of true task rewards in all environments. Additionally our baselines utilize the full state
information in the environment for reward generation where RoboCLIP uses only the pixels to infer
state. RoboCLIP also achieves more than double zero-shot rewards in all environments — importantly,
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Figure 3: Language-Conditioned Reward Generation. The pretrained VLM is used to generate rewards
via the similarity score of the encoding of an episode of interaction of an agent in its environment, zv with the
encoding of a task specifier zd specified in natural language. We use the strings, “robot closing black box”,
“robot closing green drawer” and “robot pushing red button” for conditioning for the 3 environments respectively.
We find that agents pretrained on these language-conditioned rewards outperform imitation learning baselines
like GAIL [Ho and Ermon, 2016] and AIRL [Fu et al., 2017].
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Figure 4: Using In-Domain Videos for Reward Generation. The pretrained VLM is used to generate rewards
via the similarity score of the encoding of an episode of interaction of an agent in its environment, zv with the
encoding of a video demonstration of expert behavior in the same environment. The similarity score between the
latent vectors is provided as reward to the agent and is used to train online RL methods. We study this setup
in the Kettle, Hinge and Slide Tasks in the Franka Kitchen Environment [Gupta et al., 2019]. We find that
policies trained on the RoboCLIP reward are able to learn to complete the task in all three setups without any
need for external rewards using just a single in-domain demonstration.

the RoboCLIP-trained agent is able to complete the tasks even before finetuning on true task rewards.

4.3 In-Domain Videos for Reward Generation

Being able to use textual task descriptors for reward generation can only work in environments where
there is domain alignment between the pretrained model and the visual appearance of the environment.
Additionally, VLMs are large models often with billions of parameters making it computationally
expensive to fine tune for domain alignment. The most naturalistic way to define a task in such a
setting is in the form a single demonstration in the robotic environment which can be collected using
teleoperation. We study how well this works in the Franka Kitchen [Gupta et al., 2019] environment.
We consider access to a single demonstration per task whose video is used to generate rewards for
online RL.

Quantitative Results. We measure the zero-shot task reward, which increases as the task object
(i.e., Kettle, Slide and Hinge Cabinets) gets closer to its goal position. This reward does not depend
on the position of the end-effector, making the tasks difficult. Figure 4 shows the baselines perform
poorly as they generally do not interact with the target objects, while RoboCLIP is able to solve the
task using the reward generated using the video of a single demonstration.

Qualitative Results. We find that RoboCLIP allows for mimicking the “style” of the source
demonstration, with idiosyncrasies of motion from the source demonstration generally transferring to
the policy generated. We find this to occur in the kitchen environment’s Slide and Hinge task as
seen in Figure 5. The first row of the subfigures in Figure 5 are visualizations of the demonstration
video used to condition the VLM for reward generation. The bottom rows correspond to the policies
that are trained with the generated rewards of RoboCLIP. As can be seen, the Slide demonstration
consists of a wide circular arc of motion. This is mimicked in the learned policy, although the agent
misses the cabinet in the first swipe and readjusts to make contact with the handle.
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Figure 5: Qualitative Inspection of Imitation. The first row in each subfigure shows the visualizations of
the demonstration video used for reward generation via the VLM. The second rows are videos taken from
policy recovered from training on the RoboCLIP reward generated using the videos in the first rows. The quick
swiping motion demonstrated in the Slide demonstration is mimicked well in the resultant policy while the
wrist-rotational “trick-shot” behavior in the demonstration for Hinge appears in the resultant learned policy.
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Figure 6: Finetuning for Harder Environments: In harder environments, like Coffee-Push and
Faucet-Open, we find that RoboCLIP rewards do not solve the task completely. We test whether provid-
ing a single demonstration in the environment (using observations and actions) is enough to finetune this
pretrained policy, a setup identical to our baselines. Thus, we pre-train on the RoboCLIP reward from language
and then finetune using a single robotic demonstration. This improves performance by ∼ 200%. See videos on
our website.

This effect is even more pronounced in the Hinge example where the source demonstration consists
of twirling wrist-rotational behavior, which is subsequently imitated by the learned policy. The
downstream policy misses the point of contact with the handle but instead uses the twirling motion
to open the hinged cabinet in an unorthodox manner by pushing near the hinge. We posit that the
VLMs used in RoboCLIP contain a rich latent space encoding these various motions, and so even if
they cannot contain semantically meaningful latent vectors in the Franka Kitchen environments due
to domain mismatch, they are still able to encode motion information allowing them to be used for
RoboCLIP with a single demonstration video.

4.4 Out-of-Domain Videos for Reward Generation

Another natural way to define a task is to demonstrate it yourself. To this end, we try to use demon-
strations of humans or animated characters acting in separate environments as task specification.

For this, we utilize animated videos of a hand pushing a red button and opening a green drawer and a
real human video of opening a fridge door (see Figure 7). The animated videos are collected from
stock image repositories and the human video is collected using a phone camera in our lab kitchen.
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Figure 7: Using Out-of-Domain Videos for Reward Generation. A Pretrained Video-and-Language Model
is used to generate rewards via the similarity score of the encoding of an episode of interaction of an agent in
its environment, zv with the encoding of a task specifier zd in the form of a video of a human or an animated
character demonstrating a task in their own environment. The similarity score between the latent vectors is
provided as reward to the agent and is used to train online RL methods. The frames below the graphs illustrate
the video used for reward generation.

Using the encodings of these video, we test out RoboCLIP in the 3 corresponding Metaworld tasks -
Button-Press, Drawer-Open and Door-Open. We follow the same setup as in Section 4.2 by first
pretraining methods with their respective reward functions and then finetuning in the deployment
environment with target task reward.
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Figure 8: Multimodal Task Specification. We study
whether video demonstrations of expert demonstra-
tions can be used to define tasks. We use the latent
embedding of a video demonstration of a robot push-
ing a button and subtract from it the embedding of the
text “red button” and add to it the embedding of the
text “green drawer”. This modified latent is used to
generate rewards in the Drawer-Close environment.
We find that the policy trained using this modified
vector outperforms string-only manipulation in the
zero-shot setting.

We compare the performance of the policy trained
with these rewards to GAIL [Ho and Ermon, 2016]
and AIRL [Fu et al., 2017] trained using the
same single expert demonstration as RoboCLIP
on these rewards with state information. These
methods are known to be data-hungry, requiring
multiple demonstrations to train their reward func-
tions. Consequently, they perform much worse
than RoboCLIP, even with 2-3x worse zero-shot
task performance, as can be seen from Figure 7.

4.5 Multimodal Task Specification

Using videos to specify a task description is pos-
sible when either there is access to a robot for
teleoperation as in Section 4.3 or a human can
demonstrate a behavior in their own environment
as in Section 4.4. When these are not the case, a
viable alternative is to utilize multimodal demon-
strations. For example, consider a scenario where
the required task is to push a drawer to close it,
but only a demonstration for pushing a button is
available. In this situation, being able to edit the
video of the off-task demonstration is useful. This
way, one can direct the agent to move its end-effectors to push the drawer instead of the button.

We do this by algebraically modifying the encoding of the video demonstration:

zedited(push drawer) = zvideo(push button)− ztext(button) + ztext(drawer) (3)

where zedited(push drawer) is the vector used to generate rewards in the Drawer-Close environ-
ment, zvideo(push button) is the vector of the encoding of the video of the robot pushing a button,
ztext(button) is the encoding of the string button and ztext(drawer) is the encoding of the string
drawer. As can be seen in Figure 8, defining rewards in such a multimodal manner results in a higher
zero-shot score than the dense task reward and also pretraining on the string-only task reward.
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4.6 Finetuning

In harder environments, and with rewards from OOD videos and language, the robot policy sometimes
approaches the target object, but fails to complete the task. Thus, we tested whether providing a
single demonstration (using observations and actions) was enough to finetune this pretrained policy.

Thus, for this experiment we first (1) pretrain on the RoboCLIP reward from human videos or
language descriptions and then (2) finetune using a single demonstration. As seen in Figure 6, we
find that this converts each of the partially successful policies into complete success and improves the
rewards attained by the policies by 200%. This fine-tuning setup is especially useful in harder tasks
like like Coffee-Push and Faucet-Open and is competitive with state-of-the-art approaches like
FISH [Haldar et al., 2023].

4.7 Ablations

Finally, we investigate the effects of various design decisions in RoboCLIP. First, we study the effect
of additional video demonstrations on agent performance. We also examine the necessity of using a
pre-trained VLM. Recent works like RE3 [Seo et al., 2021, Ulyanov et al., 2018] have shown that
randomly initialized networks often contain useful image priors and can be used to supply rewards
to agents to encourage exploration. Therefore, we test whether a randomly initialized S3D VLM
can supply useful pretraining rewards in the in-domain video demonstration setup as in Section 4.3.
Finally, we study our choice of pre-trained VLM. We examine whether a pretrained CLIP [Radford
et al., 2021], which encodes single images instead of videos and was trained on a different dataset
from S3D, can be used to generate rewards for task completion. In this setup, we record the last
image in an episode of interaction of the agent in its environment and feed it to CLIP trained on
ImageNet [Russakovsky et al., 2015] (i.e., not trained on videos). We then specify the task in natural
language and use the similarity between the embeddings of the textual description of the task and the
final image in the episode to generate a reward that is fed to the agent for online RL.

As seen in Figure 9, using a single video demonstration provides the best signal for pre-
training. We posit that our method performs worse when conditioned on multiple demon-
strations as the linear blending of multiple video embeddings, which is used due to the
scalar product, does not necessarily correspond to the embedding of a successful trajectory.

0
100
200
300
400
500
600

1 demo 2 demo 4 demo

Untrained VLM Static CLIP

Figure 9: Ablations. We study the effects of varying
the number of demonstrations provided to the agent can
have on downstream rewards. We also study the effects
of the training provided to the VLM on the downstream
rewards. Finally, we study whether using CLIP trained
on static images provides good rewards for pretraining.

Crucially, we also find that using the static image
version of CLIP does not provide any useful sig-
nal for pretraining. The zero-shot performance
is very poor, which we posit is because it does
not contain any information about the dynam-
ics of motion and task completion although it
contains semantic meaning about objects in the
frame. On the other hand, video contrastive
learning approaches do contain this information.
This is further evidenced by the fact that in-
spite of poor domain alignment between Franka
Kitchen and the VLM, we find that encodings of
in-domain video demonstrations are still good
for providing a pretraining reward signal to the
agent.

5 Conclusion
Summary. We studied how to distill knowl-
edge contained in large pretrained Video-and-
Language-Models into online RL agents by us-
ing them to generate rewards. We showed that
our method, RoboCLIP, can train robot policies using a single video demonstration or textual descrip-
tion of the task, depending on how well the domain aligns with the VLM. We further investigated
alternative ways to use RoboCLIP, such as using out-of-domain videos or multimodal demonstrations.
Our results showed RoboCLIP outperforms the baselines in various robotic environments.

Limitations and Broader Impact. Since we are using VLMs, the implicit biases within these large
models could percolate into RL agents. Addressing such challenges is necessary, especially since it is
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unclear what the form of biases in RL agents might look like. Currently, our method also faces the
challenge of stable finetuning. We find that in some situations, finetuning on downstream task reward
results in instabilities as seen in the language conditioned reward curve in Figure 8. This instability is
potentially due to the scale of rewards provided to the agent. Rewards from the VLM are fairly low
in absolute value and subsequently, the normalized Q-values in PPO policies are out-of-shape when
finetuned on task rewards. In our experiments, this is not a big problem since the RoboCLIP reward
is already sufficient to produce policies that complete tasks without any deployment environment
finetuning, but this will be essential to solve when deploying this for longer horizon tasks.

Another limitation of our work is that there is no fixed length of pretraining. Our current method
involves pretraining for a fixed number of steps and then picking the best model according to the true
task reward. This is of course difficult when deploying RoboCLIP in a real-world setup as a true
reward function is unavailable and a human must monitor the progress of the agent. We leave this for
future work.
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