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Abstract

In practice, encoding invariances into models improves sample complexity. In this
work, we study this phenomenon from a theoretical perspective. In particular, we
provide minimax optimal rates for kernel ridge regression on compact manifolds,
with a target function that is invariant to a group action on the manifold. Our results
hold for any smooth compact Lie group action, even groups of positive dimension.
For a finite group, the gain effectively multiplies the number of samples by the
group size. For groups of positive dimension, the gain is observed by a reduction in
the manifold’s dimension, in addition to a factor proportional to the volume of the
quotient space. Our proof takes the viewpoint of differential geometry, in contrast
to the more common strategy of using invariant polynomials. This new geometric
viewpoint on learning with invariances may be of independent interest.

1 Introduction

In a broad range of applications, including machine learning for physics, molecular biology, point
clouds, and social networks, the underlying learning problems are invariant with respect to a group
action. The invariances are observed widely in practice, for instance, in the study of high energy
particle physics [21, 32], galaxies [23, 15, 2], and also molecular datasets [1, 59, 36] (see [67] for
a survey). In learning with invariances, one aims to develop powerful architectures that exploit the
problem’s invariance structure as much as possible. An essential question is thus: what are the
fundamental benefits of model invariance, e.g., in terms of sample complexity?

Several architectures for learning with invariances have been proposed for various types of data and
invariances, including DeepSet [70] for sets, Convolutional Neural Networks (CNNs) [28], PointNet
[53, 54] for point clouds with permutation invariance, tensor field neural networks [62] for point
clouds with rotations, translations, and permutations symmetries, Graph Neural Networks (GNNs)
[58], and SignNet and BasisNet [37] for spectral data. Other works study invariance with respect
to the orthogonal group [63], and invariant and equivariant GNNs [42]. These architectures are to
exploit the invariance of data as much as possible, and are invariant/equivariant by design.

In fixed dimensions, one common feature of many invariant models, including those discussed above,
is that the data lie on a compact manifold (not necessarily a sphere, e.g., the Stiefel manifold for
spectral data), and are invariant with respect to a group action on that manifold. Thus, characterizing
the theoretical gain of invariances corresponds to studying the gain of learning under group actions
on manifolds. Adopting this view, in this paper, we answer the question: how much gain in sample
complexity is achievable by encoding invariances? As this problem is algorithm and model dependent,
it is hard to address in general. A focused version of the problem, but still interesting, is to study
this sample complexity gain in kernel-based algorithms, which is what we address here. As neural
networks in certain regimes behave like kernels (for example, the Neural Tangent Kernel (NTK)
[26, 34]), the results on kernels should be understood as relevant to a range of models.
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Formally, we consider the Kernel Ridge Regression (KRR) problem with i.i.d. data on a compact
manifold M. The target function lies in a Reproducing Kernel Hilbert space (RKHS) of Sobolev
functions Hs(M), s ≥ 0. In addition, the target function is invariant to the action of an arbitrary
Lie group G on the manifold. We aim to quantify: by varying the group G, how does the sample
complexity change, and what is the precise gain as G grows?

Main results. Our main results characterize minimax optimal rates for the convergence of the (excess)
population risk (generalization error) of KRR with invariances. More precisely, for the Sobolev
kernel, the most commonly studied case of kernel regression, we prove that a (excess) population risk

(generalization error) ∝
(

σ2 vol(M/G)
n

)s/(s+d/2)

is both achievable and minimax optimal, where σ2

is the variance of the observation noise, vol(M/G) is the volume1 of the corresponding quotient
space, and d is the effective dimension of the quotient space (see Section 4 for a precise definition).
This result shows a reduction in sample complexity in two intuitive ways: (1) scaling the effective
number of samples, and (2) reducing dimension and hence exponent. First, for finite groups, the factor
vol(M/G) reduces to vol(M)/|G|, and can hence be interpreted as scaling the effective number of
samples by the size of the group. That is, each data point conveys the information of |G| data points
due to the invariance. Second, and importantly, the parameter d in the exponent can generally be
much smaller than dim(M), which would be the correspondent of d in the non-invariant case. In the
best case, d = dim(M)− dim(G), where dim(G) is the dimension of the Lie group G. Hence, the
second gain shows a gain in the dimensionality of the space, and hence in the exponent.

Our results generalize and greatly expand previous results by Bietti et al. [5], which only apply to
finite groups and isometric actions and are valid only on spheres. In contrast, we derive optimal
rates for all compact manifolds and smooth compact Lie group actions (not necessarily isometric),
including groups of positive dimension. In particular, the reduction in dimension applies to infinite
groups, since for finite groups dim(G) = 0. Hence, our results reveal a new perspective on the
reduction in sample complexity that was not possible with previous assumptions. Our rates are
consistent with the classical results for learning in Sobolev spaces on manifolds without invariances
[24]. To illustrate our general results, in Section 5, we make them explicit for kernel counterparts of
popular invariant models, such as DeepSets, GNNs, PointNet, and SignNet.

Even though our theoretical results look intuitively reasonable, the proof is challenging. We study the
space of invariant functions as a function space on the quotient space M/G. To bound its complexity,
we develop a dimension counting theorem for functions on the quotient space, which is at the heart
of our analysis and of independent interest. The difficulty is that M/G is not always a manifold.
Moreover, it may exhibit non-trivial boundaries that require boundary conditions to study function
spaces. Different boundary conditions can lead to very different function spaces, and a priori the
appropriate choice for the invariant functions is unclear. We prove that smooth invariant functions on
M satisfy the Neumann boundary condition on the (potential) boundaries of the quotient space, thus
characterizing exactly the space of invariant functions.

The ideas behind the proof are of potential independent interest: we provide a differential geometric
viewpoint of the class of functions defined on manifolds and study group actions on manifolds from
this perspective. This stands in contrast to the classical strategy of using polynomials generating the
class of functions [46, 5], which is restricted to spheres. To the best of our knowledge, the tools used
in this paper are new to the literature on learning with invariances.

In short, in this paper we make the following contributions:

• We characterize the exact sample complexity gain from invariances for kernel regression on
compact manifolds for an arbitrary Lie group action. Our results reveal two ways to reduce
sample complexity, including a new reduction in dimensionality that was not obtainable
with assumptions in prior work.

• Our proof analyzes invariant functions as a function space on the quotient space; this
differential geometric perspective and our new dimension counting theorem, which is at the
heart of our analysis, may be of independent interest.

1The quotient space is not a manifold, but one can still define a notion of volume for it; see Section 4.
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2 Related Work

The perhaps closest related work to this paper is [5], which considers the same setup for finite
isometric actions on spheres. We generalize their result in several aspects: the group actions are not
necessarily finite or isometric, and the compact manifold is arbitrary (including compact submanifolds
of Rd), allowing to observe a new axis of complexity gain. Mei et al. [46] consider invariances for
random features and kernels, but in a different scaling/regime; thus, theirs are not comparable to our
results. For density estimation on manifolds, optimal rates are given in [24], which are consistent
with our theory. McRae et al. [45] show non-asymptotic sample complexity bounds for regression
on manifolds. A similar technique was recently applied in [40], but for a very different setting of
covariate shifts.

The generalization benefits for invariant classifiers are observed in the most basic setup in [61], and
for linear invariant/equivariant networks in [20, 19]. Some works propose covering ideas to measure
the generalization benefit of invariant models [71], while others use properties of the quotient space
[57, 50]. It is known that structured data exhibit certain gains for localized classifiers [14]. Sample
complexity gains are also observed for CNN on images [17, 35]. Wang et al. [66] incorporate more
symmetry in CNNs to improve generalization.

Many works introduce models for learning with invariances for various data types; in addition to
those mentioned in the introduction, there are, e.g., group invariant scattering models [41, 9]. A
probabilistic viewpoint of invariant functions [6] and a functional perspective [72] also exist in the
literature. The connection between group invariances and data augmentation is addressed in [13, 39].

Universal expressiveness has been studied for settings like rotation equivariant point clouds [18],
sets with symmetric elements [44], permutation invariant/equivariant functions [56], invariant neural
networks [55, 69, 43], and graph neural networks [68, 49]. Lawrence et al. [30] study the implicit
bias of linear equivariant networks. For surveys on invariant/equivariant neural networks, see [22, 8].

3 Preliminaries and Problem Statement

Consider a smooth connected compact boundaryless2 dim(M)-dimensional (Riemannian) manifold
(M, g), where g is the Riemannian metric. LetG denote an arbitrary compact Lie group of dimension
dim(G) (i.e., a group with a smooth manifold structure), and assume that G acts smoothly on the
manifold (M, g); this means that each τ ∈ G corresponds to a diffeomorphism τ : M → M, i.e., a
smooth bijection. Without loss of generality, we can assume that G acts isometrically on (M, g), i.e.,
G is a Lie subgroup of the isometry group ISO(M, g). To see why this is not restrictive, given a base
metric g, consider a new metric g̃ = µG(τ

∗g), where µG is the left-invariant Haar (uniform) measure
of G, and τ∗g is the pullback of the metric g by τ . Under the new metric, G acts isometrically
on (M, g̃). We review basic facts about manifolds and their isometry groups in Appendix A.1 and
Appendix A.2.

We are given a dataset S = {(xi, yi) : i = 1, 2, . . . , n} ⊆ (M× R)n of n labeled samples, where
xi ∼i.i.d. µ, for the uniform (Borel) probability measure dµ(x) := 1

vol(M)d volg(x). Here, d volg(x)
denotes the volume element of the manifold defined using the Riemannian metric g. We assume
the uniform sampling for simplicity; our results hold for non-uniform cases, too. The hypothesis
class is a set F ⊆ L2

inv(M, G) ⊆ L2(M) including only G-invariant square-integrable functions
on the manifold, i.e., those f ∈ L2(M) satisfying f(τ(x)) = f(x) for all τ ∈ G. We assume that
there exists a function f⋆ ∈ F such that yi = f⋆(xi) + ϵi for each (xi, yi) ∈ S, where ϵi’s are
conditionally zero-mean random variables with variance σ2, i.e., E[ϵi|xi] = 0 and E[ϵ2i |xi] ≤ σ2.

Let K : M×M denote a continuous positive-definite symmetric (PDS) kernel on the manifold M,
and let H ⊆ L2(M) denote its Reproducing Kernel Hilbert Space (RKHS). The kernel K is called

2Although the results in this paper can be easily extended to manifolds with boundaries, for simplicity, we
focus on the boundaryless case.
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G-invariant 3 if and only if for all x, y ∈ M,

K(x, y) = K(τ(x), τ ′(y)), (1)

for any τ, τ ′ ∈ G. In other words, K(x, y) = K([x], [y]), where [x] := {τ(x) : τ ∈ G} is the orbit
of the group action that includes x.

The Kernel Ridge Regression (KRR) problem on the data S with a G-invariant kernel K asks for the
function f̂ that minimizes

f̂ := argmin
f∈H

{
R̂(f) :=

1

n

n∑
i=1

(yi − f(xi))
2 + η∥f∥2H

}
. (2)

By the representer theorem [48], the optimal solution f̂ ∈ H is of the form f̂ =
∑n

i=1 aiK(xi, .) for
a weight vector a ∈ Rn. The objective function R̂(f̂) can thus be written as

R̂(f̂) = 1
n∥y −Ka∥22 + ηaTKa, (3)

where y = (y1, y2, . . . , yn)
n and K = {K(xi, xj)}ni,j=1 is the Gram matrix. This gives the closed

form solution a = (K + nηI)−1y. Using the population risk R(f) := Ex∼µ[(y − f(x))2], the
effective ridge regression estimator is defined as

f̂eff := argmin
f∈H

{
R(f) + η∥f∥2H

}
. (4)

This paper focuses on the RKHS of Sobolev functions, H = Hs
inv(M) = Hs(M) ∩ L2

inv(M, G),
s ≥ 0. This includes all functions having square-integrable derivatives up to order s. Note that
Hs(M) includes only continuous functions when s > dim(M)/2. Moreover, it contains only
continuously differentiable functions up to order k when s > dim(M)/2+k (Appendix A.10). Note
that Hs(M) is an RKHS if and only if s > dim(M)/2.

4 Main Results

Our first theorem provides an upper bound on the excess population risk, or the generalization error,
of KRR with invariances.

Theorem 4.1 (Convergence rate of KRR with invariances). Consider KRR with invariances with
respect to a Lie group G on the Sobolev space Hs

inv(M), s > d/2, with d = dim(M/G). Assume
that f⋆ ∈ Hsθ

inv(M) for some θ ∈ (0, 1], and let s = d
2 (κ+ 1) for a positive κ. Then,

E
[
R(f̂)−R(f⋆)

]
≤ 32

( 1

κθ

ωd

(2π)d
σ2 vol(M/G)

n

)θs/(θs+d/2)

∥f⋆∥d/(θs+d/2)

Hsθ
inv(M)

, (5)

with the optimal regularization parameter

η =
( 1

2κθ∥f⋆∥2Hsθ
inv(M)

ωd

(2π)d
σ2 vol(M/G)

n

)θs/(θs+d/2)

, (6)

where ωd is the volume of the unit ball in Rd.

Theorem 4.1 allows to estimate the gain in sample complexity from making the hypothesis class
invariant. Setting G = {idG} (i.e., the trivial group) recovers the standard generalization bound
without group invariances. In particular, without invariances, the dimension d becomes dim(M), and
the volume vol(M/G) becomes vol(M). Hence, group invariance can lead to a two-fold gain:

• Exponent: the dimension d in the exponent can be much smaller than the corresponding dim(M).

3This definition is stronger from being shift-invariant; a kernel K is shift-invariant (with respect to the group
G) if and only if K(x, y) = K(τ(x), τ(y)), for all x, y ∈ M, and all τ . For any given shift-invariant kernel
K, one can construct its corresponding G-invariant kernel K̃(x, y) =

∫
G
K(τ(x), y)dµG(τ), where µG is the

left-invariant Haar (uniform) measure of G.
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• Effective number of samples: the number of samples is multiplied by

ωdim(M)/(2π)
dim(M)

ωd/(2π)d
.

vol(M)

vol(M/G)
. (7)

The quantity (7) reduces to |G| if G is a finite group that efficiently acts on M (i.e., if any group
element acts non-trivially on the manifold). Intuitively, any sample conveys the information of |G|
data points, which can be interpreted as having effectively n×|G| samples (compared to non-invariant
KRR with n samples). For groups of positive dimension, it measures how the group is contracting
the volume of the manifold. Note that for finite groups, one always has vol(M)

vol(M/G) ≥ 1.

Dimension and volume for quotient spaces. In Theorem 4.1, the quotient space M/G is defined as
the set of all orbits [x] := {τ(x) : τ ∈ G}, x ∈ M, but M/G is not always a (boundaryless) manifold
(Appendix A.5 and A.6). Thus, it is not immediately possible to define its dimension and volume.
The quotient space is a finite disjoint union of manifolds, each with its specific dimension/volume. In
Appendix A.5 and A.6, we review the theory of quotients of manifolds, and observe that there exists
an open dense subset M0 ⊆ M such that M0/G is open and dense in M/G, and more importantly,
it is a connected precompact manifold. M0/G is called the principal part of the quotient space. It
has the largest dimension among all the manifolds that make up the quotient space.

The projection map π : M0 → M0/G induces a metric on M0/G and this allows us to define
vol(M/G) := vol(M0/G). Note that vol(M/G) depends on the Riemannian metric, which itself
might depend on the group G if we start from a base metric and then deform it to make the action
isometric. The volume vol(M0/G) is computed with respect to the dimension of M0/G, thus being
nonzero even if dim(M0/G) < dim(M).

The effective dimension of the quotient space is defined as d := dim(M0/G). Alternatively, one can
define the effective dimension as

d := dim(M)− dim(G) + min
x∈M

dim(Gx), (8)

where Gx := {τ ∈ G : τ(x) = x} is called the isotropic group of the action at point x ∈ M.
For example, if there exists a point x ∈ M with the trivial isotropy group Gx = {idG}, then
d = dim(M)− dim(G).
Remark 4.2. The invariant Sobolev space satisfies Hs

inv(M) ⊆ Hsθ
inv(M) ⊆ L2

inv(M). If the
regression function f⋆ does not belong to the Sobolev space Hs

inv(M) (i.e., θ ∈ (0, 1)), the achieved
exponent only depends on θs (i.e., the smoothness of the regression function f⋆ and not the smooth-
ness of the kernel). The bound decreases monotonically as s increases: smoother functions are easier
to learn.

The next theorem states our minimax optimality result. For simplicity, we assume θ = 1.

Theorem 4.3 (Minimax optimality). For any estimator f̂ ,

sup
f⋆∈Hs

inv(M)
∥f⋆∥Hs

inv
(M)=1

E
[
R(f̂)−R(f⋆)

]
≥ Cκ

( ωd

(2π)d
σ2 vol(M/G)

n

)s/(s+d/2)

, (9)

where Cκ is a constant only depending on κ, and ωd is the volume of the unit ball in Rd.

An explicit formula for Cκ is given in the appendix. Note that the above minimax lower bound not
only proves that the achieved bound by the KRR estimator is optimal, but also shows the optimality
of the prefactor characterized in Theorem 4.1 with respect to the effective dimension d (up to
multiplicative constants depending on κ).

4.1 Proof Idea and Dimension Counting Bounds

To prove Theorem 4.1, we develop a general formula for the Fourier series of invariant functions on a
manifold. In particular, we argue that a smooth G-invariant function f : M → R corresponds to a
smooth function f̃ : M/G→ R on the quotient space M/G, where f̃([x]) = f(x) for all x ∈ M.
Hence, we view the space of invariant functions as smooth functions on the quotient space.
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The generalization bound essentially depends on a notion of dimension or complexity for this space,
which allows bounding the bias and variance terms. We obtain this by controlling the eigenvalues of
the Laplace-Beltrami operator, which is specifically suitable for Sobolev kernels.

The Laplace-Beltrami operator ∆g is the generalization of the usual definition of the Laplacian
operator on the Euclidean space Rd to any smooth manifold. It can be diagonalized in L2(M) [12].
In particular, there exists an orthonormal basis {ϕℓ(x)}∞ℓ=0 of L2(M) starting from the constant
function ϕ0 ≡ 1 such that ∆gϕℓ + λℓϕℓ = 0, for the discrete spectrum 0 = λ0 < λ1 ≤ λ2 ≤ . . ..
Let us call {ϕℓ(x)}∞ℓ=0 the Laplace-Beltrami basis for L2(M). Our notion of dimension of the
function space is N(λ) := #{ℓ : λℓ ≤ λ}. It can be shown that if a Lie group G acts smoothly
on the compact manifold M, then G also acts on eigenspaces of the Laplace-Beltrami operator.
Accordingly, we define the dimension N(λ;G) as the dimension of projecting the eigenspaces of
the Laplace-Beltrami operator on M onto the space of G-invariant functions, that is, the number of
invariant eigenfunctions with eigenvalue up to λ (Appendix A.7).

Characterizing the asymptotic behavior of N(λ;G) is essential for proving our main results on the
gain of invariances. Intuitively, the quantity N(λ;G)/N(λ) corresponds to the fraction of functions
that are G-invariant. One of this paper’s main contributions is to determine the exact asymptotic
behavior of this quantity for the analysis of KRR. The tight bound on N(λ;G) can be of potential
independent interest to other problems related to learning with invariances.
Theorem 4.4 (Dimension counting theorem). Let (M, g) be a smooth connected compact boundary-
less Riemannian manifold of dimension dim(M) and let G be a compact Lie group of dimension
dim(G) acting isometrically on (M, g). Recall the definition of the effective dimension of the quotient
space d := dim(M)− dim(G) + minx∈M dim(Gx). Then,

N(λ;G) =
ωd

(2π)d
vol(M/G)λd/2 +O(λ

d−1
2 ), (10)

as λ→ ∞, where ωd is the volume of the unit ball in Rd.

In Appendix B, we prove a generalized version of the above bound (i.e., a local version).

To see how this counting bound relates to Sobolev spaces, note that by Mercer’s theorem, a positive-
definite symmetric (PDS) kernelK : M×M → R can be diagonalized in an appropriate orthonormal
basis of functions in L2(M). Indeed, the kernel of the Sobolev space Hs(M) ⊆ L2(M) is
diagonalizable in the Laplace-Beltrami basis4:

KHs(M)(x, y) =

∞∑
ℓ=0

min(1, λ−s
ℓ )ϕℓ(x)ϕℓ(y), (11)

where ϕℓ, ℓ = 0, 1, . . ., form a basis for L2(M) such that ∆gϕℓ + λℓϕℓ = 0 for each ℓ. For the
G-invariant RKHS Hs

inv(M), the sum is restricted to G-invariant eigenfunctions (Appendix A.9). It
is evident that Theorem 4.4 provides an important tool for analyzing the Sobolev kernel development
with respect to the eigenfunctions of Laplacian.

4.2 Proof Idea of the Dimension Counting Theorem

For Riemannian manifolds, Weyl’s law (Appendix A.4) determines the asymptotic distribution of
eigenvalues. The bound in Theorem 4.4 indeed corresponds to Weyl’s law, if we write it in terms of
the quotient space M/G. But, in general, Weyl’s law does not apply to the quotient space M/G.
So this intuition is not rigorous. First, the quotient space is not always a manifold (Appendix A.5).
Second, even if we restrict our attention to the principal part M0/G discussed above, which is
provably a manifold, other complications arise.

In particular, the quotient M0/G can exhibit a boundary, even if the original space is boundaryless.
For a concrete example, consider the circle S1 = {(x, y) : x2 + y2 = 1}, parameterized by the angle
θ ∈ [0, 2π), under the isometric action G = {idG, τ}, where τ(θ) = π − θ is the reflection across
the y-axis. The resulting space is a semicircle with two boundary points (0,±1).

4Many kernels in practice satisfy this condition, e.g., any dot-product kernel on a sphere. While we present
the results of this paper for Sobolev kernels, one can use any kernel satisfying the condition in Proposition A.9
and apply the same techniques to obtain its convergence rates.
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If the space has a boundary, then a dimension counting result like Weyl’s law for manifolds is only
true with an appropriate boundary condition for finding the eigenfunctions. In general, different
boundary conditions can lead to completely different function spaces for manifolds with boundaries.
In the proof, we show that the projections of invariant functions onto the quotient space satisfy the
Neumann boundary condition on the (potential) boundaries of the quotient space, thereby exactly
characterizing the space of invariant functions, which can indeed be of independent interest.

To see how the Neumann boundary condition appears, consider the circle again and note that its
eigenfunctions are the constant function ϕ0 ≡ 1, sin(kθ), and cos(kθ), with eigenvalues λ = k2,
k ∈ N. Observe that every eigenvalue is of multiplicity two, except for the zero eigenvalue, which has
a multiplicity of one. For the quotient space S1/G, however, the eigenfunctions are just the constant
function, sin((2k+1)θ), and cos(2kθ), k ∈ Z (note how roughly half of the eigenfunctions survived,
as |G| = 2). In particular, the boundary points (0,±1) satisfy the Neumann boundary condition,
while the Dirichlet boundary condition fails to hold; look at the eigenfunctions at θ = π/2. More
precisely, if we consider the Dirichlet boundary condition, then we get a function space that includes
only functions vanishing at the boundary points: ϕ(π/2) = ϕ(3π/2) = 0. This clearly does not
correspond to the space of invariant functions. We generalize this idea in our proof to any manifold
and group using differential geometric tools (see Appendix A.5 and Appendix A.6).

In the above example, the boundary points come from the fact that the group action has non-trivial
fixed points, i.e., (0,±1) are the fixed points. If the action is free, meaning that we have only trivial
fixed points, then the quotient space is indeed a boundaryless manifold. Thus, the challenges towards
the proof arise from the existence of non-trivial fixed points.

Comparison to prior work. Lastly, we discuss an example on the two-dimensional flat torus
T2 = R2/2πZ2, which shows that the proof ideas in [5] are indeed not applicable for general
manifolds even with finite group actions. For this boundaryless manifold, consider the isometric
action G = {idG, τ}, where τ(θ1, θ2) = (θ1 + π, θ2), and note that the quotient space T2/G is again
a torus. In this case, the eigenfunctions of T2 are the functions exp(ik1x+ ik2y), for all k1, k2 ∈ Z,
with eigenvalue λ = k21 + k22 . But eigenfunctions of the quotient space are those with even k1. This
means that some eigenspaces of T2 (such as those with eigenvalue λ = 2(2n+ 1)2) are completely
lost after projection onto the space of invariant functions. This means that the method used in [5] fails
to give a non-trivial bound here, because it relies on the fraction of eigenfunctions that survive in
each eigenspace. Note that in this example, the quotient space is boundaryless, and the action is free.

4.3 Application to Finite-Dimensional Kernels

Applications of Theorem 4.4 are not limited to Sobolev spaces. As an example, we study KRR with
finite-dimensional PDS kernels K : M×M → R with an RKHS H ⊆ L2(M) under invariances
(the inclusion must be understood in terms of Hilbert spaces, i.e., the inner product on H is just
the usual inner product defined on L2(M), making it completely different from Sobolev spaces).
Examples of these finite-dimensional spaces are random feature models and two-layer neural networks
in the lazy training regime. In this section, we will relate the generalization error of KRR to the
average amount of fluctuations of functions in the space and use our dimension counting result to
study the gain of invariances.

To formalize this notion of complexity, we need to review some definitions. We measure fluctuation
via the Dirichlet form E , a bilinear form defined as

E(f1, f2) :=
∫
M
⟨∇gf1(x),∇gf2(x)⟩gdvolg(x), (12)

for any two smooth functions f1, f2 : M → R. It can be easily extended (continuously) to any
Sobolev space Hs(M), s ≥ 1. For each f ∈ Hs(M), the diagonal quantity E(f, f) is called the
Dirichlet energy of the function, and is a measure of complexity of a function. Functions with low
Dirichlet energy have little fluctuation; intuitively, those have low (normalized) Lipschitz constants
on average. Since E(af, af) = |a|2E(f, f), it is more accurate to restrict to the case ∥f∥L2(M) = 1
while studying low-energy functions.
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One important example of a finite-dimensional function space is the space of G-invariant low-energy
functions, which is generated by a finite-dimensional G-invariant kernel K:

K(x, y) =

D−1∑
ℓ=0

ϕℓ(x)ϕℓ(y), (13)

for any x, y ∈ M. The non-zero G-invariant eigenfunctions ϕℓ are sorted with respect to their
eigenvalues (Appendix A.9). Clearly, K is a kernel of dimension D, and it is diagonal in the basis
of the Laplace-Beltrami operator’s eigenfunctions. The RKHS of K is also of finite dimension
dim(HG) = D and can be written as

HG :=
{
f ∈ L2(M) : f =

D−1∑
ℓ=0

⟨f, ϕℓ⟩L2(M)ϕℓ

}
⊆ L2

inv(M, G). (14)

To obtain generalization bounds, we will need to bound a complexity measure of the space of low-
energy invariant functions. As a complexity measure for finite function spaces H ⊆ L2

inv(M, G), we
use the Dirichlet energy E(f, f):

L(H) := max
f∈H

{
E(f, f) : ∥f∥L2(M) ≤ 1

}
. (15)

For a vector space H, larger L(H) corresponds to having functions with more (normalized) fluctuation.
Thus, L(V ) is a notion of complexity for the vector space V . The following proposition shows how
HG is the simplest subspace of L2(M) with dimension D.
Proposition 4.5. For any D-dimensional vector space H ⊆ L2

inv(M, G),

L(H) ≥ λD−1, (16)

and the equality is only achieved when H = HG with D = dim(HG). In particular, if L(H) <∞,
then H is of finite dimension. The eigenvalues are sorted according to G-invariant eigenspaces
(Appendix A.9).

Using the dimension counting bound in Theorem 4.4, we can explicitly relate the dimension of HG to
its complexity L(HG). This will be useful for studying the gain of invariances for finite-dimensional
kernels.
Theorem 4.6 (Dimension of the space of low-energy functions). Under the assumptions in Theorem
4.4, one has the following relation between the dimension of the vector space HG and its complexity
L(HG):

dim(HG) =
ωd

(2π)d
vol(M/G)L(HG)

d/2 +O(L(HG)
d−1
2 ), (17)

where ωd is the volume of the unit ball in Rd.

Given the above result, in conjunction with Proposition 4.5, we can obtain the following generalization
error for any finite-dimensional RKHS H ⊆ L2(M).
Corollary 4.7 (Convergence rate of KRR with invariances for finite dimensional kernels). Under
the assumptions in Theorem 4.4, for KRR with an arbitrary finite-dimensional G−invariant RKHS
H ⊆ L2(M),

E
[
R(f̂)−R(f⋆)

]
≲
( ωd

(2π)d
σ2 vol(M/G)

n

)
L(H)d/2∥f⋆∥2L2(M), (18)

where ≲ hides absolute constants. Moreover, the upper bound is minimax optimal if H = HG

(similar to Theorem 4.3).

Corollary 4.7 shows the same gain of invariances in terms of sample complexity as Theorem 4.1.
Note that in the asymptotic analysis for the above corollary, we assume that L(H) is large enough,
allowing us to use Theorem 4.6.

5 Examples and Applications

Next, we make our general results concrete for a number of popular learning settings with invariances.
This yields results for kernel versions of popular corresponding architectures.
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5.1 Sets

When learning with sets, each data instance is a subset {x1, x2 . . . , xm} of elements xi ∈ X , i ∈ [m],
from a given space X . A set is invariant under permutations of its elements, i.e.,

{x1, x2 . . . , xm} = {xσ1
, xσ2

. . . , xσm
}, (19)

where σ : [m] → [m] can be any permutation. A successful permutation invariant architecture for
learning on sets is DeepSets [70]. Similarly, PointNets are a permutation invariant architecture for
point clouds [53, 54]. To analyze learning with sets and kernel versions of these architectures using
our formulation, we assume sets of fixed cardinality m. If the space X has a manifold structure, then
one can identify each data instance as a point on the product manifold

M = Xm = X × X · · · × X︸ ︷︷ ︸
m

. (20)

The task is invariant to the action of the symmetric group Sm on M; each σ ∈ Sm acts on M by
permuting the coordinates as in Equation (19). This action is isometric, and we have dim(Sm) = 0
and |Sm| = 1/m!. Theorem 4.1 hence implies that the sample complexity gain from permutation
invariance is having effectively n×m! samples, where n is the number of observed sets. In fact, this
result holds (for KRR) for any space X with a manifold structure.

5.2 Images

For images, we need translation invariant models. For instance, Convolutional Neural Networks
(CNNs) [31, 28] compute translation invariant image representations. Each image is a 2D array
(xi,j)

m−1
i,j=0 such that xi,j ∈ X for a space X (e.g., for RGB, X ⊆ R3 is a compact subset). If X has a

manifold structure, then one can identify each image with a point on the manifold

M =

m−1⊗
i,j=0

X i,j , (21)

where X i,j is a copy of X . The learning task is invariant under the action of the finite group
(Z/mZ)× (Z/mZ) on M by shifting pixels: each (p, q) ∈ (Z/mZ)× (Z/mZ) corresponds to the
isometry (xi,j)

m
i,j=1 7→ (xi+p,j+q)

m
i,j=1 (the sum is understood modulo m). As a result, the sample

complexity gain corresponds to having effectively n×m2 samples, where n is the number of images.

5.3 Point Clouds

3D point clouds have rotation, translation, and permutation symmetries. Tensor field neural networks
[62] respect these invariances. We view each 3D point cloud as a set {x1, x2 . . . , xm} such that xi ∈
R3/Z3 ≡ [0, 1]3, which is essentially a point on the manifold M = (R3/Z3)m with dim(M) = 3m.
The learning task is invariant with respect to permuting the coordinates of M, translating all points
xi 7→ xi + r for some r ∈ R3, and jointly rotating all points, xi 7→ Qxi for an orthogonal matrix Q.
We denote the group defined by those three operations as G and observe that dim(G) = 6. Thus, the
gains of invariances in sample complexity are (1) reducing the dimension d of the space from 3m to
3m− 6, and (2) having effectively n×m! samples, where n is the number of point clouds.

5.4 Sign Flips of Eigenvectors

SignNet [37] is a recent architecture for learning functions of eigenvectors in a spectral decomposition.
Each data instance is a sequence of eigenvectors (v1, v2, . . . , vm), vi ∈ Rd, and flipping the sign of
an eigenvector vi → −vi does not change its eigenspace. The spectral data can be considered as a
point on the manifold M = (Sd−1)m (where Sd−1 is the (d− 1)-dimensional sphere), while the task
is invariant to all 2m possibilities of sign flips. The sample complexity gain of invariances is thus
having effectively n× 2m samples, where n is the number of spectral data points.

5.5 Changes of Basis for Eigenvectors

BasisNet [37] represents spectral data with eigenvalue multiplicities. Each input instance is a
sequence of eigenspaces (V1, V2, . . . , Vp), and each Vi is represented by an orthonormal basis such
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as (vi,1, vi,2, . . . , vi,mi
) ∈ (Rd)mi . This is the Stiefel manifold with dimension dmi − mi(mi+1)

2 .
Thus, the spectral data lie on a manifold of dimension

dim(M) =

p∑
i=1

(
dmi −mi(mi + 1)/2

)
. (22)

The vector spaces’ representations are invariant to a change of basis, i.e., the group action is defined
as (vi,1, vi,2, . . . , vi,mi) 7→ (Qvi,1, Qvi,2, . . . , Qvi,mi) for any orthogonal matrix Q that fixes the
eigenspace Vi. If G denotes this group of invariances, then

dim(G) =

p∑
i=1

(
mi(mi − 1)/2

)
. (23)

Thus, the gain of invariances is a reduction of the manifold’s dimension to
∑p

i=1(dmi −m2
i ). For

example, if mi = m for all i, then with d = pm we get dim(M) = d2 − 1
2d(m+ 1) while after the

reduction we have dim(M/G) = d2 − dm. In this example, the quotient space is the Grassmannian
manifold.

5.6 Learning on Graphs

Each weighted, possibly directed graph on m vertices with initial node attributes can be naturally
encoded by its adjacency matrix A ∈ Rm×m. Thus, the space of all weighted directed graphs on m
vertices corresponds to a compact manifold M ⊆ Rm×m if the weights are restricted to a bounded
set. Learning tasks on graphs are invariant to permutations of rows and columns, i.e., the action of
the symmetric group as A 7→ P−1AP for any permutation matrix P . For instance, Graph Neural
Networks (GNNs) and graph kernels [64] implement this invariance. The sample complexity gain
from invariances is thus evident; it corresponds to having effectively n×m! samples, where n is the
number of sampled graphs.

5.7 Hyperbolic Spaces, Tori, etc.

One important feature of the results in this paper is that they are not restricted to compact submanifolds
of Euclidean spaces. In particular, the results are also valid for compact hyperbolic spaces; see [51]
for a survey on applications of hyperbolic spaces in machine learning. Another type of space where
our results are still valid are tori, i.e., Td := (S1)d. Tori naturally occur for modeling joints in robot
control [38]. In fact, Riemannian manifolds are beneficial in a broader context for learning in robotics,
e.g., arising from constraints, as surveyed in [10]. Our results apply to invariant learning in all of
these settings, too.

6 Conclusion

In this work, we derived new generalization bounds for learning with invariances. These generalization
bounds show a two-fold gain in sample complexity: (1) in the dimension term in the exponent, and
(2) in the effective number of samples. Our results significantly generalize the range of settings where
the bounds apply. In particular, (1) goes beyond prior work, since it applies to groups of positive
dimension, whereas prior work assumed finite dimensions. At the heart of our analysis is a new
dimension counting bound for invariant functions on manifolds, which we expect to be useful more
generally for analyzing learning with invariances. We prove this bound via differential geometry and
show how to overcome several technical challenges related to the properties of the quotient space.
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A Preliminaries

A.1 Manifolds

A completely metrizable second countable topological space M that is locally homeomorphic to
the Euclidean space Rdim(M) is called a manifold of dimension dim(M). Sphere, torus, and Rd are
some examples of manifolds. A Riemannian manifold (M, g) is a manifold that is equipped with a
smooth inner product g on the tangent space TxM around each point x ∈ M. A Riemannian metric
tensor g allows the use of the following two important tools in the study of manifolds: (i) the geodesic
distance dM(x, y) between any points x, y ∈ M, and (ii) the volume element d volg(x), that defines
a Borel measure on the manifold (on the Borel sigma-algebra of open subsets of the manifold). The
distance function and the volume element depend on the Riemannian metric tensor g and make the
manifold a metric-measure space. The functional spaces on manifolds, such as Lp(M), p ∈ [1,∞],
and the Sobolev spaces Hs(M), s ≥ 0, are defined similar to the Euclidean spaces.

A.2 Isometries

A bijection τ : M → M is called an isometry of (M, g), if and only if dM(τ(x), τ(y)) =
dM(x, y) for all x, y ∈ M. The space of isometries of (M, g) forms a group under composition,
denoted by ISO(M, g) or simply by ISO(M). By the Myers–Steenrod theorem, for connected
manifolds, each τ ∈ ISO(M, g) is not only bijective but indeed smooth (i.e., infinitely many
times differentiable) [52]. Moreover, ISO(M, g) is a Lie group (i.e., a smooth manifold which
is simultaneously a group) of dimension at most dim(M)(dim(M)+1)

2 . Another characterization of
isometries on manifolds is based on metric tensors, where a function τ : M → M is an isometry
if and only if the pullback of the metric tensor g by τ is itself, i.e., g = τ∗g. This means that τ
locally preserved inner products of tangent vectors. For the applications in this paper, whenever it is
not mentioned, a dim(M)−dimensional Riemannian manifolds (M, g) is smooth, connected, and
compact boundaryless.

A.3 Laplacain on Manifolds

The Laplace-Beltrami operator is the unique continuous linear operator ∆g : Hs(M) → H(s−2)(M)
satisfying the property∫

M
ψ(x)∆gϕ(x)dvolg(x) = −

∫
M
⟨∇gϕ(x),∇gψ(x)⟩gdvolg(x), (24)

for any ϕ, ψ ∈ Hs(M). This generalizes the usual definition of the Laplacian operator ∆ =
∂21 + · · ·+∂2d , defined on the Euclidean space Rd, which satisfies this property by integration by parts.
The kernel of the operator ∆g includes the so-called harmonic functions. In the case of compact
boundaryless manifolds, the only harmonic functions are constants.

The operator (−∆g) is elliptic, self-adjoint, and can be diagonalized in L2(M) [12]. In particular,
there exists an orthonormal basis {ϕℓ(x)}∞ℓ=0 of L2(M) starting from the constant function ϕ0 ≡ 1
such that ∆gϕℓ + λℓϕℓ = 0, for the discrete spectrum 0 = λ0 < λ1 ≤ λ2 ≤ . . .. Note that
eigenvalues appear in this sequence with their multiplicities. Let us call {ϕℓ(x)}∞ℓ=0 the Laplace-
Beltrami basis for L2(M). Using the above identity, for an arbitrary f ∈ L2(M) with the expansion
f =

∑∞
ℓ=0⟨f, ϕℓ⟩L2(M)ϕℓ and L2(M)−norm ∥f∥2L2(M) =

∑∞
ℓ=0 |⟨f, ϕℓ⟩L2(M)|2, we have

∆gf = −
∑∞

ℓ=0 λℓ⟨f, ϕℓ⟩ϕℓ and

∥∇gf∥2L2(M) =

∫
M
⟨∇gf(x),∇gf(x)⟩gdvolg(x) (25)

= −
∫
M
f(x)∆gf(x)dvolg(x) (26)

=

∞∑
ℓ=0

λℓ⟨f, ϕℓ⟩2L2(M), (27)

whenever the sums converge.
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A.4 (Local) Weyl’s Law

It is known that the Laplace-Beltrami spectrum can encode many manifold geometric properties, such
as dimension, volume, etc. However, it is also known that isospectral (non-isomorphic) manifolds
exist. Still, it provides rich information about the manifold. Let us denote the set of distinct
eigenvalues of a manifold by Spec(M) := {λ0, λ1, . . .} ⊂ R≥0.

Weyl’s law characterizes the asymptotic distribution of the eigenvalues in a closed-form formula. Let
us denote the number of eigenvalues of the Laplace-Beltrami operator up to λ as N(λ) := #{ℓ :
λℓ ≤ λ}.
Proposition A.1 (Local Weyl’s law, [11, 25, 60]). Let (M, g) denote an arbitrary
dim(M)−dimensional compact boundaryless Riemannian manifold. Then, for all x ∈ M,

Nx(λ) :=
∑

ℓ:λℓ≤λ

|ϕℓ(x)|2 =
ωdim(M)

(2π)dim(M)
vol(M)λdim(M)/2 +O(λ

dim(M)−1
2 ), (28)

as λ → ∞, where ωd = πd/2

Γ( d
2+1)

is the volume of the unit d−ball in the Euclidean space Rd. The
constant in the error term is indeed independent of x and may only depend on the sectional curvature
and the injectivity radius of the manifold [16]. As a byproduct, the following L∞ upper bound also
holds:

max
λℓ≤λ

max
x∈M

|ϕℓ(x)| = O
(
λ

dim(M)−1
4

)
. (29)

By definition, N(λ) =
∫
MNx(λ)d volg(x) and thus, while the above result is called the local Weyl’s

law, the traditional Weyl’s law can be easily derived as N(λ) =
ωdim(M)

(2π)dim(M) vol(M)λdim(M)/2 +

O(λ
dim(M)−1

2 ). For compact Riemannian manifolds (M, g) with boundary, to define the eigenfunc-
tions of the Laplace-Beltrami operator (i.e., the solutions to the equation ∆gϕ+ λϕ = 0), one has
to consider boundary conditions. For the Dirichlet boundary condition (i.e., assuming the solution
vanishes on the boundary), or the Neumann boundary condition (i.e., assuming the solution’s gradient
vanishes on the outward normal vector at each point of the boundary), the above claim on the local
behavior of eigenfunctions still holds.

The asymptotic distribution of eigenvalues allows us to define the Minakshisundaram–Pleijel zeta
function of the manifold (M, g) as follows [47]:

ZM(s) =

∞∑
ℓ=1

λ−s
ℓ =

∫ ∞

0+

λ−sdN(λ); ℑ(s) > dim(M)

2
, (30)

where the sum converges absolutely by Weyl’s law. Note that the integral must be understood as
a Riemann–Stieltjes integral. The zeta function can be analytically continued to a meromorphic
function on the complex plane and has a functional equation. By integration by parts,

ZM(s) =

∫ ∞

0+

λ−sdN(λ) (31)

= λ−sN(λ)
∣∣∞
0+

−
∫ ∞

0+
N(λ)(−s)λ−s−1dλ (32)

= s

∫ ∞

0+

N(λ)λ−s−1dλ, (33)

by N(λ) = O(λdim(M)/2) and the assumption ℑ(s) > dim(M)
2 .

For more information on the spectral theory of Riemannian manifolds, see [29].

A.5 Quotient Manifold Theorem

This part and the next subsection review some classical results about group actions on manifolds
(mostly from [33, 27, 7]). Let G be an arbitrary group. The action of G on the manifold M is
a mapping θ : G × M → M such that θ(idG, .) = idM and θ(τ1τ2, .) = θ(τ1, θ(τ2, .)) for any
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τ1, τ2 ∈ G. In particular, any group action gives a G−indexed set of bijections on M with respect to
the group law of G. For example, ISO(M) acts on M by the isometric transformations (which are
bijections by definition).

For each x ∈ M, the orbit of x is defined as the set of all images of the group transformations at x
on the manifold:

[x] :=
{
θ(τ, x) ∈ M : τ ∈ G

}
. (34)

Also, for any x ∈ M, define the isotropy group Gx := {τ ∈ G : θ(τ, x) = x}. In other words, the
isotropy group Gx, as a subgroup of G, includes all the transformations τ ∈ G which have x ∈ M
as a fixed point. The set of all orbits is denoted by M/G and is called the orbit space (or sometimes
the fundamental domain) of the action on the manifold:

M/G :=
{
[x] : x ∈ M

}
. (35)

It is known that M/G admits a unique topological structure coming from the topology of the
manifold, making the projection (or the quotient) map π : M → M/G continuous.

However, M/G is not always a manifold. For example, if M = Rd and G = GLd(R), then the
resulting orbit space M/G is not Hausdorff. Even in cases where it is a manifold, the orbit space
M/G may have boundaries while M is boundaryless. For example, consider the action of the
orthogonal group O(d) := {A ∈ GLd(R) : ATA = ATA = Id} on the manifold M = Rd, where
the orbit space becomes M/G = R≥0. For the purpose of this paper, boundaries are important and
affect the results drastically.

The quotient manifold theorem gives a number of sufficient conditions on the manifold/group, such
that the orbit space is always a manifold. To introduce the theorem, we need to review a few classical
definitions as follows.

A group action is called free, if and only if it has no non-trivial fixed points, i.e., θ(τ, x) ̸= x for all
τ ̸= idG (equivalently, Gx = {idG} for all x ∈ M). For example, the action of the group of linear
transformations θ(r, x) = x+ r, for each x, r ∈ Rd, on the manifold Rd is a free action. An action
is called smooth if and only if for each τ ∈ G, the mapping θ(τ, .) : M → M is smooth. An action
is called proper, if and only if the map

(
θ(τ, x), x

)
: G × M → M × M is a proper map. As a

sufficient condition, every continuous action of a compact Lie group G on a manifold is proper. To
simplify our notation, let us define τ(x) := θ(τ, x).
Theorem A.2 (Quotient Manifold Theorem, [33]). Let G be a Lie group acting smoothly, freely, and
properly on a smooth manifold (M, g). Then, the orbit space (or the fundamental domain) M/G is
a smooth manifold of dimension dim(M)− dim(G) with a unique smooth structure such that the
projection (or the quotient) map π : M → M/G is a smooth submersion.

Corollary A.3. Suppose M is a connected smooth compact boundaryless manifold. Then, the
isometry group ISO(M) is a compact Lie group acting smoothly on M. Thus, if G is a closed
subgroup of ISO(M), then the action of G on M is smooth and proper. In addition, if this action is
free, then the orbit space M/G becomes a connected closed (i.e, compact boundaryless) manifold of
dimension dim(M)− dim(G).

Furthermore, assuming (M, g) is a Riemannian manifold, there exists a unique Riemannian metric g̃
such that the projection map π : (M, g) → (M/G, g̃) is a Riemannian submersion.

There is indeed a natural way to interpret these results. Given a manifold (M, g), the orbit space is
somehow the shrinkage of the manifold to represent exactly one representative from each orbit, and
the metric g̃ is just identical to the original metric if the tangent lines survive; otherwise, the tangent
lines are killed, and the inner product defined by g̃ is zero.

A.6 Principal Orbit Theorem

The quotient manifold theorem is, however, restricted to free actions. Unfortunately, this assumption
is generally necessary to prove that the quotient space is a compact boundaryless manifold. In the
lack of freeness, it is still possible to show that the quotient space is almost a manifold (possibly
with boundary). First, let us introduce a few definitions. Two isotropy groups Gx and Gy are called
conjugate (with respect to G), if and only if τ−1Gxτ = Gy for some τ ∈ G. This is a relation on the
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manifold, and the isotropy type of any x ∈ M is defined as the equivalence class of its isotropy group,
denoted as [Gx]. Since all the points on an orbit have the same isotropy type (by definition), one can
also define the isotropy type of an orbit in the same way. Given the conjugacy relation, a partial order
can be naturally defined as follows: H1 ⪯ H2 if and only if H1 is conjugate to a subgroup of H2.
Since the definition is unchanged modulo conjugate groups, one can also restrict the partial order
to the conjugacy class of subgroups. This allows us to define a partial order on orbits as well: for
any two orbits [x], [y], we write [x] ≤ [y] if and only if Gy ⪯ Gx. For example, if Gx = {idG}, then
[y] ≤ [x] for all y ∈ M.

Given the above formal definitions, the quotient manifold theorem assumes that all the orbits have a
unique maximal orbit type, namely, the orbit type [{idG}]. By removing the freeness assumption,
however, there might be several orbit types that are not necessarily comparable with respect to the
partial order. However, the principal orbit type theorem shows that there always exists a unique
maximal orbit type, where when the action is restricted to those orbits, it defines a Riemannian
submersion (thus the image is a manifold), and moreover, the principal orbits (those orbit with the
maximal orbit types) are dense in the manifold M. This shows that we almost get a nice space, which
suffices for our subsequent proofs in the next sections.

Theorem A.4 (Principal Orbit Theorem). Let G be a compact Lie group acting isometrically on a
Riemannian manifold (M, g). Then, there exists an open dense subset M0 ⊆ M, such that [x] ≥ [y]
for all x ∈ M0 and y ∈ M. Moreover, the natural projection π : M0 → M0/G ⊆ M/G is a
Riemannian submersion. Also, the set M0/G ⊆ M/G is open, dense, and connected in M/G.

Corollary A.5. One has the decomposition

M/G =
⊔

[H]⪯G

M[H]/G, (36)

where M[H] := {x ∈ M : [Gx] = [H]} is a submanifold of M. The disjoint union is taken over all
isotropy types of the group action on the manifold. The map π : M[H] → M[H]/G is a Riemannian
submersion; therefore its image is a manifold. By an application of the Slice theorem, one can observe
that only finitely many isotropy types can exist when G and M are both compact. Thus, the disjoint
union is indeed over finitely many precompact smooth manifolds. Among those, the principal part
M0/G := M[H0]/G is dense in M/G, where [H0] is the unique maximal isotropy type of the group
action.

Intuitively, the above corollary shows that the quotient space can be decomposed to finitely many
"pieces," and each piece has a nice smooth structure. In the case of a free action, the decomposition
above reduces to just one "piece" with the unique trivial maximal orbit type (i.e., having a trivial
isotropy group). The dimension of each "piece" M[H]/G can be computed as

dim(M[H]/G) = dim(M)− dim(G) + dim(H). (37)

The effective dimension of the quotient space is then defined as

d := dim(M[H0]/G) = dim(M0/G) = dim(M)− dim(G) + dim(H0), (38)

where [H0] is the unique maximal isotropy type of the group action.

A.7 Isometries and Laplace-Beltrami Eigenspaces

In Weyl’s law, the eigenvalues are counted with their multiplicities. Let us define Vλ as the eigenspace
of the eigenvalue λ with the finite dimension dim(Vλ). Then, N(λ) =

∑
λ′≤λ dim(Vλ′).

As a well-known fact from differential geometry, the Laplace-Beltrami operator ∆g commutes with
all isometries τ ∈ ISO(M). Thus,

∆gϕℓ + λℓϕℓ = 0 ⇐⇒ ∆g(ϕℓ ◦ τ) + λℓ(ϕℓ ◦ τ) = 0. (39)

This means that the eigenspaces of the Laplace-Beltrami operator are invariant with respect to the
action of the isometry group on the manifold.

Corollary A.6. L2(M) =
⊕

λ∈Spec(M) Vλ, and the isometry group of the manifold ISO(M) (and
thus all its closed subgroups) acts on each eigenspace Vλ.
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Now consider an arbitrary closed subgroup G of the isometry group ISO(M). Then G acts on
the eigenspaces of the Laplace-Beltrami operator and each τ ∈ G corresponds to a bijective linear
transformation f 7→ f ◦ τ , denoted as τ∗λ : Vλ → Vλ. There is a natural way to extend this operator
into the whole space L2(M) so one may consider τ∗λ : L2(M) → L2(M). Since τ is an isometry,
for any ϕ ∈ Vλ,

∥τ∗λϕ∥2L2(M) =

∫
M

|τ∗λϕ(x)|2dvolg(x) (40)

=

∫
M

|ϕ(x)|2dvolg(x) (41)

= ∥ϕ∥2L2(M) (42)

= 1, (43)

since d volg is invariant with respect to any isometry τ ∈ G. This shows that the bijective linear
transformation τ∗λ is indeed a representation of the group G into the orthogonal group O(dim(Vλ))
for each eigenvalue λ.

In this paper, we are interested in the space of invariant functions defined with respect to an arbitrary
closed subgroup G of the isometry group ISO(M).
Definition A.7. The space of invariant functions with respect to a closed subgroup G of the isometry
group ISO(M) is defined as

L2
inv(M, G) :=

{
f ∈ L2(M) : ∀τ ∈ G : τ∗f := f ◦ τ = f

}
⊆ L2(M), (44)

as a closed subspace of L2(M).

Let dτ denote the Haar measure (i.e., the uniform measure) associated with a closed subgroup G of
the isometry group ISO(M). Let the projection operator PG : L2(M) → L2

inv(M, G) be defined as
f(x) 7→

∫
G
(f ◦ τ)(x)dτ =

∫
G
τ∗f(x)dτ . Claerly, f ∈ L2

inv(M, G) if and only if f ∈ ker(I −PG).

Proposition A.8. For any closed subgroup G of the isometry group ISO(M), the following decom-
position holds:

L2
inv(M, G) = ker(I − PG) (45)

=
⋂

λ∈Spec(M)
τ∈G

ker(I − τ∗λ) (46)

=
⊕

λ∈Spec(M)

Vλ,G, (47)

where each Vλ,G is a linear subspace of Vλ defined as

Vλ,G :=
{
f ∈ Vλ : ∀τ ∈ G : τ∗λf := f ◦ τ = f

}
(48)

=
⋂
τ∈G

ker(I − τ∗λ). (49)

Clearly, dim(Vλ,G) ≤ dim(Vλ).

Moreover, the (restricted) projection operator PG : Vλ → Vλ has the image Vλ,G and it can
be diagonalized in a basis for Vλ such as ϕλ,ℓ ∈ Vλ, ℓ = 1, 2, . . . ,dim(Vλ), such that for each
f =

∑dim(Vλ)
ℓ=1 αℓϕλ,ℓ ∈ Vλ,

f ∈ Vλ,G ⇐⇒ ∀ℓ > dim(Vλ,G) : αℓ = 0 (50)

Pλ,Gf =

dim(Vλ,G)∑
ℓ=1

αℓϕλ,ℓ ∈ Vλ,G. (51)

Due to its simplicity, we omit the proof of this proposition. We always consider the diagonalized
basis in this paper, as it always exists for appropriate eigenfunctions.
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A.8 Reproducing Kernel Hilbert Spaces on Manifolds

A smooth connected compact boundaryless Riemannian manifold (M, g) is indeed a compact metric-
measure space, and a kernel K : M × M → R can be thought of as a measure of similarity
between points on the manifold. We assume that K is continuous, symmetric, and positive-definite,
meaning that K(x, y) = K(y, x) and

∑n
i,j=1 aiajK(xi, yj) ≥ 0 for any ai ∈ R, xi, yj ∈ M, i, j =

1, 2, . . . , n, and the equality happens only when a1 = a2 = . . . = an = 0 (assuming the points
on the manifold are distinct). The Reproducing Kernel Hilbert Space (RKHS) of K is a Hilbert
space H ⊆ L2(M) that is achieved by the completion of the span of functions K(., y) ∈ H for
each y ∈ M, satisfying the following property: for all f ∈ H, f(x) = ⟨f,K(x, .)⟩H. Associated
with the kernel K, there exists an integral operator K : L2(M) → L2(M) defined as K(f) =∫
MK(x, y)f(y)d volg(y). It can be shown thatK can be diagonalized in an appropriate orthonormal

basis of functions in L2(M) (Mercer’s theorem). Indeed, with a number of appropriate assumptions,
it can be diagonalized in the Laplace-Beltrami spectrum.
Proposition A.9. Consider a symmetric positive-definite kernel K : M×M → R, and assume
that K ∈ C2(M×M) satisfies the differential equation ∆g,x(K(x, y)) = ∆g,y(K(x, y)). Then,
K can be diagonalized in the basis of the eigenfunctions of the Laplace-Beltrami operator; there
exist appropriate µℓ ≥ 0, ℓ = 0, 1, . . ., such that

K(x, y) =

∞∑
ℓ=0

µℓϕℓ(x)ϕℓ(y), (52)

where ϕℓ, ℓ = 0, 1, . . ., form an orthonormal basis for L2(M) such that ∆gϕℓ + λℓϕℓ = 0 for each
ℓ.

Proof. Note that K(ϕℓ(x)) =
∫
MK(x, y)ϕℓ(y)d volg(y). Therefore,

∆g,x(K(ϕℓ)) = ∆g,x

(∫
M
K(x, y)ϕℓ(y)dvolg(y)

)
(53)

=

∫
M

∆g,xK(x, y)ϕℓ(y)dvolg(y) (54)

=

∫
M

∆g,yK(x, y)ϕℓ(y)dvolg(y) (55)

=

∫
M
K(x, y)∆g,yϕℓ(y)dvolg(y) (56)

= λℓ

∫
M
K(x, y)ϕℓ(y)dvolg(y) (57)

= λℓK(ϕℓ), (58)

where we used the symmetry of the kernel, the regularity condition of the kernel (allowing the
interchange of the differentiation and the integral sign), and also the self-adjointness of the Laplace-
Beltrami operator. Now since K(ϕℓ) satisfies the equation ∆g(K(ϕℓ)) + λiK(ϕℓ) = 0, we conclude
that K(ϕℓ) is indeed an eigenfunction with respect to the eigenvalue λℓ, or equivalently K(ϕℓ) ∈ Vλℓ

.
In other words, Vλ, λ ∈ Spec(M), are the invariant subspaces of the integral operator associated with
the kernel. This means that one can choose an appropriate basis of eigenfunctions in each eigenspace,
such that the kernel is diagonalized in each eigenspace (Mercer’s theorem).

Remark A.10. While Proposition A.9 holds for a kernel K ∈ C2(M × M), it can be shown
that it holds under a weaker assumption that K is just continuous. The identity ∆g,x(K(x, y)) =
∆g,y(K(x, y)) should then be understood as the identity of two distributions.

In this paper, we always consider the diagonalized kernels in the Laplace-Beltrami spectrum. An
example of a kernel of this form is the heat kernel with µℓ = e−λℓt, t ∈ R. Given a diagonalized
kernel K(x, y) =

∑∞
ℓ=0 µℓϕℓ(x)ϕℓ(y), one can explicitly define the RKHS associated with K as

H =
{
f =

∞∑
ℓ=0

αℓϕℓ :

∞∑
ℓ=0

|αℓ|2

µℓ
<∞

}
, (59)
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with the inner-product 〈 ∞∑
ℓ=0

αℓϕℓ,

∞∑
ℓ=0

βℓϕℓ

〉
H

=

∞∑
ℓ=0

αℓβℓ
µℓ

, (60)

where the sum is considered convergent whenever it converges absolutely. The feature map is
therefore given as Φx = K(x, .) =

∑∞
ℓ=0 µℓϕℓ(x)ϕℓ(.) for any x ∈ M. The covariance operator

Σ : H → H is also defined as Σ = Ex∼µ[Φx ⊗H Φx] where the expectation is with respect to the
uniform sample x ∈ M (with respect to the normalized volume element dµ = 1

vol(M)d volg(x)). It is

worth mentioning the identity ∥K1/2(f)∥H = ∥f∥L2(M). Also note if f⋆ =
∑∞

ℓ=0⟨f⋆, ϕℓ⟩L2(M)ϕℓ,
then the effective ridge regression estimator (Equation 4) is given by the closed-form formula

f̂eff =

∞∑
ℓ=0

µℓ

µℓ + η
⟨f⋆, ϕℓ⟩L2(M)ϕℓ. (61)

A.9 Invariant Kernels

A kernel K : M×M → R is called G−invariant with respect to a closed subgroup G of ISO(M),
if and only if K(x, y) = K(τ(x), τ ′(y)) for any τ, τ ′ ∈ G. Equivalently, one has K(x, y) =
K([x], [y]) for any x, y ∈ M. In the previous section, it is observed that K can be written as
K(x, y) =

∑∞
ℓ=0 µℓϕℓ(x)ϕℓ(y), under a few conditions. Since K is G−invariant, a new basis of

eigenfunctions exists that allows a more compact representation of the kernel.

Proposition A.11. For any closed subgroup G of ISO(M), consider a symmetric positive-definite
G−invariant kernel K : M × M → R, and assume that K ∈ C2(M × M) satisfies the dif-
ferential equation ∆g,x(K(x, y)) = ∆g,y(K(x, y)). Then, K can be diagonalized in the basis of
eigenfunctions of the Laplace-Beltrami operator:

K(x, y) =
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

µλ,ℓϕλ,ℓ(x)ϕλ,ℓ(y), (62)

where the functions ϕλ,ℓ, for any λ ∈ Spec(M), and any ℓ = 1, . . . ,dim(Vλ), form a basis for
L2(M) such that ∆g(ϕλ,ℓ) + λ(ϕλ,ℓ) = 0 for each ℓ, λ. Moreover, the functions ϕλ,ℓ, for any
λ ∈ Spec(M), and any ℓ = 1, . . . ,dim(Vλ,G), form an orthonormal basis for L2

inv(M, G).

Therefore, the RKHS of a G−invariant kernel K can be defined as

H =
{
f =

∑
λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

αλ,ℓϕλ,ℓ :
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

|αλ,ℓ|2

µλ,ℓ
<∞

}
, (63)

with the inner-product

〈 ∑
λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

αλ,ℓϕλ,ℓ,
∑

λ Spec(M)

dim(Vλ,G)∑
ℓ=1

βλ,ℓϕλ,ℓ

〉
H

=
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

αλ,ℓβλ,ℓ
µλ,ℓ

.

(64)

Whenever G is the trivial group, the above identities reduce to what is proposed for general (not
necessarily invariant) kernels on manifolds in the previous section. Once again, the assumption
K ∈ C2(M×M) can be weakened to just the continuity of K.

A.10 Sobolev Spaces of Functions on Manifolds

For any integer s ≥ 0, the Sobolev space Hs(M) is the Hilbert space of measurable functions
on M with square-integrable partial derivatives5 up to order s. More generally, Hs,q(M) denotes
the Banach space of measurable functions with Lp bounded partial derivatives up to order s. As

5The partial derivatives on manifolds are defined locally in each coordinate.
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observed in [24], one can define the Sobolev space Hs(M) ⊂ L2(M) using the eigenfunctions of
the Laplace-Beltrami operator as

Hs(M) :=
{
f =

∞∑
ℓ=0

αℓϕℓ : ∥f∥2Hs(M) =

∞∑
ℓ=0

max(1, λsℓ)|αℓ|2 <∞
}
. (65)

The inner-product on Hs(M) is defined as〈 ∞∑
ℓ=1

αℓϕℓ,

∞∑
ℓ=1

αℓϕℓ

〉
Hs(M)

=

∞∑
ℓ=1

max(1, λsℓ)αℓβℓ. (66)

This makes Hs(M) an RKHS with the Sobolev kernel defined as

KHs(M)(x, y) =
∑

λ∈Spec(M)

dim(Vλ)∑
ℓ=1

min(1, λ−s
ℓ )ϕλ,ℓ(x)ϕλ,ℓ(y), (67)

For G−invariant functions, as before, the above sum must be truncated to dim(Vλ,G) instead of
dim(Vλ). Therefore, Hs

inv(M) = Hs(M) ∩ L2
inv(M, G) is well-defined.

We note that Hs(M) includes only continuous functions when s > d/2. Moreover, it contains only
continuously differentiable functions up to order k when s > d/2 + k; see the Sobolev inequality:

Proposition A.12 ([3], Sobolev inequality). Let 1
2 − s

d = 1
q − ℓ

d with s ≥ ℓ ≥ 0 and q > 2, where d
is the dimension of the smooth compact closed manifold M. Then,

∥f∥Hℓ,q(M) ≤ C∥f∥Hs(M). (68)

The constant C may depend only on the manifold and the parameters but is independent of the
function f ∈ L2(M).

B Proof of Theorem 4.4

We first prove Theorem 4.4 for the cases that the group action on the manifold is free (Proposition
B.1), and then we extend it to the general case. We use the preset notation/definitions introduced in
Appendix A (specifically, Proposition A.8) in this section.
Proposition B.1. Let (M, g) be a smooth connected compact boundaryless Riemannian manifold of
dimension dim(M). Let G be a Lie subgroup of ISO(M) of dimension dim(G), and assume that G
acts freely on M (i.e., having no non-trivial fixed point), and let d := dim(M)− dim(G) denote
the effective dimension of the quotient space. Then,

Nx(λ;G) :=
∑
λ′≤λ

dim(Vλ′,G)∑
ℓ=1

|ϕλ′,ℓ(x)|2 =
ωd

(2π)d
vol(M/G)λd/2 +O(λ

d−1
2 ), (69)

as λ→ ∞, where ωd = πd/2

Γ( d
2+1)

is the volume of the unit d−ball in the Euclidean space Rd.

Remark B.2. Note that the above proposition provides a much stronger result than Theorem 4.4; it
is local. Observe that N(λ;G) =

∫
MNx(λ;G)d volg(x), and thus integrating the left-hand side of

the above equation proves Theorem 4.4 for the special case of free actions. We will later prove the
same local result (Equation (69)) for the general smooth compact Lie group actions on a manifold,
presuming the assumptions in Theorem 4.4.

Proof of Proposition B.1. By the quotient manifold theorem (Theorem A.2) and Corollary A.3,
the orbit space M/G is a connected closed (i.e, compact boundaryless) manifold of dimension
d = dim(M)− dim(G). Let ∆g and ∆g̃ denote the Laplace-Beltrami operators on M and M/G,
respectively, where g̃ is the induced Riemannian metric on M/G from g. Consider two arbitrary
smooth functions ϕ : M → R and ϕ̃ : M/G→ R such that ϕ(x) = ϕ̃([x]). Note that ϕ is smooth
on M, if and only if ϕ̃ is smooth on M/G, and also, ϕ is invariant by definition. Fix an arbitrary λ.
We claim that

∆g̃ϕ̃+ λϕ̃ = 0 ⇐⇒ ∆gϕ+ λϕ = 0 (70)
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Given the above identity, the desired result follows immediately by an application of the local Weyl’s
law (Proposition A.1) on the manifold M/G of dimension d = dim(M)− dim(G).

To prove the claim, we only need to show that ∆g̃ϕ̃ = ∆gϕ. First assume that G is a finite group
(i.e., dim(G) = 0). Note that in local coordinates (x1, x2, . . . , xdim(M)) we have

∆gϕ =
1√

|det g|
∂i
(√

|det g|gij∂jϕ
)
. (71)

However, the projection map π : M → M/G is a Riemannian submersion, with differential
dπx : TxM → T[x](M/G) being an invertible linear map from a dim(M)−dimensional vec-
tor space to another dim(M)−dimensional vector space. This shows that the local coordinates
(x1, x2, . . . , xdim(M)) are also simultaneously some local coordinates for M/G, and since g̃ is
induced by the metric g, the result holds by the above identity for the Laplace-Beltrami operator.

Now assume dim(G) ≥ 1. In this case, for the projection map π : M → M/G, the differential map
dπx : TxM → T[x](M/G) is a surjective linear map from a dim(M)−dimensional vector space
to a (dim(M) − dim(G))−dimensional vector space. Indeed, TxM = ker(dπx) ⊕ ker⊥(dπx),
with respect to the inner product defined by g. This means that with an appropriate choice of local
coordinates such as (x1, x2, . . . , xdim(M)) around a point x ∈ M, satisfying

gij = g
( ∂
∂i
,
∂

∂j

)
= 1{i = j}, (72)

for any i, j ∈ {1, 2, . . . ,dim(M)}, we have ∂
∂i

∈ ker⊥(dπx) for any i = 1, 2, . . . ,dim(M) −
dim(G), and ∂

∂i
∈ ker(dπx) for any i > dim(M) − dim(G). In particular, the restriction of the

local coordinates to the first dim(M)− dim(G) elements is assumed to be some local coordinates
for M/G. This is always possible for an appropriate choice of local coordinates.

In these specific local coordinates, by definition,

∆gϕ =

dim(M)∑
i=1

∂2i ϕ (73)

∆g̃ϕ̃ =

dim(M)−dim(G)∑
i=1

∂2i ϕ̃. (74)

Note that ∂2i ϕ̃ = ∂2i ϕ for i = 1, 2, . . . ,dim(M)− dim(G). Thus, the proof is complete if we show
∂iϕ ≡ 0, for all i > dim(M) − dim(G), for a neighborhood around x in the local coordinates
(xdim(M)−dim(G)+1, . . . , xdim(M)), while the other coordinates are kept the same as x. But note that
for any x′ sufficiently close to x with the same coordinates (x1, x2, . . . , xdim(M)−dim(G)), one has
[x′] = [x], by definition. This means that ϕ(x) = ϕ(x′) and this completes the proof.

To extend Proposition B.1 to a general smooth compact Lie group action G, we need to use the
principal orbit theorem (Theorem A.4) and its consequences (see Appendix A.6). Again, we prove
that the generalized local result (Equation (69)) holds, presuming the assumptions in Theorem 4.4.

Proof of Theorem 4.4. According to Corollary A.5, one has the following decomposition of the
quotient space: M/G =

⊔
[H]⪯G M[H]/G. In other words, the quotient space is the disjoint union

of finitely many manifolds, and among them, M0/G is open and dense in M/G. As a first step
towards the proof, we show that ∆g̃ϕ̃ = ∆gϕ for any two smooth functions ϕ : M0 → R and
ϕ̃ : M0/G→ R such that ϕ(x) = ϕ̃([x]), for any x ∈ M0 and [x] ∈ M0/G. However, the proof of
this claim is exactly the same as what is presented in the proof of Proposition B.1; thus, we skip it.

Recall that the effective dimension of the quotient space is defined as d := dim(M[H0]/G) =
dim(M0/G) = dim(M)− dim(G) + dim(H0), where [H0] is the unique maximal isotropy type
(corresponding to M0). We claim that there exists a connected compact manifold (possibly with
boundary) M̃ ⊆ M/G such that (1) it includes the principal part, i.e., M̃ ⊇ M0/G, and (2) the
projected invariant functions on M̃ satisfy the Neumann boundary condition on its boundary ∂(M̃).
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More precisely, the second condition means that for any two smooth functions ϕ : M0 → R and
ϕ̃ : M0/G→ R such that ϕ(x) = ϕ̃([x]), for any x ∈ M0 and [x] ∈ M0/G, the function ϕ̃ satisfies
the Neumann boundary condition on ∂(M̃). Given this claim, by the local Weyl’s law (Proposition
A.1), the proof is complete.

We only need to specify the manifold M̃ and prove that each projected invariant function on it
satisfies the Neumann boundary condition. Indeed, the construction of the manifold M̃ follows from
the finite decomposition of the quotient space M/G =

⊔
[H]⪯G M[H]/G. Moreover, we can assume

that the boundary of M̃ is piecewise smooth. Let [x] ∈ ∂(M̃) be a boundary point (in the interior of
a smooth piece of the boundary). We claim that

ϕ is G−invariant on M =⇒ ⟨∇g̃ϕ̃([x]), n̂[x]⟩g̃ = 0, (75)

for any smooth ϕ : M → R, where ϕ(x) = ϕ̃([x]), and this completes the proof. Note that
n̂[x] ∈ T[x](M̃) is the unit outward normal vector of the manifold M̃ at [x]. To prove the claim,
we write T[x](M̃) = span(n̂[x])⊕H[x] for an orthogonal vector space H[x]. But H[x] ≃ T[x]∂(M̃).
Also, in a neighborhood N around [x] in ∂(M̃), for each [y] ∈ N , we have the smooth identity
(ρ−1

[y] ◦ τ[x] ◦ ρ[y])(y) = y for some ρ[y], τ[x] ∈ G, such that (ρ−1
[y] ◦ τ[x] ◦ ρ[y]) does not belong to

isotropy groups of M0/G near [x]. Without loss of generality, we assume that ρ[x] = idG.

Now consider a geodesic on M starting from x ∈ M with unit velocity such as γ(t) with γ(0) = x

and dπ[x](γ′(0)) = n̂[x]. Note that [γ(t)] /∈ ∂(M̃) for small enough t ∈ (0, ϵ), and thus it belongs to
M0/G. But it is simultaneously "on the other side" of the particular fundamental domain of M0/G
around [x], meaning that [τ[x](γ(t))] is necessarily a curve starting from [x] towards the inside of
the fundamental domain. In particular, since τ[x] is an isometry (and thus a local isometry), we
necessarily have (τ[x] ◦ γ)′(0) = −n̂[x] (note that in this step we clearly use the explanations in the
previous paragraph). Now by considering the function ϕ ◦ γ = ϕ ◦ τ[x] ◦ γ on the interval t ∈ (0, ϵ),
we get

⟨∇g̃ϕ̃([x]), n̂[x]⟩g̃ = ⟨∇g̃ϕ̃([x]),−n̂[x]⟩g̃ =⇒ ⟨∇g̃ϕ̃([x]), n̂[x]⟩g̃ = 0, (76)

and this completes the proof.

C Proof of Theorem 4.1

In this section, we use Theorem 4.4 to prove Theorem 4.1. Let us first state a standard bound in the
literature holding for any RKHS.

Proposition C.1 ([4], Proposition 7.3). Consider the KRR problem in an RKHS setting, and let f⋆proj
denote the orthogonal projection of f⋆ on the Hilbert space H. Assume that K(x, x) ≤ R2 for any
x ∈ M, η ≤ R2, and n ≥ 5R2

η (1 + log(R
2

η )). Then,

E[R(f̂)−R(f⋆proj)] ≤ 16
σ2

n
tr[(Σ + ηI)−1Σ] (77)

+ 16 inf
f∈H

{
∥f − f⋆proj∥2L2(M) + η∥f∥2H

}
+

24

n2
∥f⋆∥2L∞(M), (78)

where the expectation is over the randomness of the dataset S, and Σ = Ex∼µ[Φx ⊗H Φx] is the
covariance operator with the feature map Φx =

∑∞
ℓ=0 µℓϕℓ(x)ϕℓ for any x ∈ M.

Note that f⋆proj = f⋆ if the closure of H with respect to the L2(M)−norm is L2
inv(M, G). In the

Laplace-Beltrami basis, Σ is diagonal with the diagonal elements (Σ)ℓ,ℓ = µℓ for each ℓ. Note that
the first and second terms in the above upper bound are known as the variance and the bias terms,
respectively. Also, while the bound holds in expectation for a random dataset S, assuming ϵi’s are
sub-Gaussian, one can extend the result to a high-probability bound using standard concentration
inequalities. However, for the brevity/clarity of the paper, we restrict our attention to the expectation
of the population risk.
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We need to have an explicit upper bound for R to use the above proposition. Although the problem
is essentially homogenous with respect to R, for the sake of completeness, we explicitly compute
a uniform upper bound on the diagonal values of the kernel in terms of the problem’s parameters.
The goal is to first check that the two conditions R < ∞ and n ≥ 5R2

η (1 + log(R
2

η )) are satisfied.

The latter condition is indeed satisfied when η ≥ 5R2 log(n)
n . Note that if µλ,ℓ ̸= 0 for any λ, ℓ with

ℓ = 1, 2, . . . ,dim(Vλ,G), then any G−invariant function f⋆ ∈ F ⊆ L2
inv(M, G) is in the closure of

H. Indeed, in that case the closure of H with respect to the L2(M)−norm includes L2
inv(M, G).

C.1 Bounding K(x, x)

We start with the definition of R; for any x ∈ M, we have

K(x, x) = ⟨Φx,Φx⟩H =
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

µλ,ℓ|ϕλ,ℓ(x)|2. (79)

By the local version of Theorem 4.4, we know that Nx(λ;G) =
∑

λ′≤λ

∑dim(Vλ′,G)

ℓ=1 |ϕλ′,ℓ(x)|2 ≤
ωd

(2π)d
vol(M/G)λd/2 + CM/Gλ

d−1
2 , for an absolute constant CM/G, where d denotes the effective

dimension of the quotient space. Therefore, if µλ,ℓ ≤ u(λ) for a differentiable bounded function
u(λ), for any λ, ℓ, then

K(x, x) ≤
∫ ∞

0−
u(λ)dNx(λ;G) (80)

(a)
= lim

λ→∞
u(λ)Nx(λ;G)− u(0−)Nx(0

−;G)−
∫ ∞

0−
Nx(λ;G)u

′(λ)dλ (81)

(b)

≤ −ωd

(2π)d
vol(M/G)

∫ ∞

0−
λd/2u′(λ)dλ+ CM/G

∫ ∞

0−
λ(d−1)/2u′(λ)dλ (82)

(c)
=

ωd

(2π)d
vol(M/G)

d

2

∫ ∞

0−
λd/2−1u(λ)dλ+ CM/G

∫ ∞

0−
λ(d−1)/2−1u(λ)dλ (83)

=
d

2

ωd

(2π)d
vol(M/G)

(
{Mu}(d/2)

)
+ CM/G

(
{Mu}((d− 1)/2)

)
, (84)

where (a) and (c) follow by integration by parts, and (b) follows from Theorem 4.4. The Mellin
transform is defined as {Mu}(s) :=

∫∞
0
ts−1u(t)dt. Also, integration with respect to dNx(λ;G)

must be understood as a Riemann–Stieltjes integral.

C.2 Bounding the Bias Term

We have already observed that the function achieving the infimum is

f̂eff =
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

µλ,ℓ

µλ,ℓ + η
⟨f⋆, ϕλ,ℓ⟩L2(M)ϕλ,ℓ. (85)

Note that clearly f̂eff ∈ H for η > 0, as we can explicitly compute ∥f̂eff∥H <∞. Also,

f⋆proj =
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

1{µλ,ℓ ̸= 0}⟨f⋆, ϕλ,ℓ⟩L2(M)ϕλ,ℓ. (86)

Thus,

16 inf
f∈H

{
∥f − f⋆proj∥2L2(M) + η∥f∥2H

}
= 16∥f̂eff − f⋆proj∥2L2(M) + 16η∥f̂eff∥2H (87)

= 16
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

( µλ,ℓ

µλ,ℓ + η
− 1

)2

⟨f⋆proj, ϕλ,ℓ⟩2L2(M) (88)
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+ 16η
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

1

µλ,ℓ

( µλ,ℓ

µλ,ℓ + η
⟨f⋆proj, ϕλ,ℓ⟩L2(M)

)2

(89)

= 16
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

( η2 + ηµλ,ℓ

(µλ,ℓ + η)2

)
⟨f⋆proj, ϕλ,ℓ⟩2L2(M) (90)

= 16η
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

( 1

µλ,ℓ + η

)
⟨f⋆proj, ϕλ,ℓ⟩2L2(M). (91)

C.3 Bounding the Variance Term

We need to compute the trace of the operator (Σ + ηI)−1Σ. But this operator is diagonal in the
Laplace-Beltrami basis, and thus we get

16
σ2

n
tr[(Σ + ηI)−1Σ] = 16

σ2

n

∑
λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

µλ,ℓ

µλ,ℓ + η
. (92)

C.4 Bounding the Population Risk

Now we combine the previous steps to get

E[R(f̂)−R(f⋆proj)] ≤ 16
σ2

n

∑
λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

µλ,ℓ

µλ,ℓ + η
(93)

+ 16η
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

( 1

µλ,ℓ + η

)
⟨f⋆proj, ϕλ,ℓ⟩2L2(M) (94)

+
24

n2
∥f⋆∥2L∞(M), (95)

which holds when R <∞ and η ≥ 5R2 log(n)
n .

We are now ready to bound the convergence rate of the population risk of KRR for invariant Sobolev
space Hs

inv(M) (See Section A.10 for the definition). In this case, µλ,ℓ = u(λ) = min(1, λ−s) for
each λ, ℓ. Therefore,

{Mu}(d/2) =
∫ ∞

0

min(1, λ−s)td/2−1dt ≤ 1 +
1

s− d/2
. (96)

Similarly, {Mu}((d− 1)/2) ≤ 1 + 1
s−(d−1)/2 . Thus, using the analysis in Section C.1, we get

KHs(M)(x, x) ≤ R2 :=
ωd

(2π)d
vol(M/G)

(
d/2 +

d/2

s− d/2

)
(97)

+ CM/G

(
1 +

1

s− (d− 1)/2

)
. (98)

In particular, R <∞ if s > d/2. We now compute the bias and the variance terms as follows. Let us
start with the variance term:

16
σ2

n

∑
λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

µλ,ℓ

µλ,ℓ + η
= 16

σ2

n

∫ ∞

0−

min(1, λ−s)

min(1, λ−s) + η
dN(λ;G) (99)

≤ 16
σ2

n
N(1;G) + 16

σ2

n

∫ ∞

1

λ−s

λ−s + η
dN(λ;G) (100)

= 16
σ2

n
N(1;G) + 16

σ2

n

∫ ∞

1

1

1 + ηλs
dN(λ;G) (101)
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(a)
= 16

σ2

n
N(1;G) + 16

σ2

n
lim
λ→∞

(N(λ;G)

1 + ηλs

)
− 16

σ2

n

N(1;G)

1 + η
(102)

+ 16
σ2

n

∫ ∞

1

N(λ;G)
sηλs−1

(1 + ηλs)2
dλ (103)

(b)
= 16

σ2

n

η

1 + η
N(1;G) + 16

σ2

n

∫ ∞

1

N(λ;G)
sηλs−1

(1 + ηλs)2
dλ (104)

(c)
= 16

σ2

n

η

1 + η
N(1;G) + 16

σ2

n

ωd

(2π)d
vol(M/G)sη

∫ ∞

1

λd/2
λs−1

(1 + ηλs)2
dλ (105)

+ 16
σ2

n
CM/Gsη

∫ ∞

1

λ(d−1)/2 λs−1

(1 + ηλs)2
dλ (106)

≤ 16
σ2

n
ηN(1;G) + 16

σ2

n

ωd

(2π)d
vol(M/G)sη

∫ ∞

1

λd/2+s−1

1 + η2λ2s
dλ (107)

+ 16
σ2

n
CM/Gsη

∫ ∞

1

λ(d−1)/2+s−1

1 + η2λ2s
dλ, (108)

where (a) follows by integration by parts, (b) follows by limλ→∞

(
N(λ;G)
1+ηλs

)
= 0 since s > d/2, and

(c) follows from Theorem 4.4. Note that integration with respect to dN(λ;G) must be understood as
a Riemann–Stieltjes integral. By a change of variable in the integrals as t = λη1/s, we have∫ ∞

1

λd/2+s−1

1 + η2λ2s
dλ = η

−1
s (s+d/2−1)η−1/s

∫ ∞

1

td/2+s−1

1 + t2s
dt ≤ η

−1
s (s+d/2)

2s− d
. (109)

We can similarly evaluate the other integral and conclude

16
σ2

n

∑
λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

µλ,ℓ

µλ,ℓ + η
≤ 16

σ2

n
ηN(1;G) (110)

+ 16
sσ2

(2s− d)n

ωd

(2π)d
vol(M/G)η1−

1
s (s+d/2) (111)

+ 16
sσ2

(2s− d+ 1)n
CM/Gη

1− 1
s (s+(d−1)/2). (112)

One can also use the bound N(1;G) ≤ ωd

(2π)d
vol(M/G) + CM/G to simplify the upper bound.

Note that f⋆proj = f⋆ since the closure of Hs
inv(M) with respect to the L2(M)−norm is the whole

space L2
inv(M, G). Let us now analyze the bias term by noting that µλ,ℓ + η ≥ µθ

λ,ℓη
1−θ for any

θ ∈ (0, 1], and thus

16η
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

( 1

µλ,ℓ + η

)
⟨f⋆, ϕλ,ℓ⟩2L2(M) (113)

≤ 16ηθ
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

µ−θ
λ,ℓ⟨f

⋆, ϕλ,ℓ⟩2L2(M) (114)

= 16ηθ
∑

λ∈Spec(M)

dim(Vλ,G)∑
ℓ=1

max(1, λsθ)⟨f⋆, ϕλ,ℓ⟩2L2(M)

(115)

= 16ηθ∥f⋆∥2Hsθ
inv(M), (116)

where θ ∈ (0, 1] is chosen so that f⋆ ∈ Hsθ
inv(M). Therefore,

E[R(f̂)−R(f⋆)] ≤ 16
σ2

n
η
( ωd

(2π)d
vol(M/G) + CM/G

)
(117)
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+ 16
sσ2

(2s− d)n

ωd

(2π)d
vol(M/G)η1−

1
s (s+d/2) (118)

+ 16
sσ2

(2s− d+ 1)n
CM/Gη

1− 1
s (s+(d−1)/2) (119)

+ 16ηθ∥f⋆∥2Hsθ
inv(M) +

24

n2
∥f⋆∥2L∞(M), (120)

The result is only true when R <∞ and η ≥ 5R2 log(n)
n , where R is defined in Equation (98).

We can now optimize the above bound for η. First consider the function p(t) = cat
−a + cbt

b on R≥0

for a, b, ca, cb > 0. Note that p(0) = p(∞) = ∞, and to find its stationary points, we solve p′(t) = 0
and get the only solution t = (acabcb

)1/(a+b) which is thus the global minimum of the function. Thus
by minimizing

p(η) =
(
16

sσ2

(2s− d)n

ωd

(2π)d
vol(M/G)

)
η−

d
2s +

(
16∥f⋆∥2Hsθ

inv(M)

)
ηθ, (121)

we get

η =
( dσ2

2θ∥f⋆∥2Hsθ
inv(M)

(2s− d)n

ωd

(2π)d
vol(M/G)

)s/(θs+d/2)

. (122)

Therefore, the population risk is bounded as follows:

E[R(f̂)−R(f⋆)] (123)

≤ 16
( ωd

(2π)d
vol(M/G) + CM/G

)σ2

n

( dσ2

2θ∥f⋆∥2Hsθ
inv(M)

(2s− d)n

ωd

(2π)d
vol(M/G)

)s/(θs+d/2)

︸ ︷︷ ︸
O(n−1−s/(θs+d/2))

(124)

+ 16
sσ2

(2s− d+ 1)n
CM/G

( dσ2

2θ∥f⋆∥2Hsθ
inv(M)

(2s− d)n

ωd

(2π)d
vol(M/G)

)−(d−1)/(2θs+d)

︸ ︷︷ ︸
O(n−(θs+1/2)/(θs+d/2))

(125)

+ 32
( dσ2

2θ(2s− d)n

ωd

(2π)d
vol(M/G)

)θs/(θs+d/2)

∥f⋆∥d/(θs+d/2)

Hsθ
inv(M)︸ ︷︷ ︸

O(n−θs/(θs+d/2))

(126)

+
24

n2
∥f⋆∥2L∞(M)︸ ︷︷ ︸
O(1/n2)

, (127)

and this completes the proof since s = d
2 (κ+ 1) and the third term dominates the sum.

D Proofs of Theorem 4.6, Proposition 4.5, and Corollary 4.7

Corollary 4.7 follows from Theorem 4.6 on the dimension of the vector space HG, just according
to standard bounds in the literature on the population risk of KRR for finite-rank kernels (see [65]).
Therefore, we focus on the proof of Theorem 4.6 and Proposition 4.5.

Proof of Proposition 4.5. This is a classical result; one can use a variational method to prove it. See
[12] for the proof for an arbitrary vector space V . Here, we prove it for V = HG. Consider an
arbitrary f =

∑D−1
ℓ=0 ⟨f, ϕℓ⟩L2(M)ϕℓ ∈ HG. Then, using Equation (27),

E(f, f) =
∫
M

|∇gf(x)|2gdvolg(x) (128)
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=

D−1∑
ℓ=0

λℓ|⟨f, ϕℓ⟩L2(M)|2 (129)

≤ λD−1

D−1∑
ℓ=0

⟨f, ϕℓ⟩2L2(M) (130)

= λD−1∥f∥2L2(M), (131)

and the bound is achieved by f = ϕD−1.

Now by Theorem 4.4, the proof of Theorem 4.6 is also complete.

E Proof of Theorem 4.3

In this section, we mostly use/follow standard results in the literature of minimax lower bounds which
can be found in [65]. Note that the unit ball in the Sobolev space Hs

inv(M) is isomorphic to the
following ellipsoid (see Appendix A.10):

E :=
{
(αℓ)

∞
ℓ=0 :

∞∑
ℓ=0

|αℓ|2

min(1, λ−s
ℓ )

≤ 1
}
⊆ ℓ2(N). (132)

Note that the eigenvalues are distributed according to the bound proved in Theorem 4.4. Consider
M functions/sequences f1, f2, . . . , fM ∈ E such that ∥fi − fj∥ℓ2(N) ≥ δ for all i ̸= j, for some M
and δ (to be set later). In other words, let {f1, f2, . . . , fM} denote a δ−packing of the set E in the
ℓ2(N)−norm.

Consider a pair of random variables (Z, J) as follows: first J ∈ [M ] := {1, 2, . . . ,M} and xi ∈ M,
i = 1, 2 . . . , n, are chosen uniformly and independently at random, and then, Z = (fJ(xi)+ϵi)

n
i=1 ∈

Rn, where ϵi ∼ N (0, σ2) are independent Gaussian variates. Let Pj(.) = P(.|J = j) denote the
conditional law of (Z, J), given the observation J = j. A straighforward computation shows that
DKL(Pi||Pj) =

n
2σ2 ∥fi − fj∥2ℓ2(N) ≥

nδ
2σ2 for all i, j ∈ [M ].

According to Fano’s method, one can get the minimax bound

inf
f̂

sup
f⋆∈Hs

inv(M)
∥f⋆∥Hs

inv
(M)=1

E
[
R(f̂)−R(f⋆)

]
≥ 1

2
δ2, (133)

if log(M) ≥ 2I(Z; J) + 2 log(2). Using the Yang-Barron method [65], this condition is satisfied if

ϵ2 ≥ logNKL(ϵ) (134)

logM ≥ 4ϵ2 + 2 log(2), (135)

where NKL(ϵ) denotes the ϵ−covering number of the space of distributions P(.|f) for some f ∈ E
(defined similarly as we have P(.|J = j) = P(.|f = fj)), in the square-root KL-divergence.
However, since DKL(Pf ||Pg) =

n
2σ2 ∥f − g∥2ℓ2(N), this equals to the ϵ−covering of the space E in the

ℓ2(N)−norm. In other words, we have

NKL(ϵ) = Nℓ2(N)

(ϵσ√2√
n

)
. (136)

Now note that, for any M such that logM ≥ logNℓ2(N)(δ), there exists a δ−packing of the space E
in the ℓ2(N)−norm (see the packing and covering numbers relationship [65]).

In summary, we get the minimax rate of 1
2δ

2 if the following inequalities are satisfied:

ϵ2 ≥ logNℓ2(N)

(ϵσ√2√
n

)
(137)

logNℓ2(N)(δ) ≥ 4ϵ2 + 2 log(2), (138)

for some pair (ϵ, δ). Thus, our goal is to obtain tight lower/upper bounds for logNℓ2(N)(.).
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Lemma E.1. For any positive ζ,

logNℓ2(N)(ζ/2) ≥ N(ζ
−2
s ;G) log(2) (139)

logNℓ2(N)(
√
2ζ) ≤ N(ζ

−2
s ;G)(s/d+ log(4)) +O(ζ−

d−1
s ), (140)

where the quantity N(ζ
−2
s ;G) is defined in Theorem 4.4.

First, let us show how the above lemma concludes the proof of Theorem 4.3. According to the lemma,
we just need to check the following inequalities:

ϵ2 ≥ (s/d+ log(4))
ωd

(2π)d
vol(M/G)

( ϵσ√
n

)−d/s

+O(n−
d−1
2s ) (141)

N((2δ)
−2
s ;G) log(2) ≥ 4ϵ2 + 2 log(2). (142)

Without loss of generality, let us discard the big-O error terms in the above analysis. In our final
adjustment, we can add a constant multiplicative factor to ensure that the bound is asymptotically
valid. To get the largest possible δ, we set

ϵ2 = (s/d+ log(4))
ωd

(2π)d
vol(M/G)

( ϵσ√
n

)−d/s

, (143)

and thus

ϵ2 =
(
(s/d+ log(4))

ωd

(2π)d
vol(M/G)

)s/(s+d/2)

×
(σ2

n

)−d/(s+d/2)

. (144)

Therefore, the following inequality needs to be satisfied:

N((2δ)
−2
s ;G) log(2) ≥ log(4) + 4

(
(s/d+ log(4))

ωd

(2π)d
vol(M/G)

)s/(s+d/2)(σ2

n

)−d/(s+d/2)

.

(145)

Using asymptotic analysis, the inequality holds when

log(2)ωd

(2π)d
vol(M/G)(2δ)

−d/s ≥ 4
(
(s/d+ log(4))

ωd

(2π)d
vol(M/G)

)s/(s+d/2)(σ2

n

)−d/(s+d/2)

.

(146)

Rearranging the terms shows that

4δ2 ≤
( ωd

(2π)d
σ2 vol(M/G)

n

)s/(s+d/2)

×
( 4

log(2)
(
s/d+ 2 log(2)

)−s/(s+d/2)

)−2s/d

︸ ︷︷ ︸
:=8Cκ

, (147)

where Cκ only depends on κ = 2s/d− 1. Since this gives a minimax lower bound of 1
2δ

2, the proof
is complete.

The rest of this section is devoted to the proof of Lemma E.1.

Proof of Lemma E.1. Define the following truncated ellipsoid:

Ẽ :=
{
(αℓ)

∞
ℓ=0 ∈ E : ∀ℓ ≥ ∆+ 1 : αℓ = 0

}
⊆ E , (148)

where ∆ is a parameter defined as

∆ := max
{
ℓ : λℓ ≤ ζ

−2
s

}
= N(ζ

−2
s ;G). (149)

Note that
∑∞

ℓ=∆+1 |αℓ|2 ≤ ζ2 for all (αℓ)
∞
ℓ=0 ∈ E .

To construct a ζ/2−covering set, note that according to the definition of the truncated ellipsoid,
B∆(ζ) ⊆ Ẽ ⊆ E , where B∆(ζ) denotes the ball with radius ζ (in ℓ2−norm) is the Euclidean space of
dimension ∆. Using standard bounds in the literature [65], we get

logNℓ2(N)(ζ/2) ≥ ∆ log(2). (150)
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To get the upper bound on the
√
2ζ−covering number, using an argument based on the volume of the

ellipsoid Ẽ [65], we conclude

logNℓ2(N)(
√
2ζ) ≤ ∆ log(4/ζ) +

1

2

∆∑
ℓ=0

log(λ−s
ℓ ) (151)

= ∆ log(4/ζ)− s

2

∆∑
ℓ=0

log(λℓ) (152)

= ∆ log(4/ζ)− s

2

∫ ζ
−2
s

1

log(t)dN(t;G) (153)

= ∆ log(4/ζ)− s

2
log(ζ

−2
s )N(ζ

−2
s ;G) +

s

2

∫ ζ
−2
s

1

N(t;G)
dt

t
(154)

= ∆ log(4) +
s

2

∫ ζ
−2
s

1

N(t;G)
dt

t
. (155)

By Theorem 4.4, ∫ ζ
−2
s

1

N(t;G)
dt

t
≤ 2

d
N(ζ

−2
s ;G) +O(ζ−

d−1
s ) (156)

=
2

d

ωd

(2π)d
vol(M/G)ζ−d/s +O(ζ−

d−1
s ). (157)

Therefore,

logNℓ2(N)(
√
2ζ) ≤ ∆(s/d+ log(4)) +O(ζ−

d−1
s ). (158)
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