
A Approximate Behavior of Metrics on Sequential Data317

How do different metrics behave when used to measure autoregressive model outputs? Precisely318

answering this question is tricky and possibly analytically unsolvable, so we provide an approximate319

answer here.320

Notationally, we consider N test data of length L (here, length is measured in tokens) with tar-321

gets denoted tn
def
=(tn1, tn2, ...tnL), the autoregressive model has a true-but-unknown per-token er-322

ror probability of ϵ ∈ [0, 1] and the model outputs prediction t̂n
def
=(t̂n1, t̂n2, ...t̂nL). This assumes323

that the model’s per-token error probability is constant, which is empirically false, but modeling the324

complex dependencies of errors is beyond our scope.325

A.1 Per-Token Error Probability is Resolution-Limited326

Note that because we have N test data, each of length L, our resolution for viewing the per-token327

error probability ϵ is limited by 1/NL. Here, resolution refers to “the smallest interval measurable328

by a scientific instrument; the resolving power.” To explain what resolution means via an example,329

suppose one wants to measure a coin’s probability of yielding heads. After a single coin flip, only330

two outcomes are possible (H, T), so the resolution-limited probability of heads is either 0 or 1. After331

two coin flips, four outcomes are possible (HH, HT, TH, TT), so the resolution-limited probability332

of heads is now one of 0, 0.5, 1. After F coin flips, we can only resolve the coin’s probability of333

yielding heads up to 1/F . Consequently, we introduce a resolution-limited notation:334

⌊a⌉b
def
= a rounded to the nearest integer multiple of 1/b (3)

A.2 Token Edit Distance335

We first consider an adaptation of the Levenshtein (string edit) distance for models that function336

on tokens rather than characters, an adaptation we term the token edit distance. The token edit337

distance between two token sequences tn, t̂n is defined as the integer number of additions, deletions338

or substitutions necessary to transform tn into t̂n (or vice versa).339

Token Edit Distance(tn, t̂n)
def
= Num Substitutions + Num. Additions + Num. Deletions (4)

=

L∑
ℓ=1

I[tnℓ ̸= t̂nℓ] + Num. Additions + Num. Deletions (5)

≥
L∑

ℓ=1

I[tnℓ ̸= t̂nℓ] (6)

The expected token edit distance is therefore:340

E[Token Edit Distance(tn, t̂n)] ≥ E[
L∑

ℓ=1

I[tnℓ ̸= t̂nℓ]] (7)

=

L∑
ℓ=1

p(tnℓ ̸= t̂nℓ) (8)

≈ L(1− ϵ) (9)

The resolution-limited expected token edit distance is therefore:341

⌊E[Token Edit Distance(tn, t̂n)]⌉NL ≥ L
(
1− ⌊ϵ⌉NL

)
(10)
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From this, we see that the expected token edit distance scales approximately linearly with the342

resolution-limited per-token probability. The real rate is slightly higher than linear because addi-343

tions and deletions contribute an additional non-negative cost, but modeling this requires a model344

of how likely the model is to overproduce or underproduce tokens, which is something we do not345

currently possess.346

A.3 Accuracy347

Accuracy(tn, t̂n)
def
= I[No additions] I[No deletions]

L∏
l=1

I[tnl = t̂nl] (11)

≈
L∏

l=1

I[tnl = t̂nl] (12)

As with the Token Edit Distance (App. A.3), we ignore how likely the language model is to over-348

produce or underproduce tokens because we do not have a good model of this process. Continuing349

along,350

E[logAccuracy] =
∑
l

E[log I[tnl = t̂nl]] (13)

≤
∑
l

logE[I[tnl = t̂nl]] (14)

≈ L log(1− ϵ) (15)

Taking an approximation that would make most mathematicians cry:351

E[Accuracy] ≈ exp(E[logAccuracy]) (16)

= (1− ϵ)L (17)
(18)

This reveals that accuracy approximately falls geometrically with target token length. The352

resolution-limited expected accuracy is therefore:353

⌊E[Accuracy]⌉NL = ⌊(1− ϵ)L⌉NL (19)

From this we can see that choosing a nonlinear metric like Accuracy is affected significantly more354

by limited resolution because Accuracy forces one to distinguish quantities that decay rapidly.355

A.4 ROUGE-L-Sum356

Another BIG-Bench metric [28] is ROUGE-L-Sum [23], a metric based on the longest common357

subsequence (LCS) between two sequences. Section 3.2 of [23] gives the exact definition, but the358

key property is that ROUGE-L-Sum measures the “union” LCS, which means “stitching” together359

LCSs across the candidate and multiple references. As explained in the original paper: if the candi-360

date sequence is c = w1w2w3w4w5, and if there are two reference sequences r1 = w1w2w6w7w8361

and r2 = w1w3w8w9w5, then LCS(r1, c) = w1w2 and LCS(r2, c) = w1w3w5, then the union362

-LCS of c, r1, r2 is w1w2w3w5, with length 4. Intuitively, this disproportionately benefits models363

with smaller error rates because their mistakes can be “stitched” across multiple references; this is364

confirmed in simulation (Fig. 9).365
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Figure 9: ROUGE-L-Sum is a sharp metric. Simulations show that as the per-token error proba-
bility slightly increase (e.g. from 0.05 to 0.1), the ROUGE-L-Sum metric sharply falls.
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Figure 10: Induced emergent MNIST classification ability in convolutional networks. (A) A
published emergent ability from the BIG-Bench Grounded Mappings task [33]. (B) LeNet trained
on MNIST [21] displays a predictable, commonplace sigmoidal increase in test accuracy as model
parameters increase. (C) When accuracy is redefined as correctly classifying K out of K indepen-
dent test data, this newly defined metric induces a seemingly unpredictable change.

B Inducing Emergent Abilities in Networks on Vision Tasks366

B.1 Emergent Classification of MNIST Handwritten Digits by Convolutional Networks367

We begin by inducing an emergent classification ability in a LeNet convolutional neural network368

family [22], trained on the MNIST handwritten digits dataset [21]. This family displays smoothly369

increasing test accuracy as the number of parameters increase (Fig. 10B). To emulate the accuracy370

metric used by emergence papers [8, 33, 28], we use subset accuracy: 1 if the network classifies K371

out of K (independent) test data correctly, 0 otherwise. Under this definition of accuracy, the model372

family displays an “emergent” ability to correctly classify sets of MNIST digits as K increases from373

1 to 5, especially when combined with sparse sampling of model sizes (Fig. 10C). This convolutional374

family’s emergent classification ability qualitatively matches published emergent abilities, e.g., at375

the BIG-Bench Grounded Mappings task [33] (Fig. 10A).376
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