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Abstract

Image classification and segmentation are common applications of deep learn-
ing to radiology. While many tasks can be framed using either classification
or segmentation, classification has historically been cheaper to label and more
widely used. However, recent work has drastically reduced the cost of training
segmentation networks. In light of this recent work, we reexamine the choice
of training classification vs. segmentation models. First, we use an information
theoretic approach to analyze why segmentation vs. classification models may
achieve different performances on the same dataset and task. We then implement
methods for using segmentation models to classify medical images, which we
call segmentation-for-classification, and compare these methods against traditional
classification on three retrospective datasets (n=2,018–19,237). We use our analysis
and experiments to summarize the benefits of using segmentation-for-classification,
including: improved sample efficiency, enabling improved performance with fewer
labeled images (up to an order of magnitude lower), on low-prevalence classes, and
on certain rare subgroups (up to 161.1% improved recall); improved robustness
to spurious correlations (up to 44.8% improved robust AUROC); and improved
model interpretability, evaluation, and error analysis.

1 Introduction

Classification and segmentation are two popular applications of deep learning to radiology [1].
Classification produces coarse-grained, image-level predictions, while segmentation produces fine-
grained, pixel-level maps. While many tasks can be framed using either classification or segmentation
(Figure 1), classification is often the default framing. For one, classification has been cheaper to
label, requiring only one label per image compared to segmentation’s tedious, pixel-wise labels.
Second, training classification networks to produce image-level outputs mirrors radiologists’ standard
workflows, where radiologists summarize findings at the image-level and only routinely perform
segmentation in a few sub-disciplines that rely on quantitative measurements over the segmentation
masks. These factors have led to an abundance of medical image classification models [2, 3].
In contrast, because segmentation has been so cumbersome to label and is performed relatively
infrequently by radiologists, segmentation networks are often only trained when the downstream
application requires it (e.g., for computing the volumes or diameters of structures in an image).

Recent work in label-efficient training enables us to reexamine this paradigm. Self-supervised learn-
ing, in-context learning, weakly-supervised learning, and semi-supervised learning can substantially
reduce labeling burden [4, 5, 6, 7, 8, 9, 10]. Additionally, more public datasets and broad-use pre-
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Figure 1: Illustration of three medical image analysis problems that can be framed using either
classification or segmentation.

trained networks are coming online [11, 12, 13, 14, 15]. Together, these new methods, datasets, and
pretrained backbones are enabling users to develop networks for new segmentation tasks with less
and less annotation burden—a trend that will likely continue.

In light of this progress, we reexamine the convention around when to employ segmentation networks.
Specifically, we investigate using segmentation networks for medical image classification, exploring
if segmentation’s fine-grained annotation and output can lead to benefits compared to classification’s
coarse annotation and output. Our contributions include:

• Exposition. We analyze why classification and segmentation networks may perform differ-
ently on the same datasets. We show that segmentation leads to more separable and robust
embedding spaces, guiding what benefits we should expect to see (Section 2).

• Best practices. We implement multiple methods to obtain classification labels from segmen-
tation networks, which we call segmentation-for-classification (Section 3). We empirically
confirm our analysis (Section 4.1) and compare methods across datasets, tasks, and training
conditions to build up best practices for training segmentation-for-classification networks
(Section 4.2). We show segmentation-for-classification can improve aggregate performance
compared to traditional classification models by up to 16.2% (from 0.74 AUROC to 0.86
AUROC). Finally, we explore semi-supervised segmentation-for-classification, showing
existing label-efficient training methods for segmentation can directly benefit segmentation-
for-classification.

• Trade-offs. We pull together our analysis and experiments to provide consolidated and
expanded evidence of the benefits of using segmentation-for-classification, including:
improved sample efficiency, enabling improved performance on small datasets, on low-
prevalence classes, and on certain rare subgroups (up to 161.1% improved recall); improved
robustness to spurious correlations (up to 44.8% improved robust AUROC); and improved
model interpretability, evaluation, and error analysis (Section 5).

In summary, conventional wisdom driving the choice between classification and segmentation was
formed when labeling burden was a major bottleneck to building neural networks. With recent
progress in label-efficient training, we should reconsider conventions. Ultimately, we show that the
choice of training a classification vs. segmentation network not only impacts how the model can be
used but changes the properties of the model itself, and we show that leveraging segmentation models
can lead to higher quality classifiers in common settings. These results indicate segmentation may be
a more natural way to train neural networks to interpret and classify images, even though it’s not the
conventional way humans classify images.

Related work. Our study is motivated by past works that employ segmentation networks in classifi-
cation problems and report various benefits of doing so [16, 17, 18, 19, 20, 21]. A full discussion of
related work is included in Appendix A1.

2 Analysis

In this section we develop an understanding of why segmentation and classification networks may
perform differently given the same dataset and overarching task (i.e., to find a class-of-interest).
We cover task specification and notation in Section 2.1 then build up intuition for the benefits of
segmentation in Section 2.2.

2



Figure 2: Visualization of the positive and negative class distributions that classification vs. segmen-
tation networks aim to discriminate. In classification, supervision is applied at the image-level; in
segmentation, supervision is applied at the pixel-level.

2.1 Preliminaries

Task specification. We first specify the classification tasks we consider replacing with segmentation.
We study classification tasks where the following properties are true: the class-of-interest can be
localized in the foreground and does not occupy the entire image; the class-of-interest appears if and
only if the classification label is positive; the background should not inform the classification label.
Example tasks that meet these specifications are shown in Figure 1. Examples of tasks that don’t
meet these specifications include classifying the imaging modality or radiographic bone age, where
global features of an image inform the class label and there is no clear segmentation target.

Notation. We consider a dataset of N images, class labels, and segmentation masks D =
{(Xi, yi,Si)}Ni=1. Each image Xi is made up of L pixels, {Xi

1, X
i
2, . . . , X

i
L}. For simplicity of

notation, we assume binary classification, so the image-level classification label is yi ∈ {0, 1} where
1 is the positive label. The segmentation mask Si contains L pixel-level labels {Si

1, S
i
2, . . . , S

i
L}

indicating which pixels contain the class-of-interest. The image-level class label and pixel-level
segmentation mask are related by yi = 1

{∑L
k=1 S

i
k ≥ 1

}
. Put simply, this means if the class label

is positive, there is at least one pixel labeled as positive in the segmentation mask and vice versa.
We train a segmentation network f(·) to produce a predicted segmentation mask f(Xi) = Ŝi by
minimizing the cross entropy loss CE(Ŝi,Si). For notation’s sake, we will drop the sample index i,
thus referring to the ith image Xi simply as X and the kth pixel Xi

k simply as Xk.

Data generating process. To study segmentation vs. classification, we take an information theoretic
approach and use the following simplified data generating process. First, the pixel-level segmentation
labels {S1, . . . , SL} are drawn from a joint distribution PS . Then, each pixel Xk is drawn from the
distribution PX(·|Sk). As above, the image-level classification label y can be defined in terms of the
segmentation mask, y = 1

{∑L
k=1 Sk ≥ 1

}
.

2.2 Analyzing segmentation vs. classification

To understand why segmentation and classification may perform differently on the same dataset, we
consider the distributions that classification vs. segmentation networks are trained to discriminate.
As an example, we’ll use chest x-ray pneumothorax classification. In classification, supervision
is applied at the image-level—the network seeks to discriminate images with a pneumothorax vs.
images without a pneumothorax (Figure 2, left). In segmentation, supervision is applied at the pixel-
level—the network seeks to identify pixels that contain a pneumothorax (Figure 2, right). Looking at
these distributions, differences emerge.

Sample complexity. First, we see that segmentation has more annotated input-output pairs, as each
pixel is annotated. Moreover, we see that classification’s positive and negative classes share more
features than segmentation’s—implying segmentation may have greater class separability. We capture
this notion of separability using the Kullback–Leibler (KL) divergence and show the following:

Proposition 1 It holds that

DKL
(
Pr(Xk|Sk = 0)||Pr(Xk|Sk = 1)

)
≥ Pr(y = 1)

Pr(Sk = 1)
DKL

(
Pr(Xk|y = 0)||Pr(Xk|y = 1)

)
.

(1)
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Figure 3: Diagram showing how a chest x-ray disease classification problem can be framed using
either standard classification or segmentation-for-classification. In the traditional classification
workflow, the input image is processed by a classification network, which outputs a classification
label vector. In the segmentation-for-classification workflow, an input image is processed by a
segmentation network, which outputs binary masks showing where each abnormality is found. These
masks are then converted into a classification label vector via a summarizing function, g(·).

In other words, the KL divergence between data given pixel-level labels (as is done in segmentation) is
greater than or equal to the scaled KL divergence given image-level labels (as is done in classification).
We note that the scaling factor Pr(y=1)

Pr(Sk=1) is always greater than or equal to one. We provide the
proof for Proposition 1 in Appendix A3.1, confirming our intuition that segmentation supervision
results in more separable data distributions. Because of the greater quantity of input-output pairs and
the greater KL divergence, we expect segmentation’s discrimination function to be easier to learn,
requiring fewer images or a simpler function class [22, 23]. Since we study the setting in which the
segmentation mask directly indicates the classification label (y = 1

{∑L
k=1 Sk ≥ 1

}
), we similarly

expect segmentation-for-classification to have higher performance than standard classification in the
limited data regime. Finally, from Proposition 1, we expect segmentation-for-classification to impart
more benefit for tasks with small targets; for large targets, the terms in Proposition 1 approach one
another.

Robustness to spurious correlations. The second observation we make from Figure 2 is that, because
background features appear in classification’s positive class, it is possible for the classification network
to rely on background features to identify positive samples if those background features spuriously
correlate with the class label. Such failure modes have been observed in prior work. For example,
classifiers relying on metal L/R tokens to identify pneumonia [24]; classifiers looking for chest drains
to classify pneumothorax [25]; and classifiers looking to image edges (which can change with patient
positioning and radiographic projection) to classify COVID-19 [26]. Segmentation should be more
robust to such background features, since background features are less correlated with the target class.
This notion has been formalized in past work [21], which we recall here.

Specifically, for spurious features that do not overlap with the segmentation target, the mutual infor-
mation between positive features and spurious features decreases as we transition from supervising
with image-level labels to pixel-level labels. Since the spurious feature is less informative of the
pixel-level labels than the classification label, we expect segmentation to be more robust to the
presence or absence of spuriously correlated background features.

3 Methods

To use segmentation for classification tasks, we need to determine how to use segmentation networks
to obtain classification labels. We’ll do this by defining a summarizing function, g(·), which takes
as input the image and segmentation network and outputs a class label g(X, f(·)) = ŷ. The
segmentation-for-classification workflow is shown in Figure 3. In this section, we describe the
summarizing functions that we evaluate. We note these methods can be used for both binary class
problems and multiclass problems, as long as the classes of interest follow the task specification set
above. We provide multiclass results in Appendix A5.6.

3.1 Rule-based summarizing functions

We first consider a simple, rule-based summarizing function. This method is intuitive: if there
is a positive region in the predicted segmentation mask, we infer a positive classification label.
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Figure 4: Visualization of the datasets used in this manuscript: the synthetic dataset, where the task is
to classify if a navy blue circle is preset; CANDID, a pneumothorax classification task; ISIC, a lesion
classification task; and SPINE, a cervical fracture classification task. For each dataset, we show a
positive and negative image and their corresponding segmentation masks.

Specifically, at inference, we binarize the probabilistic mask output from the segmentation network
using threshold t. If the binarized mask contains over threshold τ total positive pixels, we return a
positive classification label. To compute the class probability, we average the pixel-wise probabilities
of all pixels in the class. Algorithms for this method are provided in Appendix A2.1.

3.2 Trained summarizing functions

Next we consider summarizing functions trained to transform the segmentation information into
classification labels. The intuition behind these methods is that trained functions may learn more
nuanced differences between true positive and true negative predicted segmentation masks. We train
these summarizing functions using the same splits used to train the segmentation network, and freeze
the segmentation networks before training the summarizing functions.

We first consider trained summarizing functions that operate on the predicted segmentation masks.
We consider three architectures for the summarizing function, each with increasing complexity: a
fully connected layer, a global average pooling layer followed by a fully connected layer, and existing
image classification architectures such as SqueezeNet [27] and ResNet50 [28].

We also consider summarizing functions that operate on segmentation network embeddings, similar
to traditional transfer learning. We consider both shallow and deep embeddings and two different
summarizing function architectures: a simple architecture consisting of pooling and fully connected
layers, and a more complex classification head proposed in past work [20].

We fully describe these summarizing functions and training processes in Appendix A2.2.

4 Experiments

In this section, we first confirm the takeaways from our analysis in Section 2 on a synthetic dataset
(Section 4.1). Then, we evaluate the summarizing functions we described in Section 3 on medical
imaging datasets (Section 4.2). We briefly describe the datasets and training below; we provide full
details of the synthetic dataset and training in Appendix A4 and the medical datasets and training in
Appendix A5.

Datasets. The synthetic dataset consists of many colored shapes on a gray background; the task
is to determine if a navy blue circle is present. We also evaluate three medical imaging datasets:
CANDID, in which we aim to classify pneumothorax in chest x-rays (n=19,237) [29]; ISIC, in which
we aim to classify melanoma from skin lesion photographs (n=2,750) [30]; and SPINE, in which we
aim to classify cervical spine fractures in CT scans (n=2,018, RSNA 2022 Cervical Spine Fracture
Detection Challenge). These datasets are visualized in Figure 4. The SPINE dataset is an example of
where the growing number of off-the-shelf networks enables segmentation-for-classification: we use
a pretrained CT segmentation network to generate segmentation targets for this task, as detailed in
Appendix A5.

Training. To establish baseline classification performance, we train a standard supervised classifica-
tion network. To establish baseline segmentation+classification performance, we train a multitask
learning network where the classification and segmentation networks are trained concurrently and
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Figure 5: Results from experiments on the synthetic datasets. Each panel shows classification vs.
segmentation-for-classification performance, as measured by the balanced accuracy, on the y-axis as
a characteristic of the training dataset is changed on the x-axis.

share the same network backbone using the Y-Net structure [31]. To obtain segmentation-for-
classification performance, we implement each summarizing function as described in Section 3.
We train classification, multitask, and segmentation networks by minimizing the cross entropy loss
between the predicted and ground truth labels using the Adam optimizer. We provide additional train-
ing details and information on hyperparameter tuning in Appendix A4.2 and A5.2, and we provide
ablation experiments controlling for segmentation vs. classification model capacity in Appendix
A5.3.

4.1 Experiments on synthetic data

We first perform experiments on synthetic data to confirm the takeaways from our analysis. By using
a synthetic dataset, we have precise control over dataset and task characteristics, allowing us to isolate
and adjust these variables to assess model performance. We provide highlights of our synthetic
experiments below; a full description of the experimental procedure on synthetic data can be found in
Appendix A4. In these synthetic experiments, we use the rule-based summarizing function.

The first takeaway from Section 2 is that segmentation-for-classification should require fewer images
to achieve high performance, particularly for tasks with small targets. We examine this with our
synthetic dataset in the following experiments.

• We sweep the number of training images from 1,000 to 100,000 and plot classification and
segmentation-for-classification balanced accuracy in Figure 5a, where we see segmentation-
for-classification has improved performance in the limited data regime.

• Similar to learning with small datasets, we also expect segmentation to perform better with
high or low class prevalence, which we see in Figure 5b and Figure 5c.

• Segmentation’s ability to learn with fewer examples should also extend to rare subtypes—we
expect higher performance on class subtypes that appear infrequently during training. To
evaluate this, we train on small, medium, and large navy blue circles and evaluate network
performance on the small circles as they are made increasingly rare during training (Figure
5d). We see segmentation-for-classification achieve higher performance on this data slice
with few training examples.

• We vary the object size in the train and test dataset and find segmentation-for-classification
provides more boost with smaller targets (Figure 5e).

The second takeaway from our analysis is that segmentation-for-classification should be more robust
to background features that spuriously correlate with the class of interest. We evaluate this with two
synthetic experiments.

• We first evaluate an obvious case of spurious correlation: when a background object
correlates with the class label. We make a large, pink square increasingly correlated with
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Figure 6: Comparison of different segmentation-for-classification methods on the CANDID, ISIC,
ad SPINE datasets in both the limited and abundant training data settings. As baselines, we include
classification and multitask network performance. FC: fully connected.

the target (a small navy blue circle) in our synthetic dataset—then remove this correlation in
the test dataset—and show that segmentation is robust to this correlation (Figure 5f).

• Spurious background correlations can also include less obvious features, like where the
target object occurs; in other words, we expect segmentation to be more robust to target
location. We explore this by changing where the target navy blue circle appears during
training, but allowing the navy blue circle to appear anywhere in the test dataset. As the
target is increasingly restricted to a particular location during training, classification is less
able to generalize to finding the target in other regions of the image (Figure 5g).

4.2 Experiments on medical imaging data

Given the promising results on synthetic data, we next evaluate performance on the medical datasets
and evaluate segmentation-for-classification training methods. In Section 4.2.1 we compare the
performance of different summarizing functions, classification networks, and multitask networks. In
Section 4.2.2 we evaluate semi-supervised segmentation-for-classification.

4.2.1 Comparing summarizing functions, classification, and multitask training

We evaluate each summarizing function and model on the three medical datasets in two regimes:
limited labeled data, which consists of 10% of randomly sampled training data, and all labeled
training data. We report mean AUROC on the test set in Figure 6. We observe that the simple, rule-
based segmentation-for-classification method achieves higher mean AUROC than both the traditional
classification and multitask networks for all tasks and amounts of training data. Specifically, we
observe a 10.0%, 6.9%, and 2.8% improvement in mean test AUROC in the limited training data
regime for CANDID, ISIC, and SPINE respectively over traditional classification, and a 2.6%, 0.6%,
and 6.1% performance improvement in the all training data setting.

Comparing summarizing functions, we find that summarizing functions which operate over segmenta-
tion network outputs generally outperform those that operate over embeddings. Among summarizing
functions that operate over segmentation outputs, three perform similarly well: thresholding the
segmentation output, learning a fully connected layer, and training a full classification network on
top of the segmentation output. The threshold-based summarizing function has additional advantages:
it does not require training, thus saving training effort and avoiding potential overfitting to training
data; it is fast to compute at inference; and the results are intuitive—when there is a segmentation
mask, there is an associated positive class label. For these reasons, we recommend simple rule-based
summarizing functions for converting a segmentation mask into a classification label. We compare
the error modes of these methods in Section 5.
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Figure 7: Semi-supervised segmentation-for-classification. As the x-axis increases, all models are
trained with additional segmentation labels; the semi-supervised model is also trained with unlabeled
data, and the boosted semi-supervised model is also trained with data that only has classification
labels. Each line plots the average AUROC of the test set with shaded 95% confidence intervals.

4.2.2 Semi-supervised segmentation-for-classification

As discussed in the Introduction, a historical obstacle to widespread application of segmentation
is the difficulty of curating labeled training datasets. However, recent work has led to more public
datasets, pretrained networks, and methods to reduce the labeling burden of training segmentation
models. We posit that this progress in segmentation will also benefit segmentation-for-classification.
In the previous section, we showed that an off-the-shelf spine segmentation model could be used
to generate segmentation labels for training the SPINE segmentation-for-classification models. In
this section, we verify that a semi-supervised segmentation method can improve performance of
segmentation-for-classification models. We consider two common settings:

• Setting 1, additional unlabeled data. Because unlabeled data is often abundant, practition-
ers may have a subset of their dataset labeled with segmentation masks and a larger set of
unlabeled images.

• Setting 2, additional classification data. Other practitioners may have a subset of their
dataset labeled with segmentation masks and a larger set of images with classification labels.

For Setting 1, we apply a previously-published semi-supervised segmentation method which takes a
small set of labeled data and a large set of unlabeled data as input and trains a segmentation model
using a combination of data augmentation, consistency regularization, and pseudo labeling [32].

For Setting 2, we update the previously-proposed methods by using the classification labels to
improve the pseudo segmentation labels, which we call “boosted” semi-supervision. The original
semi-supervised approach uses pseudo labeling, in which a small amount of labeled segmentation
data is used to train an initial segmentation network; the initial network predicts pseudo segmentation
masks for all unlabeled data; and a final network is trained on the pseudo segmentation masks. In the
“boosted” algorithm, we use the available classification labels to modify the pseudo segmentation
masks. Specifically, for images that have negative classification labels, we zero out the pseudo
segmentation masks: because we know the classification label is negative, we know that there should
not be any positive region in the segmentation mask. For images that have a positive classification
label, we check to see if the pseudo segmentation mask has a positive segmentation region; if it does
not have a positive segmentation region, we know that the pseudo segmentation mask is wrong and
we exclude the sample from training of the final segmentation network.

These semi-supervised approaches learn from the unlabeled data to train a better segmentation
model, which we hypothesize will also improve segmentation-for-classification performance. In these
experiments, we use the threshold-based summarizing function and train models using a balanced
training dataset. We report model performance for varying amounts of labeled training data in Figure
7. We report additional performance metrics and the number of labels for each method at the most
limited and abundant data settings in Table A8.

From these results, we observe that all of the segmentation-for-classification models trained with 10%
of the training data labeled exceed the performance of the classification model trained with 100% of
the training data labeled. These results confirm one of the takeaways from our analysis, which is that
segmentation-for-classification can achieve higher performance with fewer images. Additionally, we
see that the semi-supervised training further improves segmentation-for-classification performance,
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confirming that semi-supervised segmentation methods can directly be used for segmentation-for-
classification. Finally, we see that the boosted semi-supervised approach indeed improves perfor-
mance beyond standard semi-supervision in the limited data regime.

5 Benefits and drawbacks of segmentation-for-classification

In this section, we tie together our analysis, synthetics, and experiments on real data to summarize
the benefits and drawbacks of using segmentation-for-classification.

Segmentation can improve aggregate performance, particularly with small datasets. Using
segmentation-for-classification can lead to higher-performing models compared to traditional classi-
fication. Our analysis in Section 2 shows this benefit is due in part to greater divergence between
segmentation’s positive and negative classes and higher quantity of annotation (we evaluate the
contributions of each of these factors with an additional experiment in Appendix A4.3). We observe
this takeaway empirically in Figure 6, showing segmentation-for-classification improves mean perfor-
mance on all datasets and training settings. Our analysis suggests greater performance differences
occur in the limited data regime, which can include:

• Small datasets. We expect greater boosts from segmentation-for-classification with limited
dataset sizes. We observe this with synthetics in Figure 5a and on two of the three medical
datasets in Figure 6. Small datasets often occur when developing models on custom data or
when training models for rare diseases.

• Low class prevalence. Segmentation can also achieve higher performance than classification
when the class balance is very low or high (shown with synthetic datasets in Figure 5b,c),
since segmentation is able to better learn from the few examples of the low-prevalence class.

• Rare subtypes. We expect segmentation-for-classification models to have improved ability
to identify rare subtypes, which appear infrequently in the training dataset. We observe
this on the synthetics (Figure 5d) and see this property revealed in the medical datasets
as well: on small lesions that are positive for melanoma, which are less commonly seen
during training, traditional classification achieves a recall of 0.18 and segmentation-for-
classification achieves a recall of 0.47.

Finally, the analysis in Section 2 suggests segmentation provides greater benefit for tasks with
small targets. We observe this with synthetics in Figure 5e. On the real data experiments, models
trained with the full datasets reflect this property as well: the SPINE dataset has the lowest average
target-to-background size ratio (with the target taking up an average 0.6% of the image) and achieves
the greatest performance boost with segmentation-for-classification, while the ISIC dataset has the
highest target-to-background size ratio (with the target taking up an average 26.3% of the image) and
sees the lowest performance boost.

Segmentation reduces susceptibility to spurious correlations. A worrying failure mode of classifi-
cation networks is that instead of learning to identify the pathology of interest, the model instead looks
for easier-to-identify features that spuriously correlate with the true target—such as the examples
given in Section 2. Segmentation-for-classification should be more robust to background features
spuriously correlated with the target task.

Empirically, we observe this in our synthetic data (Figure 5f) and evaluate a spurious correlation on
the medical datasets here. Specifically, in the CANDID dataset, we evaluate performance under a
known spurious correlation condition: most pneumothoraces in chest x-ray datasets co-occur with a
chest tube, which are used to treat pneumothorax [25]. Thus, it is important that the pneumothorax
classification algorithms are able to find pneumothoraces without chest tubes, as those are the patients
who have not yet been identified and treated. To evaluate each model’s robustness to this spurious
correlation, we evaluate model performance on patients who do not exhibit the spurious correlation
(i.e., patients with pneumothorax but no chest tube or patients without pneumothorax but do have a
chest tube) and observe that segmentation-for-classification achieves an AUROC of 0.84 while the
classifier’s AUROC drops to 0.58.

We also expect segmentation-for-classification to be more robust to the target location, which is
another type of spurious correlation. We observe this in the synthetics (Figure 5g) and on the medical
data: recall of the CANDID classifier drops up to 22.5% conditioned on the lung region in which the
pneumothorax occurred (dropping from 0.92 recall in the right lower hemithorax to 0.71 recall on the
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left upper hemithorax) while segmentation-for-classification recall drops at most 7.5% (from 0.94 in
the left lower hemithorax to 0.87 in the right upper hemithorax).

Segmentation facilitates human assessment. Segmentation-for-classification inherently delivers
location information. While there are methods to probe classification models for which areas of an
image contribute to the model’s prediction (e.g., saliency maps [33], class activation maps [34, 35])
these methods are often unreliable; shortcomings are further discussed in prior work [36, 37]. By
providing location information as well as classification information, segmentation-for-classification
models enable the user to more effectively adjudicate model findings. This location information is
more pertinent for some applications where the abnormality may be hard to find (e.g., pneumothorax,
fracture) versus use cases where the visual features used by the model are obvious (e.g., skin lesion).

Segmentation enables more precise model evaluation. We can perform more detailed model
evaluation and error analysis using segmentation-for-classification’s location and size information.
For example, we can evaluate models with a stricter definition of recall: instead of identifying a true
positive as when the image-level label is positive and correct, we can also require that the correct
region of the image is identified. When we compute the stricter recall metric for models trained with
all labeled data, we see reductions in recall: CANDID drops from 0.87 to 0.85 and SPINE drops
from 0.74 to 0.55. We can’t similarly assess the classification algorithms with this stricter definition
of recall because of the lack of reliable methods to acquire accurate location information from
classifiers. However, precise model evaluation is important for low-failure-tolerance applications
such as medicine, and segmentation-for-classification provides an obvious means of doing so. Finally,
we can perform additional error analysis using segmentation-for-classification’s size and location
information, such as assessing the average abnormality size and region.

Segmentation has a higher per-image labeling cost. The burden of generating segmentation training
labels is a drawback of training segmentation networks and can change for different tasks (e.g., 3D
images have a higher labeling burden). In comparison, classification is cheap to generate labels for—
particularly for cases where classification labels can be pulled from electronic health records [38]. In
this work, we’ve explored two ways of reducing segmentation’s labeling burden while improving
classification performance: using an off-the-shelf segmentation model and using semi-supervised
training methods. As new tools emerge and make it easier to generate segmentation training labels
[13, 14, 15], we expect the labeling burden gap between classification and segmentation to lessen.
Still, the increased annotation cost of segmentation given available tools should be weighed against
the expected benefits (detailed above) of using segmentation-for-classification on a given dataset.

6 Conclusion

Historically, segmentation networks have been employed only when required due to their high
annotation cost. Given the increasing ease of training segmentation networks, we aim to better flesh
out the decision space between training a segmentation vs. classification network. In Section 2, we
develop intuition and formally analyze why segmentation and classification networks can perform
differently. In Section 3 and 4, we explore methods to implement segmentation-for-classification
and empirically evaluate segmentation-for-classification over many datasets and training conditions.
Finally, in Section 5, we discuss the benefits and drawbacks of segmentation-for-classification. We
show that segmentation-for-classification can lead to more performant, robust, and interpretable
models. In clinical settings, one may prefer more these upsides despite the added annotation cost.

Broadly, these results underline the potential of deep learning-based segmentation as a general tool
for automating image analysis. Segmentation data provides an information-rich environment for deep
neural networks to learn from, which we’ve shown results in separable, robust embedding spaces. In
turn, segmentation network outputs capture detailed information about images, which can support
many downstream analysis tasks.

In future work, we are interested in how to leverage segmentation for targets that don’t fit the task
specification we study here, perhaps utilizing anatomical or coarser forms of segmentation to still reap
some of the benefits of training segmentation models. Additionally, we are interested in reader studies
focused on quantifying the value of the location information contained in segmentation masks for
radiologists working with AI algorithms. Finally, we are interested in how to leverage segmentation
to benefit other machine learning applications in radiology, extending our study of how task framing
impacts a model’s properties.
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Appendices
A1 Related work

Segmentation to benefit classification. Our study is inspired by past works that employ seg-
mentation networks in classification problems and report various benefits of doing so. Improved
overall accuracy. For example, [16] uses a segmentation network to generate segmentation masks of
different tissue types in lung ultrasound images, then trains a sequence of global average pooling
and fully connected layers to convert the tissue masks into classification labels. The authors report
higher aggregate performance compared to training a classification model from scratch for their lung
ultrasound classification task. In [17], the authors expand this approach by including diagnostic tissue
segmentation targets (i.e., segmenting benign vs. malignant tissue as different segmentation classes),
then converting the segmentation masks into class labels via a likelihood score over the segmented
tissue types. Similarly, [18] jointly segments and classifies liver lesions in CT scans by segmenting
the lesion as one of multiple possible lesion types and finds that the segmentation approach results in
higher classification performance than traditional classification or multitask learning. Training with
fewer labels. Other reports focus on segmentation networks’ ability to learn from limited labeled
data. For instance, [19] converts segmentation outputs into classification labels via a likelihood
score and compares the aggregate performance of the segmentation network against classification
and multitask learning networks when trained with varying dataset sizes. The authors find that the
segmentation network achieves higher classification scores in the limited data regime. Similarly,
[20] uses features from a UNet pretrained on a segmentation task to fine tune a classifier and again
finds higher classification performance using the pretrained segmentation weights in the limited data
regime. Improved robustness. Finally, [21] shows that training a segmentation network instead of a
classification network results in predictors more robust to spurious correlations.

Multitask learning. Other works have combined segmentation and classification via multitask
learning, in which the classification and segmentation networks share the same backbone but dif-
ferent task heads trained concurrently [39, 40, 41, 31, 42]. The multitask approach differs from the
approaches discussed above, which each train a segmentation network, freeze it, then use the segmen-
tation network’s embeddings or outputs to produce a classification label. In multitask frameworks, the
classification task can impact the weights learned for the segmentation task via the shared backbone,
and training schedules and task weighting must be managed.

Classification to benefit segmentation. Other studies focus on the reverse of what we are inter-
ested in by first training a classification network then using that classifier to generate segmentation
information. These approaches typically aim either to generate segmentation labels for “free” by
extracting location information from the classification models or to use this location information to
improve a classification network’s interpretability. Examples of this class of related work include
using saliency maps [33], class activation maps [34, 35], occlusion maps [43], and classifiers with
built-in attention mechanisms [44].

Semantic segmentation. A great deal of work has focused on improving semantic segmenta-
tion methods [45, 46], which underlie the segmentation-for-classification methods we explore here.
Segmentation-for-classification frameworks contain an additional step converting a semantic seg-
mentation network or output into an image-level classification label, particularly for tasks which
are not typically framed as segmentation tasks. Additionally, many recent works have advanced
our ability to train semantic segmentation networks with limited labeled data, including using self-
supervised networks, semi-supervision, and foundation models [4, 5, 6, 7, 47, 8], many of which
have been adapted specifically to medical imaging [48, 49, 50]. These methods make training
segmentation-for-classification models less labor-intensive.

Transfer learning. The segmentation-for-classification framing can be viewed as a type of transfer
learning. While many transfer learning studies have focused on settings where the task type stays
consistent (e.g., transferring one classification network to a different classification task), some
studies have looked at transferring classification weights to segmentation tasks or vice versa [51,
52, 53]. Some segmentation-for-classification methods can be considered transfer learning, where
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Algorithm 1 Compute binary label
Require: ProbSegMask ∈ [0, 1]H×W×D, t ∈ [0, 1], τ ∈ Z∗.

1: BinSegMask ← ProbSegMask ≥ t
2: if sum(BinSegMask) ≥ τ then
3: return 1
4: else
5: return 0
6: end if

the segmentation network is trained first and much of the segmentation network is frozen before
transferring the learned weights to a classification task.

Label granularity. A related line of work explores the right label granularity for training classifica-
tion models (e.g., training “herbivore vs. carnivore” compared to training “horse vs. deer vs. cat vs.
dog vs...”) [54, 55]. Similar to our findings, these works find that more granular labels can lead to
improved network optimization and generalization [54].

Modified classification networks. Finally, many works have modified straightforward supervised
classification training schemes. For example, self- and semi-supervised learning aim to improve
performance with limited labeled data [56], and past work has proposed various modifications to
classification training to improve robustness [57, 58].

In this manuscript, we use straightforward classification as we are interested in exploring fundamental
differences between classification and segmentation. We observed that many performance benefits can
be achieved simply by using a segmentation model, improving performance along many axes without
specialized tooling. Conversely, classification modifications are typically different for different
objectives (e.g., methods for reducing reliance on spurious correlations are different from methods
that handle class imbalance are different from methods that improve interpretability). We believe
the fact that segmentation results in many benefits without specialized tooling for each is a major
strength of the proposed approach.

Our contributions. We first analyze why we see performance differences, supporting and helping
to explain the empirical results that we and others have observed as well as the conditions under
which we can expect to see benefits. Next, we implement both previously proposed and new methods
for using segmentation-for-classification and compare these approaches across multiple datasets
using varying amounts of training data. We perform this head-to-head comparison to build up
a recommendation of best practices for using segmentation networks in classification problems,
including: recommending a summarizing function; showing an off-the-shelf segmentor can achieve
improved classification performance; showing an existing semi-supervised training method can
improve performance; and adapting that semi-supervised method specifically to the segmentation-for-
classification setting. Finally, we aggregate and expand on the benefits of switching from classification
to segmentation. We expand on benefits by showing improved performance with low class prevalence,
rare subtypes, and location spurious correlations, and we discuss these quantitative benefits in
conjunction with qualitative benefits like improved interpretability and model evaluation. We use this
consolidated evidence to make the broader case that many classification problems would benefit from
a segmentation framing.

A2 Summarizing functions

Below we provide additional details on the summarizing functions we evaluate in the main text.

A2.1 Rule-based summarizing functions

In Section 3.1, we introduce a rule-based summarizing function using thresholds to transform the
segmentation output into a classification label. Here we give further details of that summarizing
function. Specifically, in Algorithm 1, we give the algorithm we use to compute a binary, image-level
label from a probabilistic segmentation mask. Given a probabilistic segmentation mask—which
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Algorithm 2 Compute probabilistic label
Require: ProbSegMask ∈ [0, 1]H×W×D, t ∈ [0, 1], BinaryLabel ∈ {0, 1}.

1: if BinaryLabel = 1 then
2: PosProbs← ProbSegMask[ProbSegMask ≥ t]
3: return mean(PosProbs)
4: else
5: NegProbs← ProbSegMask[ProbSegMask < t]
6: return mean(NegProbs)
7: end if

contains the segmentation network output, the pixelwise probabilities indicating where the class of
interest was found—we first binarize the segmentation mask using threshold t. At default, t = 0.5.
We then sum all pixel values in the binary segmentation mask; if there are more than threshold τ
positive pixels in the segmentation mask, we return a positive binary image-level label. In this work,
we set τ = 100.

In Algorithm 2 we provide the method we use to compute a probabilistic image-level label from a
probabilistic segmentation mask. We use these probabilistic labels to compute the AUROC. Given a
probabilistic segmentation mask, we first compute the binary label using Algorithm 1. If the binary
label is positive, we compute the probabilistic image-level label as the mean of pixel values that are
greater than threshold t. Similarly, if the binary label is negative, the probabilistic image-level label
is the mean of pixel values less than t. At default, t takes value 0.5.

A2.2 Trained summarizing functions

In Section 3.2, we introduce trained summarizing functions to transform the segmentation output into
a classification label. We give further details of those summarizing functions here.

Summarizing functions that operate over segmentation outputs. After first training the segmen-
tation network, we generate predicted segmentation masks Ŝ for all training and validation images.
Note that we do not binarize these masks, but retain the pixel-wise probabilities. Then, using the
same dataset splits used for training the segmentation network, we train the summarizing function
g(·) to take the predicted segmentation mask Ŝ as input and produce a class label vector g(Ŝ) = ŷ by
minimizing the cross entropy loss CE(ŷ, y). At inference, the segmentation network first generates a
predicted segmentation mask for the test image, then the predicted mask is fed into the summarizing
function which produces class probabilities.

We consider three architectures for trained summarizing functions that operate over segmentation
network outputs. The first and simplest architecture is a fully connected layer on the flattened
predicted segmentation mask Ŝ, which is used to produce class scores that are normalized with a
softmax function.

The next summarizing function we consider is a global average pooling layer followed by a fully
connected layer. We take the output segmentation mask Ŝ and produce a vector with values represent-
ing the average of each class’s segmentation mask. The fully connected layer then transforms these
class averages into scores for each class, which are normalized with a softmax function. This method
is similar in spirit to thresholding as described above but with a threshold learned from the values
observed in the train set. This global average pooling to fully connected approach was previously
proposed in [16].

Finally, we consider known image classification architectures as summarizing functions. At a high
level, the task of transforming a segmentation mask into a classification label is exactly an image
classification task: does the “image” represented by the predicted segmentation mask correspond to a
positive or negative class label? So, we investigate if existing image classification architectures are
suited for learning mappings from predicted segmentation masks to class labels. In this work, we
consider SqueezeNet [27] and ResNet50 [28] as summarizing functions on top of the segmentation
output.
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Model Deep embedding layer name Shallow embedding layer name

models.segmentation.fcn_resnet50 backbone.layer2 backbone.layer4
Generic_UNet [59] conv_blocks_localization[2] conv_blocks_localization[4]

Table A1: Layer names we pull embeddings from for the trained summarizing functions. These
names are from public networks available in Pytorch.

Summarizing functions on pretrained segmentation embeddings. We next consider summarizing
functions that operate over segmentation network embeddings. We first train the segmentation network
f(·), then store embeddings for all training and validation images. We train the summarizing function
g(·) to take the segmentation embeddings as input and produce a class label vector ŷ as output by
minimizing the cross entropy loss CE(ŷ, y). At inference, the image is passed through the pretrained
segmentation network and embeddings from the segmentation network are stored. These embeddings
are then processed with the summarizing function to produce class probabilities.

We consider two types of embeddings, shallow and deep. The intuition for exploring different
embedding depths is that different depths contain different information about the input image,
which may vary in their usefulness for the classification task. We give the name of the layer in
the Pytorch model that we pull embeddings from in Table A1. We also consider two different
architectures to classify the segmentation network’s embeddings. First, we define a simple network
architecture consisting of a global average pooling layer followed by three fully connected layers,
which produces class scores that we normalize with a softmax function. Second, we consider a
more complex classification head proposed previously in [20]. The classification head takes the
segmentation embeddings as input, then processes the embeddings with three blocks of convolution-
batch normalization-ReLU-maximum pooling operations. The convolutional kernels are size 3x3
and each produce 16 channels; the maximum pooling operation operates over a 2x2 window. The
resulting embedding is flattened. Then, we process the flattened embedding with two blocks of
linear transform-batch normalization-ReLU-dropout. The linear layer produces 100 features and the
dropout layer has a probability of dropout set to 0.25. Finally, the resulting feature map is processed
with a single linear layer to produce the final output, a vector equal in length to the number of classes,
which can be normalized with the softmax function.

A3 Supporting analysis

A3.1 Proof of Proposition 1

Proof. We can write Pr(Xk|y = 1) as

Pr(Xk|∃ j s.t. Sj = 1) =
Pr(∃ j s.t. Sj = 1, Xk)

Pr(∃ j s.t. Sj = 1)
=

∑
S1,...,SL:

∑
Sk≥1 Pr(S1, . . . , SL) Pr(Xk|S1, . . . , SL)

Pr(∃ j s.t. Sj = 1)
(A1)

=

∑
S1,...,SL:

∑
Sk≥1 Pr(S1, . . . , SL) Pr(Xk|Sk)

Pr(∃ j s.t. Sj = 1)
(A2)

=

∑
S−k

Pr(Sk = 1, S−k) Pr(Xk|Sk = 1) +
∑

S−k:
∑

S−k≥1 Pr(Sk = 0, S−k) Pr(Xk|Sk = 0)

Pr(∃ j s.t. Sj = 1)

(A3)

=
Pr(Sk = 1)Pr(Xk|Sk = 1) + Pr(Xk|Sk = 0)

∑
S−k:

∑
S−k≥1 Pr(Sk = 0, S−k)

Pr(∃ j s.t. Sj = 1)
(A4)

= λPr(Xk|Sk = 1) + (1 − λ) Pr(Xk|Sk = 0), (A5)

where λ =
Pr(Sk=1)

Pr(∃ j s.t. Sj=1)
. Therefore, we have written the probability of a pixel value given the image-level label, Pr(Xk|y = 1), as a mix-

ture of the probability of the pixel value given the pixel-level label, Pr(Xk|Sk = 1) and Pr(Xk|Sk = 0). Next, we can write Pr(Xk|y = 0) as
Pr(Xk|S1, . . . , SL = 0) = Pr(Xk|Sk = 0) by our data generating process.

Putting together Pr(Xk|y = 1) and Pr(Xk|y = 0), the right hand side of the inequality in Proposition 1 is

DKL(Pr(Xk|y = 0)||Pr(Xk|y = 1)) = DKL(Pr(Xk|Sk = 0)||λPr(Xk|Sk = 1) + (1 − λ) Pr(Xk|Sk = 0)) (A6)

≤ λDKL(Pr(Xk|Sk = 0)||Pr(Xk|Sk = 1)) + (1 − λ)DKL(Pr(Xk|Sk = 0)||Pr(Xk|Sk = 0)) (A7)

= λDKL(Pr(Xk|Sk = 0)||Pr(Xk|Sk = 1)) ≤ DKL(Pr(Xk|Sk = 0)||Pr(Xk|Sk = 1)) (A8)

where we have obtained the desired inequality due to convexity of the KL divergence. Note that by keeping λ in the inequality, we can make the stronger claim

DKL(Pr(Xk|Sk = 0)||Pr(Xk|Sk = 1)) ≥
Pr(y = 1)

Pr(Sk = 1)
DKL(Pr(Xk|y = 0)||Pr(Xk|y = 1)). (A9)
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Variable name Description Default value

nobj Number of total objects in the image 50

ntrain Number of training images 100, 000

nval Number of validation images 20, 000

ntest Number of test images 100, 000

ctarget Color of the target object navy blue

rtarget Radius of the target object 8

starget Shape of the target object circle

ltargetx Possible x coordinates for the target object ∼ unif{0, 224}

ltargety Possible y coordinates for the target object ∼ unif{0, 224}

cspurious Color of the spurious object pink

rspurious Radius of the spurious object 8

sspurious Shape of the spurious object square

lspuriousx Possible x coordinates for the spurious object ∼ unif{0, 224}

lspuriousy Possible y coordinates for the spurious object ∼ unif{0, 224}

cbackground Colors of the background objects ∈ {yellow, green, pink, red, orange, purple, eight
shades of blue}

rbackground Radii of the background objects 8

sbackground Shapes of the background objects ∈ {circle, rectangle, diamond, octagon, star,
square}

lbackgroundx Possible x coordinates for the background object ∼ unif{0, 224}

lbackgroundy Possible y coordinates for the background object ∼ unif{0, 224}

ppos Probability of a positive class (i.e., class balance). At ppos = 0 the dataset
contains no positive samples; at ppos = 1 the dataset contains only positive
samples.

0.5

pspur Strength of spurious correlation. At pspur = 1 the spurious object always and
only co-occurs with the target object; at pspur = 0 the spurious object never
co-occurs with the target object, but appears every time the target object is absent; at
pspur = 0.5, the spurious object has no dependence on the target object.

0.5

Table A2: Variables that define a synthetic dataset. All experiments are run with datasets constructed
from the default values unless specified otherwise.
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Experiment Adjusted variable

Number of training images ntrain is varied from 1,000 to 100,000.

Class balance Class balance is changed in the train data by varying ppos ∈ [0.01, 1]. Note that class balance in the validation
and test data is not changed from default.

Size bias Instead of all target objects having the same radius, we draw the radius from a distribution increasingly biased towards
larger radii. Note that the validation and test datasets only show small objects.

Spurious correlation Spurious correlation strength is changed in the train data by varying pspur ∈ [0, 1] and the spurious feature size is
changed to 28. Note that spurious correlation strength in the validation and test data is not changed from default.

Location bias The location of the target object is changed in the train data by varying ltargetx and ltargety from
∼ unif{112, 112} to ∼ unif{0, 224}. Note that location distributions are not changed from default
in the validation or test data.

Target size The size of the target and background objects are swept from 8 to 40. We change ntrain to 10,000.

Number of objects The difficulty of the classification task is changed by sweeping the number of unique background objects from 1 to 10;
the total number of objects nobj remains set to 50. We change ntrain to 25,000.

Table A3: Experiments we run on synthetic datasets. For each experiment, we adjust the variable
values indicated above (leaving the other variables at default) and assess how classification and
segmentation-for-classification performances are impacted.

A4 Synthetic dataset and experiments

We conduct experiments on a synthetic dataset to evaluate how dataset and task characteristics
impact the performance of classification and segmentation-for-classification models. Here we provide
additional details on our synthetic dataset and experiments. The synthetic dataset is visualized in
Figure 4.

A4.1 Synthetic dataset

The synthetic dataset is made up of images containing a gray background and many objects of varying
shapes and colors. The task is to classify if a given image has a certain colored shape present. Each
synthetic dataset is defined by the set of parameters given in Table A2.

To construct a synthetic image, we initialize a gray background of size (224, 224, 3). We then
draw the class label y ∼ Bernoulli(ppos). We sample the spurious label s according to the
strength of the spurious correlation pspur. Specifically, we define and sample the random variable
match ∼ Bernoulli(pspur). If match = 1, we set the spurious label s = y; else, we set s = 1− y.
If s = 1, we create the spurious object specified by (cspurious, rspurious, sspurious)—the object’s
color, radius, and shape—and place the spurious object at the coordinates drawn from the distributions
(lspuriousx , lspuriousy ). We follow similar processes to generate and place the nobj−y−s background
objects and target object. We place the target object last to ensure it is placed in the foreground.

To run experiments on the synthetic dataset, we vary one dataset variable, train the classification
and segmentation-for-classification models, and evaluate performance. The variable we adjust for
each experiment is described in Table A3. Additionally, we visualize the training dataset for each
experiment in Figure A1.

A4.2 Training details for synthetic datasets

We train a ResNet50 to classify the synthetic data and a ResNet50 with a fully convolutional
segmentation head to segment the synthetic data. We train the classifier and segmentation networks
by minimizing the cross entropy loss between the predicted and ground truth labels. We do not
use data augmentation on the synthetic data. We train each network with an Adam optimizer and
a learning rate of 1e-4, tuned from [1e-6, 1e-5, 1e-4, 1e-3]. We checkpoint the networks on the
maximum balanced accuracy on the validation set. We use the threshold-based summarizing function.

21



Figure A1: Visualization of the synthetic dataset task and experiments. The task is to identify if the
image contains a navy blue circle. Each experiment changes a characteristic of the training dataset to
observe how classification vs. segmentation-for-classification performance is impacted.
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Figure A2: Visualization of the annotation quantity experiment. The input image is a grid of
colored squares; classification supervision receives a class label per image; segmentation supervision
with subsampling receives one class label per colored square; segmentation supervision without
subsampling receives a class label per pixel.

Figure A3: Results from annotation quantity experiment. This graph shows that providing segmenta-
tion supervision for every pixel is the most sample efficient, though providing supervision for every
colored square still improves sample efficiency compared to providing one label for the entire image.
This graph supports that it is both annotation quantity and the differences in class distribution leading
to segmentation-for-classification’s improved performance in the limited data regime.

A4.3 Additional synthetic experiments

In the main text, we focus on the divergence between positive and negative classes as to why
classification and segmentation perform differently. We do not explicitly model the benefit from
denser annotation during training, instead taking it as a given that the denser annotation should help
segmentation learn with fewer images. To show that annotation quantity is not the only component
contributing to segmentation’s improved performance, we run the following experiment.

We study a simplified setting visualized in Figure A2. Specifically, we divide a 112× 112 grid into
sixteen isotropic squares. The task is to identify if any of the squares are navy blue. Class balance is
set to 0.5, meaning an image is as likely to have the target class as not. The remaining square colors
are drawn randomly. In this simplified setting, we still expect divergence between segmentation
classes to be greater than divergence between classification classes, following our analysis in Section
2.

Classification supervision is applied at the image-level, per usual. To understand the influence of
annotation quantity, we evaluate segmentation-for-classification performance in two settings. First,
we provide segmentation supervision with only one pixel per square. This level of supervision
results in 16 annotated pixels per image, but an equal number of positive class annotations as the
classification supervision. Second, we provide segmentation supervision over all pixels (this is the
usual segmentation-for-classification setting), in effect providing 12,544 annotated pixels per image
and 784× as many positive class annotations. The supervision for each of these models is also
visualized in Figure A2.

In effect, this experiment separates the impact of just divergence vs. divergence+higher quantity of
(positive) annotations. We sweep the number of training images and report results in Figure A3.
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We see that segmentation without subsampling outperforms segmentation with subsampling outper-
forms classification. This result confirms that both the denser annotation and greater divergence
during training benefit segmentation-for-classification performance.

A greater number of annotated samples should improve most ML tasks, as has been extensively
studied before. We focus on characterising the divergence as it is specific to segmentation-for-
classification and less studied in prior work. Future work may study the relative benefits of these two
aspects of supervision.

A5 Real datasets and experiments

We run experiments on three public medical imaging datasets, described below and fully detailed in
their original studies. The medical datasets are visualized in Figure 4.

A5.1 Medical imaging datasets

CANDID: classifying pneumothorax in chest x-rays [29]

• Classification task. Our aim is to classify whether a chest x-ray contains a pneumothorax;
ground truth classification labels are provided with the original dataset.

• Segmentation target. Our aim is to segment pneumothorax when it appears in a chest x-ray;
ground truth segmentation masks are provided with the original dataset.

• Dataset. This dataset contains 19,237 chest x-rays. The images are two-dimensional,
one-channel images of size 1024 x 1024, and we normalized each image to the range [0, 1].
We split this dataset randomly into 60% training images, 20% validation images, and 20%
test images. In this dataset, 16.6% of images are positive for pneumothorax.

ISIC: classifying melanoma from photographs of skin lesions [30]

• Classification task. Our aim is to classify whether a skin lesion is melanoma or not; ground
truth classification labels are provided with the original dataset.

• Segmentation target. Our aim is to segment the skin lesion when it is melanoma; ground
truth segmentation masks are provided with the original dataset.

• Dataset. This dataset contains 2750 images of skin lesions. The images are two-dimensional,
three-channel images that we resized to 224 x 224. We use the splits provided by the ISIC
challenge organizers, resulting in 2000 training images, 150 validation images, and 600 test
images. 18.9% of images are positive for melanoma.

SPINE: classifying cervical spine fractures in CT scans (RSNA 2022 Cervical Spine Fracture
Detection Challenge)

• Classification task. Our aim is to classify whether there is a fracture in the cervical spine;
ground truth classification labels are provided with the original dataset.

• Segmentation target. Our aim is to segment the vertabrae in which the fracture occurs.
Unlike the previous two datasets, the ground truth segmentation masks were not available
in this dataset for all training images. Instead, we used an off-the-shelf CT segmentation
network [11] to generate segmentation masks of the vertebra. For each positive classification
label, we create a corresponding segmentation mask which delineates the vertebrea in which
the fracture occurs. This use case shows how off-the-shelf models can be used to convert
some classification problems into segmentation problems without any additional labeling.

• Dataset. This dataset contains 2018 CT scans of the spine. The images are three-dimensional
volumes with one channel. We applied a CT bone window then normalized each scan to the
range [0, 1]. We resized each axial slice to 128 x 128 voxels using bilinear interpolation and
resampled the axial dimension to 128 slices around the spine, resulting in 128 x 128 x 128
image volumes. 47.6% of these scans contain a cervical spine fracture. We randomly split
this dataset into 60% training, 20% validation, and 20% test.
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Model Dataset Architecture Learning rate Weight decay

Segmentation CANDID ResNet50, SEResNet50, DeepLabv3, UNet 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0
Segmentation SPINE ResNet50 3d, UNet 3d, NNuNet 3d 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0
Segmentation ISIC ResNet50, SEResNet50, DeepLabv3, UNet 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0
Classification CANDID ResNet50, SEResNet50, DenseNet121, ConvNext 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0
Classification SPINE ResNet50 3d, UNet 3d encoder, NNuNet 3d encoder 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0
Classification ISIC ResNet50, SEResNet50, DenseNet121, ConvNext 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0

Multitask CANDID ResNet50 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0
Multitask SPINE ResNet50 3d 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0
Multitask ISIC ResNet50 1e-6, 1e-5, 1e-4, 1e-3 1e-6, 1e-4, 1e-2, 0

Table A4: Hyperparameters tested for the backbone networks; chosen hyperparameters are in bold.

Summarizing function CANDID
(low data)

SPINE
(low data)

ISIC
(low data)

CANDID
(high data)

SPINE
(high data)

ISIC
(high data)

Seg. output → fully connected layer 1e-5 1e-6 1e-3 1e-5 1e-6 1e-4
Seg. output → avg. pool + fully connected layer 1e-2 1e-2 1e-3 1e-2 1e-2 1e-4

Seg. output → SqueezeNet 1e-5 1e-5 1e-5 1e-5 1e-6 1e-6
Deep seg. embeddings → simple head 1e-3 1e-3 1e-3 1e-3 1e-2 1e-3

Shallow seg. embeddings → simple head 1e-3 1e-4 1e-4 1e-4 1e-2 1e-3
Deep seg. embeddings → complex head 1e-4 1e-2 1e-3 1e-3 1e-4 1e-2

Shallow seg. embeddings → complex head 1e-3 1e-3 1e-4 1e-3 1e-3 1e-2

Table A5: Hyperparameters selected for training the summarizing functions.

A5.2 Training details for medical imaging datasets

In Table A4 we list each hyperparameter we evaluated for the backbone networks trained on the
medical datasets. We chose hyperparameters that maximized the validation AUROC. Chosen hyper-
parameters are in bold.

For the trained summarizing functions, we only tuned the learning rate. We evaluated learning
rates [1e-6, 1e-5, 1e-4, 1e-3, 1e-2] for each summarizing function and chose the learning rate that
maximized the validation AUROC. In Table A5 we list the chosen learning rate for each summarizing
function and dataset.

To evaluate performance, we report mean AUROC over the test split of each dataset. We binarize
the probabilistic labels to report additional performance metrics by setting the operating point on
the ROC curve that maximizes the Younden Index. We compute 95% confidence intervals using
bootstrapping (1000 iterations). We conduct our experiments using Pytorch Lightning (Pytorch
version 1.9.0, Lightning version 1.5.10) [60, 61].

A5.3 Ablations on model capacity

To report results in the main text, we tested multiple architectures for each task and dataset and
selected the best-performing architecture for both segmentation and classification (Table A4). We
did this to give each task and dataset the best performance, as it’s not clear the best architecture for
segmentation on a given dataset is the same that is best for classification.

However, segmentation networks are often higher capacity than classification networks due to their
dense, pixel-wise outputs and corresponding decoders. To show that it is not simply a difference in
model capacity that is leading to the observed performance differences between segmentation and
classification, we perform the following ablations.

First, we use the same backbone for both segmentation and classification (Table A6). We use
Resnet50 as the 2D backbone as it is a common backbone known to be useful for classification and
segmentation. The Resnet50 classification head is a linear layer, while the Resnet50 segmentation
head is the head described in the Fully Convolutional Network paper [62]. We use the UNet from
the nnU-Net paper [59] for the 3D backbone. We see that segmentation shows the same or greater
performance enhancement than what appeared in the original paper when using these standardized
backbones. We further note that all of our synthetic experiments were run with a standardized
backbone between classification and segmentation.

However, even when using the same backbone, segmentation models still typically have more param-
eters due to the convolutional decoder head. We next provide results comparing performance using
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Backbone Method AUROC

CANDID ResNet50 Classification 0.80
Seg-for-class 0.91

ISIC ResNet50 Classification 0.56
Seg-for-class 0.67

SPINE nnU-Net Classification 0.60
Seg-for-class 0.62

Table A6: Performance comparison when classification and segmentation models are trained with the
same network backbone. For the SPINE task, the nnU-Net encoder is used for the classification task.

Backbone Method AUROC

CANDID ResNet101 Classification 0.82
ResNet50 Seg-for-class 0.91

ISIC ResNet101 Classification 0.59
ResNet50 Seg-for-class 0.67

Table A7: Performance comparison when classification has a higher-capacity model (i.e., contains
more parameters) compared to segmentation.

a higher capacity classification model—Resnet101, which has more parameters than the Resnet50
segmentation model—in Table A7. Again, we see improved performance with segmentation.

Finally, we emphasize that we matched training procedure for classification and segmentation
networks, including matching the input data, augmentations, and codebase (which standardizes model
checkpointing, loss function, hyperparameter tuning, etc.). Together, these results show it is not
just model capacity or training procedure that lead to segmentation-for-classification’s improved
performance.

A5.4 Additional performance metrics

In Table A8 we report additional performance metrics using standard classification and segmentation-
for-classification (including semi-supervised methods) on the CANDID dataset.

A5.5 Results on a natural image dataset

To show the proposed method extends to a natural image dataset, we include results classifying dog
and cat breeds in the Oxford Pets dataset in the limited data regime (50 training images per class).
We trained these models using ResNet50 architectures and the rule-based summarizing function. We
observe segmentation-for-classification achieves an AUROC of 0.96 while standard classification
achieves an AUROC of 0.81. These results show segmentation-for-classification improves average
AUROC by 18.5% on a natural image dataset, mirroring our results on medical imaging datasets.

A5.6 Results on multiclass datasets

While we focus on single-class tasks in the main text, we show here that segmentation-for-
classification can directly be used for multiclass tasks. Instead of having a binary mask output
from the segmentation network, a user simply needs to specify multiple output channels. First, we
note the Oxford Pets dataset contains 37 classes of dog and cat breeds; as shown in the previous
subsection, we see segmentation outperforms classification by 18.5% on this multiclass dataset.
Further, we extend one of our medical imaging datasets to the multiclass setting and perform 3-
class classification on ISIC, classifying lesions as benign nevi, melanoma, or seborrheic keratosis.
Again, we see improved performance with segmentation-for-classification, which achieves a balanced
AUROC of 0.61 compared to classification’s 0.50 in the limited data regime.
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# images
with seg and
class labels

# images
with only

class labels

# images
with no
labels

AUROC Bal.
Accuracy Recall Precision Specificity

Classification (limited) 0 198 0 0.74
(0.72 - 0.76)

0.68
(0.66 - 0.70)

0.60
(0.56 - 0.64)

0.31
(0.29 - 0.34)

0.76
(0.74 - 0.77)

Seg-for-class (limited) 198 0 0 0.86
(0.84 - 0.88)

0.78
(0.76 - 0.80)

0.75
(0.71 - 0.78)

0.42
(0.39 - 0.45)

0.81
(0.80 - 0.82)

Seg-for-class, semi-sup 198 0 3780 0.89
(0.87 - 0.90)

0.81
(0.79 - 0.83)

0.75
(0.71 - 0.78)

0.51
(0.48 - 0.55)

0.87
(0.86 - 0.88)

Seg-for-class, boosted semi-sup 198 3780 0 0.90
(0.89 - 0.92)

0.83
(0.81 - 0.84)

0.73
(0.70 - 0.77)

0.62
(0.59 - 0.66)

0.92
(0.91 - 0.93)

Classification (abundant) 0 3978 0 0.90
(0.89 - 0.92)

0.82
(0.81 - 0.84)

0.80
(0.77 - 0.83)

0.49
(0.46 - 0.52)

0.85
(0.84 - 0.86)

Seg-for-class (abundant) 3978 0 0 0.96
(0.96 - 0.97)

0.90
(0.89 - 0.92)

0.89
(0.86 - 0.92)

0.67
(0.63 - 0.70)

0.92
(0.91 - 0.93)

Table A8: Comparison of classification vs. semi-supervised segmentation-for-classification perfor-
mance on the CANDID dataset in the most limited and abundant training data conditions. These
models were trained with a balanced dataset. We report the average of each metric over the test set
with 95% confidence intervals in parentheses.

A6 Limitations

A limitation of this work includes the maximum sizes of the datasets. With much larger datasets,
we expect overall classification performance to improve. However, the dataset sizes we use in this
manuscript (2,000–20,000 for medical datasets; 100,000 for synthetic dataset) are not uncommon
medical imaging dataset sizes, particularly for new applications or datasets specific to an institution.
Further, we expect many benefits to hold in the very large data regime (e.g., robustness to spurious
correlations, performance on very rare subsets, human assessment, and model evaluation). As an
additional limitation, the segmentation-for-classification methods explored here are most applicable
to abnormalities that can be segmented. Images for which even experts do not know which regions
directly correspond to the class labels (e.g., some histopathology images [63]) have less obvious
segmentation targets. In these situations, classification in combination with methods like GradCAM
can help with feature discovery, for which segmentation-for-classification may be less well-suited.
Similarly, classification labels which are more global in nature (e.g., age prediction from radiographs,
atrophy of the brain in a head CT) do not have clear segmentation targets and may not benefit as
much from the segmentation signal.

A7 Broader impacts

This work focuses on automated medical image analysis. Automated image analysis algorithms have
the potential to support radiologists by providing decision support, improving analysis efficiency, and
improving analysis reproducibility. The work presented here helps to make progress towards these
benefits by improving the performance of automated medical image analysis algorithms; improving
the quality of model evaluation; and providing location information to the radiologist to facilitate
human assessment. However, medical image analysis is a low failure tolerance application. The work
presented here is meant as a contribution to shift the way we consider segmentation vs. classification
algorithms in building medical image analysis tools; the specific neural networks trained here are not
meant for clinical use.
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