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Abstract

While different neural models often exhibit latent spaces that are alike when ex-
posed to semantically related data, this intrinsic similarity is not always immediately
discernible. Towards a better understanding of this phenomenon, our work shows
how representations learned from these neural modules can be translated between
different pre-trained networks via simpler transformations than previously thought.
An advantage of this approach is the ability to estimate these transformations using
standard, well-understood algebraic procedures that have closed-form solutions.
Our method directly estimates a transformation between two given latent spaces,
thereby enabling effective stitching of encoders and decoders without additional
training. We extensively validate the adaptability of this translation procedure
in different experimental settings: across various trainings, domains, architec-
tures (e.g., ResNet, CNN, ViT), and in multiple downstream tasks (classification,
reconstruction). Notably, we show how it is possible to zero-shot stitch text en-
coders and vision decoders, or vice-versa, yielding surprisingly good classification
performance in this multimodal setting.

1 Introduction

Representation learning [Bengio et al., 2014] is a fundamental paradigm in the field of artificial
intelligence, aimed at uncovering the underlying structure of complex data. One of the main goals
of representation learning is to discover a robust representation of the data that is insensitive to
certain transformations of the input. The Manifold Hypothesis [Fefferman et al., 2013] posits that
real-world data lies on a low-dimensional non-linear manifold embedded in a high-dimensional space.
Yet, a complication arises in modeling these non-linear manifolds: the learning process is usually
influenced by stochasticities in the training dynamics and extrinsic factors that do not pertain to the
data’s core attributes, resulting in different representations for samples expected to be similar (e.g.,
different views of the same object, multiple translations of the same sentence, or even the exact same
input sample). This is critical as it hinders knowledge transfer between these networks. Recently,
the concept of relative representations [Moschella et al., 2023] has been proposed as a method for
zero-shot communication between latent spaces that is invariant to these extrinsic factors. The idea
is that latent spaces of neural networks trained on comparable data can be projected into the same
relative space, derived from the distances between the data points. One of the main contributions of
relative encoding is that it shows how the signal encoded in the angles with respect to a reduced set
of data points (called anchors) is enough to capture the intrinsic shape of the latent space, reaching
results on various benchmarks comparable to those using the original (absolute) encodings. As
a consequence, they empirically demonstrate that different latent spaces that share the same data
semantics (i.e., different representations of the same high-level concepts, such as images and their
captions), mostly differ only by an angle-preserving transformation.
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Figure 1: Zero-shot stitching of X and Y absolute spaces utilizing relative representations and our
method (the estimation of T ). Our approach does not require a decoder specifically trained on relative
representations (decZ). Instead, we directly translate latent spaces, enabling the use of arbitrarily
pre-trained decoders originally trained on absolute spaces.

Building on this intuition of the existence of a relatively simple transformation, we show the effective-
ness and applications of directly translating between different latent spaces – provided that a partial
(and possibly sparse) correspondence between data points is given. Remarkably, the process of seam-
lessly combining different neural networks, pre-trained on diverse datasets, modalities, architectures,
domains and downstream tasks, proves unexpectedly straightforward. For instance, we show how it
enables the ability to effectively integrate any pre-trained text encoder with any image classification
head, and vice versa, without requiring any additional re-training or assumptions (indeed, Moschella
et al. [2023] assumes the decoders are trained on relative representations). The method difference is
emphasized in Figure 1. While zero-shot stitching with relative representations assumes the use of a
single decoder specifically trained on a relative space, our method permits the reuse of the decoders
originally trained on the absolute spaces.

Our main contributions can be summarized as follows:

• We explore the direct translation between latent spaces of distinct neural networks to enable
latent communication. In particular, leveraging a semantic correspondence in the data, we
directly translate for the first time across different trainings, architectures, and modalities.
Notably, we obtain excellent stitching performances even in cross-modal settings, where we
apply arbitrary text classifiers on top of pre-trained image encodings (and vice-versa).

• We show that different downstream tasks, namely classification and generation, require
modeling different transformations to obtain the most out of the translation between their
latent spaces;

2 Related Works

Representations similarity Recent years have witnessed a growing consensus among researchers
in the deep learning community that effective neural networks tend to learn similar representations
for semantically similar data, regardless of the architecture, task, or domain in which they are applied.
This idea is supported by a plethora of empirical studies [Moschella et al., 2023, Norelli et al., 2023,
Morcos et al., 2018, Li et al., 2016, Kornblith et al., 2019, Bonheme and Grzes, 2022, Tsitsulin
et al., 2020, Barannikov et al., 2022, Vulić et al., 2020a, Lample et al., 2018, Lenc and Vedaldi,
2015, Mikolov et al., 2013a, Antonello et al., 2021, Bengio et al., 2012, Movshovitz-Attias et al.,
2017, Chang et al., 2022] and the phenomenon is particularly pronounced for large and wide models
[Somepalli et al., 2022, Mehta et al., 2022]. Nevertheless, despite this intrinsic similarity, latent
spaces can still exhibit extrinsic variations. Our work analyzes the possibility of translating these
spaces from one to another, linking these extrinsic variations to different classes of transformation.

Manifold alignment Procrustes analysis has been instrumental in the alignment of latent spaces
in deep neural networks [Wang and Mahadevan, 2008, 2009], particularly in Natural Language
Processing (NLP) where it is well-known that latent spaces of different languages are isomorphic
[Vulić et al., 2020b] and can be effectively aligned [Mikolov et al., 2013b, Xing et al., 2015]. Rooted
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Figure 2: Method illustration on a synthetic example. Given a source space X, the steps to translate
it to a target Y are sequentially applied as described in Section 3.2. Note that the translation is not
perfect due to an arbitrary distortion of the data.

in shape analysis, this method efficiently uncovers correspondences between latent spaces of different
models through the estimation of an optimal orthogonal transformation [Gower, 1975]. Previous
works largely exploit Procrustes analysis to align latent spaces originating from models of the same
architecture [Csiszarik et al., 2021], such as multi-lingual FastText embeddings [Bojanowski et al.,
2017, Smith et al., 2017]. Instead, in this work, we extend the application of Procrustes analysis to
network stitching in new domains, architectures, and even modalities for multiple downstream tasks.

Stitching and zero-shot Model stitching, which involves the combination of different neural net-
works to create a new model, has been a topic of active research in the field of representation learning.
A key concept in this area is that of relative representations [Moschella et al., 2023, Norelli et al.,
2023], which enables zero-shot stitching between different neural networks trained on semantically
similar data. While this approach assumes the use of decoders trained on relative representations, our
work removes this constraint by introducing a zero-shot mechanism for translating one absolute space
to another without relying on a shared (relative) representation, enabling the stitching of arbitrarily
trained models, further generalizable by assuming only the positive scale invariance of their decoder
part. Previously, trainable stitching layers [Lenc and Vedaldi, 2015, Bansal et al., 2021, Csiszarik
et al., 2021] have been introduced to allow for the combination of parts of different networks or to
verify statements regarding latent space similarity. Other works [Gygli et al., 2021, an, 2021, Yaman
et al., 2022, an, 2020] have proposed alternative methods for producing directly compatible and
reusable network components without specific stitching layers. Here, we sidestep the need to create a
new compatible representation and instead focus on obtaining a direct transformation to map from
a source space to a target one to enable seamless network stitching. Concurrently to this work, a
similar approach by [Lähner and Moeller, 2023] also targeted the direct alignment of representational
spaces, focusing on the compatibility of models trained end-to-end.

3 Method

3.1 Preliminaries

Relative representation is a framework introduced in Moschella et al. [2023], which enables latent
spaces of arbitrary neural models to communicate with each other. This is obtained by projecting the
latent spaces into a common one, transitioning from an absolute coordinate frame to a relative space:
each sample is represented as a function of a set of fixed samples denoted as anchor set. Specifically,
the new representation is computed by independently projecting each sample point x in the latent
space X ∈ Rn×d, into the anchor set AX ⊂ X. Formally, this is represented as

Xrel = Xabs ·AT
X , (1)

where Xrel ∈ Rn×k,Xabs ∈ Rn×d and AX ∈ Rk×d Samples in X and in A are rescaled to unit
norm, i.e. x = x

∥x∥2
∀x ∈ X and a = a

∥a∥2
∀a ∈ AX.

We assume to have access to subsets AX ⊂ X and AY ⊂ Y , with X and Y being the data
distributions, and that there exists a correspondence Γ : AX 7→ AY between these two sets of parallel
anchors. Parallel anchors act as a "Rosetta stone" [Norelli et al., 2023], meaning they establish a
semantic correspondence between their respective spaces: an anchor sample in the first set represents
the same high-level concept as its counterpart in the second set. This allows stitching together
components of different models: i.e., merging independently trained encoder and decoder modules
from different networks. The relative projection will map latent spaces into the same one as long as
the core assumption that they differ by an angle-preserving transformation is satisfied. However, in
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order to perform the stitching procedure in Moschella et al. [2023], decoders must be trained from
scratch at least once to process samples in this shared relative space.

In this work, we overcome this need by substituting the costly retraining procedure with an efficient
strategy to directly estimate the transformation necessary to map between spaces. Moreover, we relax
the "angle-preserving" constraint by allowing for a broader class of transformations obtained via
robust, closed-form algorithms.

3.2 Latent Space Translation

Consider two latent spaces, X ∈ Rn×d1 and Y ∈ Rn×d2 . Our objective is to estimate the transfor-
mation T that translates X into Y: Y = T (X), exploiting the semantic alignment between the two
spaces. Throughout this work, we identify two main steps in the translation process: pre-processing
the spaces and estimating the transformation T , as outlined in Figure 2.

Pre-processing Generally, the two spaces may have different dimensionalities – in those cases,
we zero-pad the smaller one to match the dimension of the other without changing its underlying
structure [Williams et al., 2021]. Moreover, we standardize each feature in the encoding to have zero
mean and unit variance (standard scaling) if not otherwise specified, whose statistics are computed
only on the anchor sets for both source and target space, to perform the necessary de-normalization.

Estimating T In Moschella et al. [2023], it is empirically shown that the spaces mostly differ
by an angle-preserving transformation. Nevertheless, we broaden our investigation by considering
different ways of obtaining T to evaluate the robustness of that assumption and the versatility of our
approach. Throughout our experiments, we primarily operate under the assumption that T can be
constrained to encode, at most, an affine transformation: T (x) = RX+ b

This general formulation, without additional constraints, corresponds to our affine method in the
experiments, and it is optimized via gradient descent. The other transformations are trivially obtained
by progressively adding constraints on this one:

• linear. To model a linear transformation, we can just set the bias term to zero b = 0⃗ and
optimize via Least Square. Here we are both simplifying the class of transformations and
switching from a gradient descent optimization to a closed-form procedure.

• l-ortho. Additionally, we could require R to be orthogonal to encode an isometry. In this
case, we obtain this by applying Singular Value Decomposition (SVD) on the corresponding
R obtained by the linear solution. Through this, we aim to understand the implications of
enforcing orthogonality on a transformation that was originally not constrained to be so, in a
setting similar to Xing et al. [2015].

• ortho. To obtain the optimal orthogonal R, we apply Procrustes analysis [Gower, 1975].

This methodology facilitates efficient and precise zero-shot translation between disparate latent spaces.
The transformation T , derived solely from the subset of corresponding points, provides a robust and
versatile foundation for model reuse and interoperability in diverse machine learning contexts.

4 Latent Communication via Translation

In this section, we evaluate the capabilities and effectiveness of our translation method through
various scenarios, highlighting its applicability in diverse contexts. We present empirical results in
three different novel settings: i) cross-architecture; ii) cross-modality; iii) autoencoding. In each case,
the translation performance of each method for obtaining the transformation T is evaluated against
two baselines, the naive absolute one and the relative one.

Stitching Procedure In line with the zero-shot stitching concept outlined in Moschella et al. [2023],
we combine independent encoders and decoders (e.g., classifiers, generators) without subsequent
training or fine-tuning. This study does not necessitate a decoder trained on relative representations;
instead, we directly employ the original decoders trained on absolute spaces. Each benchmark we
perform follows the same procedure unless otherwise specified: we measure the mean performance
over all the possible combinations of (encoder, decoder) for each test set in different settings:
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Figure 3: Performance comparison of affine, linear, l-ortho, and ortho at varying number of
anchors on classification accuracy. Results on CIFAR100 fine-grained. The same analysis for the
generation case is in Figure 8 in the Appendix.

Table 1: Cross-architecture stitching with various methods for estimating T and applying standard
scaling. The stitched decoders are SVMs with a linear kernel. 5 runs for each encoder-decoder pair.
(C) and (F) next to CIFAR100 indicate, respectively, coarse-grained and fine-grained. Please refer to
the Appendix in Table 5 for additional results with MLPs as classification heads.

Dataset No Stitching absolute relative affine linear l-ortho ortho

V
is

io
n

CIFAR10 0.95 ± 0.03 0.16 ± 0.22 0.80 ± 0.22 0.92 ± 0.05 0.88 ± 0.11 0.90 ± 0.09 0.93 ± 0.04
CIFAR100-C 0.85 ± 0.07 0.11 ± 0.21 0.54 ± 0.25 0.78 ± 0.09 0.73 ± 0.16 0.77 ± 0.11 0.81 ± 0.07
CIFAR100-F 0.76 ± 0.09 0.07 ± 0.21 0.30 ± 0.24 0.68 ± 0.11 0.62 ± 0.19 0.64 ± 0.16 0.71 ± 0.09
F-MNIST 0.88 ± 0.01 0.15 ± 0.20 0.63 ± 0.23 0.86 ± 0.01 0.83 ± 0.06 0.82 ± 0.05 0.85 ± 0.02
MNIST 0.96 ± 0.01 0.15 ± 0.21 0.50 ± 0.22 0.94 ± 0.01 0.89 ± 0.08 0.81 ± 0.11 0.91 ± 0.02

Te
xt

TREC 0.87 ± 0.12 0.20 ± 0.06 0.36 ± 0.13 0.82 ± 0.12 0.74 ± 0.25 0.57 ± 0.25 0.79 ± 0.11
AG News 0.73 ± 0.09 0.25 ± 0.02 0.39 ± 0.13 0.65 ± 0.08 0.62 ± 0.08 0.61 ± 0.10 0.66 ± 0.10
DBpedia 0.78 ± 0.23 0.07 ± 0.01 0.16 ± 0.10 0.66 ± 0.24 0.62 ± 0.23 0.57 ± 0.23 0.66 ± 0.22
IMDB 0.61 ± 0.04 0.50 ± 0.01 0.51 ± 0.02 0.59 ± 0.04 0.57 ± 0.04 0.56 ± 0.03 0.59 ± 0.04

• no-stitch. The end-to-end performance of the decoder applied to the original space it was
trained on. This is useful to establish un upper-bound in performances;

• absolute. The result of using the encodings without any transformation, we consider this as
a probe for any pre-existing compatibility among encodings and, therefore, a lower-bound;

• translation. These are the results of the application of our latent translation method, with
the estimation of T via affine, linear, l-ortho and ortho.

In each instance, we use the same parallel anchors, that are uniformly chosen, in a quantity comparable
with the dimensionality of the absolute representation.

4.1 Cross-Architecture

Firstly, we test our method in a cross-architecture setting, zero-shot stitching together encodings
coming from a variety of pre-trained networks and their associated absolute decoders (classifiers).
This scenario provides an extensive testing ground for our method and demonstrates its robustness
across different architectures. Please refer to Table 8 in the Appendix for further results on cross-
architecture stitching in generation tasks.

Experimental setting We consider a variety of Computer Vision (MNIST , Fashion MNIST ,
N24News, CIFAR10, CIFAR100) and Natural Language Processing (TREC [Hovy et al., 2001, Li and
Roth, 2002], DBpedia [Auer et al., 2007] , N24News [Wang et al., 2022], AG News [Zhang et al.,
2015], IMDB [Maas et al., 2011] ) datasets. For the text domain we consider 7 different language
models as encoders (uncased and cased BERT [Devlin et al., 2019], Electra [Clark et al., 2020],
RoBERTa base [Liu et al., 2019], ALBERT [Lan et al., 2020], and the text encoder of [Radford et al.,
2021]), and for the image domain 6 encoders (RexNet100 [Han et al., 2020], 4 variations of ViT
[Dosovitskiy et al., 2020], and the image encoder of [Radford et al., 2021]), all pre-trained and frozen.
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Table 2: Cross-architecture stitching with various methods for estimating T and applying L2 normal-
ization. The stitched decoders are SVMs with linear kernel. 5 runs for each encoder-decoder pair.
(C) and (F) next to CIFAR100 indicate, respectively, coarse-grained and fine-grained. Please refer to
Table 6 in the Appendix for additional results with MLPs as classification heads.

Dataset No Stitching absolute relative affine linear l-ortho ortho

V
is

io
n

CIFAR10 0.95 ± 0.03 0.16 ± 0.22 0.80 ± 0.22 0.93 ± 0.04 0.78 ± 0.27 0.88 ± 0.12 0.91 ± 0.09
CIFAR100-C 0.85 ± 0.07 0.11 ± 0.21 0.54 ± 0.25 0.79 ± 0.07 0.65 ± 0.25 0.73 ± 0.17 0.79 ± 0.10
CIFAR100-F 0.76 ± 0.09 0.07 ± 0.21 0.30 ± 0.24 0.69 ± 0.10 0.52 ± 0.25 0.62 ± 0.19 0.68 ± 0.13
F-MNIST 0.88 ± 0.01 0.15 ± 0.20 0.63 ± 0.23 0.86 ± 0.01 0.65 ± 0.23 0.83 ± 0.06 0.84 ± 0.05
MNIST 0.96 ± 0.01 0.15 ± 0.21 0.50 ± 0.22 0.94 ± 0.01 0.61 ± 0.23 0.90 ± 0.08 0.90 ± 0.04

Te
xt

TREC 0.87 ± 0.12 0.20 ± 0.06 0.36 ± 0.13 0.82 ± 0.12 0.44 ± 0.20 0.74 ± 0.23 0.77 ± 0.12
AG News 0.73 ± 0.09 0.25 ± 0.02 0.39 ± 0.13 0.66 ± 0.08 0.56 ± 0.10 0.62 ± 0.08 0.64 ± 0.10
DBpedia 0.78 ± 0.23 0.07 ± 0.01 0.16 ± 0.10 0.66 ± 0.24 0.44 ± 0.20 0.62 ± 0.23 0.60 ± 0.22
IMDB 0.61 ± 0.04 0.50 ± 0.01 0.51 ± 0.02 0.59 ± 0.04 0.55 ± 0.03 0.58 ± 0.04 0.59 ± 0.04

The full encoder list can be found in Table 7 in the Appendix. For each dataset and for each encoder,
we train an SVM classification head (decoder) on top of their specific encodings. We then proceed
with the standard stitching procedure outlined in Section 4 and collect the results. Please see Table 8
in the Appendix for cross-architecture stitching in generation tasks, where we extend this analysis by
verifying that our method works even across autoencoders of different bottleneck sizes.

Result analysis The stitching results are in Table 1. As expected, the absolute encodings obtain
a score comparable to random guessing while also considering fewer encoder combinations out of
the possible ones due to the dimensionality mismatch between some of them. Notably, these results
show that the transformation relating to these pre-trained encoders is indeed mostly orthogonal:
i) ortho and affine, the narrowest and the broadest transformation classes considered, are the
better-performing translation methods. But while the former is obtained via a simple and efficient
closed-form algorithm, the latter is SGD-optimized (Section 3.2). ii) the l-ortho version improves
or has small drops in performances over the linear transformation it is obtained from, confirming
that the least squares procedure converges to an R which is almost orthogonal. Note that these
results demonstrate the feasibility of combining pre-trained models without the need for retraining
or fine-tuning, with negligible drops in performances across the board and without any additional
assumption on the decoders. Please refer to Tables 5 and 6 in the Appendix for results with different
decoders. In the Appendix (Figure 7), we extend the cross-architecture transfer to decoders trained
on different domains (styles) of the same CIFAR10 dataset: the original one and a grayscale one.

Sensibility to Anchor Quantity The number of anchors is an essential parameter in our approach.
In Figure 3, we evaluate how the quantity of these anchors impacts the residual error and the overall
performance of our method for this experimental setting. This analysis offers insights into the optimal
number of anchors necessary for efficient latent space translation.

Role of Scaling Our approach is designed to accommodate generic (re)scaling methods as pre-
processing steps. We advocate for the use of standard scaling, as it shows reliable performance
in our experiments, indicating that the scale of the data points is useful in estimating the latent
transformation T . However, for completeness, we also consider L2 normalization, which is the
standard normalization in relative representations. This normalization method generalizes the class
of transformations handled by our method and introduces an element of complete scale invariance.
It’s important to note that when this level of generalization is introduced, a scale-invariant decoder
is required since the norm information is effectively removed. In the relative representation work,
this is implicitly accomplished by training a decoder on relative representations. In our setting,
since we do not train the decoder, in this setting we just assume its scale invariance (more details in
Appendix A.1). This investigation exemplifies the flexibility of our approach, capable of adapting to
different normalization and pre-processing strategies based on the specific requirements of the task at
hand. The results presented in Table 2, when compared with Table 1, indicate a stronger reliance of
the text modalities on the information encoded in the norm. This is aligned with existing literature
in the NLP domain [Oyama et al., 2022], which suggests that the scale of the encodings contains
information (e.g., it is correlated with the token frequency).

These results in diverse scenarios showcase the flexibility and adaptability of our method, especially
its robustness in translating between latent spaces of different dimensionality and domains.
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Figure 4: Scale distribution in encodings of different pre-trained encoders on the N24News dataset.

D
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od
er

Encoder

Encoder Score Scale

V
is

io
n

ViT-base-224 0.40 90.45
RexNet 0.33 13.46
ViT-base-384 0.41 89.66
ViT-small 0.39 50.17
ViT-ResNet50 0.41 32.10
DarkNet 0.34 11.62

Te
xt

BERT-cased 0.61 15.43
BERT-uncased 0.42 14.54
Electra 0.50 11.94
RoBERTa 0.75 11.06
ALBERT 0.27 32.27
XLM-R 0.73 18.75

Figure 5: Performance comparison between different encoders and data modalities on the N24News
multimodal dataset. On the right the accuracy of models trained end-to-end on a single data modality
(Score) and their average norm (Scale). On the left the stitching performance between pairs of
encoders and decoder. This shows the importance of translating from good encoders, that can even
improve unimodal decoder performances. Results obtained with 2000 anchors and ortho, with an
SVM as classification head. In the Appendix Figure 9, additional results using MLPs as decoders.

4.2 Cross-Modality

This scenario illustrates the applicability of our method in cross-modality settings, where we aim to
translate between latent spaces of different modalities: text and image.

Experimental setting We adopt N24News [Wang et al., 2022], a multimodal news classification
dataset that contains both text and associated pictures. We apply the standard encoding procedure
to these two features separately, using different pre-trained uni-modal encoders. Then, we train a
classification head (an SVM, please refer to Appendix Figure 9 for further results employing an
MLP as classification head) on top of each one. Lastly, we zero-shot stitch each encoder with a
classification head different from its corresponding one, measuring its classification accuracy, without
further training or fine-tuning.
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Figure 6: Reconstruction examples grouped by dataset. Each column is a different image, from
top to bottom: original image, absolute stitching, affine stitching linear stitching, l-ortho
stitching, and ortho stitching. No additional normalization applied on the decoder part. Please refer
to Figures 10 and 11 in the Appendix for decoders trained with L2 normalization.

Scale distributions In Figure 4, we present the scale distribution of the embeddings produced by
several encoders on the N24News dataset. This empirical analysis shows a consistent pattern among
encoders in that the scale distribution of their embeddings follows a Gaussian one with a single
mode and a well-defined mean, which are usually compatible with standard scaling. This consistent
behavior across encoders is likely attributed to their architectural choices, such as the normalization
techniques, regularizations and the optimization problems they are designed to solve.

Result analysis The discrepancy in the mean accuracy represented by the marginal bar plots in
Figure 5 is a signal that can be used to identify spaces more suited to be decoded into and the ones
that are stronger in encoding from. In fact, the language models as source space for the translation
exhibit stronger performance than the vision encoders. We relate this behavior to the higher generality
of the text domain data used during pre-training with respect to the image domain one [Zhai et al.,
2022]. A remarkable finding in this setting is the improvement in classification performance when
a modality-specific classifier trained on images is fed zero-shot with corresponding text encodings
translated to the image domain via our method. This result underlines the significance of a good
encoder and demonstrates the broad applicability of our technique. In practice, this means we can
seamlessly apply image classifiers on textual data, and vice-versa.

These results show that our method: i) obtains effective zero-shot translation over different modalities;
ii) improves unimodal decoders when translating from a better encoder than the one it was trained on.

4.3 Autoencoding

In this setting, our method is applied to align latent spaces of different trainings of the same autoen-
coder. The novelty of this scenario lies in the generation setting itself, as most prior works (Section 2)
primarily focus on classification tasks. One key observation of [Cannistraci et al., 2023] is that the
task at hand (e.g., classification, generation) defines a certain class of transformations (e.g. rotations)
which act among the latent spaces. Restricting the search for the transformation to the right class, is
fundamental in order to guarantee optimal performance and efficiency.

Experimental setting We utilize four datasets for these experiments: MNIST [Lecun et al., 1998],
Fashion MNIST [Xiao et al., 2017], and CIFAR10 and CIFAR100 Krizhevsky [2009]. For each
dataset, we train two standard CNN-based autoencoder, with convolutions in the encoder and
deconvolutions in the decoder, please refer to the supplementary material for further implementation
details. The two autoencoders are identical in structure, differing only in the random seed used for
weight initialization and data shuffling. To perform zero-shot stitching, we first translate each data
point from the latent space of the first encoder to the latent space of the second using 1000 anchors.
We then apply the second decoder to the translated data, without any further training or fine-tuning.

Result analysis This experiment analyzes the alignment of latent spaces in different training regi-
mens of the same autoencoder. The performance evaluation, as shown in Table 3, demonstrates that
all methods affine, linear, l-ortho, and ortho yield satisfactory results. Moreover, qualitative
results depicted in Figure 6 reveals minimal visual differences in the stitching outcomes across various
datasets using different methods. Please refer to Figures 10 and 11 for other qualitative results. In
fact, these results suggest that the latent spaces of image autoencoders are not exclusively correlated
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Table 3: Zero-shot stitching for generation with various methods for estimating T . Standard scaling
used as normalization and the stitched decoders do not have any additional normalization. We report
the latent cosine similarity (lcos) and MSE (lmse) between the target encoding and the translated one,
but also the reconstruction MSE (rmse) between the input and the output. 1000 anchors used on 500
dimensional spaces. Please refer to Table 4 for results on decoders scale-invariant by design (with L2
normalization on the encodings).

MNIST Fashion MNIST CIFAR10 CIFAR100

lcos lmse rmse lcos lmse rmse lcos lmse rmse lcos lmse rmse

absolute 0.09 0.27 0.14 0.17 0.23 0.23 0.30 0.29 0.34 0.34 0.53 0.40
affine 0.94 0.08 0.02 0.94 0.06 0.03 0.96 0.03 0.05 0.96 0.04 0.05
linear 0.92 0.09 0.02 0.93 0.07 0.04 0.94 0.03 0.05 0.94 0.04 0.06
l-ortho 0.79 0.14 0.02 0.78 0.12 0.05 0.85 0.05 0.06 0.84 0.07 0.07
ortho 0.90 0.10 0.02 0.90 0.08 0.04 0.94 0.03 0.06 0.93 0.04 0.06

by orthogonal transformations. Therefore, further research is warranted to explore and model the
specific class of transformations that govern the correlation between neural networks during image
autoencoding to constrain and enhance their approximation. For additional results pertaining to
decoders with L2 normalization on their input, we refer to the Table 4 in the Appendix.

Overall these results, combined with Cannistraci et al. [2023] and Section 4.1, confirm that latent
spaces in image autoencoders trained end-to-end are related by a class of transformations larger than
orthogonal transformations.

5 Conclusion

At the heart of the proposed latent space translation lies the synergy between the principles of relative
representation and classic algebraic techniques. The efficacy of this approach surpasses that of
relative representations, emphasizing the benefits of directly estimating a transformation between
specific latent space pairs instead of independently projecting them to a common one. This distinction
underscores our contribution: we repurpose well-established techniques to serve as a translator across
multiple latent spaces, enhancing efficiency in representation learning. With an extensive analysis
of its applications in model reuse, we obtain a smooth compositionality of neural network modules
across diverse computational frameworks, including those employing pre-trained models. Essentially,
this paper showcases the adaptability and efficiency of manifold alignment methods in the emerging
domain of zero-shot model compositionality.

Future works and limitations As with any new approach, there are limitations that warrant further
exploration of our proposed method. For example, the optimal number of anchor points required for
different tasks and datasets to boost performances, investigating the factors that could be linked to
latent space compatibility (e.g., their intrinsic dimension), trade-offs between the granularity of the
anchor set and its condition number. These are exciting research directions that we believe hold great
potential for advancing the field and improving the effectiveness and robustness of our method.
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Ivan Vulić, Sebastian Ruder, and Anders Søgaard. Are all good word vector spaces isomorphic?
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 3178–3192, Online, November 2020b. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.emnlp-main.257. URL https://aclanthology.org/2020.
emnlp-main.257.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting similarities among languages for machine
translation, 2013b.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word embedding and orthogonal trans-
form for bilingual word translation. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1006–1011, Denver, Colorado, May–June 2015. Association for Computational Linguistics. doi:
10.3115/v1/N15-1104. URL https://aclanthology.org/N15-1104.

J. C. Gower. Generalized procrustes analysis. Psychometrika, 40(1):33–51, March 1975. ISSN
1860-0980. doi: 10.1007/BF02291478.

Adrian Csiszarik, Peter Korosi-Szabo, Akos K. Matszangosz, Gergely Papp, and Daniel Varga.
Similarity and matching of neural network representations. ArXiv preprint, abs/2110.14633, 2021.
URL https://arxiv.org/abs/2110.14633.

11

https://doi.org/10.1109/CVPR.2015.7298701
http://arxiv.org/abs/1309.4168
https://proceedings.neurips.cc/paper/2021/file/464074179972cbbd75a39abc6954cd12-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/464074179972cbbd75a39abc6954cd12-Paper.pdf
https://doi.org/10.1109/ICCV.2017.47
https://doi.org/10.1145/1390156.1390297
https://aclanthology.org/2020.emnlp-main.257
https://aclanthology.org/2020.emnlp-main.257
https://aclanthology.org/N15-1104
https://arxiv.org/abs/2110.14633


Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146,
2017. doi: 10.1162/tacl_a_00051. URL https://aclanthology.org/Q17-1010.

Samuel L. Smith, David H. P. Turban, Steven Hamblin, and Nils Y. Hammerla. Offline bilingual word
vectors, orthogonal transformations and the inverted softmax. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=r1Aab85gg.

Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural
representations. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 225–236, 2021. URL https://proceedings.neurips.cc/paper/
2021/hash/01ded4259d101feb739b06c399e9cd9c-Abstract.html.

Michael Gygli, Jasper Uijlings, and Vittorio Ferrari. Towards reusable network components by
learning compatible representations. AAAI, 35(9):7620–7629, 2021.

Niccolo Biondi an. Cores: Compatible representations via stationarity. ArXiv preprint,
abs/2111.07632, 2021. URL https://arxiv.org/abs/2111.07632.

Muammer Y. Yaman, Sergei V. Kalinin, Kathryn N. Guye, David Ginger, and Maxim Ziatdinov.
Learning and predicting photonic responses of plasmonic nanoparticle assemblies via dual vari-
ational autoencoders. ArXiv preprint, abs/2208.03861, 2022. URL https://arxiv.org/abs/
2208.03861.

Federico Bianchi an. Fantastic embeddings and how to align them: Zero-shot inference i. ArXiv
preprint, abs/2007.14906, 2020. URL https://arxiv.org/abs/2007.14906.

Zorah Lähner and Michael Moeller. On the direct alignment of latent spaces. In UniReps: the First
Workshop on Unifying Representations in Neural Models, 2023. URL https://openreview.
net/forum?id=nro8tEfIfw.

Alex H. Williams, Erin Kunz, Simon Kornblith, and Scott W. Linderman. Generalized shape metrics
on neural representations. In Advances in Neural Information Processing Systems, volume 34,
2021.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-Yew Lin, and Deepak Ravichandran. Toward
semantics-based answer pinpointing. In Proceedings of the First International Conference on
Human Language Technology Research, 2001. URL https://www.aclweb.org/anthology/
H01-1069.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002. URL https://www.aclweb.org/anthology/
C02-1150.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.
DBpedia: A nucleus for a web of open data. In The Semantic Web, pages 722–735. Springer Berlin
Heidelberg, 2007.

Zhen Wang, Xu Shan, Xiangxie Zhang, and Jie Yang. N24news: A new dataset for multimodal
news classification. In Proceedings of the Language Resources and Evaluation Conference,
pages 6768–6775, Marseille, France, 2022. European Language Resources Association. URL
https://aclanthology.org/2022.lrec-1.729.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In NIPS, 2015.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pages 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

12

https://aclanthology.org/Q17-1010
https://openreview.net/forum?id=r1Aab85gg
https://proceedings.neurips.cc/paper/2021/hash/01ded4259d101feb739b06c399e9cd9c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/01ded4259d101feb739b06c399e9cd9c-Abstract.html
https://arxiv.org/abs/2111.07632
https://arxiv.org/abs/2208.03861
https://arxiv.org/abs/2208.03861
https://arxiv.org/abs/2007.14906
https://openreview.net/forum?id=nro8tEfIfw
https://openreview.net/forum?id=nro8tEfIfw
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://aclanthology.org/2022.lrec-1.729
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-training
text encoders as discriminators rather than generators. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=r1xMH1BtvB.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv preprint, abs/1907.11692, 2019. URL https://arxiv.org/abs/1907.11692.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
H1eA7AEtvS.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. ArXiv preprint,
abs/2103.00020, 2021. URL https://arxiv.org/abs/2103.00020.

Dongyoon Han, Sangdoo Yun, Byeongho Heo, and YoungJoon Yoo. Rethinking channel dimensions
for efficient model design. ArXiv preprint, abs/2007.00992, 2020. URL https://arxiv.org/
abs/2007.00992.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ArXiv preprint, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.11929.

Momose Oyama, Sho Yokoi, and Hidetoshi Shimodaira. Norm of word embedding encodes in-
formation gain. ArXiv, abs/2212.09663, 2022. URL https://api.semanticscholar.org/
CorpusID:254853643.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 18123–18133,
2022.

Irene Cannistraci, Luca Moschella, Marco Fumero, Valentino Maiorca, and Emanuele Rodolà. From
bricks to bridges: Product of invariances to enhance latent space communication. 2023. URL
https://arxiv.org/abs/2310.01211.

Y Lecun, L Bottou, Y Bengio, and P Haffner. Gradient-based learning applied to document recogni-
tion. Proc. IEEE, 86(11):2278–2324, 1998.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learnin. ArXiv preprint, abs/1708.07747, 2017. URL https://arxiv.org/abs/1708.
07747.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009. URL
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Ruslan Kuprieiev, skshetry, Dmitry Petrov, Paweł Redzyński, Peter Rowlands, Casper da Costa-
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A Additional results

In Figure 9, we present the outcomes of the multimodal experiment with an MLP employed as the
classification head. The findings highlight the MLP’s capability to leverage cross-modal informa-
tion, leading to improved performance. However, the underlying mechanisms responsible for this
enhancement remain unclear and warrant further investigation.

A
cc

ur
ac

y

Method

Figure 7: Cross-domain stitching on CIFAR10 and grayscale CIFAR10. 84 stitched pairs (pre-trained
encoder - SVM classifier) for 5 different seeds.
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Figure 8: Performance comparison (reconstruction error) of affine, linear, l-ortho and ortho
at varying anchor number on reconstruction task. Results on stitching 2 different CIFAR100-trained
AEs with 5 samplings for each anchor quantity. The naive absolute baseline is flat on 0.38 as mean.

In Tables 5 and 6 quantitative results for stitching of MLP classifiers (differently from the main
manuscript where SVMs are used) trained on top of pre-trained feature extractors, with and without
additional L2 normalization, respectively.

In Figures 10 and 11, there are additional reconstruction examples with the same autoencoding setting
as in the main manuscript, and with additional L2 normalization, respectively.

In Table 4 more quantitative results for stitching of autoencoders, with added L2 normalization (at
training time) to the decoders of the reconstruction setting of the main manuscript.
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Encoder Score Scale
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ViT-base-224 0.46 90.45
RexNet 0.38 13.46
ViT-base-384 0.47 89.66
ViT-small 0.40 50.17
ViT-ResNet50 0.44 32.10
DarkNet 0.37 11.62

Te
xt

BERT-cased 0.40 15.43
BERT-uncased 0.39 14.54
Electra 0.27 11.94
RoBERTa 0.51 11.06
ALBERT 0.30 32.27
XLM-R 0.41 18.75

Figure 9: Performance comparison between different encoders and data modalities on the N24News
multimodal dataset. On the right, the accuracy of models trained end-to-end on a single data modality
(Score) and their average norm (Scale). On the left the stitching performance between pairs of
encoders and decoder. This shows the importance of translating from good encoders, that can even
improve unimodal decoder performances. Results obtained with 2000 anchors and SVD, with a MLP
as classification head.
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Figure 10: Reconstruction examples grouped by dataset. Each column is a different image, from top
to bottom: original image, absolute stitching, LSS stitching, OLSS stitching, and SVD stitching. An L2
normalization is applied to the decoder input.

Table 4: Zero-shot stitching for generation. With SVD for estimating T and standard scaling as
pre-processing. An L2 normalization is applied to the decoder input. We report the latent cosine
similarity (lcos) and MSE (lmse) between the target encoding and the translated one, but also the
reconstruction MSE (rmse) between the input and the output.

MNIST Fashion MNIST CIFAR10 CIFAR100

lcos lmse rmse lcos lmse rmse lcos lmse rmse lcos lmse rmse

Abs. 0.39 0.98 0.28 0.53 0.97 0.33 0.62 1.23 0.46 0.59 1.17 0.38
affine 0.99 0.15 0.01 0.99 0.16 0.03 0.99 0.16 0.04 0.99 0.12 0.05
linear 0.98 0.17 0.01 0.98 0.18 0.03 0.99 0.16 0.04 0.99 0.13 0.05
l-ortho 0.89 0.41 0.02 0.91 0.41 0.04 0.96 0.39 0.05 0.93 0.30 0.08
ortho 0.97 0.21 0.02 0.97 0.23 0.03 0.99 0.21 0.05 0.96 0.22 0.07
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Figure 11: Additional reconstruction examples grouped by dataset. Each column is a different
image, from top to bottom: original image, absolute stitching, LSS stitching, OLSS stitching, and SVD
stitching. In the first row, no additional normalization is applied on the decoder input; in the second
row, an L2 normalization is applied instead.

Table 5: Cross-architecture stitching with various methods for estimating T and employing standard
scaling. The stitched decoders are simple MLPs. 5 runs for each encoder-decoder pair. (C) and (F)
next to CIFAR100 indicate, respectively, coarse-grained and fine-grained.

Dataset No Stitching absolute relative affine linear l-ortho ortho

V
is

io
n

CIFAR10 0.95 ± 0.03 0.16 ± 0.22 0.73 ± 0.21 0.93 ± 0.05 0.89 ± 0.11 0.90 ± 0.09 0.93 ± 0.04
CIFAR100-C 0.82 ± 0.07 0.11 ± 0.21 0.39 ± 0.17 0.76 ± 0.08 0.71 ± 0.15 0.74 ± 0.11 0.78 ± 0.07
CIFAR100-F 0.68 ± 0.14 0.06 ± 0.20 0.13 ± 0.09 0.59 ± 0.13 0.55 ± 0.18 0.56 ± 0.17 0.62 ± 0.12
F-MNIST 0.87 ± 0.02 0.14 ± 0.20 0.64 ± 0.12 0.85 ± 0.02 0.83 ± 0.05 0.80 ± 0.06 0.84 ± 0.02
MNIST 0.92 ± 0.03 0.15 ± 0.20 0.36 ± 0.14 0.92 ± 0.03 0.87 ± 0.08 0.74 ± 0.12 0.88 ± 0.03

Te
xt

TREC 0.41 ± 0.07 0.15 ± 0.04 0.27 ± 0.09 0.40 ± 0.08 0.37 ± 0.11 0.23 ± 0.08 0.41 ± 0.09
AG News 0.76 ± 0.08 0.24 ± 0.02 0.36 ± 0.10 0.68 ± 0.08 0.65 ± 0.08 0.64 ± 0.10 0.68 ± 0.10
DBpedia 0.64 ± 0.19 0.07 ± 0.02 0.15 ± 0.08 0.57 ± 0.19 0.53 ± 0.19 0.44 ± 0.21 0.56 ± 0.17
IMDB 0.62 ± 0.04 0.50 ± 0.01 0.50 ± 0.01 0.59 ± 0.04 0.58 ± 0.04 0.57 ± 0.04 0.60 ± 0.04

Table 6: Cross-architecture stitching with various methods for estimating T and applying L2 as
normalization. The stitched decoders are simple MLPs. 5 runs for each encoder-decoder pair. (C)
and (F) next to CIFAR100 indicate, respectively, coarse-grained and fine-grained.

Dataset No Stitching absolute relative affine linear l-ortho ortho

V
is

io
n

CIFAR10 0.95 ± 0.03 0.16 ± 0.22 0.73 ± 0.21 0.93 ± 0.04 0.89 ± 0.11 0.89 ± 0.11 0.93 ± 0.04
CIFAR100-C 0.82 ± 0.07 0.11 ± 0.21 0.39 ± 0.17 0.77 ± 0.07 0.75 ± 0.13 0.71 ± 0.15 0.78 ± 0.06
CIFAR100-F 0.68 ± 0.14 0.06 ± 0.20 0.13 ± 0.09 0.60 ± 0.12 0.57 ± 0.18 0.54 ± 0.18 0.61 ± 0.12
F-MNIST 0.87 ± 0.02 0.14 ± 0.20 0.64 ± 0.12 0.86 ± 0.02 0.79 ± 0.09 0.83 ± 0.05 0.84 ± 0.02
MNIST 0.92 ± 0.03 0.15 ± 0.20 0.36 ± 0.14 0.91 ± 0.03 0.80 ± 0.17 0.86 ± 0.08 0.86 ± 0.04

Te
xt

TREC 0.41 ± 0.07 0.15 ± 0.04 0.27 ± 0.09 0.51 ± 0.06 0.27 ± 0.10 0.47 ± 0.13 0.49 ± 0.06
AG News 0.76 ± 0.08 0.24 ± 0.02 0.36 ± 0.10 0.68 ± 0.08 0.64 ± 0.10 0.65 ± 0.08 0.66 ± 0.10
DBpedia 0.64 ± 0.19 0.07 ± 0.02 0.15 ± 0.08 0.55 ± 0.19 0.53 ± 0.21 0.51 ± 0.18 0.49 ± 0.15
IMDB 0.62 ± 0.04 0.50 ± 0.01 0.50 ± 0.01 0.60 ± 0.04 0.58 ± 0.04 0.59 ± 0.04 0.59 ± 0.04

A.1 Scale invariance

In this section, we delve into the concept of scale invariance in neural networks and its implications
for model compositionality. We start by focusing on the effect of rescaling operations on the latent
input encodings and demonstrate that, by construction, certain classifiers exhibit scale-invariance
properties without the need for additional priors. Then, by examining the behavior of networks when
subjected to a specific type of input manipulation, rescaling injection, we aim to demonstrate the
robustness and versatility of neural networks in handling different scales of input data. As illustrated
in the main manuscript, this is a key advantage in improving the adaptability of our method.
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The softmax function, commonly used in neural classifiers, is known to be a temperature-controlled
variant of the maximum function:

softmax(x)i =
e

yi
T∑N

j e
yj
T

. (2)

This means that the softmax temperature can be used to control the level of confidence of the
classifier’s predictions. In this study, we show that a similar effect can also be achieved by rescaling
the latent encodings given as input to a trained (and frozen) classifier.

In order to demonstrate this, we first note that the rescaling factor, α, can be factored out of the
matrix multiplication in the Linear layers of the classifier. This can be represented mathematically as:
y = αWx+ b, where x is the input latent encoding, W is the weight matrix, b is the bias vector, α
is the rescaling factor, and y is the output of the linear layer. This implies that the rescaling operation
can be “pushed through” the classifier without affecting its final prediction as it becomes equivalent
to some temperature value applied at the softmax level.

Furthermore, we investigate the effect of rescaling when non-linear activation functions are involved
and posit that as long as the function has a monotonic interval, if we rescale all the dimensions by an
amount similar to the mean scale of the encodings on which the classifier was trained, we end up in
the monotonic interval, without losing the scale-invariance property.

In summary, our study provides empirical evidence that neural classifiers that utilize the softmax
activation function can, in practice, maintain their scale-invariance properties when the input latent
encodings are rescaled. This property is essential to our method, as it allows us to ignore the exact
scale when decoding toward an L2-normalized absolute space.

Pre-trained models and scale-invariance We observed that large pre-trained models, such as
transformers and resnets, are robust to internal rescaling of the encodings. Although we do not
have a strong theoretical explanation for this phenomenon, we hypothesize that normalization layers
and the linear separability of the information encoded in the angles instead of the norms may play
a significant role. In Figure 12, we demonstrate the invariance a large transformer exhibits when
the rescaling injection is applied at different layers: surprisingly, when the rescaling surpasses a
certain threshold, the performance difference becomes negligible. These results further emphasize
the robustness of these pre-trained models to the rescaling injection and suggest that the scale of the
embedding is not a critical factor in their performance.

Rescale Injection We define the rescaling injection as the operation of artificially altering the
scale of the features produced at a specific layer of the network. This is achieved by normalizing the
embeddings to unit norm and then rescaling them by a factor of α. By varying the value of α, we
can observe how the network’s performance is affected at different scales. Through this empirical
analysis, we aim to provide insight into the scale invariance properties of neural networks and their
potential for use in model compositionality.

In Figure 13, we present experimental results investigating the scale invariance properties of
neural networks. We trained simple multi-layer perceptrons (MLPs) composed of two hidden
layers, with no normalization layers, using encodings produced by the Clip Vision transformer
(clip-vit-base-patch32) on the CIFAR100 (fine) dataset. The MLPs were evaluated using dif-
ferent activation functions: cosine (blue), tanh (orange), and ReLU (green). The rescaling injection
technique was applied directly to the input embeddings, rescaling them by α.

We can observe that the scale of the embeddings does not significantly impact the MLPs’ performance
when using monotone activation functions that do not flip signs. This is a non-trivial result, as the
nonlinearity of the activation function, the presence of bias terms b, and the absence of normalization
layers make it difficult to predict the effect of an input rescaling on the performance of the network. It
is particularly interesting to see that the cosine activation function shows an oscillatory performance,
comparable to the original embeddings when rescaled by the mean embeddings scale (vertical red
line) or its opposite since it is symmetric.

Our findings indicate that, surprisingly, even the internal layers of large deep learning models exhibit
a positive scale invariance, as illustrated in Figure 12. The underlying mechanism for this behavior is
not straightforward, but we hypothesize that it may result from the interplay between various factors,
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Figure 12: Scale invariance of RoBERTa according to the performance of a downstream classifier
trained on the encodings of the last attention layer. At each layer (with 0 being the embedding layer
and 12 the output one), one for each run, we rescale the encodings by the specified α and measure its
effect on the final accuracy. The performance without any rescaling is 0.92.
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Figure 13: Performance comparison of three Multilayer Perceptrons (MLPs) with different activation
functions, namely cosine (blue), ReLU (orange), and tanh (green) at different rescaling factors α. The
ReLU and tanh MLPs exhibit scale invariance, while the cosine activation function is only invariant
on the mean data scale and its periodic cycles.

such as the choice of activation function, the use of normalization layers, the optimization objective
and regularization techniques employed during the training phase. Further research is needed to
understand and explain this phenomenon fully.

B Implementation Details

All the experiments were conducted using a machine equipped with an Intel Core i7-9700k CPU, 64
GB of RAM, and an NVIDIA 2080TI GPU.

Decoder structure The full implementation details can be found in the attached code. The various
experiments can be run by their corresponding notebook, while the source code for the package they
are built on can be found under the "src" folder.
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• Autoencoding. Since the autoencoders were used only on image data, the architecture was a
simple sequence of convolutions (in the encoder part) and deconvolutions (in the decoder
part). Each interleaved with nonlinear activations.

• Classification. The main manuscript refers to "SVM" as the standard SVM implementation
in scikit-learn [Pedregosa et al., 2011], with default parameters. The experiments with
"MLP" as a classifier refer to a simple stack of 3 linear layers, interleaved by nonlinear
activations.

Software and Technologies The research of this study was facilitated by the use of various
technologies and tools, which include:

• NN-Template [GrokAI, 2021], was used to kick-start the project while also ensuring best
practices were adhered to;

• DVC [Kuprieiev et al., 2022], was implemented for data versioning;
• PyTorch Lightning [Falcon and The PyTorch Lightning team, 2019], contributed to main-

taining the integrity of the results and promoting clean, modular code;
• Weights and Biases [Biewald, 2020], were employed for logging experiments, running

comparisons over extensive sweeps, and sharing models;
• Transformers by HuggingFace [Wolf et al., 2020], provided pre-configured transformers for

processing both image and text data;
• Datasets by HuggingFace [Lhoest et al., 2021], facilitated access to a majority of NLP

datasets and ImageNet for computer vision purposes;

Pre-trained encoders All the pre-trained encoders used come from HuggingFace and are listed in
Table 7. They are various both in terms of architecture and encoding size.

Table 7: HuggingFace models used as encoders (feature extractors) in the various experiments, with
their encoding dimensionality.

Modality HuggingFace model name Encoding Dim

L
an

gu
ag

e

bert-base-cased 768
bert-base-uncased 768
google/electra-base-discriminator 768
roberta-base 768
albert-base-v2 768
xlm-roberta-base 768
openai/clip-vit-base-patch32 768

V
is

io
n

rexnet_100 1280
cspdarknet53 768
vit_small_patch16_224 384
vit_base_patch16_224 768
vit_base_patch16_384 768
vit_base_resnet50_384 768
openai/clip-vit-base-patch32 768
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Table 8: Cross-architecture stitching for reconstruction tasks. 5 different seeds, 2 different bottleneck
sizes (250, 500) for the same architecture. Average over all combinations. 500 anchors used and
standard scaling as normalization. The naive absolute baseline is impossible to compute due to the
dimensionality mismatch.

MNIST Fashion MNIST CIFAR10 CIFAR100

lcos lmse rmse lcos lmse rmse lcos lmse rmse lcos lmse rmse

affine 0.95 0.09 0.02 0.95 0.09 0.04 0.98 0.06 0.05 0.98 0.07 0.06
linear 0.64 1.00 0.11 0.66 1.10 0.16 0.77 0.60 0.16 0.78 0.52 0.16
l-ortho 0.87 0.16 0.03 0.89 0.14 0.06 0.95 0.12 0.08 0.95 0.13 0.08
ortho 0.91 0.14 0.03 0.92 0.13 0.06 0.96 0.12 0.09 0.96 0.12 0.09

21


	Introduction
	Related Works
	Method
	Preliminaries
	Latent Space Translation

	Latent Communication via Translation
	Cross-Architecture
	Cross-Modality
	Autoencoding

	Conclusion
	Additional results
	Scale invariance

	Implementation Details

