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Abstract

Human-centric computer vision (HCCV) data curation practices often neglect
privacy and bias concerns, leading to dataset retractions and unfair models. HCCV
datasets constructed through nonconsensual web scraping lack crucial metadata for
comprehensive fairness and robustness evaluations. Current remedies are post hoc,
lack persuasive justification for adoption, or fail to provide proper contextualization
for appropriate application. Our research focuses on proactive, domain-specific
recommendations, covering purpose, privacy and consent, and diversity, for curat-
ing HCCV evaluation datasets, addressing privacy and bias concerns. We adopt an
ante hoc reflective perspective, drawing from current practices, guidelines, dataset
withdrawals, and audits, to inform our considerations and recommendations.

1 Introduction

Contemporary human-centric computer vision (HCCV) data curation practices, which prioritize
dataset size and utility, have pushed issues related to privacy and bias to the periphery, resulting in
dataset retractions and modifications [78, 126, 175, 216, 244, 320], as well as models that are unfair
or rely on spurious correlations [22, 26, 112, 139, 146, 215, 272, 281]. HCCV datasets primarily rely
on nonconsensual web scraping [99, 122, 124, 228, 260, 266, 310]. These datasets not only regard
image subjects as free raw material [32], but also lack the ground-truth metadata required for fairness
and robustness evaluations [91, 171, 196, 216]. This makes it challenging to obtain a comprehensive
understanding of model blindspots and cascading harms [30, 85] across dimensions, such as data
subjects, instruments, and environments, which are known to influence performance [222]. While, for
example, image subject attributes can be inferred [7, 43, 170, 188, 198, 241, 267, 290, 343, 375], this
is controversial for social constructs, notably race and gender [28, 132, 179, 180]. Inference introduces
further biases [19, 107, 147, 263, 291] and can induce psychological harm when incorrect [47, 275].

Recent efforts in machine learning (ML) to address these issues often rely on post hoc reflective
processes. Dataset documentation focuses on interrogating and describing datasets after data collec-
tion [5, 27, 44, 94, 108, 149, 243, 258, 273, 307]. Similarly, initiatives by NeurIPS and ICML ask au-
thors to consider the ethical and societal implications of their research after completion [257]. Further,
dataset audits [247, 292] and bias detection tools [29, 340] expose dataset management issues and rep-
resentational biases without offering guidance on responsible data collection. Although there are ex-
isting proposals for artificial intelligence (AI) and data design guidelines [35, 79, 116, 160, 202, 247],
as well as calls to adopt methodologies from more established fields [154, 159, 166], general-purpose
guidelines lack domain specificity and task-oriented guidance [307]. For example, remedies may
prioritize privacy and governance [35] but overlook data composition and image content. Other
recommended practices lack persuasive justification for adoption [116, 160] or fail to provide proper
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contextualization for appropriate application [252, 323, 367]. For instance, the People + AI Guide-
book [116] suggests creating dataset specifications without explaining the rationale, and privacy
methodologies are advocated without cognizant of privacy and data protection laws [252, 323, 367].
These efforts, which hold significance in promoting responsible practices, would benefit from being
supplemented by proactive, domain-specific recommendations aimed at tackling privacy and bias
concerns starting from the inception of a dataset.

Our research directly addresses these critical concerns by examining purpose (Section 3), consent and
privacy (Section 4), and diversity (Section 5). Compared to recent scholarship, we adopt an ante hoc
reflective perspective, offering considerations and recommendations for curating HCCV datasets for
fairness and robustness evaluations. Our work, therefore, resonates with the call for domain-specific
resources to operationalize fairness [68, 150, 305]. We draw insights from current practices [42,
170, 375], guidelines [31, 222, 231], dataset withdrawals [78, 126, 216], and audits [35, 36, 247], to
motivate each recommendation, focusing on HCCV evaluation datasets that present unique challenges
(e.g., visual leakage of personally identifiable information) and opportunities (e.g., leveraging image
metadata for analysis). To guide curators towards more ethical yet resource-intensive curation, we
provide a checklist in Appendix A.3 This translates our considerations and recommendations into
pre-curation questions, functioning as a catalyst for discussion and reflection.

While several of our recommendations can also be applied retroactively such measures cannot undo
incurred harm, e.g., resulting from inappropriate uses, privacy violations, and unfair representa-
tion [129]. It is important to make clear that our proposals are not intended for the evaluation of
HCCV systems that detect, predict, or label sensitive or objectionable attributes such as race, gender,
sexual orientation, or disability.

2 Development Process

HCCV should adhere to the most stringent ethical standards to address privacy and bias concerns.
As stated in the NeurIPS Code of Ethics [1], it is essential to abide by established institutional
research protocols, ensuring the safeguarding of human subjects. These protocols, initially designed
for biomedical research, have, however, been met with confusion, resulting in inconsistencies when
applied in the context of data-centric research [218]. For example, HCCV research often amasses
millions of “public” images without obtaining informed consent or participation, disregarding serious
privacy and ethical concerns [3, 35, 133, 245, 301]. This exemption from research ethics regulation
is grounded in the limited definition of human-subjects research, which categorizes extant, publicly
available data as minimal risk [218, 256]. Thus, numerous ethically-dubious HCCV datasets would
not fall under Institutional Review Board (IRB) oversight [247]. What’s more, the NeurIPS Code
of Ethics only mandates following existing protocols when research involves “direct” interaction
between human participants and researchers or technical systems. Even when research is subjected
to supervision, IRBs are restricted from considering broader societal consequences beyond the
immediate study context [217]. Compounding matters, CV-centric conferences are still to adopt
ethics review practices [306].

These limitations are concerning, especially considering the potential for predictive privacy harms
when seemingly non-identifiable data is combined [35, 70, 218] or when data is used for harmful
downstream applications such as predicting sexual orientation [192, 344], crime propensity [358,
365], or emotion [10, 224]. Acknowledging this, our research study employed the same principles
underpinning established guidelines [24, 331] for protecting human subjects in research to identify
ethical issues in HCCV dataset design, namely autonomy, justice, beneficence, and non-maleficence.
Autonomy respects individuals’ self-determination—e.g., through informed consent and assent for
HCCV datasets. Justice promotes the fair distribution of risks, costs, and benefits, guiding decisions on
compensation, data accessibility, and diversity. Beneficence entails the proactive promotion of positive
outcomes and well-being, e.g., by soliciting individuals’ to self-identify, while non-maleficence
centers on minimizing harm and risks during dataset design, e.g., by redacting privacy-leaking image
regions and metadata.

To ensure comprehensive consideration, we harnessed diverse expertise, following contemporary,
interdisciplinary practices [261, 270, 307]. Our team comprises researchers, practitioners, and

3The checklist can also be found at: https://github.com/SonyResearch/responsible_data_
curation.
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lawyers with backgrounds in ML, CV, algorithmic fairness, philosophy, and social science. With
a range of ethnic, cultural, and gender backgrounds, we bring extensive experience in designing
CV datasets, training models, and developing ethical guidelines. To align our expertise with the
principles, we collectively discussed them, considering each author’s background. After identifying
key ethical issues in HCCV data curation practices, we iteratively refined them into an initial draft of
ethical considerations. We extensively collected, analyzed, and discussed papers spanning a range of
themes such as HCAI, HCCV datasets, data and model documentation, bias detection and mitigation,
AI and data design, fairness, and critical AI. Our comprehensive literature review incorporated
pertinent studies and datasets, resulting in refined considerations with detailed explanations and
recommendations for responsible data curation. Additional details are provided in Appendix B.

3 Purpose

In ML, significant emphasis has been placed on the acquisition and utilization of “general-purpose”
datasets [259]. Nevertheless, without a clearly defined task pre-data collection, it becomes challenging
to effectively handle issues related to data composition, labeling, data collection methodologies,
informed consent, and assessments related to data protection. This section addresses conflicting
dataset motivations and provides recommendations.

3.1 Ethical Considerations

Fairness-unaware datasets are inadequate for measuring fairness. Datasets lacking explicit
fairness considerations are inadequate for mitigating or studying bias, as they often lack the necessary
labels for assessing fairness. For instance, the COCO dataset [196], focused on scene understanding,
lacks subject information, making fairness assessments challenging. Researchers, consequently,
resort to human annotators to infer, e.g., subject characteristics, limiting bias measurement to
visually “inferable” attributes. This introduces annotation bias [56] and the potential for harmful
inferences [47, 275].

Fairness-aware datasets are incompatible with common HCCV tasks. Industry practitioners
stress the importance of carefully designed and collected “fairness-aware” datasets to detect bias
issues [150]. Fabris et al. [93] found that out of 28 CV datasets used in fairness research between
2014 and 2021, only eight were specifically created with fairness in mind. Among these, seven
were HCCV datasets (scraped from the web) [43, 170, 216, 308, 319, 342, 343], including five
focused on facial analysis. Due to the limited availability and delimited task focus of fairness-aware
datasets, researchers repurpose “fairness-unaware” datasets [120, 139, 196, 198, 208, 346, 373].
Fairness-aware datasets fall short in addressing the original tasks associated with well-known HCCV
datasets, which encompass a range of tasks, such as segmentation [64, 209], pose estimation [13, 196],
localization and detection [73, 91, 110], identity verification [153], action recognition [173], as well
as reconstruction, synthesis and manipulation [114, 171]. The absence of fairness-aware datasets
with task-specific labels hampers the practical evaluation of HCCV systems, despite their importance
in domains such as healthcare [155, 220], autonomous vehicles [163], and sports [317]. Additionally,
fairness-aware datasets lack self-identified annotations from image subjects, relying on inferred
attributes, e.g., from online resources [43, 308, 319].

3.2 Practical Recommendations

Refrain from repurposing datasets. Existing datasets, repurposable but optimized for specific
functions, can inadvertently perpetuate biases and undermine fairness [183]. Repurposing fairness-
unaware data for fairness evaluations can result in dirty data, characterized by missing or incorrect
information and distorted by individual and societal biases [181, 265]. Dirty data, including inferred
data, can have significant downstream consequences, compromising the validity of research, policy,
and decision-making [14, 63, 265, 341]. ML practitioners widely agree that a proactive approach to
fairness is preferable, involving the direct collection of demographic information from the outset [150].
To mitigate epistemic risk, curated datasets should capture key dimensions influencing fairness
and robustness evaluation of HCCV models, i.e., data subjects, instruments, and environments.
Model Cards explicitly highlight the significance of these dimensions in fairness and robustness
assessments [222].
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Create purpose statements. Pre-data collection, dataset creators should establish purpose statements,
focusing on motivation rather than cause [129]. Purpose statements address, e.g., data collection
motivation, desired composition, permissible uses, and intended consumers. While dataset docu-
mentation [108, 258] covers similar questions, it is a reflective process and can be manipulated to fit
the narrative of the collected data, as opposed to directing the narrative of the data to be collected.
Purpose statements can play a crucial role in preventing both hindsight bias [51, 97, 176] and purpose
creep, ensuring alignment with stakeholders’ consent and intentions [186]. To enhance transparency
and accountability, as recommended by Peng et al. [247], purpose statements can undergo peer
review, similar to registered reports [238]. Registered reports, recognized by the UK 2021 Research
Excellence Framework, incentivize rigorous research practices and can lead to increased institutional
funding [51].

4 Consent and Privacy

Informed consent is crucial in research ethics involving humans [230, 235], ensuring participant
safety, protection, and research integrity [59, 253]. Shaping data collection practices in various
fields [35, 235], informed consent consists of three elements: information (i.e., the participant
should have sufficient knowledge about the study to make their decision), comprehension (i.e., the
information about the study should be conveyed in an understandable manner), and voluntariness
(i.e., consent must be given free of coercion or undue influence). While consent is not the only legal
basis for data processing, it is globally preferred for its legitimacy and ability to foster trust [82, 253].
We address concerns related to consent and privacy, and provide recommendations.

4.1 Ethical Considerations

Human-subjects research. As aforementioned in Section 2, HCCV datasets are frequently collected
without informed consent or participation, primarily due to the classification of publicly available
data as “minimal risk” within human-subjects research. However, beyond possible predictive privacy
harms and unethical downstream uses, collecting data without informed consent hinders researchers
and practitioners from fully understanding and addressing potential harms to data subjects [218, 333].
Some argue that consent is pivotal as it provides individuals with a last line of defense against
the misuse of their personal information, particularly when it contradicts their interests or well-
being [77, 223, 245, 253].

Creative Commons loophole. Some datasets have been created based on the misconception that
the “unlocking [of] restrictive copyright” [35] through Creative Commons licenses implies data
subject consent. However, the Illinois Biometric Information Privacy Act (BIPA) [161] mandates
data subject consent, even for publicly available images [370]. In the UK and EU General Data
Protection Regulation (GDPR) [88] Article 4(11), images containing faces are considered biometric
data, requiring “freely given, specific, informed, and unambiguous” consent from data subjects for
data processing. Similarly, in China, the Personal Information Protection Law (PIPL) [233] Article
29 mandates obtaining individual consent for processing sensitive personal information, including
biometric data (Article 28). While a Creative Commons license may release copyright restrictions
on specific artistic expressions within images [370], it does not apply to image regions containing
biometric data such as faces, which are protected by privacy and data protection laws [300].

Vulnerable persons. Nonconsensual data collection methods can result in the inclusion of vulnerable
individuals unable to consent or oppose data processing due to power imbalances, limited capacity,
or increased risks of harm [89, 207]. While scraping vulnerable individuals’ biometric data may be
incidental, some researchers actively target them, jeopardizing their sensitive information without
guardian consent [128, 260].

Paradoxically, attempts to address racial bias in data have involved soliciting homeless persons of
color, further compromising their vulnerability [103]. When participation is due to economic or
situational vulnerability, as opposed to one’s best interests, monetary offerings may be perceived as
inducement [117]. Further ethical concerns manifest when it is unclear whether participants were
adequately informed about a research study. For instance, in ethnicity recognition research [72],
despite obtaining informed consent, criticism arose due to training a model that discriminates between
Chinese Uyghur, Korean, and Tibetan faces. Although the study’s focus is on the technology
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itself [315], its potential use in enhancing surveillance on Chinese Uyghurs raises ethical questions
due to the human rights violations against them [333].

Consent revocation. Dataset creators sometimes view autonomy as a challenge to collecting bio-
metric data for HCCV, especially when data subjects prioritize privacy [214, 287, 297]. Nonetheless,
informed consent emphasizes voluntariness, encompassing both the ability to give consent and the
right to withdraw it at any time [74]. GDPR grants explicit revocation rights (Article 7) and the
right to request erasure of personal data (Article 17) [350]. However, image subjects whose data
is collected without consent are denied these rights. The nonconsensual FFHQ face dataset [171]
offers an opt-out mechanism, but since inclusion was involuntary, subjects may be unaware of their
inclusion, rendering the revocation option hollow. Moreover, this burdens data subjects with tracking
the usage of their data in datasets, primarily accessible by approved researchers [81].

Image- and metadata-level privacy attributes. Researchers have focused on obfuscation techniques,
e.g., blurring, inpainting, and overlaying, to reduce private information leakage of nonconsensual
individuals [46, 101, 194, 195, 213, 252, 311, 323, 362, 367]. Nonetheless, face detection algorithms
used in obfuscation may raise legal concerns, particularly if they involve predicting facial landmarks,
potentially violating BIPA [61, 370]. BIPA focuses on collecting and using face geometry scans
regardless of identification capability, while GDPR protects any identifiable person, requiring data
holders to safeguard the privacy of nonconsenting individuals. Moreover, reliance on automated face
detection methods raises ethical concerns, as demonstrated by the higher precision of pedestrian
detection models on lighter skin types compared to darker skin types [352]. This predictive inequity
leads to allocative harm, denying certain groups opportunities and resources, including the rights to
safety [322] and privacy [80].

It is important to note that face obfuscation may not guarantee privacy [145, 367]. The Visual
Redactions dataset [242] includes 68 image-level privacy attributes, covering biometrics, sensitive
attributes, tattoos, national identifiers, signatures, and contact information. Training faceless person
recognition systems using full-body cues reveals higher than chance re-identification rates for face
blurring and overlaying [239], indicating that solely obfuscating face regions might be insufficient
under GDPR. Furthermore, image metadata can also disclose sensitive details, e.g., date, time, and
location, as well as copyright information that may include names [11, 239]. This is worrisome for
users of commonly targeted platforms like Flickr, which retain metadata by default.

4.2 Practical Recommendations

Obtain voluntary informed consent. Similar to recent consent-driven HCCV datasets [136, 254,
268], explicit informed consent should be obtained from each person depicted in, or otherwise
identifiable, in a dataset, allowing the sharing of their facial, body, and biometric information for
evaluating the fairness and robustness of HCCV technologies. Datasets collected with consent
reduce the risk of being fractured, however, data subjects may later revoke their consent over, e.g.,
privacy concerns they may not have been aware of at the time of providing consent or language
nuances [65, 379]. Following GDPR (Article 7), plain language consent and notice forms are
recommended to address the lack of public understanding of AI technologies [199].

When collecting images of individuals under the age of majority or those whose ability to protect
themselves is significantly impaired on account of disability, illness, or otherwise, guardian consent is
necessary [182]. However, relying solely on guardian consent overlooks the views and dignity of the
vulnerable person [141]. To address this, in addition to guardian consent, voluntary informed assent
can be sought from a vulnerable person, in accordance with UNICEF’s principlism-guided data
collection procedures [31, 327]. When employing appropriate language and tools, assent establishes
the vulnerable person understands the use of their data and willingly participates [31]. If a vulnerable
person expresses dissent or unwillingness to participate, their data should not be collected, regardless
of guardian wishes.

Informed by the U.S. National Bioethics Advisory Commission’s contextual vulnerability frame-
work [60], dataset creators should assess vulnerability on a continuous scale. That is, the circum-
stances of participation should be considered, which may require, e.g., a participatory design approach,
assurances over compensation, supplementary educational materials, and insulation from hierarchical
or authoritative systems [117].
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Adopt techniques for consent revocation. To permit consent revocation, dataset creators should
implement an appropriate mechanism. One option is dynamic consent, where personalized communi-
cation interfaces enable participants to engage more actively in research activities [174, 348]. This
approach has been implemented successfully through online platforms, offering options for blanket
consent, case-by-case selection, or opt-in depending on the data’s use [174, 211, 314]. Alternatively,
another recommended approach is to establish a steering board or charitable trust composed of
representative dataset participants to make decisions regarding data use [255]. The feasibility of
these proposals may vary based on a dataset’s scale. Nonetheless, at a minimum, data subjects
should be provided a simple and easily accessible method to revoke consent [136, 254, 268]. This
aligns with guidance provided by the UK Information Commission’s Office (ICO), emphasizing the
need to provide alternatives to online-based revocation processes to accommodate varying levels of
technology competency and internet access among data subjects [325].

Collect country of residence information. Anonymizing nonconsensual human subjects through
face obfuscation, as done in datasets such as ImageNet [367], may not respect the privacy laws
specific to the subjects’ country of residence. To comply with relevant data protection laws, dataset
curators should collect the country of residence from each data subject to determine their legal
obligations, helping to ensure that data subjects’ rights are protected and future legislative changes
are addressed [249, 268]. For instance, GDPR Article 7(3) grants data subjects the right to withdraw
consent at any time, which was not explicitly addressed in its predecessor [253].

Redact privacy leaking image regions and metadata. The European Data Protection Board
emphasizes that anonymization of personal data must guard against re-identification risks such as
singling out, linkability, and inference [76]. Re-identification remains possible even when nonconsen-
sual subjects’ faces are obfuscated, through other body parts or contextual information [242]. One
solution is to redact all privacy-leaking regions related to nonconsensual subjects (including their
entire bodies, clothing, and accessories) and text (excluding copyright owner information). However,
anonymization approaches should be validated empirically, especially when using methods without
formal privacy guarantees. Moreover, to mitigate algorithmic failures or biases, human annotators
should be involved in creating region proposals, as well as verifying automatically generated propos-
als, for image regions with identifying or private information [367]. For nonconsensual individuals
residing in certain jurisdictions (e.g., Illinois, California, Washington, Texas), automated region
proposals requiring biometric identifiers should be avoided. Instead, human annotators should take
the responsibility of generating these proposals.

Notwithstanding, to further protect privacy, dataset creators should take steps to ensure that image
metadata does not reveal identifying information that data subjects did not consent to sharing. This
may involve replacing exact geolocation data with a more general representation, such as city and
country, and excluding user-contributed details from metatags containing personally identifiable
information, except when this action would violate copyright. However, we do not advise blanket
redaction of all metadata, as it contains valuable image capture information that can be useful for
assessing model bias and robustness related to instrument factors.

5 Diversity

HCCV dataset creators widely acknowledge the significance of dataset diversity [13, 64, 78, 170, 171,
173, 196, 283, 361, 368], realism [110, 153, 164, 173, 196, 368], and difficulty [13, 16, 64, 73, 78, 91,
110, 173, 196, 198, 361, 368] to enhance fairness and robustness in real-world applications. Previous
research has emphasized diversity across image subjects, environments, and instruments [43, 139,
222, 287], but there are many ethical complexities involved in specifying diversity criteria [14, 15].
This section examines taxonomy challenges and offers recommendations.

5.1 Ethical Considerations

Representational and historical biases. The Council of Europe have expressed concerns about the
threat posed by AI systems to equality and non-discrimination principles [67]. Many dataset creators
often prioritize protected attributes, i.e., gender, race, and age, as key factors of dataset diversity [287].
Nevertheless, most HCCV datasets exhibit historical and representational biases [35, 166, 172, 312,
366]. These biases can be pernicious, particularly when models learn and amplify them. For instance,
image captioning models may rely on contextual cues related to activities like shopping [377]

6



and laundry [376] to generate gendered captions. Spurious correlations are detrimental, as they
are not causally related and perpetuate harmful associations [112, 281]. In addition, prominent
examples in HCCV research demonstrate disparate algorithmic performance based on race and skin
color [42, 43, 54, 123, 142–144, 148, 250, 271, 299, 318, 334, 375]. Most recently, autonomous
robots have displayed racist, sexist, and physiognomic stereotypes [158]. Furthermore, face detection
models have shown lower accuracy when processing images of older individuals compared to younger
individuals [369]. While not endorsing these applications, discrepancies have also been observed in
facial emotion recognition services for children in both commercial and research systems [152, 363],
as well as age estimation [58, 115, 200].

Despite concerns regarding privacy, liability, and public relations, the collection of special and
sensitive category data is crucial for bias assessments [15]. GDPR guidance from the UK ICO
confirms that sensitive attributes can be collected for fairness purposes [324]. However, obtaining
this information presents challenges, such as historical mistrust in clinical research among African-
Americans [92, 191] or the social stigma of being photographed that some women face [166].
Nonetheless, marginalized communities may require explicit explanations and assurances about data
usage to address concerns related to service provision, security, allocation, and representation [359].
This is particularly important as remaining unseen does not protect against being mis-seen [359].

The digital divide and accessibility. Healthcare datasets often lack representation of minority popu-
lations, compromising the reliability of automated decisions [356]. The World Health Organization
(WHO) emphasizes the need for data accuracy, completeness, and diversity, particularly regarding age,
in order to address ageism in AI [355]. ML systems may prioritize younger populations for resource
allocation, assuming they would benefit the most in terms of life expectancy [355]. The digital
divide further exacerbates the underrepresentation of vulnerable groups, including older generations,
low-income school-aged children, and children in East Asia and the South Pacific who lack access to
digital technology [326, 354]. Insufficient access to digital technology hampers the representation of
vulnerable persons in datasets [290], leading to outcome homogenization—i.e., the systematic failing
of the same individuals or groups [39].

Confused taxonomies. Sex and gender are often used interchangeably, treating gender as a conse-
quence of one’s assigned sex at birth [95]. However, this approach erases intersex individuals who
possess non-binary physiological sex characteristics [95]. Treating sex and gender as interchangeable
perpetuates normative views by casting gender as binary, immutable, and solely based on biological
sex [179]. This perspective disregards transgender and gender nonconforming individuals. Moreover,
sex, like gender, is a social construct, as sexed bodies do not exist outside of their social context [45].

Similar to sex and gender, race and ethnicity are often used synonymously [332]. Nations employ
diverse census questions to ascertain ethnic group composition, encompassing factors such as
nationality, race, color, language, religion, customs, and tribe [328]. However, these categories and
their definitions lack consistency over time and geography, often influenced by political agendas and
socio-cultural shifts [286]. This variability makes it challenging to collect globally representative
and meaningful data on ethnic groups. Consequently, several HCCV datasets have incorporated
inconsistent and arbitrary racial categorization systems [7, 267, 343, 374]. For instance, the FairFace
dataset [170] creators reference the US Census Bureau’s racial categories without considering
the social definition of race they represent [240]. The US Census Bureau explicitly states that
their categories reflect a social definition rather than a biological, anthropological, or genetic one.
Consequently, labeling the “physical race” of image subjects based on nonphysiological categories
is contradictory. Furthermore, the FairFace creators do not disclose the demographics or cultural
compatibility of their annotators.

Own-anchor bias. HCCV approaches for encoding age in datasets vary, using either integer
labels [53, 102, 125, 226, 236, 264, 277, 278, 374] or group labels [84, 105, 193, 302]. Age groupings
are often preferred when collecting unconstrained images from the web, as human annotators must
infer subjects’ ages, which is challenging [48]. This is evident in crowdsourced annotations, where
40.2% of individuals in the OpenImages MIAP dataset [290] could not be categorized into an age
group. Factors unrelated to age, such as facial expression [106, 237, 345] and makeup [83, 237, 313],
influence age perception. Furthermore, annotators have exhibited lower accuracy when labeling
people outside of their own demographic group [8, 9, 113, 279, 303, 335, 339].

Post hoc rationalization of the use of physiological markers. Gender information about data
subjects is obtained through inference [53, 170, 187, 198, 236, 264, 277, 278, 290, 343, 374, 374]
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or self-identification [136, 190, 203, 204, 375]. Inference raises concerns as it assumes that gender
can be determined solely from imagery without consent or consultation with the subject, which is
noninclusive and harmful [87, 127, 179]. Even when combined with non-image-based information,
inferred gender fails to account for the fluidity of identity, potentially mislabeling subjects at the time
of image capture [277, 278]. Moreover, physical traits are just one of many dimensions, including
posture, clothing, and vocal cues, used to infer not only gender but also race [100, 177, 179].

Erasure of nonstereotypical individuals. HCCV datasets frequently adopt a US-based racial
schema [170, 190, 203, 204, 264, 343], which may oversimplify and essentialize groups [316]. This
approach may not align with other more nuanced models, e.g., the continuum-based color system used
in Brazil, which considers a wide range of physical characteristics. Nonconsensual image datasets rely
on annotators to assign semantic categories, perpetuating stereotypes and disseminating them beyond
their cultural context [180]. Notably, images without label consensus are often discarded [170, 267,
343], potentially excluding individuals who defy stereotypes, such as multi-ethnic individuals [276].

Phenotypic attributes. Protected attributes may not be the most appropriate criteria for evaluating
HCCV models [43]. Social constructs like race and gender lack clear delineations for subgroup
membership based on visible or invisible characteristics. These labels capture invisible aspects of
identity that are not solely determined by visible appearance. Moreover, the phenotypic characteristics
within and across subgroups exhibit significant variability [25, 48, 96, 138, 180, 347].

Environment and instrument. The image capture device and environmental conditions significantly
influence model performance, and their impact should be considered [222]. Factors such as camera
software, hardware, and environmental conditions affect HCCV model robustness in various set-
tings [4, 140, 197, 221, 229, 353, 360, 364, 371]. Understanding performance differences is crucial
from ethical and scientific perspectives. For example, sensitivity to illumination or white balance
may be linked to sensitive attributes, e.g., skin tone [62, 184, 185, 378], while available instruments
or environmental co-occurrences may correlate with demographic attributes [139, 295, 376].

Annotator positionality. Psychological research highlights the influence of annotators’ sociocultural
background on their visual perception [19, 107, 147, 263, 275, 291]. However, recent empirical
studies have evidenced a lack of regard for the impact an annotator’s social identity has on data [79,
111]. Only a handful of HCCV datasets provide annotator demographic details [12, 56, 287, 375].

Recruitment and compensation. Data collected without consent patently lacks compensation.
Balancing between excessive and deficient payment is crucial to avoid coercion and exploitation [231,
268]. An additional concern is the employment of remote workers from disadvantaged regions [248],
often with low wages and fast-paced work conditions [71, 135, 162, 206]. This can lead to arbitrary
denial of payment based on opaque quality criteria [98] and prevents union formation [206], creating
a sense of invisibility and uncertainty for workers [321].

5.2 Practical Recommendations

Obtain self-reported annotations. Practitioners are cautious about inferring labels about people
to avoid biases [15]. Moreover, data access request rights, e.g., as offered by GDPR, California
Consumer Privacy Act, and PIPL, may require data holders to disclose inferred information. To avoid
stereotypical annotations and minimize harm from misclassification [275], labels should be collected
directly from image subjects, who inherently possess contextual knowledge of their environment and
awareness of their own attributes.

Provide open-ended response options. Closed-ended questions, such as those on census forms, may
lead to incongruous responses and inadequate options for self-identification [156, 179, 274]. Open-
ended questions provide more accurate answers but can be taxing, require extensive coding, and are
harder to analyze [40, 109, 178, 298]. To balance this, closed-ended questions should be augmented
with an open-ended response option, avoiding the term “other”, which implies othering norms [285].
This gives subjects a voice [234, 296] and allows for future question design improvement.

Acknowledge the mutability and multiplicity of identity. Identity shift—the intentional self-
transformation in mediated contexts [49]—is often overlooked. To address this, we propose collecting
self-identified information on a per-image basis, acknowledging that identity is temporal and nonstatic.
Specifically, for sensitive attributes, allowing the selection of multiple identity categories without
limitations is preferable [304, 309]. This prevents oversimplification and marginalization. While we
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acknowledge the potential burden of self-identification on fluid and dynamic identities, an image
captures a single moment. Thus, evolving identity may not require metadata updates; however, we
recommend providing subjects with mechanisms for updates when needed.

Collect age, pronouns, and ancestry. First, to capture accurate age information, dataset curators
should collect the exact biological age in years from image subjects, corresponding to their age at
the time of image capture. This approach offers flexibility, insofar as permitting the appropriate
aggregation of the collected data. This is particularly important given the lack of consistent age
groupings in the literature.

Second, dataset curators should consider opting to collect self-identified pronouns. This promotes
mutual respect and common courtesy, reducing the likelihood of causing harm through misgen-
dering [157]. Self-identified pronouns are particularly important for sexual and gender minority
communities as they “convey and affirm gender identity” [232]. Significantly, pronoun use is
increasingly prevalent in social media platforms [86, 165, 167], workplaces [55], and education
settings [20, 212], fostering gender inclusivity [21]. However, subjects should always have the option
of not disclosing this information.

Finally, to address issues with ethnic and racial classification systems [180, 286], dataset creators
should consider collecting ancestry information instead. Ancestry is defined by historically shaped
borders and has been shown to offer a more stable and less confusing concept [17]. The United
Nations’ M49 geoscheme can be used to operationalize ancestry [329], where subjects select regions
that best describe their ancestry. To situate responses, subjects could be asked, e.g., “Where do your
ancestors (e.g., great-grandparents) come from?”. This avoids reliance on proxies, e.g., skin tone,
that risk normalizing their inadequacies without reflecting their limitations [15].

Collect aggregate data for commonly ignored groups. Additional sensitive attributes should also
be collected, such as disability and pregnancy status, when voluntarily disclosed by subjects. These
attributes should be reported in aggregate data to reduce the safety concerns of subjects [309, 351].
Given that definitions of these attributes may be inconsistent and tied to culture, identity, and histories
of oppression [37, 41], navigating tensions between benefits and risks is necessary. Despite potential
reluctance, sourcing data from underrepresented communities contributes to dataset inclusivity [37,
168]. Regarding disability, the American Community Survey [330] covers categories related to
hearing, vision, cognitive, ambulatory, self-care, and independent living difficulties.

Collect phenotypic and neutral performative features. Collecting phenotypic characteristics can
serve as objective measures of diversity, i.e., attributes which, in evolutionary terms, contribute
to individual-level recognition [57], e.g., skin color, eye color, hair type, hair color, height, and
weight [19]. These attributes have enabled finer-grained analysis of model performance and biases [43,
75, 294, 318, 349, 372]. Additionally, considering a multiplicity of neutral performative features, e.g.,
facial hair, hairstyle, cosmetics, clothing, and accessories, is important to surface the perpetuation of
social stereotypes and spurious relationships in trained models [6, 18, 166, 284, 340].

Record environment and instrument information. Data should capture variations in environmental
conditions and imaging devices, including factors such as image capture time, season, weather,
ambient lighting, scene, geography, camera position, distance, lens, sensor, stabilization, use of flash,
and post-processing software. Instrument-related factors may be easily captured, by restricting data
collection to images with exchangeable image file format (Exif) metadata. The remaining factors,
e.g., season and weather can be self-reported or coarsely estimated utilizing information such as
image capture time and location.

Recontextualize annotators as contributors. Dataset creators should document the identities of
annotators and their contributions to the dataset [12, 79], rather than treating them as anonymous
entities responsible for data labeling alone [52, 206]. While many datasets [78, 137, 196] neglect to
report annotator demographics, assuming objectivity in annotation for visual categories is flawed [23,
169, 219]. Furthermore, using majority voting to reach the assumed ground truth, disregards minority
opinions, treating them as noise [169]. Annotator characteristics, including pronouns, age, and
ancestry, should be recorded and reported to quantify and address annotator perspectives and bias in
datasets [12, 118]. Additionally, allowing annotators freedom in labeling helps to avoid replicating
socially dominant viewpoints [219].

Fair treatment and compensation for contributors. In accordance with Australia’s National Health
and Medical Research Council [231] and the WHO [66], dataset contributors should not only be
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guaranteed compensation above the minimum hourly wage of their country of residence [280], but
also according to the complexity of tasks to be performed. However, alternative payment models, for
example, based on the average hourly wage, may offer benefits in terms of promoting diversity by
increasing the likelihood of higher socio-economic status contributors [251].

Besides payment, the implementation of direct communication channels and feedback mechanisms,
such as anonymized feedback forms [246], can help to address issues faced by annotators while
providing a level of protection from retribution. Furthermore, the creation of plain language guides
can ease task completion and reduce quality control overheads. Ideally, recruitment and compensation
processes should be well-documented and undergo ethics review, which can help to further reduce
the number of “glaring ethical lapses” [293].

6 Discussion and Conclusion

Supplementary to established ethical review protocols, we have provided proactive, domain-specific
recommendations for curating HCCV evaluation datasets for fairness and robustness evaluations.
However, encouraging change in ethical practice could encounter resistance or slow adoption due to
established norms [218], inertia [33], diffusion of responsibility [151], and liability concerns [15]. To
garner greater acceptance, platforms such as NeurIPS could adopt a model similar to the registered
reports format, embraced by over 300 journals [51, 247]. This entails pre-acceptance of dataset
proposals before curation, alleviating financial uncertainties associated with more ethical practices.

Nevertheless, seeking consent from all depicted individuals might give rise to logistical challenges.
Resource requirements tied to the implementation and maintenance of consent management systems
could emerge, potentially necessitating significant investment in technical infrastructure and dedicated
personnel. Particularly for smaller organizations and academic research groups, these limitations
could present considerable hurdles. A potential solution is forming data consortia [121, 166], which
helps address operational challenges by pooling resources and knowledge.

Extending our recommendations to the curation of “democratizing” foundation model-sized training
datasets [104, 119, 288, 289] poses an economic challenge. To put this into perspective, the GeoDE
dataset of 62K crowdsourced object-centric images [262], without personally identifiable information,
incurred a cost of $1.08 per image. While our recommendations may not seamlessly scale to
the curation of fairness-aware, billion-sized image datasets, it is worth considering that “solutions
which resist scale thinking are necessary to undo the social structures which lie at the heart of social
inequality” [130]. Large-scale, nonconsensual datasets driven by scale thinking have included harmful
and distressing content, including rape [35, 36], racist stereotypes [131], vulnerable persons [128],
and derogatory taxonomies [34, 69, 129, 183]. Such content may further generate legal concerns [2].
We contend that these issues can be mitigated through the implementation of our recommendations.

Nonetheless, balancing resources between model development and data curation is value-laden,
shaped by “social, political, and ethical values” [38]. While organizations readily invest significantly
in model training [227, 336], compensation for data contributors often appears neglected [337, 338],
disregarding that “most data represent or impact people” [380]. Remedial actions could be envisioned
to bridge the gap between models developed with ethically curated data and those benefiting from
expansive, nonconsensually crawled data. Reallocating research funds away from dominant data-
hungry methods [38] would help to strike a balance between technological advancement and ethical
imperatives.

However, the granularity and comprehensiveness of our diversity recommendations could be adapted
beyond evaluation contexts, particularly when employing “fairness without demographics” [50,
134, 189, 210] training approaches, reducing financial costs. Nevertheless, the applicability of any
proposed recommendation is intrinsically linked to the specific context [243]. Decisions should be
guided by the social framework of a given application to ensure ethical and equitable data curation.

Just as the concepts of identity evolve, our recommendations must also evolve to ensure their ongoing
relevance and sensitivity. Thus, we encourage dataset creators to tailor our recommendations to their
context, fostering further discussions on responsible data curation.
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A Responsible Data Curation Checklist for Fairness and Robustness
Evaluations

This checklist translates our HCCV data curation considerations and recommendations into action
items for researchers and practitioners. Presented as a series of questions, these items are designed
to stimulate discussions among data collection teams. The questions are purposefully worded to
avoid binary responses, encouraging open-ended dialogues. The primary focus of the checklist is to
underscore the ethical dimensions and ensure that teams address concerns encompassing purpose,
consent and privacy, as well as diversity.

It is important to engage with the checklist as a preliminary exercise before beginning data collection.
This approach promotes informed decision-making and minimizes risks, leading to more responsible
and reliable outcomes.

Contextual diversity is acknowledged to avoid a one-size-fits-all approach. Moreover, customization
is encouraged, as not all items apply universally; teams should modify or expand the checklist to align
with their context and use case. As with existing AI ethics checklists [90, 201, 205, 225, 269, 357],
it is important to recognize that the checklist is not a guarantee for ethical compliance; rather, it
functions as a catalyst for discussion and reflection.

We understand that answering these questions is time-consuming, increasing the burden on data
collection teams whose work is already undervalued [247, 282]. Therefore, when navigating through
these lists, priority should be put on items related to the specific domain and task of interest. The
level of engagement needed for each question will invariably differ. Keep in mind that the questions
aim to spur ethical thinking during dataset development: “Ethics is often about finding a good or
better, but not perfect, answer” [380].

A.1 Purpose

The questions in this section focus on eliciting strategies for curating HCCV evaluation datasets
specifically for fairness and robustness assessments. They seek alignment with objectives and inquire
about factors known to influence these assessments to ensure comprehensive evaluations. Moreover,
the questions aim to assist in formulating clear dataset purpose statements, preventing ambiguity and
misuse of data, as well as exploring external validation to enhance transparency and accountability.

Dataset Development Strategy

• Can you provide details about your strategy for developing a new dataset tailored specifically for
conducting fairness and robustness assessments in the context of HCCV? How do you plan to
ensure that this dataset is aligned with the objectives of evaluating fairness and robustness?

• Can you elaborate on the factors your dataset will encompass to comprehensively enable fairness
and robustness evaluations for HCCV models? How do you intend to capture the primary factors,
including data subjects, instruments, and environments, that influence these evaluations?

Dataset Purpose Statement

• Can you provide details about your plan to formulate a comprehensive dataset purpose statement?
How will this statement effectively communicate the core motivations driving, e.g., data collection,
outline the intended dataset composition, specify permissible uses of the data, and identify the
specific audience you aim to serve with the dataset?

• Can you elaborate on your strategy for ensuring the accuracy and ethical alignment of your
dataset’s purpose statement? How do you plan to externally validate the content and ethical
considerations of the statement?

• Can you provide insights into the benefits and implications of submitting your dataset’s purpose
statement as part of a research study proposal in the format of a registered report for your project?
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A.2 Consent and Privacy

The questions in this section explore informed consent, legal compliance, and privacy protection
measures within anonymization strategies. The questions emphasize clarity and voluntariness in
consent processes to prevent coercion or misuse of data. Moreover, they attempt to elicit strategies
for explaining data collection purposes, consent revocation, and accommodating diverse participation
circumstances. Furthermore, the questions seek insights into addressing anonymization challenges,
aiming to prevent re-identification risks, unauthorized exposure, and legal noncompliance, while
preserving data utility and protecting data subjects’ rights.

Informed and Voluntary Consent

• Can you elaborate on your approach to ensuring that you secure explicit, voluntary, and informed
consent from all individuals who either appear in the dataset or can be discerned from it? How do
you plan to handle consent for data annotators who may have disclosed personal information for
the purposes of quantifying and addressing annotator perspectives and bias?

• Can you provide a comprehensive explanation of your strategy for conveying the purpose of
data collection to the subjects? How do you intend to emphasize the utilization of their data,
which includes various types of information such as facial, body, biometric images, as well as
information about themselves and their environment, all in the context of assessing the fairness
and robustness of HCCV systems?

• In what ways will you incorporate consent forms that are composed in plain language to enhance
the understanding of AI technologies? How do you plan to make sure these forms effectively
convey the intricacies of data usage?

• How do you plan to inform data subjects about their ability to withdraw consent at any given point
during, or after, the data collection process? Can you provide details about the mechanisms you
will have in place for facilitating this?

• Please provide insight into your strategy for collecting data from individuals below the age of
majority or vulnerable individuals. How will you seek both guardian consent and voluntary
informed assent in such cases?

• How do you plan to evaluate vulnerability along a continuous spectrum, taking into account
contextual factors and recognizing that vulnerability is not solely binary or based solely on group
affiliations, but can also be influenced by specific situations or circumstances?

• Can you also provide details about how you will consider the circumstances of participation,
which might include the potential need for participatory design, assurances of compensation,
provision of educational materials, and safeguards against authoritative structures? How will you
address these various aspects in your approach?

• How do you intend to ensure that vulnerable individuals have a comprehensive understanding of
the data usage and willingly provide informed assent? Can you outline the specific measures you
intend to implement for this purpose?

• Can you elaborate on how you will respect the decision of a vulnerable individual who expresses
dissent, regardless of the preferences of their guardian?

Consent Revocation Mechanisms

• How do you plan to integrate mechanisms that allow data subjects to easily withdraw their
consent? Can you provide specifics on how this process will be designed and executed?

• Can you provide insights into the benefits and implications of implementing dynamic consent
mechanisms that utilize personalized communication interfaces? How do you intend to ensure
that these mechanisms adapt to the preferences and needs of individual data subjects?

• How do you intend to enable data subjects to actively participate in research activities and manage
their consent preferences? Can you provide more details about the tools or processes you plan to
put in place to achieve this?
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• In what ways will you explore the feasibility of online platforms for consent management that are
user-friendly and minimize complexity for data subjects? What steps will you take to ensure easy
accessibility?

• Can you provide insights into the options you will provide to data subjects for granting consent?
How will you offer choices between blanket consent, case-by-case selection, or opt-in based on
specific data usage?

• Can you elaborate on your considerations regarding the formation of a steering board or charitable
trust composed of representative subjects from the dataset? How do you envision this entity
contributing to decision-making processes?

• How do you plan to empower data subjects to actively participate in decisions concerning the
usage of their data? What mechanisms or channels will you establish to facilitate this involvement?

• Can you provide information about the method you will offer data subjects to easily and promptly
revoke their consent? How will you ensure that this process is straightforward and accessible?

• How do you intend to address varying levels of technological know-how and internet access
among data subjects? Can you detail the measures you will take to accommodate these variations?

• What alternatives do you plan to offer for revoking consent that do not rely solely on online-
based processes? How will you ensure that individuals with different needs and preferences can
effectively revoke their consent?

• How do you plan to assess the practicality and suitability of the chosen mechanisms for consent
revocation, taking into account the expected dataset size and the resources available to you? What
criteria will you use to evaluate their effectiveness?

Country of Residence Information

• How do you plan to address the fact that anonymization measures might not universally meet
legal requirements in specific regions, necessitating additional considerations? Can you provide
insights into your strategy for ensuring legal compliance while implementing anonymization?

• Can you elaborate on your approach to collecting information about the country of residence
for each individual in your dataset? How do you intend to use this information to ensure legal
compliance and address potential privacy concerns?

• How do you plan to familiarize yourself with the data protection laws that are applicable in the
countries of residence of your data subjects? Can you provide details about your process for
gaining this understanding and how you will apply it to your data curation project?

• How do you intend to prioritize safeguarding data subjects’ rights as stipulated by the data
protection laws in their respective countries? What steps will you take to ensure that the creation
and utilization of the dataset strictly adhere to the relevant data protection regulations? Can you
provide specifics about the measures you will put in place to achieve this?

• What mechanisms do you intend to implement to ensure the adaptability of your dataset manage-
ment strategy to changing legislative requirements? Can you provide details about how you will
monitor and accommodate legislative changes in your dataset management approach? Can you
provide insights into how you will strike a balance between maintaining compliance and effective
dataset management in dynamic legal environments?

Privacy-Sensitive Image Regions and Metadata

• How do you plan to implement measures that effectively safeguard against re-identification risks,
encompassing singling out, linkability, and inference, within your anonymization approach?

• Can you elaborate on your strategy for redacting all image regions that could inadvertently disclose
privacy-related information? How do you intend to comprehensively identify and address these
regions?
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• Can you elaborate on your strategy for the removal of elements such as body parts, clothing, and
accessories for nonconsenting subjects to enhance privacy protection? Can you provide more
details about the considerations and methods involved in this process?

• Can you elaborate on your strategy for the removal of text (possibly excluding copyright owner
information) from the dataset’s images to enhance privacy protection? Can you provide more
details about the considerations and methods involved in this process?

• Can you explain your plan for empirically validating the chosen anonymization methods? How
will you assess the methods’ effectiveness in mitigating re-identification risks while preserving
the utility of the data?

• Can you provide details about how human annotators will be engaged in the creation and verifica-
tion of privacy leaking image region proposals for anonymization purposes? How will you ensure
accuracy and consistency in this process?

• Can you provide details about how you intend to align region proposals predicted by algorithms
with human judgment, addressing any potential failures or biases? Can you describe your strategy
for maintaining a sensitive approach to these factors?

• What steps will you take to address jurisdiction-specific requirements that might necessitate
human-generated proposals for biometric identifiers in order to comply with legal and regulatory
standards?

• Can you elaborate on the measures you will take to prevent image metadata from inadvertently
revealing unauthorized identifying information? How will you ensure that metadata remains
privacy-conscious?

• How will you identify specific metadata elements that you intend to retain to ensure a compre-
hensive understanding during the evaluation process? Can you provide examples of the types of
metadata you plan to retain for this purpose?

• How do you plan to replace or remove sensitive information within metadata while retaining its
usefulness for fairness and robustness analyses? Can you provide insights into your approach for
striking a balance in this regard?

A.3 Diversity

The questions in this section revolve around obtaining accurate image annotations related to identity,
phenotype, environmental factors, and instruments, while upholding inclusivity, sensitivity, and
privacy. Additionally, the questions attempt to elicit strategies for documenting identity, ensuring fair
compensation, and effective (anonymous) communication.

Self-Reported Annotations

• How do you plan to acquire annotations for images directly from the data subjects, leveraging their
self-awareness and contextual knowledge to enhance the accuracy and quality of annotations?
Can you elaborate on the methods and strategies you intend to use for this purpose?

• Can you elaborate on your strategy for addressing biases and ensuring careful handling when
inferring labels about individuals? Can you provide reasoning as to why labels about individuals
will be inferred as opposed to being self-identified? How will you actively mitigate potential
biases that may arise during the labeling process?

• How do you intend to consider the implications of inferred labels, for example, in relation to data
access request rights?

Versatile and Inclusive Response Options

• How do you plan to enhance the accuracy and nuance of identity information collection by pro-
viding respondents with both closed-ended and open-ended response choices? Can you elaborate
on your strategy for using open-ended responses to gather more detailed and comprehensive data?

• How do you intend to ensure inclusivity and prevent any potential implications of exclusion in the
response choices you offer?
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• Can you elaborate on your preparedness to manage the coding and analysis effort required
for processing open-ended responses? What effective strategies do you plan to implement for
managing and analyzing the data collected from open-ended questions? How will you handle
the potential complexities and variations that can arise from these responses, ensuring that the
insights and information derived can be accurately captured and utilized?

Dynamic Nature of Identity

• How do you plan to collect self-identified information on a per-image basis, accounting for the
fact that identity is intrinsically contextual and temporal? Can you elaborate on your strategy for
capturing nonstatic aspects of identity?

• Can you elaborate on your strategy for enabling data subjects to freely choose multiple identity
categories without imposing any limitations? How will you ensure that subjects have the flexibility
to express their identity in a comprehensive and unrestrictive manner?

• How do you intend to address potential requests for per-image updates to self-identified informa-
tion provided by subjects over time, respecting their autonomy? What factors have you considered
in relation to the potential effects of permitting updates?

Demographic Information

• How do you plan to collect precise biological age in years from data subjects to ensure an accurate
representation of their age?

• Can you elaborate on your approach to gathering pronoun information from data subjects to
enhance gender inclusivity and mitigate the risk of misgendering? How will you ensure that
respondents feel comfortable providing this information?

• Can you explain your strategy for gathering consistent ancestry information from data subjects?
How will you approach the collection of this information in a sensitive and inclusive manner?

• How do you intend to offer the option for data subjects not to disclose their sensitive attributes if
they choose not to? Can you provide more details about how you will handle the sensitivity and
privacy of these attributes?

Sensitive Attributes in Aggregate

• How do you plan to collect voluntarily disclosed sensitive attributes such as disability and
pregnancy status? Can you elaborate on your approach to respecting the willingness of data
subjects to provide these details?

• Can you provide insight into your strategy for reporting sensitive attributes, such as disability and
pregnancy status, in aggregate data while safeguarding subjects’ safety and privacy? How do you
intend to ensure that individual identities are protected?

• Can you elaborate on your approach to relying on credible and appropriate sources for the
categorization and definitions of sensitive attributes like disability or difficulty? How will you
account for the potential variations in these definitions based on cultural, identity, and historical
contexts?

Phenotypic and Neutral Performative Features

• How do you plan to collect phenotypic attributes, encompassing characteristics such as skin color,
eye color, hair type, hair color, height, and weight? Can you provide insights into your strategy
for obtaining these attributes in a sensitive and comprehensive manner?

• Can you elaborate on your approach to collecting a diverse range of neutral performative features,
including aspects such as facial hair, hairstyle, cosmetics, clothing, and accessories? How do you
intend to ensure inclusivity and accuracy in capturing these features?

Environment and Instrument Details
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• How do you plan to gather data on environment-related factors, which encompass details such
as image capture time, season, weather, ambient lighting, scene, geography, camera position,
and camera distance? Can you provide insights into your strategy for capturing these factors
accurately and comprehensively?

• Can you elaborate on your approach to collecting instrument-related factors concerning the
imaging devices used, including aspects such as lens, sensor, stabilization, flash usage, and
post-processing software? How do you intend to ensure accuracy in capturing these details?

• How do you plan to obtain environment- and instrument-related information? Can you provide
more details about the methods you will use, such as self-reporting, annotator estimation, and
sourcing information from Exif metadata? How will you leverage contextual knowledge from
image subjects to enhance data quality?

• Can you explain your approach to handling information such as precise geolocation and user-
added details in Exif metadata that might contain personally identifying information? How will
you ensure compliance with copyright regulations (if applicable) while maintaining privacy and
adhering to ethical considerations?

Annotators as Contributors

• How do you plan to document the identities of data annotators, including capturing demographic
details such as pronouns, age, and ancestry? Can you provide insights into your strategy for
gathering and preserving this information while respecting privacy and ensuring transparency?

• Can you elaborate on your approach to highlighting the contributions of annotators beyond data
labeling in the dataset documentation after the curation process? How do you intend to accurately
represent the multifaceted roles and contributions of annotators?

• How do you plan to report the demographic information of annotators to analyze potential sources
of bias in dataset annotations? Can you provide more details about your proposed approach for
conducting this analysis while ensuring privacy and ethical considerations?

Fair Treatment and Compensation

• How do you plan to ensure that all contributors receive compensation that exceeds the minimum
hourly wage of their respective country or jurisdiction of residence? Can you provide insights
into your compensation strategy to ensure fair and ethical remuneration?

• Can you elaborate on your approach to exploring alternative payment models, such as compensa-
tion based on the average hourly wage? How do you intend to determine a compensation structure
that is both fair and reflective of contributors’ efforts?

• How will you establish direct communication channels between dataset creators and contributors?
Can you provide more details about the methods you intend to implement for effective and
transparent communication?

• What communication methods do you plan to explore that maintain the anonymity of contributors?
Can you provide insights into your approach to balancing communication and privacy needs, such
as using anonymous feedback forms?

• Can you provide information about your strategy for developing clear and accessible plain
language guides to facilitate various tasks, such as image submission and data annotation? How
do you plan to ensure that these guides effectively assist contributors?

• How do you intend to ensure that contributors from diverse backgrounds can easily understand and
follow any instructions provided? Can you elaborate on your approach to promoting inclusivity
and accessibility in your communication and guidelines?

• Can you provide details about how you plan to subject your recruitment and compensation
procedures to ethics review? What steps will you take to ensure that your procedures align with
ethical considerations and best practices?
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B Literature Review

Through a thematic search strategy, we identified relevant research studies and datasets, revealing
deficiencies in current image data curation practices or proposing potential solutions. By utilizing
Semantic Scholar and Google Scholar, we curated relevant papers covering a wide spectrum of
themes, including:

• HCAI

• Human-subjects research

• HCCV datasets

• Dataset curation

• Ethical frameworks and considerations

• Data and model documentation

• Legal and regulatory considerations

• Privacy and data protection

• Consent

• Fairness

• Auditing and verification

• Guidelines and best practices

• Values in design

• Diversity and inclusion

• Representation

• Robustness and reliability

• Benchmarking and evaluation

• Bias detection and mitigation

• Critical AI

• Social implications

• Responsible AI

The themes were chosen based on our expertise and experience in designing CV datasets, training
models, and developing ethical guidelines. To ensure a focused approach, we manually selected
papers aligned with the scope of our study based on the relevance of a paper’s title and abstract. This
informed our initial categorization scheme, shown in Table 1, detailing key ethical considerations
related to HCCV.

Initially broad, we further refined the categories to address the most prominent ethical issues pertaining
to HCCV dataset curation, particularly for fairness and robustness evaluations. Consent and privacy
categories were combined due to their interrelated nature and the influence of shared legal frameworks.

Table 1: Categorization scheme for ethical considerations in HCCV research

Category Explanation

Purpose The study discusses the underlying objectives and motivations for HCCV datasets.

Acquisition The study discusses ethical considerations related to the acquisition, collection, and
labeling of image data, including recruitment and compensation for contributors.

Consent The study discusses consent and the responsible use of personal information.

Privacy The study discusses privacy issues related to HCCV datasets or public data.

Ownership The study discusses legal and ethical aspects of intellectual property rights in the
context of HCCV datasets or public data.

Diversity The study discusses factors concerning diversity, inclusion, and fair representation
within HCCV datasets. This encompasses matters such as identifying and addressing
biases, ensuring fairness, and mitigating discrimination.

Maintenance The study discusses maintenance strategies for ensuring the integrity of HCCV
datasets, including security measures.
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Additionally, we integrated acquisition-related considerations into the categories of diversity, consent
and privacy, as well as purpose, recognizing their interconnectedness in ethical image data collection,
labeling, and usage. Maintenance-related matters were intentionally excluded from our scope, as
these primarily pertain to post-dataset creation activities, while technical and organizational security
measures are typically covered through consent forms. Ownership concerns, often intertwined with
privacy issues, were incorporated into the consent and privacy category.

To establish a comprehensive view, we expanded our corpus as necessary. This encompassed
examining cited works within our initial corpus, studies referencing our primary sources, and
additional contributions by authors from our initial corpus. Our review was supplemented by
incorporating publicly available resources from reputable sources, such as government bodies, private
institutions, and reliable news organizations. In total, our analysis covered 500 research studies and
online resources.
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