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Abstract

We present a novel approach to non-convex optimization with certificates, which
handles smooth functions on the hypercube or on the torus. Unlike traditional
methods that rely on algebraic properties, our algorithm exploits the regularity of
the target function intrinsic in the decay of its Fourier spectrum. By defining a
tractable family of models, we allow at the same time to obtain precise certificates
and to leverage the advanced and powerful computational techniques developed to
optimize neural networks. In this way the scalability of our approach is naturally
enhanced by parallel computing with GPUs. Our approach, when applied to the
case of polynomials of moderate dimensions but with thousands of coefficients,
outperforms the state-of-the-art optimization methods with certificates, as the ones
based on Lasserre’s hierarchy, addressing problems intractable for the competitors.

1 Introduction

Non-convex optimization is a difficult and crucial task. In this paper, we aim at optimizing globally
a non-convex function defined on the hypercube, by providing a certificate of optimality on the
resulting solution. Let h be a smooth function on [−1, 1]d. Here we provide an algorithm that given
x̂, an estimate of the minimizer x? of h

x? = arg min
x∈[−1,1]d

h(x),

produces an ε, that constitutes an explicit certificate for the quality of x̂, of the form

|h(x?)− h(x̂)| ≤ εδ,

with probability 1− δ. The literature abounds of algorithms to optimize non-convex functions. Typi-
cally they are either (a) heuristics, very smart, but with no guarantees of global convergence Moscato
et al. [1989], Horst and Pardalos [2013] (b) variation of algorithms used in convex optimization,
which can guarantee convergence only to local minima Boyd and Vandenberghe [2004] (c) algorithms
with only asymptotic guarantees of convergence to a global minimum, but no explicit certificates
Van Laarhoven et al. [1987]. In general, the methods recalled above are quite fast to produce some

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



solution, but don’t provide guarantees on its quality, with the result that the produced point can be
arbitrarily far from the optimum, so they are used typically where non-reliable results can be accepted.

On the contrary, there are contexts where an explicit quantification of the incurred error is crucial
for the task at hand (finance, engineering, scientific validation, safety-critical scenarios Lasserre
[2009]). In these cases, more expensive methods that provide certificates are used, such as polynomial
sum-of-squares (poly-SoS) Lasserre [2001, 2009]. These kinds of techniques are quite powerful since
they provide certificates in the form above, often with machine-precision error. However, (a) they
have reduced applicability since h must be a multivariate polynomial (possibly sparse, low-degree)
and must be known in its analytical form (b) the resulting algorithm is a semi-definite programming
optimization on matrices whose size grows very fast with the number of variables and the degree of
the polynomial, becoming intractable already in moderate dimensions and degrees.

Our approach builds and extends the more recent line of works on kernel sum-of-squares, and in
particular the work of Woodworth et al. [2022] based on the Fourier analysis. It mitigates the
limitations of poly-SoS methods in both aspects: (a) we can deal with any function h (not necessarily
a polynomial) for which the Fourier transform is known and (b) the resulting algorithm leverages
the smoothness properties of the objective function as Woodworth et al. [2022] rather than relying
on its algebraic structure leading to way more compact representations than poly-SoS. Contrary to
Woodworth et al. [2022], we fully leverage the power of the certificate allowing for a drastic reduction
of the computational cost of the method. Indeed, we cast the minimization in terms of a way smaller
problem, similar to the optimization of a small neural network that, albeit again non-convex, produces
efficiently a good candidate on which we then compute the certificate.

Notably, our focus lies on a posteriori guarantees: we define a family of models that allow for efficient
computation of certificates. Once the model structure is established, we have ample flexibility in
training the model, offering various possibilities to achieve good certificates in practical scenarios,
while still using well-established and effective techniques in the field of deep neural networks (DNN)
Goodfellow et al. [2016] to reduce the computational burden of the approach.

Our contributions can be summarized as follows:

• We propose a new approach to global optimization with certificates which drastically extends
the applicability domain allowed by the state of the art, since it can be applied to any function
for which we can compute the Fourier transform (not just polynomials).

• The proposed approach is naturally tailored for GPU computations and provides a refined
control of time and memory requirements of the proposed algorithm, contrary to poly-SoS
methods (whose complexity scales dramatically and in a rigid way with dimension and
degree of the polynomial).

• From a technical viewpoint, we improve the results in Woodworth et al. [2022], by develop-
ing a fast stochastic approach to recover the certificate in high probability (theorem 3), and
we generalize the formulation of the problem to allow the use of powerful techniques from
DNN, still providing a certificate on the result (section 3, in particular alg. 1)

• In practical applications, we are able to provide certificates for functions in moderate dimen-
sions, which surpasses the capabilities of current state-of-the-art techniques. Specifically,
as shown in the experiments we can handle polynomials with thousands of coefficients.
This achievement marks an important milestone towards utilizing these models to provide
certificates for more challenging real-life problems.

1.1 Previous work

Polynomial SoS. In the field of certificate-based polynomial optimization, Lasserre’s hierarchy
plays a pivotal role Lasserre [2001, 2009]. This hierarchy employs a sequence of SDP relaxations
with increasing size proportional to O(rd) (where d is the dimension of the space and r is a parameter
that upper bounds the degree of the polynomial) and that ultimately converges to the optimal solution
when r → ∞. While Lasserre’s hierarchy is primarily associated with polynomial optimization,
its applicability extends beyond this domain. It offers a specific formulation for the more general
moment problem, enabling a wide range of applications; see Henrion et al. [2020] for an introduction.
For polynomial optimization problems such as in eq. (1), a significant amount of research has been
dedicated to leveraging problem structure to improve the scalability of the hierarchy. This research
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has predominantly focused on exploiting very specific sparsity patterns among the variables of the
polynomial, enabling the handling in these restricted scenarios of instances ranging from a few
variables to even thousands of variables Waki et al. [2006], Wang et al. [2021b,a]. There have been
theoretical results regarding optimization on the hypercube Bach and Rudi [2023], Laurent and Slot
[2022], but there are no algorithms handling them natively. Furthermore, alternative approaches exist
that exploit different types of structure, such as the constant trace property Mai et al. [2022].

Kernel SoS. Kernel Sum of Squares (K-SoS) is an emerging research field that originated from the
introduction of a novel parametrization for positive functions in Marteau-Ferey et al. [2020]. This
approach has found application in various domains, including Optimal Control Berthier et al. [2022],
Optimal Transport Muzellec et al. [2021] and modeling probability distribution Rudi and Ciliberto
[2021]. In the context of function optimization, two types of theoretical results have been explored: a
priori guarantees Rudi et al. [2020] and a posteriori guarantees Woodworth et al. [2022]. A priori
guarantees offer insights into the convergence rate towards a global optimum of the function, giving a
rate on the number of parameters and the complexity necessary to optimize a function up to a given
error. For example, Rudi et al. [2020] proposes a general technique to achieve the global optimum,
with error ε of a function that is s-times differentiable, by requiring a number of parameters essentially
in the order of O(ε−s/d), allowing to avoid the curse of dimensionality in the rate, when the function
is very regular, i.e., s ≥ d, while typical black-box optimization algorithms have a complexity that
scales as ε−d. A-posteriori guarantees focus on providing a certificate for the minimum found by the
algorithm. In particular, Woodworth et al. [2022], provides both a-priori guarantee and a-posteriori
certificates; however, the model considered makes it computationally infeasible to provide certificates
in dimension larger than 2.

To conclude, approaches based on kernel-SoS allow to extend the applicability of global optimization
with certificates methods to a wider family of functions and on exploiting finer regularity properties
beyond just the number of variables and the degrees of a polynomial. By comparison, we focus
on making the optimization amenable to high-performance GPU computation while retaining an a
posteriori certificate of optimality.

2 Computing certificates with extended k-SoS

Without loss of generality (see next remark), with the goal of simplifying the analysis and using
powerful tools from harmonic analysis, we cast the problem in terms of minimization of a periodic
function f over the torus, [0, 1]d (we will denote it also as Td). In particular, we are interested in
minimizing periodic functions for which we know (or we can easily compute) the coefficients of its
Fourier representation, i.e.

f? = min
z∈Td

f(z), f(z) =
∑
ω∈Zd

f̂ωe
2πiω·z, ∀z ∈ Td, (1)

where Z is the set of integers. This setting is already interesting on its own, as it encompasses a large
class of smooth functions. It includes notably trigonometric polynomials, i.e. functions which have
only a finite number of non-zero Fourier coefficients f̂ω . Optimization of trigonometric polynomials
arises in multiple research areas, such as the optimal power flow Van Hentenryck [18] or quantum
mechanics Hilling and Sudbery [2010]. Note that this problem is already NP-hard, as it encompasses
for instance the Max-Cut problem Waldspurger et al. [2013]. Even so, we will consider the more
general case where we can evaluate function values of f , along with its Fourier coefficient f̂ω, and
we have access to its norm in a certain Hilbert space. This norm can be computed numerically for
trigonometric polynomials, and more generally reflects the regularity (degree of differentiability) of
the function, and thus the difficulty of the problem.
Remark 1 (No loss of generality in working on the torus). Given a (non-periodic) function
h : [−1, 1]d → R we can obtain a periodic function whose minimum is exactly h∗ and from which we
can recover x?. Indeed, following the classical Chebychev construction, define cos(2πz) as the com-
ponentwise application of cos to the elements of 2πz, i.e. cos(2πz) := (cos(2πz1), . . . , cos(2πzd))
and define f as f(z) := h(cos(2πz)) for z ∈ [0, 1]d. It is immediate to see that (a) f is peri-
odic, and, (b) since cos(2πz) is invertible on [0, 1]d and its image is exactly [−1, 1]d, we have
h∗ = h(x?) = f(z?) where

x? = cos(2πz?), and z? = min
z∈Td

f(z).
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We discuss an efficient representation of these problems in section 3.3.

2.1 Certificates for global optimization and k-SoS

A general “recipe” for obtaining a certificates was developed in Woodworth et al. [2022] where, in
particular, it was derived the following bound [Woodworth et al., 2022, see Thm. 2]

f? ≥ sup
c∈R, g∈G+

c− ‖f − c− g‖F , (2)

where ‖u‖F is the `1 norm of the Fourier coefficients of a periodic function u, i.e.

‖u‖F :=
∑
ω∈Zd

|ûω| , (3)

and the sup is taken over G+ that is a class of non-negative functions. The paper Woodworth et al.
[2022] then chooses G+ to be the set of positive semidefinite models, leading to a possibly expensive
convex SDP problem. Our approach instead starts from the following two observations: (a) the lower
bound in eq. (2) holds for any set G+ of non-negative functions, not necessarily convex, moreover (b)
any candidate solution (g, c) of the supremum in eq. (2) would constitute a lower bound for f?, so
there is no need to solve eq. (2) exactly. This yields the following theorem
Theorem 1. Given a point x̂ ∈ Td and a non-negative and periodic function g0 : Td → R+, we
have

|f(x̂)− f(x?)| ≤ ‖f − f(x̂)− g0‖F (4)

Proof. Since x? is the minimizer of f , then f(x?) ≤ f(x̂). Moreover, since c0 = f(x̂) and g0 are
feasible solutions for the r.h.s. of eq. (2), we have

f(x̂) ≥ f(x?) ≥ sup
c∈R, g∈G+

c− ‖f − c− g‖F ≥ c0 − ‖f − c0 − g0‖F ,

from which we derive that 0 ≤ f(x̂)− f(x?) ≤ ‖f − f(x̂)− g0‖F .

In particular, since any good candidate g0 is enough to produce a certificate, we consider the following
class of non-negative functions that can be seen as a two-layer neural network.
Definition 1 (extended K-SoS model on the torus). Let K : Td × Td → R be a periodic function
in the first variable and let m, r ∈ N. Given a set of anchors Z = (z1, . . . , zm) ⊂ Td and a matrix
R ∈ Rr×m, we define the K-SoS model g with

∀x ∈ Td, g(x) = ‖RKZ(x)‖22 , and KZ(x) = (K(x, z1), . . . ,K(x, zm)) ∈ Rm. (5)

The functions represented by the model above are non-negative and periodic. The model is an
extension of the k-SoS model presented in Marteau-Ferey et al. [2020], where the points (z1, . . . , zm)
cannot be optimized. Moreover it has the following benefits at the expense of the convexity in the
parameters:

1. The extended k-SoS models benefit of the good approximation properties of k-SoS models
described in Marteau-Ferey et al. [2020] and especially Rudi and Ciliberto [2021], since they
are a super-set of the k-SoS, that have optimal approximation properties for non-negative
functions.

2. The extended model can have a reduced number of parameters, by choosing a matrix R
with r = 1 or r � m. This will drastically improve the cost of the optimization, while not
impacting the approximation properties of the model, since a good approximation is still
possible with already r proportional to d [Rudi et al., 2020, see Thm. 3].

3. The extended model does not require any positive semidefinite constraint on the matrix
(contrary to the base model) that is typically a well-known bottleneck to scale up the
optimization in the number of parameters Marteau-Ferey et al. [2020]. In the extended
model we trade the positive semidefinite constraint with non-convexity. However this allows
us to use all the advanced and effective techniques we know for unconstrained (or box-
constrained) non-convex optimization for (two-layers) neural networks Goodfellow et al.
[2016].
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To conclude the picture on the k-SoS models, a critical aspect of the model is the choice of K, since
it must guarantee good approximation properties and at the same time we need to compute easily its
Fourier coefficients since we need to evaluate ‖f − c− g‖F . To this aim, a good candidate for K are
the reproducing kernels defined on the torus Steinwart and Christmann [2008]. We use shift-invariant
kernels, enabling a convenient analysis of the associated RKHS through their Fourier Transform.
Definition 2 (Reproducing kernel on the torus). Let q be a real function on Td, with positive Fourier
Transform and q(0) = 1. Let K be the kernel defined with

∀x, y ∈ Td, K(x, y) = q(x− y) =
∑
ω∈Zd

q̂ωe
2πiω·(x−y). (6)

Then, K is a r.k bounded by 1. We denoteH its Reproducing kernel Hilbert Space (RKHS) and by
‖·‖H the associated RKHS norm

‖f‖2H =
∑
ω∈Zd

|f̂ω|2/q̂ω.

Define λ(x) = q(x)2. We assume that we can compute (and sample from, see next section) λ̂ω, i.e.,
the Fourier transform of λ, corresponding to (q̂ ? q̂)ω , for all ω ∈ Zd.

By choosing such a K, the models inherit the good approximation properties derived in Marteau-
Ferey et al. [2020], Rudi and Ciliberto [2021]. We conclude by recalling that shift-invariant r.k kernel
have a positive Fourier transform due to Bochner’s theorem Rudin [1990]. The fact that K is bounded
by 1 can be seen with |K(x, x)| = |q(0)| =

∑
ω q̂ω = 1. Finally, note that the Fourier coefficients of

an extended k-SoS model can be computed exactly, as in shown e.g. later in lemma 1.

2.2 Providing certificates with the F -norm
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Figure 1: f − f? is a trigonometric polynomial
approximated by an extended k-SoS model g. The
L∞ norm of the difference (blue) is upper-bounded
by the F -norm (red), which is itself upper bounded
by the MoM inequality in theorem 3, with probabil-
ity 98%, here showed with respect to the number
N of sampled frequencies. Shaded area shows
min/max values across 10 estimations.

As discussed in the previous section our ap-
proach for providing a certificate on f relies on
first obtaining x̂ using a fast algorithm without
guarantees and solving approximately eq. (2) to
obtain the certificate (see theorem 1). With this
aim, now we need an efficient way to compute
the norm ‖ · ‖F . We use here a stochastic ap-
proach. Introducing a probability λ̂ω (that later
will be chosen as a rescaled version of λ̂ω in
definition 2) on Zd we rewrite the F -norm

‖u‖F =
∑
ω∈Zd

λ̂ω ·
|ûω|
λ̂ω

= Eω∼λ̂ω

[
|ûω|
λ̂ω

]
(7)

which yields an objective that is amenable to
stochastic optimization. From there, Woodworth
et al. [2022] computes a certificate by truncating
the sum to a hypercube {ω; ‖ω‖∞ ≤ N} of size
Nd and bounding the remaining terms with a smoothness assumption on u = f − c − g, which
enables to control the decay of ûω. We want to avoid this cost exponential in the dimension so we
proceed differently.

Probabilistic estimates with theH norm. Given that the F -norm can be written as an expectation
in eq. (7), we approximate it with an empirical mean Ŝ given with N i.i.d samples (ωi)1≤i≤n ∼ λ̂ω .
Now, note that the variance of Ŝ can be upper bounded by a Hilbert norm, as

Ŝ =
1

N

N∑
i=1

|ûωi |
λωi

, so that Var Ŝ ≤ 1

N
E
(
|ûω|
λ̂ω

)2

=
1

N

∑
ω∈Zd

|ûω|2

λ̂ω
=

1

N
‖u‖2Hλ , (8)

withHλ the RKHS from definition 2 with kernel K(x, x′) =
∑
ω∈Zd λ̂ωe

2πiω·(x−x′). This allows to
quantify the deviation of Ŝ from E[Ŝ] = ‖u‖F , with e.g. Chebychev’s inequality, as shown in next
theorem.
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Theorem 2 (Certificate with Chebychev Inequality). Let (λ̂ω)ω be a probability distribution on Zd,
δ ∈ (0, 1) and g a positive function. Let N > 0 and Ŝ be the empirical mean of |f̂ω − c− ĝω|/λ̂ω
obtained with N samples ωi ∼ λ̂ω . Then, a certificate with probability 1− δ is given with

f? ≥ c− Ŝ −
‖f − c− g‖Hλ√

Nδ
, Ŝ =

1

N

N∑
i=1

∣∣∣f̂ωi − c1ωi=0 − ĝωi
∣∣∣

λ̂ωi
. (9)

Proof. From its definition in eq. (7), we see that an unbiased estimator of the F -norm is given by
Ŝ. Then, Chebychev’s inequality states that |Ŝ − ‖u‖F |2 ≤ Var Ŝ/δ with probability at least 1− δ.
Using the computation of the variance in eq. (8), it follows that ‖u‖F ≤ Ŝ + ‖f − c− g‖Hλ /

√
Nδ

with probability at least 1− δ. Plugging this expression into eq. (2), we obtain the result.

Note that the norm inHλ can be developed with (assuming for conciseness that (−c) is comprised in
the 0-frequency of f )

‖u‖2Hλ =
∑
ω∈Zd

f̂∗ω(f̂ω − 2ĝω)

λ̂ω
+ ‖g‖2Hλ ≤ (‖f‖Hλ + ‖g‖Hλ)2. (10)

Thus, theorem 2 provides a certificate of f? as long as we can (i) evaluate the Fourier transform ĝω
of g and (ii) compute its Hilbert norm in some r.kHλ induced by λ̂ω. In next section, we detail the
choice we make to achieve this efficiently, with kernels amenable to GPU computation, scaling to
thousands of coefficients.

Remark 2 (Using a RKHS norm instead of the F -norm). Note that since (λ̂ω)ω sums to 1, the
associated kernel is bounded by 1. Hence ‖u‖L∞ ≤ ‖u‖Hλ , and the latter could be used instead of
the F -norm in eq. (2). There are two reasons for taking our approach instead. Firstly, the F -norm is
always tighter that a RKHS norm (see e.g. [Woodworth et al., 2022, Lem. 4]); secondly, we cannot
compute ‖u‖Hλ efficiently and have to rely instead on another upper bound. However, taking the
number of samples N = O(‖u‖2Hλ) alleviates this issue.

Exponential concentration bounds with MoM. The scaling in 1/
√
δ in theorem 2 can be pro-

hibitive if one requires a high probability on the result (δ � 1). Hopefully, alternative estimator exist
for those cases. The Median-of-Mean estimator is an example, illustrated in theorem 3.

Theorem 3 (Certificate with MoM estimator). Let (λ̂ω)ω be a probability distribution on Zd, and
δ ∈ (0, 1). Draw N > 0 frequencies ωi ∼ λ̂ω. Define the MoM estimator with the following: for
K ∈ N s.t. δ = e−K/8 and N = Kb, b ≥ 1, write B1, . . . , BK a partition of [N ]; then

MoMδ(|ûωi |/λωi) = median

1

b

∑
i∈Bj

|f̂ωi − c1ωi=0 − ĝωi |
λωi


1≤j≤K

. (11)

A certificate on f? with probability 1− δ follows, with

f? ≥ c−MoMδ(|ûωi |/λωi)− 4
√

2 ‖f − c− g‖Hλ

√
log(1/δ)

N
. (12)

Proof. Using e.g. Theorem 4.1 from Devroye et al. [2016] we get that the deviation of the MoM
estimator from the expectation is bounded by

|‖u‖F −MoMδ(|ûωi |/λωi)| ≤ 4
√

2

√
Var(|ûω|/λ̂ω)

log(1/δ)

N
with proba. 1− δ. (13)

Using the upper bound on the variance with theHλ norm given in eq. (8) and plugging the resulting
expression into eq. (2), we obtain the result.
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To conclude this section, bounding the L∞ norm from above with the F -norm in eq. (3) enables
to obtain a certificate on f , as shown in theorem 1. The F -norm requires an infinite number of
computation in the general case, but can be bounded efficiently with a probabilistic estimate, given
by theorem 2 or theorem 3. This is summed up in fig. 1. Note that the difference ‖·‖F − ‖·‖L∞ is a
source of conservatism in the certificate which we do not quantify – yet, the F -norm is optimal for a
class of norms, see [Woodworth et al., 2022, Lemma 3].

3 Algorithm and implementation

3.1 Bessel kernel

We now detail the specific choice of kernel we make in order to compute the certificate of theorem 2
or theorem 3 efficiently. Our first observation is to use a kernel stable by product, so that we can
easily characterize a Hilbert space the model g belongs to. This restricts the choice to the exponential
family. That’s why we define, for a parameter s > 0,

∀x ∈ T, qs(x) = es(cos(2πx)−1) =
∑
ω∈Z

e−sI|ω|(s)e
2πiωx, (14)

with I|ω|(·) the modified Bessel function of the first kind [Watson, 1922, p.181]. Then, define
Ks(x, y) = qs(x− y) as in definition 2, and take a tensor product to extend the definition of K to
multiple dimension, i.e. Ks(x,y) =

∏d
`=1Ks`(x`,y`) for any x,y ∈ Td. We refer to this kernel as

the Bessel kernel, and the associated RKHS asHs. It is stable by product as Ks(x, y) = Ks/2(x, y)2.
This is key to compute the Fourier transform of the model g, and in contrast to previous approaches
which used the exponential kernel with q̂ω ∝ e−s|ω| Woodworth et al. [2022], Bach and Rudi [2023].

In the following, g is a K-SoS model defined as in definition 1, with the Bessel kernel of parameter
s ∈ Rd+ defined in eq. (14).

Lemma 1 (Fourier coefficient of the Bessel kernel). For ω ∈ Zd, the Fourier coefficient of g in ω
can be computed in O(drm2) time with

ĝω =

m∑
i,j=1

R>i Rj

d∏
`=1

e−2s`I|ω`|(2s cosπ(zi` − zj`))e
−iπω`(zi`+zj`). (15)

Proof. From its definition in eq. (5), we rewrite g as

g(x) =

m∑
i,j=1

R>i Rj

d∏
`=1

Ks(x, zi`)Ks(x, zj`). (16)

Now, from the definition of the Bessel kernel in eq. (14), we have that for any (x, y, z) ∈ T,
K(x, y)K(x, z) = e−2se2s cos(2π(y−z)/2) cos 2π(x−(y+z)/2). By definition of the modified Bessel
function, the Fourier coefficient of this expression are given by I|ω|(2s cos(2π(y − z)/2)). Using
this into eq. (16), we get the result.

The second necessary ingredient for using the certificate of theorem 2 is computing a RKHS norm
for g. It relies on the inclusion ofH2s into the bigger space of symmetric operator S(Hs).
Lemma 2 (Bound on the RKHS norm of g). g belongs to H2s, and ‖g‖H2s is bounded by the
Hilbert-Schmidt norm of S(Hs), which can be computed in O(dm2 +mr2) time, with

‖g‖2H2s
≤ ‖g‖2S(Hs) = Tr (RKs,zR

>)2. (17)

Proof. Assume that d = 1; the reasoning can be extended to multiple dimensions with the
tensor product. From the computation of the Fourier coefficient in lemma 1 and the fact that
I|ω|(2s cos(2π·)) ≤ I|ω|(2s), we have that ĝω = O(I|ω|(2s)) hence g ∈ H2s. Finally, since
the kernel is stable by product, H2s = Hs � Hs, so we can use e.g. [Paulsen and Raghu-
pathi, 2016, Thm. 5.16], with H1 = H2 = Hs and S(Hs) = Hs ⊗ Hs, with the operator
A = (ϕ(z1), . . . , ϕ(zm))R>R(ϕ(z1), . . . , ϕ(zm))∗ ∈ S(Hs).
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With lemma 2, we have that the model g belongs to H2s, so we will naturally use λ̂ω =∏d
`=1 e

−2s`Iω(2s`) in theorem 2; said differently, the space Hλ introduced in eq. (8) is simply
H2s defined in eq. (14).

3.2 The algorithm: GloptiNets

We can now describe how GloptiNets yields a certificate on f . The key observation is that no
matter how is obtained our model g(R, z) from definition 1, we will always be able to compute
a certificate with theorems 2 and 3. Thus, even though optimizing eq. (9) w.r.t (c,R, z) is highly
non-convex, we can use any optimization routine and check empirically its efficiency by looking at
the certificate. Finally, thanks to its low-rank structure it is cheaper to evaluate g than evaluating its
Fourier coefficient. This is formally shown in proposition 2 in appendix A, where a block-diagonal
structure for the model is also introduced. That’s why we first optimize supc,g c − ‖f − c− g‖?,
where ‖·‖∗ is a proxy for the L∞ norm, e.g. the log-sum-exp on a random batch of N points1:

‖f − c− g‖L∞ ≈ max
i∈[N ]

|f(xi)− c− g(xi)| ≈ LSE(f(xi)− c− g(xi))i∈[N ]. (18)

This optimization can be carried out by any deep learning libraries with automatic differentiation and
any flavour of gradient ascent. Only afterwards do we compute the certificate with theorems 2 and 3.
This procedure is summed up in alg. 1.

Algorithm 1: GloptiNets
Data: A trigonometric polynomial f , a candidate z s.t. c = f(z), a model g, and a probability δ.
Result: A certificate |f? − f(z)| ≤ εδ with proba. 1− δ.
/* Optimize g with function values */
for epoch = 1:nepochs do

Sample x1, . . . , xN ∈ Td ;
L,∇L = autodiff(LSE(f(xi)− c− g(xi))i∈[N ]) ;
z, R← optimizer(∇L) ;

/* Compute a certificate */
λ̂ω: probability distribution on Zd with λ̂ω =

∏d
`=1 e

−2s`Iω(2s`);
Sample Ω = (ω1, . . . , ωN ) ∼ λ̂ω ;
Compute M = MoMδ(|f̂ωi − c1ωi=0 − ĝωi |/λωi)i∈[n] and σ̄ = ‖g‖S(Hs);

Returns εδ = c−M − 4
√

2σ̄
√

log(1/δ)/N;

Remark 3 (Providing a candidate). In alg. 1, a candidate estimate c for the minimum value f(x?) is
necessary. However, it is possible to overcome this requirement by incorporating c as a learnable
parameter within the training loop. Moreover, x? can be learned using techniques similar to those
in Rudi et al. [2020]: by replacing the lower bound c with a parabola centered at z, z becomes a
candidate for x? with precision corresponding to the tightness of the certificate. Note however that
this method introduces additional hyperparameters.

3.3 Specific implementation for the Chebychev basis

As already observed in Bach and Rudi [2023], a result on trigonometric polynomial on Td directly ex-
tends to a real polynomials on [−1, 1]d. The reason for that is that minimizing h on [−1, 1]d amounts
to minimizing the trigonometric polynomial f = h((cos 2πx1, . . . , cos 2πxd)) on Td. Note however
that f is an even function in all dimension, as for any x ∈ Td, f(x) = f(x1, . . . ,−xi, . . . , xd). Thus,
approximating f − f? with a K-SoS model of definition 1 is suboptimal, in the sense that we could
approximate f only on [0, 1/2]d, which is 2−d smaller. Put differently, the Fourier coefficient of f
are real by design: it would be convenient to enforce this structure in the model g. This is achieved
with proposition 1.

1Another detail of practical importance is that this loss can be efficiently backpropagated through; on the
other hand, the certificate is not easily vectorized, and the Bessel function involved would require specific
approximation to be efficiently backpropagated through.
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Proposition 1 (Kernel defined on the Chebychev basis). Let q be a real, even function on the torus,
bounded by 1, as in eq. (6). Let K be the kernel defined on [−1, 1] by

∀(u, v) ∈ (0, 1/2),K(cos 2πu, cos 2πv) =
1

2
(q(u+ v) + q(u− v)). (19)

Then K is a symmetric, p.d., hence reproducing kernel, bounded by 1, with explicit feature map given
by

∀(x, y) ∈ [−1, 1],K(x, y) = q̂0 +
∑
ω∈N

2q̂ωHω(x)Hω(y). (20)

The proof is available in appendix B. It simply relies on expanding the definition of K in eq. (19).
The resulting expression in eq. (20) exhibits only cosine terms (in the decomposition of x 7→
K(cos 2πx, y)). This enables to directly extend the PSD models from definition 1 with such kernels.
Finally, when used with the Bessel kernel of eq. (14), we recover an easy computation of the
Chebychev coefficient, as shown in lemma 3, in O(drm2) time. This enables to approximate any
function expressed on the Chebychev basis. Note that polynomials expressed in other basis can be
certified too, by first operating a change of basis.

4 Experiments

101 102 103
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Figure 2: Certificate vs. number of parameters in g,
for a given function h. The higher the RKHS norm
of h, the more difficult it is to approximate uni-
formly and the looser the certificate, independently
of the function type. The more parameters in the
k-SoS model, the tighter the certificates obtained
with theorem 3.

The code to reproduce these experiments is avail-
able at

github.com/gaspardbb/GloptiNets.jl

Settings. Given a function h, we compute a
candidate x̂ with gradient descent and multiple
initializations. The goal is then to certify that
x̂ is indeed a global minimizer of h. This is a
common setup in the Polynomial-SoS literature
Wang and Magron [2022]. To illustrate the influ-
ence of the number of parameters, the positive
model g defined in definition 1 for GloptiNets
designates either a small model GN-small with
1792 parameters, or a bigger model GN-big
with 22528 parameters. The latter should have
higher expressivity and better interpolate posi-
tive functions, leading to tighter certificates. All
results for GloptiNets are obtained with confi-
dence 1 − δ = 1 − e−4 ≥ 98%. All other
details regarding the experiments are reported
in appendix C.

Polynomials. We first consider the case where h is a random trigonometric polynomial. Note that
this is a restrictive analysis, as GloptiNets can handle any smooth functions (i.e. with infinite non-zero
Fourier coefficients). Polynomials have various dimension d, degree p, number of coefficients n,
but a constant RKHS norm H21d . We compare the performances of GloptiNets to TSSOS, in its
complex polynomial variant Wang and Magron [2022]. The latter is used with parameters such that
it executes the fastest, but without guarantees of convergence to the global minimum f?. Table 1
shows the certificates h(x?)−h(x̂) and the execution times (lower is better, t in seconds) for TSSOS,
GN-small and GN-big. Figure 2 provides certificate on a random polynomial, function of the number
of parameters in g.

Kernel mixtures. While polynomials provide ground for comparison with existing work,
GloptiNets is not confined to this function class. This is evidenced by experiments on kernel
mixtures, where our approach stands as the only viable alternative we are aware of. The function we
certify are of the form h(x) =

∑n
i=1 αiK(xi, x), where K is the Bessel kernel of eq. (14). Kernel

mixtures are ubiquitous in machine learning and arise e.g. when performing kernel ridge regression.
Certificates obtained on mixtures are compared with those obtained on polynomials in fig. 2, function
of the model size g.
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Table 1: GloptiNets and TSSOS on random trigonometric polynomials. While TSSOS provides
machine-precision certificates, its running time grows exponentially with the problem size, and
eventually fails on problems 3 and 6. On the other hand, GloptiNets has constant running time no
matter the problem size, and its certificates can be tightened by increasing the model size.

d p n
TSSOS GN-small GN-big

Certif. t Certif. t Certif. t

3
5 85 5.3 · 10−11 3 8.35 · 10−4 6 · 103 2.64 · 10−4 9 · 103

7 231 4.7 · 10−13 120 9.51 · 10−4 6 · 103 2.90 · 10−4 9 · 103

9 489 out of memory! - 1.18 · 10−3 6 · 103 3.34 · 10−4 9 · 103

4
3 33 3.1 · 10−10 0.1 2.46 · 10−2 1 · 104 3.45 · 10−3 2 · 104

5 225 4.8 · 10−12 53 3.71 · 10−2 1 · 104 3.59 · 10−3 2 · 104

7 833 out of memory! - 4.76 · 10−2 1 · 104 4.85 · 10−3 2 · 104

Results. There are two key hindsight about the performances of GloptiNets. Firstly, its certificate
does not depend on the structure of the function to optimize. Thus, although GloptiNets does not
match the performances of TSSOS on small polynomials, it can tackle polynomials which cannot be
handled by competitors, with arbitrarily as many coefficients (n =∞). For instance, TSSOS cannot
handle problems with n ∈ {489, 833} in table 1. More importantly, GloptiNets can certify a richer
class of functions than polynomials, among which kernel mixtures. The performances of GloptiNets
mostly depends on the complexity of the function to certify, as measured with its RKHS norm.

Secondly, note that a bigger model yields tighter certificate. This is detailed in fig. 2, where the same
function f is optimized with various models. The dependency of the certificate on the norm of f is
shown in fig. 3 in appendix C, along with experiments with Chebychev polynomials.

5 Limitations

One limitation of GloptiNets is the trade-off resulting from its high flexibility for obtaining a certificate
as in alg. 1. While this flexibility offers numerous advantages, it also introduces the need for an
extensive hyperparameter search. Although we have identified a set of hyperparameters that align
with deep learning practices – utilizing a Momentum optimizer with cosine decay and a large initial
learning rate – the optimal settings may vary depending on the specific problem at hand.

In the same vein, the certificates given by GloptiNets are of moderate accuracy. While adding more
parameters into the k-SoS model certainly helps (as shown in fig. 2), alternative optimization scheme
to interpolate h− h(x̂) with g might provide easier improvement. For instance, we found that using
approximate second-order scheme in alg. 1 is key to obtaining good certificates.

In the specific settings of polynomial optimization, we highlight that our model is not competitive
on problems which exhibits some algebraic structure, as for instance term sparsity or the constant
trace property. Typically, problems with coefficients of low degrees (less or equal than 2), which
encompass notably the OPF problem, are really well handled by the family of solvers TSSOS belongs
to. Finally, GloptiNets does not handle constraints yet.

6 Conclusion

The GloptiNets algorithm presented in this work lays the foundation for a new family of solvers
which provide certificates to non-convex problems. While our approach does not aim to replace the
well-established Lasserre’s hierarchy for sparse polynomials, it offers a fresh perspective on tackling
a new set of problems at scale. Through demonstrations on synthetic examples, we have showcased
the potential of our approach. Further research directions include extensive parameter tuning to obtain
tighter certificates, with the possibility of leveraging second-order optimization schemes, along with
warm-restart schemes for application which requires solving multiple similar problems sequentially.
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A Extensions

We explore additional extensions of GloptiNets that further enhance its appeal. We first describe
a block diagonal structure for the model for faster evaluation, a theoretical splitting scheme for
optimization, and finally a warm-start scheme.

A.1 Block diagonal structure for efficient computation

Without any further assumption, we see that a model from definition 1 can be evaluated in O(drm)
time; its Fourier coefficient given by lemma 1 inO(dm2r); the bound on the RKHS norm is computed
in O(dm2 + mr2) time thanks to lemma 2; all that enables to compute a certificate, as stated in
theorem 2, inO(Ndm2r+mr2) time, whereN is the number of frequencies sampled. If the function
f to be minimized has bigHs norm, we might need a large model size m to have f − f? ≈ g. Hence,
we introduce specific structure on G which makes it block-diagonal and better conditioned.

Proposition 2 (Block-diagonal PSD model). Let g be a PSD model as in definition 1, with m = bs
anchors. Split them into b groups, denoting them zij , i ∈ [b] and j ∈ [s]. Compute the Cholesky
factorization of each kernel matrix T>i Ti = Kzi ∈ Rs×s. Then, define G as a block-diagonal matrix,
with b blocks defined as Gi = R̃iR̃

>
i , R̃i = T−1Ri, and Ri ∈ Rr×s. Equivalently,

G =

R̃1R̃
>
1

. . .
R̃bR̃

>
b

 , s.t. g(x) =

b∑
i=1

∥∥∥R̃>i Kzi
(x)
∥∥∥2

, Kzi
(x) = K(zij , x)1≤j≤s.

(21)
Then g can be evaluated in O(rbs3d) time, ĝω in O(bs2(dr + s)) time, and ‖g‖2S(Hs) in O(b2(rs2 +

r2s) + bs3) time. The model has (r + d)bs real parameters.

Proof. Having G defined as such, it is psd, of rank at most rb ≤ sb = m. Written g(x) =∑b
i=1‖R̃>i Kzi

(x)‖2, we can compute the Fourier coefficient by applying lemma 1 to each of the b
component. Adding the cost of computing Gi = R̃iR̃

>
i results in complexity of O(bs2(dr + s)).

Finally, note that ‖g‖2S(Hs) = ‖A‖2S(Hs) where

A = ((ϕ(z1j))j∈[s], . . . , (ϕ(zbj))j∈[s])(DiagGi)i∈[b]((ϕ(z1j))j∈[s], . . . , (ϕ(zbj))j∈[s])
∗.

Then, defining Q the matrix of b× b blocks of size s× s s.t. for j, k ∈ [b], Qjk = K(zj , zk) ∈ Rs×s,
we have

‖A‖2S(Hs) = Tr Q(DiagGi)i∈[b]Q(DiagGi)i∈[b] =

b∑
j,k=1

Tr GjQjkGkQkj , (22)

and each term in the sum can be written Tr (R̃>j QjkR̃k)(R̃>k QkjR̃
>
j ) = ‖R̃>j QjkR̃k‖2HS , which is

computed in O(rs2 + r2s) time, plus O(bs3) to compute the Cholesky factor.

Denoting ϕzi = (ϕ(zij))1≤j≤s, note that

ϕziGiϕ
∗
zi = ϕziT

−1
i RiR

>
i (ϕziT

−1
i )∗ = EiRiR

>
i E
∗
i , (23)

with Ei = ϕziT
−1
i an orthonormal basis of Span(ϕzij )1≤j≤s as E∗i Ei = Is. Thus, each model’s

coefficient is defined on an orthonormal basis, which makes the optimization easier. Of course, this
comes at an added s3 complexity, which could be alleviated by using e.g. an incomplete Cholesky
factorization instead.

Remark 4 (Relation to Term Sparsity in POP). The successful application of polynomial hierarchies
to problems with thousands of variables rely on making the moment matrix M having a block
structure Wang et al. [2021b,a]. If the monomial basis has size m, the constraint M � 0 is replaced
with M = (DiagMi)i∈[b] and Mi � 0. This enables to solve b SDP of size at most s instead of
one of size m. Our model in proposition 2 follows a similar route for having a lower computational
budget.
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A.2 Global optimization with splitting scheme

While GloptiNets can provide certificates for functions, it falls behind local solvers in terms of
competitiveness. The challenge lies in the fact that finding a certificate is considerably more difficult
than finding a local minimum, as it necessitates the uniform approximation of the entire function.
However, we present a novel algorithmic framework that has the potential to enhance the competi-
tiveness of GloptiNets with local solvers while simultaneously delivering certificates. Our approach
involves partitioning the search domain into multiple regions and computing lower bounds for each
partition. By discarding portions of the domain where we can certify that the function exceeds a
certain threshold, the algorithm progressively simplifies the optimization problem and removes areas
from consideration. Moreover, such an approach is naturally well suited to parallel computation.

The algorithm relies on a divide-and-conquer mechanism. First, we split the hypercube (−1, 1)d in
N regions, where N is the number of core available. We compute an upper bound with a local solver.
For each region, we run GloptiNets in parallel, computing a certificate at regular interval. As soon as
the certificate is bigger than the upper bound, we stop the process: we know that the global minimum
is not in the associated region. We can then reallocate the freed computing power by splitting the
biggest current region, which yields an easier problem. We stop as soon as the region considered are
small enough. This is summarized in alg. 2, where P indicates the loop run in parallel.

Note that minimizing f on a hypercube of center µ and size σ amounts to minimizing x 7→ f((x−
µ)/σ) on [−1, 1]d, which is another Chebychev polynomial whose coefficients can be evaluated
efficiently thanks to the order-2 relation every orthonormal polynomial satisfy. For Chebychev
polynomials, that is Hω+1(x) = 2xHω(x)−Hω−1(x).

Algorithm 2: Splitting scheme with GloptiNets
Data: A Chebychev polynomial f with a unique global optimum, a probability δ, a number of

cores N and a volume ρ < 1/N .
Result: A certificate on f : f? ≥ Cδ(f) with proba. 1− δ?.
/* Initialization: upper bound and partition */
Π = partition([−1, 1]d, N), δ? = 0 ;
P ub = minπ∈Π {localsolverx∈πf(x)};
/* Iterate over the partition */
P for π ∈ Π, While length(Π) > 1 do

while Cδ(fπ) < ub do
Continue optimization;

Split biggest part: π0 = arg maxπ∈Π Vol(π); (π1, π2) = partition(π0, 2) ;
If Vol(π1,2) < ρ: end this process ;
Update upper bound: ub = min

{
ub, localsolverx∈π1,2

f(x)
}

;
Update search space and δ?: Π = Π \ {π, π0} ∪ {π1, π2}, δ? = 1− (1− δ?)(1− δ);

/* A single region in Π remains */
Returns Π = {π}, Cδ(fπ), δ?;

A.3 Warm restarts

Our model distinguishes itself by leveraging the analytical properties of the objective function, rather
than relying solely on algebraic characteristics. This approach offers a notable advantage, as closely
related functions can naturally benefit from a warm restart. For example, if we already have a
certificate for a function f using a PSD model g, and we seek to compute a certificate for a similar
function f̃ ≈ f , we can readily employ GloptiNets by initializing the PSD model with g. Indeed, if
f − f? ≈ g, we can expect f̃ − f̃? ≈ g, so we can expect the optimization to be faster.

In contrast, P-SoS methods, which rely on SDP programs, cannot directly adapt to new problems
without significant effort. For instance, if a new component is introduced, an entirely new SDP
must be solved. Our model’s ability to accommodate related yet distinct problems could prove
highly valuable in domains with a frequent need to certify different but closely related problems.
In the industry, the Optimal Power Flow (OPF) problem requires periodic solves every 5 minutes
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Van Hentenryck [18]. With GloptiNets, once the initial challenging solve is performed, subsequent
solves become easier assuming minimal changes in supply and demand conditions.

A.4 Optimizing the certificate directly

As explained in section 3.2 where GloptiNets is introduced, we optimize a proxy of the L∞ norm
rather than the certificate of theorems 2 and 3. This proxy is the log-sum-exp on a random batch of
N points. The reason for this is that evaluating an extended k-SoS model g(x) on x ∈ Td requires
O(drs) time, while evaluating ĝω on ω ∈ Zd requires O(drs2) time. Yet, optimizing the certificate
directly could probably help obtaining higher-precision certificate. Lemma 4 in appendix D sketches
a method to reduce the computational cost of the Fourier computation from O(s2) to O(s).

B Kernel defined on the Chebychev basis

In this section we describe the approach we take to model functions written in the Chebychev basis.
For h such a polynomial, a naive approach would simply model f = h ◦ cos(2π·) as a trigonometric
polynomial. However, note that the decomposition of f only has cosine terms. Thus, approximating
f − f? efficiently requires a PSD model which has only cosine terms in its Fourier decomposition.
This is achieved by using a kernel written in the Chebychev basis, as introduce in proposition 1, for
which we now provide a proof.

Proof of proposition 1. Let x, y ∈ [−1, 1] and u, v ∈ [0, 1/2] s.t. x, y = cos(2πu), cos(2πv), by
bijectivity of the cosine function on [0, π]. From the definition of K in eq. (19) and the definition of q
in eq. (6), we have that

K(x, y) =
1

2

∑
ω∈Z

q̂ω

(
e2πiω(u+v) + e2πiω(u−v)

)
=
∑
ω∈Z

q̂ωe
2πiωu cos(2πωv)

= q̂0 + 2
∑
ω∈N

q̂ω cos(2πωu) cos(2πωv)

= q̂0 + 2
∑
ω∈N

q̂ωHω(u)Hω(v).

Since q has positive Fourier transform, this makes the feature map of K explicit with K(x, y) =

ϕ(u) · ϕ(v), ϕ(u)ω =
√

(1 + 1ω 6=0)q̂ωHω(u), for ω ∈ N. Hence the kernel is a reproducing
kernel.

We now use this kernel with the Bessel function x 7→ es(cos(2πx)−1), i.e. we define the kernel K on
[−1, 1] to satisfy

∀u, v ∈ (0, 1/2), K(cos(2πu), cos(2πv)) =
1

2

(
es(cos(2π(u+v)) + es(cos(2π(u−v))

)
. (24)

As it was the case for the torus, this kernel enables an easy characterization of a RKHS in which an
associated PSD model g lives.
Lemma 3 (Chebychev coefficient of the Bessel kernel). Let g be a PSD model as in definition 1, with
the kernel K of eq. (24). Then, the Chebychev coefficient ω ∈ Nd of g can be computed in O(rdm2)
time with

gω =

m∑
i,j=1

R>i Rj

d∏
`=1

(1 + 1ω 6=0)
e−2s`

2

[
Iω`(2s`σ−`ij)Hω`(σ+`ij)

+Iω`(2s`σ+`ij)Hω`(σ−`ij)

] (25)

where

σ±`ij = cos(2πm±`ij), m±`ij = (u`ij ± u`ij)/2, and cos 2πu`ij = z`ij .

Proof.
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Expanding g and definition of Chebychev coefficient. From the definition of g in eq. (5), we
have

g(x) =

m∑
i,j=1

R>i Rj

d∏
`=1

Ks`(x`, z`i)Ks`(x`, z`j). (26)

We consider x, y, z ∈ (−1, 1) and s > 0. We denote u, v, w ∈ (0, 1/2) s.t.

x, y, z = cos 2πu, cos 2πv, cos 2πw

with the bijectivity of x 7→ cos(2πx) on (0, 1/2). We now compute the Chebychev coefficient of
x 7→ Ks(x, y)Ks(x, z). Denoted pω , this is

∀ω ∈ N, pω =
1 + 1ω 6=0

π

∫ 1

−1

Ks(x, y)Ks(x, z)Tω(x)
dx√

1− x2
,

or equivalently

∀ω ∈ N, pω = (1 + 1ω 6=0)

∫ 1

0

Ks(cos 2πu, cos 2πv)Ks(cos 2πu, cos 2πw) cos(2πωu)du. (27)

Chebychev coefficient of kernel product. With the definition of the kernel in proposition 1,
eq. (19), we have

Ks(x, y)Ks(x, z) =
1

4
(p(u+ v) + p(u− v))× (p(u+ w) + p(u− w))

=
e−2s

4

(
es cos 2π(u+v) + es cos 2π(u−v)

)
×
(
es cos 2π(u+w) + es cos 2π(u−w)

)
Now use the sum-to-product formula with the cosines to obtain

Ks(x, y)Ks(x, z) =
e−2s

4

(
e2s cos 2π( v−w2 ) cos 2π(u+ v+w

2 ) + e2s cos 2π( v−w2 ) cos 2π(u− v+w2 )

+e2s cos 2π( v+w2 ) cos 2π(u+ v−w
2 ) + e2s cos 2π( v+w2 ) cos 2π(u− v−w2 )

)
,

(28)
We simplify this expression by introducing

m± =
1

2
(v ± w) and σ± = cos 2πm±. (29)

Then, eq. (28) becomes

Ks(x, y)Ks(x, z) =
e−2s

4

(
e2sσ− cos 2π(u+m+) + e2sσ− cos 2π(u−m+)

+e2sσ+ cos 2π(u+m−) + e2sσ+ cos 2π(u−m−)

)
.

(30)

We recognize the definition of the kernel (which is not a surprise as we chose the kernel to be stable
by product). However, we need variables in (0, 1/2) to retrieve the proper definition of the kernel.
Instead, we use lemma 5 on eq. (30) combined with eq. (27), to obtain

pω = (1 + 1ω 6=0)
e−2s

4

(
cos(2πωm+)Iω(2sσ−) + cos(2πωm+)Iω(2sσ−)

+ cos(2πωm−)Iω(2sσ+) + cos(2πωm−)Iω(2sσ+)

)
,

which gives

pω = (1 + 1ω 6=0)
e−2s

2
(cos(2πωm+)Iω(2sσ−) + cos(2πωm−)Iω(2sσ+)). (31)

Equation (31) contains the Chebychev coefficient of the product of two kernel function as defined
in eq. (27). Plugging this result into the definition of g in eq. (26), and noting that cos(2πωm±) =
Hω(cos 2πm±) = Hω(σ±), we obtain the result.
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Figure 3: Certificate vs. RKHS norm of f , for a given model g with a fixed number of parameters. f
has 1146 coefficients and g has 22528 parameters. Best certificate is kept among a set of optimization
hyperparameters. As the norm of f decreases, fitting f − f? with g is easier and the certificate
becomes tighter.

Thanks to lemma 3, we see that a model g defined as in definition 1 with the Bessel kernel Ks of
eq. (24) as its Chebychev coefficients decaying in O(Iω(2s)). Hence, it belongs toH2s, the RKHS
associated to K2s.

C Additional details on the experiments

Tuning the hyperparameters. The time reported in section 4 does not take into account the
experiments needed to find a good set of hyperparameters. The parameters tuned were the type of
optimizer, the decay of learning rate, and the regularization on the Frobenius norm of G.

Regularization. Regularization is performed by approximating the HS norm with a proxy which
is faster to compute. We use ‖R>j Rk‖2HS instead of ‖R̃>j QjkR̃k‖2HS in eq. (22).

Hardware. GloptiNets was used with NVIDIA V100 GPUs for the interpolation part, and Intel
Xeon CPU E5-2698 v4 @ 2.20GHz for computing the certificate. TSSOS was run on a Apple M1
chip with Mosek solver.

Configuration of TSSOS. We use the lowest possible relaxation order d (i.e. ddeg f/2e), along
with Chordal sparsity. We use the first relaxation step of the hierarchy. In these settings, TSSOS is
not guaranteed to converge to f? but will executes the fastest.

Certificate vs. number of parameter for a given function. In fig. 2, the target function is a
random polynomial of norm 1 or 2, or a kernel mixture with 10 coefficients of norm 1 or 2. The
models forming the blue line are defined as in proposition 2, with rank, block size and number of
blocks equal to (1, bs, 1) respectively, with bs the block size we vary. The number of frequencies
sampled to compute the certificate is 1.6 ·107, and accounts for the fact that the bound on the variance
becomes larger than the MOM estimator for large models.

Certificate vs. problem difficulty for a given model. We have 3 related parameters: the quality
of the optimization (given by the certificate), the expressivity of the model (given by its number of
parameters), and the difficulty of the optimization (given by the norm of the function). In fig. 3, we
fix the latter and plot the relation between the first two. Here, we fix the model with parameters
(8, 16, 128), and we optimize a polynomial in 3d of degree 12, with RKHS norm ranging from 1 to
20. The certificates obtained are given in fig. 3. The resulting plot exhibits a clear polynomial relation
between the certificate and the norm of the function, with a slope of −0.88. This suggest that the
certificate behaves as O(‖f‖1/2H2s

).

Comparison with TSSOS on the Fourier basis. In table 1, the polynomials f all have a RKHS
norm of 1. The small model is defined as in proposition 2, with rank, block size and number of blocks
equal to 4, 32, 8 respectively. For the big models, those values are 8, 128, 16. The certificate is the
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Table 2: GloptiNets and TSSOS on random Chebychev polynomials. The same conclusion as in
table 1 applies. While TSSOS is very efficient on small problems, its memory requirements grow
exponentially with the problem size. GloptiNets has less accuracy, but a computational burden which
does not increase with the problem size.

d p n
TSSOS GN-small GN-big

Certif. t Certif. t Certif. t

4
3 255 3.4 · 10−7 6 1.1 · 10−2 2 · 102 4.1 · 10−3 1 · 103

4 624 2.1 · 10−9 153 2.5 · 10−2 2 · 102 3.6 · 10−3 1 · 103

5 1295 Out of memory! - 1.8 · 10−2 2 · 102 4.2 · 10−3 2 · 103

maximum of the Chebychev bound of theorem 2 and the MoM bound of theorem 3. The number of
frequencies sampled is 3.2 · 107.

Comparison with TSSOS on the Chebychev basis. We compare GloptiNets with TSSOS on ran-
dom Chebychev polynomials in table 2, similarly to the comparison with trigonometric polynomials
in table 1. Minimizing polynomials defined on the canonical basis is easier: contrary to trigonometric
polynomials, there is no need to account for the imaginary part of the variable. If d is the dimension,
complex polynomials are encoded in a variable of dimension 2d in TSSOS, following the definition of
Hermitian Sum-of-Squares introduced in Josz and Molzahn [2018]. Hence, the random polynomials
we consider are characterized by the dimension d and their number of coefficients n; instead of
bounding the degree, we use all the basis elements Hω(x) =

∏d
`=1Hω`(x`) for which ‖ω‖∞ ≤ p.

The maximum degree is then dp. The RKHS norm of f is fixed to 1. As with the comparison on
Trigonometric polynomial table 1, we see that GloptiNets provides similar certificates no matter the
number of coefficients in f . Even though it lags behind TSSOS for small polynomials, it handles
large polynomials which are intractable to TSSOS. The “small” and “big” models have the same
structure as for the trigonometric polynomials experiments.

Sampling from the Bessel distribution. The function ω 7→ e−sIω(s) decays rapidly. In fact, with
s = 2, which is the value used to generate the random polynomials, it falls under machine precision
as soon as ω > 14. Thus, we approximate the distribution with a discrete one with weights Iω(s) for
ω s.t. the result is above the machine precision. We then extend it to multiple dimension with a tensor
product. Finally, we use a hash table to store the already sampled frequency, to make the evaluation
of million of frequencies much faster. For instance in dimension 5, sampling 106 frequencies from
the Bessel distribution of parameter s = 2 on N5 yields only ≈ 104 unique frequencies. This allows
for tighter certificates, as it makes the r.h.s of eq. (9), in 1/N, much smaller. Note that the time to
generate this hash table is not reported in tables 1 and 2, and of the order of a few seconds.

Optimizing a kernel mixture. As it is the case with polynomials, when optimizing a function
of the form h(x) =

∑n
i=1 αiK(xi, x) the certificate provided by GloptiNets only depends on the

function norm ‖h‖2H and not on e.g. the number of coefficients n. This is illustrated in fig. 4.

D Fourier coefficients in linear time

Lemma 4 (Fourier coefficient of the Bessel kernel in linear time). Let g be an extended k-SoS model
as in definition 1. Then, its Fourier transform can be evaluated in linear time in m with

ĝω =

r∑
k=1

∑
n∈Zd

(
m∑
i=1

Rki

d∏
`=1

φ`,−(zi`)n`

)
·

(
m∑
i=1

Rki

d∏
`=1

φ`,+(zi`)

)
(32)

where
∀n ∈ Z, z ∈ T, ` ∈ [d], φ`,±(z)n =

√
q`,ne

πi(n±ω`)z

and q·,·(s) is defined with lemma 6.

Lemma 4 provides a formula for computing ĝω which is linear inm, but which still requires numerical
approximation to compute the sum on n ∈ Zd. For instance, restraining the sum to the hyperbolic

18



101 102 103

10−2

10−1

100

# params

C
er

tifi
ca

te

‖h‖H = 1, n = 10

‖h‖H = 1, n = 100

‖h‖H = 2, n = 10

‖h‖H = 2, n = 100

Figure 4: Certificate vs. number of parameters in g when certifying mixture of Bessel functions,
characterized by their RKHS norm (1 in blue, 2 in red) and their number of coefficients (10 in circles,
100 in rectangles). As with polynomials, this shows that GloptiNets is only sensible to the former,
and not to the way the function is represented. We are not aware of other algorithms able to certify
this class of functions.

cross Dũng et al. [2017]

HC(d, n) =

{
ω ∈ Zd;

d∏
`=1

max {1, |ω`|} ≤ n

}
would result in a complexity of O(n(log d)nmr) and should produce reasonably accurate estimate of
ĝω for low n.

Furthermore, since q is real-even w.r.t n, the inner-product in eq. (36) can be simplified by computing
only half of the terms.

Proof. From lemma 1, we have that

ĝω =

m∑
i,j=1

R>i Rj

d∏
`=1

e−2s`I|ω`|(2s` cosπ(zi` − zj`))e
−iπω`(zi`+zj`). (33)

Introducing
f`(x, y) = e−2s`I|ω`|(2s` cosπ(x− y))e−iπω`(x+y), (34)

eq. (33) simplifies to

ĝω =

m∑
i,j=1

R>i Rj

d∏
`=1

f`(zi`, zj`). (35)

Using lemma 6, for any x, y ∈ T,

e−2s`I|ω`|(2s` cosπ(x− y)) =
∑
n∈Z

q`,ne
πin(x−y)

(q`,n depends on ω`) so that, f` defined in eq. (34) now writes

f`(x, y) =
∑
n∈Z

q`,ne
πin(x−y)e−πiω`(x+y)

=
∑
n∈Z

q`,ne
πi(n−ω`)xe−πi(n+ω`)y

= φ`,−(x) · φ`,+(y) (36)

where, for any ` ∈ {1, . . . , d} and z ∈ T, we defined

φ`,±(z) =
(√

q`,ne
πi(n±ω`)z

)
n∈Z

. (37)
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We then define the embedding φ± : T→ (Zd → C) be the tensor product of the φ`,±. Then, eq. (36),
enables to write ĝω in eq. (35) as

ĝω =

m∑
i,j=1

r∑
k=1

RkiRkjφ−(zi) · φ+(zj)

=

r∑
k=1

[
m∑
i=1

Rkiφ−(zi)

]
·

[
m∑
i=1

Rkiφ+(zi)

]

=

r∑
k=1

[
m∑
i=1

Rkiφ1,−(zi1)⊗ · · · ⊗ φd,−(zid)

]
·

[
m∑
i=1

Rkiφ1,+(zi1)⊗ · · · ⊗ φd,+(zid)

]

=

r∑
k=1

∑
n∈Zd

(
m∑
i=1

Rki

d∏
`=1

φ`,−(zi`)n`

)
·

(
m∑
i=1

Rki

d∏
`=1

φ`,+(zi`)

)
which is the desired result.

E Other computation

Lemma 5. Let f be the function defined on (−1, 1) with

∀u ∈ (0, 1/2), f(cos 2πu) = es cos 2π(u−v). (38)
Then, its Chebychev coefficient are given with

fω = (1 + 1ω 6=0) cos(2πωv)Iω(s). (39)

Proof. The ω ∈ N∗. The component ω of a function f on the Chebychev basis is given with

fω =
2

π

∫ 1

−1

f(x)Tω(x)
dx√

1− x2
,

which we conveniently rewrite, with the classical change of variable x = cos 2πu,

fω = 2

∫
I1

f(cos 2πu) cos(2πωu)du (40)

which is valid for any interval I1 ⊂ R of length 1.

Now, for s > 0, consider the function f defined on (−1, 1) with x 7→ es cos(arccos(x)−2πv), or
equivalently

∀u ∈ (0, 1/2), f(cos 2πu) = es cos 2π(u−v). (41)
Putting eq. (41) into eq. (40), we obtain

fω = 2

∫
I1

es cos 2π(u−v) cos(2πωu)du

= 2

∫
I1

es cos 2πu cos(2πω(u+ v))du

= 2

∫
I1

es cos 2πu cos(2πωu) cos(2πωv)du− 2

∫
I1

es cos 2πu sin(2πωu) sin(2πωv)du.

The last term is odd, hence integrate to 0 on an interval centered around 0. Hence,

fω = 2 cos(2πωv)

∫
I1

es cos 2πu cos(2πωu)du. (42)

We recognize the definition of the modified Bessel function of the first kind, defined in eq. (14).
Plugging this into eq. (42), we obtain

fω = 2 cos(2πωv)Iω(s) = 2Iω(s)Hω(cos(2πv)). (43)

If ω = 0, we add a factor 1/2 into the definition in eq. (40), which yields
fω = I0(s). (44)
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Lemma 6 (Fourier decomposition of Bessel composed with cosine). Let s > 0, ω ∈ N and z ∈ T.
Then,

e−2sIω(2s cos 2πz) =
∑
n∈Z

qω,ne
2πinz,

where ∀n ≥ 0, qω,n =

{
e−2s

∑
p≥(n−ω2 )+

(s/2)2p+ω

p!(p+ω)!

( 2p+ω

p−n−ω2

)
if n ≡ ω,

0 otherwise.

(45)

and qω,−n = qω,n by evenness of the coefficients.

Proof. From the definition of the modified Bessel function of the first kind [Watson, 1922, p.77, Eq.
2], we have

Iω(z) =
∑
p≥0

(z/2)2p+ω

p!(p+ ω)!
,

so that

Iω(2s cos 2πz) =
∑
p≥0

s2p+ω

p!(p+ ω)!
cos(2πz)2p+ω

=
∑
p≥0

(s/2)2p+ω

p!(p+ ω)!

(
e2πiz + e−2πiz

)2p+ω
=
∑
p≥0

(s/2)2p+ω

p!(p+ ω)!

2p+ω∑
k=0

(
2p+ ω

k

)
e2πi(2(p−k)+ω)z. (46)

Using the change of variable n = 2(p− k) + ω into eq. (46), we see that n has the same parity as ω
and

Iω(2s cos 2πz) =
∑
p≥0

(s/2)2p+ω

p!(p+ ω)!

2p+ω∑
n=−(2p−ω)

n≡ω

(
2p+ ω

p− n−ω
2

)
e2πinz. (47)

Equation (47) can be rewritten

Iω(2s cos 2πz) =
∑
n∈Z
n≡ω

e2πinz
∑
p≥0

(s/2)2p+ω

p!(p+ ω)!

(
2p+ ω

p− n−ω
2

)
1−(2p+ω)≤n≤2p+ω,

for which eq. (45) is a concise rewriting.
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