
YouTubePD: A Multimodal Benchmark for
Parkinson’s Disease Analysis

Supplementary Material

In this appendix, we include (1) discussion regarding our YouTubePD benchmark detail, release,
and licensing, (2) additional analysis of the dataset, (3) additional illustration and details about our
methods, (4) additional experimental results and analysis, (5) more discussion on limitations and
future work, and (6) potential negative societal impact.

A1 Benchmark Detail, Release, and Licensing

We provide our code and benchmark at https://uiuc-yuxiong-lab.github.io/YouTubePD.
We release our benchmark under the CC0 license. Here, we describe how we publicly release our
benchmark:

1. We include all the code used in the process of converting publicly available YouTube videos
into our benchmark.

2. We include all our annotations and extracted landmarks. Note that offensive content is not
included in our dataset, as all the sources are publicly available interviews of public figures
speaking openly about their experiences with Parkinson’s Disease.

Despite that all the videos used in our benchmark are publicly available YouTube videos, we are
also actively taking steps to approach the public figures involved to respect their autonomy and
privacy. This ensures that we uphold the highest standards of ethical data usage. We strive to balance
open access and reproducibility with respect for privacy, all while providing a resource that could
significantly advance the analysis and understanding of Parkinson’s Disease (PD).

A2 Dataset: Additional Analysis

A2.1 Dataset Statistics

In Table A1, we summarize the severity label distribution in YouTubePD. This includes severity
labels for the overall subject in each video and severity labels for each of the 14 important facial
regions informative for PD analysis. The number of annotations varies depending on severity levels
and regions.

We also summarize the demographic distribution in YouTubePD, split between PD-positive and
healthy control (HC), or PD-negative, subjects. Table A2 provides the country, race, and gender
statistics of PD-positive subjects in YouTubePD. Similarly, Table A3 provides the country, race, and
gender statistics of HC subjects in YouTubePD.

We would like to provide additional details in our annotation process, particularly regarding how
we denote the severity of PD. Our annotation strategy utilizes a detailed scale, ranging from 0 to 5,
where 0 signifies a healthy individual, and 5 corresponds to severe PD. We do not apply the Unified
Parkinson’s Disease Rating Scale (UPDRS) [4] for facial expression. This decision is based on
the clinician’s suggestion, since an accurate UPDRS facial expression rating would require more
information (e.g., observing the subject’s facial expression pattern at rest or when not talking) than
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Region/Severity 0 1 2 3 4 5

Overall Video 187 15 8 10 17 7
Forehead 187 12 3 4 16 18
Left nasolabial fold 187 9 6 10 20 10
Right nasolabial fold 187 11 7 10 21 8
Right lip crease 187 1 0 3 7 3
Left lip crease 187 1 0 2 10 3
Left outer eye 187 4 2 1 6 17
Right outer eye 187 2 2 2 5 16
Between eyebrows 187 5 1 3 5 3
Right above between eyebrows 187 3 3 4 12 5
Right eye 187 15 4 3 8 6
Left eye 187 16 4 3 8 6
Mouth 187 1 0 1 5 0
Right eyebrow 187 6 5 8 11 12
Left eyebrow 187 6 4 7 10 12

Total Annotations 2808 107 49 71 161 126

Table A1: Distribution of severity labels in YouTubePD for the overall video-level analysis and for all 14 facial
regions, with 0 denoting the absence of PD and 5 indicating a severe form of PD.

Country Count Race Count Gender Count

United States 12 White/Caucasian 13 Male 15
United Kingdom 3 Black/African descent 3 Female 1
Canada 1

Table A2: Country/race/gender statistics of PD-positive public figures in YouTubePD.

Country Count Race Count Gender Count

South Africa 1 South African+Swiss-German 1 Male 68
United States 52 Black/African Descent+Filipino 1 Female 23
United Kingdom 12 Black/African Descent 11
Israel 3 White/Caucasian 63
Russia/Canada 1 Indian 1
Sweden 2 Latinx 4
Kenya/Mexico 2 Asian 9
Brazil 2 Black/African Descent+Samoan 1
Serbia 1
South Korea 2
Puerto Rico 1
Mexico 1
Japan 1
Canada 4
Denmark 1
Russia 2
Germany 1
France 2

Table A3: Country/race/gender statistics of healthy control or PD-negative public figures in YouTubePD.

facial expression videos contain. This strategy also allows for a finer classification. In addition,
we do not apply UPDRS because facial expression and audio have distinct UPDRS standards. We
instead use the holistic severity and confidence annotation based on the video. Doing so ensures the
label consistency between the audio data and other modalities, thereby facilitating multimodal PD
classification.

In addition, we provide (i) illustrations of our facial landmarks and regions in detail in Figures A1,
A2, and A3; (ii) the longitudinal statistics of our PD videos showing their distribution in time in
Figure A4.
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Figure A1: Original landmark ex-
traction.

Figure A2: Interpolated land-
marks.

Figure A3: Visualized regions
from interpolated landmarks.

Figure A4: Longitudinal data for the time gap between PD-negative and PD-positive videos. The x-axis
represents public figures, while the y-axis represents the time in years. Red dots denote videos with PD-positive
labels, and blue dots denote videos with PD-negative labels.

A2.2 Are Annotated Regions Correlated to PD Severity?

To understand if the annotated regions are informative for PD severity, we investigate the correlation
between the 14 annotated facial regions and a patient’s annotated PD severity level. We accomplish
this by training a linear classifier that takes as input the annotated informative region index and
predicts the severity level. More specifically, for each video, the input is a binary vector which maps
the clinician-annotated facial region indices, while the output is matched to the annotated severity
level of the video. As a control experiment, we instead train on random region-level annotations
as input. We find that the linear model trained on the actual region annotation achieves 70% test
accuracy, while the model trained on random annotations achieves 15% test accuracy. This validates
that the severity level is predictable from the annotated informative regions, but not from random
region annotations. Therefore, the annotated regions and PD severity are correlated. This is also
consistent with our approach that leverages region-level information for improved PD classification
performance.

Furthermore, we can examine the learned weights and biases of the linear model to understand how
the model has learned to classify. We find that in general, higher severity patients have positive
annotations on a larger number of informative regions (more symptoms), and vice versa. The model
also leverages different facial regions to determine severity at different levels; for example, very
severe cases could be easily distinguished via eyes and lips feature. Figure 3 in the main paper
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Figure A5: Illustration of our baseline method for the facial expression-based PD classification. An input video
is processed through two branches, one for video features and the other for region features. These features are
then aggregated with a spatial-temporal attention classifier to obtain the PD classification result.

visualizes the most informative regions at each severity level. Corresponding regions are indicated by
highlighted facial creases in the figure and bounding boxes in the input video frames.

A3 Methods: Additional Illustration and Details

A3.1 Model Architecture Illustration

We provide an additional illustration of our baseline method for the first task in Figure A5. An input
video is processed through two branches, one for video features and the other for region features.
These features are then aggregated with a spatial-temporal attention classifier to obtain the PD
classification result.

A3.2 Implementation Details

For the facial-expression-based classification method, we use λ = 0.9, emphasizing the binary
portion of the loss. We use all 14 regions, i.e., |R| = 14. We use 8 frames from each video and a
batch size of 32. We train our models with the Adam [8] optimizer with a learning rate of 0.001.
More details are provided in the code. All experiments corresponding to this task are conducted on a
single 16GB NVIDIA V100 GPU.

For the audio baseline, we utilize the entire audio and average the representations to obtain a single
768-dimensional audio-level feature vector. Afterwards, we use a batch size of 64 and feed the input
through an MLP with one hidden layer of size 1,024. We train the model using Adam with a learning
rate of 0.0003. Similarly, for the landmark baseline, we use 8 frames to maintain consistency with the
other modalities, and use the same hyperparameters for Adam. For both modalities, we use λ = 0.5.
All experiments are conducted on a single NVIDIA 3060 GPU.

For the multimodal fusion baseline, we use 8 frames from each video. The batch size is set as 16 and
trained for 50 epochs. We train the model using Adam with a learning rate of 0.02. All experiments
are conducted on a single NVIDIA 4090 GPU.

For PD progression synthesis, we follow the settings used in the official implementations [3, 7, 10,
11, 12, 14, 15]. In addition, we make modifications to two methods to align with our task setting.
Specifically, we replace the age classifier in HRFAE [14] with our trained PD binary classification
model. As for JoJoGAN [3], we iteratively sample images during training to utilize all available
images. All experiments are conducted on a single NVIDIA 4090 GPU.
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A4 Experiments: Additional Results and Analysis

A4.1 Additional Ablations

Alternative audio representations. We additionally explore alternative feature representations for
audios beyond masked auto-encoders (MAE) [9] presented in the main paper – namely, wave2vec
(W2V) 2.0 [1], a deep feature extractor for audios that also uses self-supervised learning, and MEL-
frequency cepstral coefficients (MFCC) [2], which have demonstrated reasonable success in general
audio processing tasks. We find empirically that MAE features work the best with regards to metrics
and consistency, as shown in Table A4. In general, wav2vec features remain competitive with the
MAE features though trailing slightly, while MFCC performs considerably worse likely due to its
inability to express complex features necessary for the task, given the simplicity of the classification
model. Note that the hand-crafted MFCC achieves a relatively high performance on AUROC, since it
effectively makes random guess among all classes. The other learned features are more biased by the
data imbalance between 0 and all other classes. This is due to the fact that AUROC is computed as an
unweighted average of one-vs-all calculations, leading to MFCC to incorrectly appear competitive on
that metric.

Audio Feature Top-1 Acc ↑ F1 ↑ AUROC ↑ MSE ↓
MAE [9] 47.79(±1.66) 0.16(±0.01) 0.50(±0.02) 6.26 (±0.39)
W2V [1] 57.90(±7.46) 0.14(±0.02) 0.43(±0.04) 4.50(±0.93)
MFCC [2] 39.42(±9.66) 0.11(±0.03) 0.49(±0.06) 6.48(±1.80)

Table A4: Ablation study on audio representations for multiclass classification on YouTubePD. ‘MAE’ denotes
masked auto-encoders presented in the main paper; ‘W2V’ denotes wave2vec 2.0; ‘MFCC’ denotes MEL-
frequency cepstral coefficients. We find that MAE provides the most stable and consistent results – we prioritize
F1 and AUROC, as the other metrics are influenced by the data imbalance.

Multimodal fusion strategies. We conduct an ablation study on the multimodal fusion strategy.
Specifically, we explore two different strategies to produce the logits for the facial expression video
and facial landmark modalities. One way is frame concatenation (FC) where we concatenate the
frame features, and the other is frame voting (FV) where we perform voting to aggregate the result of
each frame. Note that FV is used for results in Table 3. For FC, we concatenate frames’ features to
one vector representing the whole video (either image features from ResNet or landmark coordinates).
Then, we train a video-level classifier to obtain the video logits. For FV, we train a frame-level
classifier for each frame and average the predictions as video-level logits. For both strategies, the
video-level logits from different modalities are averaged to get the final prediction. As shown in Table
A5, with FC, the multimodal performance is even lower than the single facial expression modality on
F1 and AUROC metrics. By contrast, the FV strategy helps to improve performance.

Audio Feature Top-1 Acc ↑ F1 ↑ AUROC ↑ MSE ↓
VGGFace [5] 78.20(±3.13) 0.23(±0.02) 0.68(±0.01) 2.29(±0.77)
Multimodal (FC) 79.23(±1.94) 0.21(±0.02) 0.69(±0.01) 1.76(±0.18)
Multimodal (FV) 82.75(±2.85) 0.28(±0.02) 0.80(±0.03) 1.40(±0.25)

Table A5: Ablation study on multimodal fusion strategies for multiclass classification on YouTubePD. ‘FC’
denotes frame concatenation, and ‘FV’ denotes frame voting. We find that the frame voting strategy improves
the fusion performance, while the frame concatenation strategy even leads to a decrease in performance on F1
and AUROC metrics, compared with the single facial expression modality.

A4.2 t-SNE Visualizations

We provide qualitative results for the performance of our facial-expression-based classification model.
We use t-SNE [13] on both YouTubePD and the private clinical dataset [6], shown in Figure A6. Our
approach is able to clearly separate the PD-positive and PD-negative classes on both distributions.
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t-SNE Visualization of Test Data

(a) t-SNE visualization for YouTubePD.

t-SNE Visualization of Test Data

(b) t-SNE visualization for the facial activation set with clinical
patients.

Figure A6: t-SNE visualizations of our learned facial expression representation for healthy (class 0) and
PD-positive (class 1) subjects on YouTubePD and the clinical dataset [6]. Intriguingly, we observe a more
pronounced separation between the PD-positive and PD-negative classes on clinical data, demonstrating the
generalizability of our learned representation from the in-the-wild YouTube videos.

A5 More Discussion on Limitations and Future Work

Limitations. In the main paper, we have briefly discussed the limitations of our work. Here, we
provide a more in-depth discussion. First, as our dataset is composed of publicly available YouTube
videos of public figures, the subjects and video samples in the dataset may not adequately represent
the wide range of individuals affected by PD. The videos primarily capture interview scenarios, which
may not effectively showcase the indicative symptoms of subjects, compared with the motor tasks
and instructions typically used in medical studies. Furthermore, there is a demographic bias in the
dataset subjects, as they are all public figures (predominantly male) with very few available details
about their treatment course and disease progression. Meanwhile, we are not aware of the treatment
or treatment response experienced by these individuals.

Second, it is necessary to conduct further investigation and analysis of the performance and deploy-
ment of models developed using our benchmark in real-world clinical scenarios. In the main paper,
we have demonstrated that our method developed on the benchmark exhibits promising results on a
clinical dataset. More comprehensive evaluation on additional clinical datasets would validate the
broad generalizability of our benchmark and associated models to practical medical applications.

Finally, the size of the dataset is relatively small compared with typical computer vision datasets,
due to the inherent challenges involved in collecting PD data. The small dataset size increases the
difficulty of developing and training larger models from scratch, often necessitating some form of
finetuning to achieve reasonable performance.

Future work. These limitations open up a wide scope of future advancements and progress in
this field. As mentioned previously, while our benchmark represents a strong first step, further
comprehensive datasets and benchmarks are necessary to thoroughly evaluate the performance and
generalizability of methodologies prior to their deployment. Moreover, our findings highlight the
potential of developing multimodal frameworks that leverage various examination modalities and track
complementary symptoms, such as facial expression, speech, posture, and gait for PD classification.
Although PD classification has been the primary focus (as in our first two proposed tasks), we note
that there are interesting unexplored directions in this realm, particularly in generative tasks like
progression synthesis (as in our third proposed task), which can serve as effective augmentation and
learning techniques.
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A6 Ethics Discussion

A6.1 Personally Identifiable Information and Informed Consent

YouTubePD may include personally identifiable information (PII) or sensitive personally identifiable
information. The data we collect from YouTube include facial expressions, PD identity, and audios.
However, we would like to highlight that the public figures chose to make their struggles with PD
public and discussed their disease and diagnosis in front of cameras. By willingly revealing their
identifiable faces and voices, the public figures do not intend to keep their PD information fully
private. We believe that the concern regarding a breach of privacy is not a newly raised issue specific
to our work, as the possibility of any misuse of these videos already exists.

The central question we posed to ourselves was whether sharing these videos with our research
community, along with annotations of facial expressions, would amplify the risk of misuse. We are of
the opinion that this action does not escalate the aforementioned risk. To further address this matter,
we took the initiative to contact the public figures involved and requested permission. This step was
taken proactively, particularly in the event that the public figures had regrets about their previous
decision to go public and now wished to make a different choice.

Regarding PII and sensitive PII, we are fully aware of the sensitive nature of the data we are working
with. In order to safeguard individuals’ privacy, we have sought both guidance from the Institutional
Review Board (IRB) Office and legal guidance from the Legal Department at University of Illinois
Urbana-Champaign to ensure compliance with regulations. Furthermore, in line with ethical norms,
we have made efforts to obtain explicit consent from each public figure featured in the videos. The
consent form clearly includes our intention in using these data and how these data are expected to be
used. We remove videos of public figures who wish not to be part of our dataset. In addition, we
acknowledge the concern about the potential for individuals and their families to feel uncomfortable
with the label of “illness.” While we respect this sensitivity, we emphasize that our intention is to
contribute to a better understanding of PD, its impact on facial expressions, facial landmarks, and
audios, and the potential for technological advancements. We approach this research with the utmost
respect for the individuals involved and strive to contribute positively to the discourse around the
disease.

A6.2 Negative Societal Impact

While our work provides promising advancements in AI-assisted analysis and severity evaluation
of PD, we recognize that it may also present potential negative societal impacts that deserve careful
consideration.

The first concern pertains to privacy. The videos we use for our work are publicly available, featuring
public figures who openly discuss their experience with PD. However, widespread use of similar
technology could raise issues of privacy, as individuals may not wish to have their health condition
detected or revealed, even inadvertently, through casual video or audio footage. As healthcare
professionals and researchers, it is critical to respect patient privacy and consent in all facets of care
and study. Second, there is a risk of misuse or over-reliance on our technology. While the goal of
our work is to aid the detection of PD, it should not replace the professional diagnosis of healthcare
providers. Misinterpretation or misuse of this technology may lead to false positives or negatives,
causing unnecessary distress or false reassurance. Lastly, issues of inequity may also arise. Access to
advanced diagnostic tools such as the one we propose may be limited, due to geographic location,
financial constraints, or digital literacy. As such, this technology could inadvertently widen the
healthcare disparity between different socioeconomic groups.

In light of these potential societal impacts, it is essential that proper protocols and measures are put
in place to guide the ethical use of such technologies. This includes clear communication about the
tool’s intended use, rigorous validation processes, and ongoing dialogue about equitable access to
and use of these technological advances.

A6.3 Mitigating Bias and Negative Societal Impacts

Some ethical risks exist in the originally publicly available YouTube videos. We are aware that we
cannot mitigate those risks to zero. There will be a rest risk. Again, we emphasize that our intention
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is to enhance the better understanding of PD, its effects on facial expressions, facial landmarks, and
audios, as well as explore the potential for technological advancements in this field. We aim to ensure
the highest possible standards of ethical conduct in downstream research.

A6.4 Responsibility of AI-Assisted Systems

As mentioned in Section 7 of the main paper, our benchmark aims to inspire a PD early screening
tool based on modern machine learning and computer vision techniques. This tool would assist
primary clinicians in identifying individuals who may be displaying early physical signs indicative
of an evolving Parkinson’s syndrome. These individuals can then undergo further neurological
evaluation as clinically indicated. This proactive approach will expedite diagnosis and treatment,
potentially leading to improved outcomes. On the other hand, while we acknowledge the potential
of facial videos and audios in aiding PD detection, we do not advocate for clinicians to rely solely
on these modalities for diagnosis. Instead, if positive detection results emerge from facial videos
and audios, we recommend that patients seek medical attention at an earlier stage and obtain a more
comprehensive diagnosis using additional assessments, such as Dopamine Transporter Scan (DAT),
Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET).
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