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Abstract

Federated Learning (FL) is an emerging collaborative machine learning framework
where multiple clients train the global model without sharing their own datasets. In
FL, the model inconsistency caused by the local data heterogeneity across clients
results in the near-orthogonality of client updates, which leads to the global update
norm reduction and slows down the convergence. Most previous works focus on
eliminating the difference of parameters (or gradients) between the local and global
models, which may fail to reflect the model inconsistency due to the complex
structure of the machine learning model and the Euclidean space’s limitation
in meaningful geometric representations. In this paper, we propose FedMRUR
by adopting the manifold model fusion scheme and a new global optimizer to
alleviate the negative impacts. Concretely, FedMRUR adopts a hyperbolic graph
manifold regularizer enforcing the representations of the data in the local and
global models are close to each other in a low-dimensional subspace. Because the
machine learning model has the graph structure, the distance in hyperbolic space
can reflect the model bias better than the Euclidean distance. In this way, FedMRUR
exploits the manifold structures of the representations to significantly reduce the
model inconsistency. FedMRUR also aggregates the client updates norms as the
global update norm, which can appropriately enlarge each client’s contribution
to the global update, thereby mitigating the norm reduction introduced by the
near-orthogonality of client updates. Furthermore, we theoretically prove that our
algorithm can achieve a linear speedup property O( 1√

SKT
) for non-convex setting

under partial client participation, where S is the participated clients number, K is
the local interval and T is the total number of communication rounds. Experiments
demonstrate that FedMRUR can achieve a new state-of-the-art (SOTA) accuracy
with less communication.

1 Introduction

FL is a collaborative distributed framework where multiple clients jointly train the model with their
private datasets [27, 28]. To protect privacy, each client is unable to access the other dataset [2].
A centralized server receives the parameters or gradients from the clients and updates the global
model[46]. Due to the limited communication resource, only part of the clients is involved in the
collaborative learning process and train the local model in multiple intervals with their own datasets
within one communication round [23]. Due to the data heterogeneity, clients’ partial participation and
multiple local training yield severe model inconsistency, which leads to the divergences between the
directions of the local updates from the clients and thus reduces the magnitude of global updates [17].
Therefore, the model inconsistency is the major source of performance degradation in FL [40, 15].

∗Corresponding authors: Li Shen and Han Hu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



So far, numerous works have focused on the issues of model inconsistency to improve the performance
of FL. Many of them [20, 16, 42, 1] utilize the parameter (or gradient) difference between the local
and global model to assist the local training. By incorporating the global model information into
local training, the bias between the local and global objectives can be diminished at some level.
However, the parameter (or gradient) difference may fail to characterize the model bias due to
the complex structure of modern machine learning model and the Euclidean space has limitations
in providing powerful and meaningful geometric representations [10]. Meanwhile, incorporating
the difference introduces extra high computation and communication costs because of the high-
dimensional model parameter, which is common in the modern machine learning area[25]. Some
other works [22, 39, 44, 24] exploit the permutation invariance property of the neurons in the neural
networks to align and aggregate the model parameters for handling the model inconsistency issues,
but the extra computation required for neuron alignment may slow down the speed of FL. In addition,
Charles et al. [3] demonstrate that after multiple rounds, the similarities between the client updates
approach zero and the local update direction are almost orthogonal to each other in FL. If the server
aggregates the local updates, each client’s contribution is little, which reduces the global update step.
Therefore, we need to reduce the model inconsistency and compensate for the global norm reduction
introduced by the near-orthogonality of client updates.

In order to alleviate the model inconsistency and compensate for the global reduction, we pro-
pose a practical and novel algorithm, dubbed as FedMRUR (Federated learning with Manifold
Regularization and Normalized Update Reaggregation). FedMRUR adopts two techniques to achieve
SOTA performance. i) Firstly, FedMRUR adopts the hyperbolic graph fusion technique to reduce
the model inconsistency between the client and server within local training. The intuition is that
adding the manifold regularizer to the loss function to constrain the divergence between the local
and global models. Unlike the Euclidean space, the hyperbolic space is a manifold structure with the
constant negative curvature, which has the ability to produce minimal distortion embedding[8] with
the low storage constraints[30] for graph data. And the neural network, the most prevail machine
learning model, has a graph structure[34, 24], we map the representations to the hyperbolic space and
compute their distance to indicate the model bias precisely. Considering the numerical stability[6],
we select the Lorentz model to describe the hyperbolic space and the squared Lorentzian distance[19]
to indicate the representations’ proximity. By adopting the hyperbolic graph fusion technique, FedM-
RUR can constrain model inconsistency efficiently. ii) Secondly, FedMRUR aggregates the client’s
local updates in a novel normalized way to alleviate the global norm reduction. In the normalized
aggregation scheme, the server aggregates the local update norms as the global norm and normalizes
the sum of the local updates as the global direction. Compared with directly aggregating local updates,
the new aggregation scheme enables each customer’s contribution to be raised from its projection
on the global direction to its own size. As a result, the size of the global update becomes larger
and compensates for the norm reduction introduced by model inconsistency, which improves the
convergence and generalization performance of the FL framework.

Theoretically, we prove that the proposed FedMRUR can achieve the convergence rate of O( 1√
SKT

)

on the non-convex and L-smooth objective functions with heterogeneous datasets. Extensive experi-
ments on CIFAR-10/100 and TinyImagenet show that our proposed FedMRUR algorithm achieves
faster convergence speed and higher test accuracy in training deep neural networks for FL than several
baselines including FedAvg, FedProx, SCAFFOLD, FedCM, FedExp, and MoFedSAM. We also
study the impact on the performance of adopting the manifold regularization scheme and normalized
aggregation scheme. In summary, the main contributions are as follows:

• We propose a novel and practical FL algorithm, FedMRUR, which adopts the hyperbolic
graph fusion technique to effectively reduce the model inconsistency introduced by data
heterogeneity, and a normalized aggregation scheme to compensate the global norm reduc-
tion due to the near-orthogonality of client updates, which achieves fast convergence and
generalizes better.

• We provide the upper bound of the convergence rate under the smooth and non-convex cases
and prove that FedMRUR has a linear speedup property O( 1√

SKT
).

• We conduct extensive numerical studies on the CIFAR-10/100 and TinyImagenet dataset
to verify the performance of FedMRUR, which outperforms several classical baselines on
different data heterogeneity.
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2 Related Work

McMahan et al. [27] propose the FL framework and the well-known algorithm, FedAvg, which has
been proved to achieve a linear speedup property [43]. Within the FL framework, clients train local
models and the server aggregates them to update the global model. Due to the heterogeneity among
the local dataset, there are two issues deteriorating the performance: the model biases across the local
solutions at the clients [20] and the similarity between the client updates (which is also known as the
near-orthogonality of client updates) [3], which needs a new aggregation scheme to solve. In this
work, we focus on alleviating these two challenges to improve the convergence of the FL algorithms.

Model consistency. So far, numerous methods focus on dealing with the issue of model inconsistency
in the FL framework. Li et al. [20] propose the FedProx algorithm utilizing the parameter difference
between the local and global model as a prox-correction term to constrain the model bias during local
training. Similar to [20], during local training, the dynamic regularizer in FedDyn [1] also utilizes
the parameter difference to force the local solutions approaching the global solution. FedSMOO
[36] utilizes a dynamic regularizer to make sure that the local optima approach the global objective.
Karimireddy et al. [16] and Haddadpour et al. [9] mitigate the model inconsistency by tracking
the gradient difference between the local and global side. Xu et al. [42] and Qu et al. [31] utilize
a client-level momentum term incorporating global gradients to enhance the local training process.
Sun et al. [37] estimates the global aggregation offset in the previous round and corrects the local
drift through a momentum-like term to mitigate local over-fitting. Liu et al. [26] incorporate the
weighted global gradient estimations as the inertial correction terms guiding the local training to
enhance the model consistency. Charles et al. [4] demonstrate that the local learning rate decay
scheme can achieve a balance between the model inconsistency and the convergence rate. Tan et
al. [38] show that the local learning rate decay scheme is unable to reduce the model inconsistency
when clients communicate with the server in an asynchronous way. Most methods alleviate the model
inconsistency across the clients by making use of the parameter (or gradient) difference between the
local and global model.

Aggregation scheme. There are numerous aggregation schemes applied on the server side for
improving performance. Some works utilize classical optimization methods, such as SGD with
momentum [45], and adaptive SGD [5], to design the new global optimizer for FL. For instance,
FedAvgM [13, 35] and STEM [17] update the global model by combining the aggregated local
updates and a momentum term. Reddi et al. [32] propose a federated optimization framework,
where the server performs the adaptive SGD algorithms to update the global model. FedNova [41]
normalizes the local updates and then aggregates them to eliminate the data and device heterogeneity.
In addition, the permutation invariance property of the neurons in the neural networks is also applied
for improving robustness to data heterogeneity. FedFTG [48] applies the data-free knowledge
distillation method to fine-tune the global model in the server. FedMA [39] adopts the Bayesian
optimization method to align and average the neurons in a layer-wise manner for a better global
solution. Li et al. [22] propose Position-Aware Neurons (PANs) coupling neurons with their positions
to align the neurons more precisely. Liu et al. [24] adopt the graph matching technique to perform
model aggregation, which requires a large number of extra computing resources in the server. Many
deep model fusion methods [21] are also applied in the research field of FL, such as model ensemble
[47] and CVAE [12]. The aforementioned algorithms utilize the local parameters or gradients directly
without considering the near-orthogonality of client updates, which may deteriorate the convergence
performance of the FL framework.

The proposed method FedMRUR adopts the hyperbolic graph fusion technique to reduce the model
inconsistency and a normalized update aggregation scheme to mitigate the norm reduction of the
global update. Compared with the previous works, we utilize the squared Lorentzian distance of
the features in the local and global model as the regularization term. This term can more precisely
measure the model bias in the low-dimensional subspace. For the update aggregation at the server,
FedMRUR averages the local updates norm as the global update norm, which achieves to alleviate
the norm reduction introduced by the near-orthogonality of the client updates.

3 Methodology

In this section, we first formally describe the problem step for FL and then introduce the FedMRUR
and the two novel hyperbolic graph fusion and normalized aggregation techniques in FedMRUR.
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Figure 1: The workflow of FedMRUR. Once the global parameter x0 is received, the client initializes the local
model xp and starts hyperbolic graph fusion. In the hyperbolic graph fusion, the client first takes the local and
global model to get their representations and maps them into the hyperbolic space. Then, the client use their
distances in the hyperbolic space as a regularizer to constrain model divergence. Next, the client performs local
training and uploads the updates to the server. The server adopts the normalized scheme to aggregate the local
updates and performs the global model update.

3.1 Problem setup

We consider collaboratively solving the stochastic non-convex optimization problem with P clients :

min
w
f(w) :=

1

P

∑
p∈P

fp(w), with fp(w) := Ez∼Dp
[l(w, z)], (1)

where w is the machine learning model parameter and z is a data sample following the specified
distribution Dp in client p; meanwhile l(w, z) represents the model loss function evaluated by data
z with parameter w. fp(w) and f(w) indicate the local and global loss function, respectively. The
loss function l(w, z), fp(w), and f(w) are non-convex due to the complex machine learning model.
The heterogeneity of distribution Dp causes the model inconsistency across the clients, which may
degrade the performance of the FL framework.

Notations. We define some notations to describe the proposed method conveniently. ‖ · ‖ denotes the
spectral norm for a real symmetric matrix or L2 norm for a vector. 〈·, ·〉 denotes the inner product of
two vectors. For any nature a, b, a∧ b and a∨ b denote min {a, b} and max {a, b}, respectively. The
notation O(·), Θ(·), and Ω(·) are utilized to hide only absolute constants that don’t depend on any
problem parameter.

3.2 FedMRUR Algorithm

In this part, we describe our proposed FedMRUR algorithm (see Figure 1 and Algorithm 1) to
mitigate the negative impacts of model inconsistency and improve performance. We add a manifold
regularization term on the objective function to alleviate the model inconsistency. To eliminate
the near-orthogonality of client updates, we design a new method to aggregate the local updates
from the clients. Within one communication round, the server first broadcast the global model to
the participating clients. During local training, the client takes the sampled data into the local and
received global model and gets the representations. Then the client maps the representations into the
hyperbolic space and computes their distance, which is used to measure the divergence between the
local and global models. Next, the client adopts the distance as a manifold regular to constrain the
model bias, achieving model fusion in the hyperbolic graph. After local training, the client uploads
its local update to the server. The server aggregates the local update norms as the global update step
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Algorithm 1 FedMRUR
1: Input: initial parameter w0; momentum coefficient α; perturbation radius ρ; local interval K ;

communication rounds T ; set of selected clients St; global and local learning rate ηg, ηl.
2: Output: Global parameter wt,∀t ∈ T .
3: Initialization: Initialize40 = 0 and w0 as the global parameter at the server.
4: For t = 0, 1, ..., T − 1 do:
5: The server broadcasts parameter wt and global update4t to the selected clients St.
6: For client p ∈ St in parallel do:
7: client p initialize the local parameter as wt,0p = wt.
8: For k = 0, ...,K − 1 do:

9: w̃t,kp = wt,kp + ρ
∇Fp(w

t,k
p )

‖∇Fp(w
t,k
p )‖

.

10: vt,k+1
i = α∇Fp(w̃t,kp ) + (1− α)4t.

11: wt,k+1
i = wt,ki − ηlv

t,k+1
i .

12: End for.
13: 4tp = wt,Kp − wt,0p
14: End for
15: Aggregate4t+1 =

∑
p∈St

‖4t
p‖

|St|‖
∑

p∈St
4t

p‖
∑
i∈St
4tp.

16: Update global parameter wt+1 =wt − ηg4t+1.
17: End for.

and normalizes the sum of the local updates as the global update direction. Utilizing the normalized
aggregation scheme, the server can update the model with a larger step and improve the convergence.

Hyperbolic Graph Fusion. In FL, the Euclidean distances between parameters[11, 20] (or
gradients[16, 42]) between the client and the server is utilized to correct the local training for
alleviating the model inconsistency. However, the Euclidean distance between the model parameters
can’t correctly reflect the variation in functionality due to the complex structure of the modern
machine learning model. The model inconsistency across the clients is still large, which impairs the
performance of the FL framework. Since the most prevail machine learning model, neural network
has a graph structure and the hyperbolic space exhibits minimal distortion in describing data with
graph structure, the client maps the representations of the local and global model into the hyperbolic
shallow space[29] and uses the squared Lorentzian distance[19] between the representations to
measure the model inconsistency.

To eliminate the model inconsistency effectively, we adopt the hyperbolic graph fusion technique,
adding the distance of representations in the hyperbolic space as a regularization term to the loss
function. Then the original problem (1) can be reformulated as:

min
w0

F (w0) =
1

P

∑
p

[fp(wp) + γ ∗R(wp, wg)], s.t. wg =
1

P

∑
p

wp (2)

where R(wp, wg) is the hyperbolic graph fusion regularization term, defined as:

R(wp, wg) = exp
(
‖Lp − Lg‖2L/σ

)
, ‖Lp − Lg‖2L = −2β − 2〈Lp, Lg〉L. (3)

In (2) and (3), Lp and Lg are the mapped Lorentzian vectors corresponding to Zp and Zg, the
representations from local model wp and global model wg . γ and σ are parameters to tune the impact
of the model divergence on training process. β is the parameter of the Lorentz model and 〈x, y〉L
denotes the Lorentzian scalar product defined as:

〈x, y〉L = −x0 · y0 +

d∑
i=1

xi · yi, (4)

where x and y are d+1 dimensional mapped Lorentzian vectors. The new problem (2) can be divided
into each client and client p uses its local optimizer to solve the following sub-problem:

min
wp

Fp(wp) = fp(wp) + γ ∗R(wp, wg). (5)
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The regularization term R(wp, wg) has two benefits for local training: (1) It mitigates the local
over-fitting by constraining the local representation to be closer to the global representation in the
hyperbolic space (Lorentzian model); (2) It adopts representation distances in a low-dimensional
hyperbolic space to measure model deviation, which can be more precisely and save computation.

∆𝑖

∆𝑖′

∆
∆𝑖 cos 𝜃𝑖

𝜃𝑖

𝜃𝑖′

∆𝑖′ cos 𝜃𝑖′

(a) Vanilla Aggregation.

∆𝑖

∆𝑖′

∆
∆𝑖

∆𝑖′

(b) Normalized Aggregation.

Figure 2: A toy schematic to compare the naive aggregation and normalized aggregation of the local updates,
where the number of clients is 2 and the local intervals are set as 1. The solid line indicates the client’s local
update 4i, θi is the angle between the local update and the global update, and the dotted line represents
the clients’ contribution on the global update. The red lines are the aggregated global update 4. The main
difference is ‖4‖, the norm of the global update. When adopting the naive aggregation method, the global
norm ‖4‖ =

∑
i ‖4i‖ cos θi. When adopting the normalized aggregation method, the global norm ‖4‖ =∑

i ‖4i‖. We can see that the norm of global update in the direct aggregation is less than the norm in the
normalized aggregation, due to the fact that cos θ ≤ 1.

Normalized Aggregation of Local Updates. According to [3], after a number of communication
rounds, the cosine similarities of the local updates across clients are almost zero, which comes from
the model(gradient) inconsistency between the server and client sides. In the vanilla aggregation
way, the server takes the mean of local updates from participated clients as the global gradient.
As shown in Figure 2(a), client i makes ‖4i‖ cos θi contribution on the aggregation result. When
the data heterogeneous is significant, the cosine similarities across the local updates are small.
Correspondingly, the cosine similarities cos θi between the clients and the server narrows down, and
the global update norm shrinks which slows down the convergence. To alleviate the negative impact
of near-orthogonal local updates, we propose a new normalized aggregation method to compute the
global update. The direction of the global update can be acquired by normalizing the sum of the local
updates and the result is the same as the one obtained by the vanilla way. For the norm, the server
computes it by taking the average of norms of the received local updates. As shown in Figure 2(b),
with the proposed normalized aggregation method, the client i’s contribution on the global update
increases from ‖4i‖ cos θi to ‖4i‖. Accordingly, the norm of the global update ‖4‖ grows and
accelerates the convergence.

Our proposed FedMRUR is characterized by Figure 1 and the detailed training process is summarized
in Algorithm 1. Concretely, firstly, the server broadcasts the global parameter and updates it to
the selected clients St. At the initialization stage of local training, client i utilizes the manifold
regularization scheme to construct its own local loss function Fi with the received global parameter
wt. Then, client i adopts the Sharpness Aware Minimization (SAM) [7] optimizer to compute the
gradient g̃i with data sampled randomly. The local updater vi consists of the stochastic gradient
αg̃i and the momentum term (1 − α)4t, the received global update from the last round. Client i
applies vi to perform multiple SGD and uploads the accumulated local update4ti to the server. The
server takes two steps to construct the global update: 1) aggregating and normalizing the accumulated
local updates from the participated clients St as the direction of the global update; 2) averaging the
norms of accumulated local updates as the norm of the global update. Finally, the server utilizes the
constructed global update to perform one step SGD and get a new global parameter.

Remark 1. FedMRUR is on the top of MoFedSAM [31] due to its excellent performance and our
method can also be integrated with other federated learning methods, including FedExp, FedCM,
SCAFFOLD, FedDYN, etc., to improve the performance.
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4 Convergence Analysis

In this section, we provide the theoretical analysis of our proposed FedMRUR for general non-convex
FL setting. Due to space limitations, the detailed proofs are placed in Appendix. Before introducing
the convergence results, we first state some commonly used assumptions as follows.
Assumption 1. fp(x) is L-smooth and R(x, x0) is r-smooth with fixed x0 for all client p, i.e.,

‖∇fp(a)−∇fp(b)‖ ≤ L ‖a− b‖ , ‖∇R(a, x0)−∇R(b, x0)‖ ≤ r ‖a− b‖ .
Assumption 2. The stochastic gradient gt,kp with the randomly sampled data on the local client p is
an unbiased estimator of∇Fp(xt,kp ) with bounded variance, i.e.,

E[gt,kp ] = ∇Fp(xt,kp ), E
∥∥gt,kp −∇Fp(xt,kp )

∥∥2 ≤ σ2
l

Assumption 3. The dissimilarity of the dataset among the local clients is bounded by the local and
global gradients, i.e.,

E ‖∇Fp(x)−∇F (x)‖2 ≤ σ2
g (6)

Assumption 1 guarantees the gradient Lipschitz continuity for the objective function and regularizer
term. Assumption 2 guarantees the stochastic gradient is bounded by zero mean and constant variance.
Assumption 3 gives the heterogeneity bound for the non-iid dataset across clients. All the above
assumptions are widely used in many classical studies [1, 43, 33, 42, 14, 16], and our convergence
analysis depends on them to study the properties of the proposed method.

Proof sketch. To explore the essential insights of the proposed FedMRUR, we first bound the client
drift over all clients within the t-th communication round. Next, we characterize the global parameter
moving within a communication round, which is similar to the one in centralized machine learning
algorithms with momentum acceleration technology. Then, the upper bound for the global update
4t is provided. Lastly, we use ‖∇F (xt)‖ the global gradient norm as the metric of the convergence
analysis of FedMRUR. The next theorem characterizes the convergence rate for FedMRUR.
Theorem 1. Let all the assumptions hold and with partial client participation. If ηl ≤ 1√

30αKL
,

ηg ≤ S
2αL(S−1) satisfying 3

4 −
2(1−αL)
KN − 70(1− α)K2(L+ r)2η2l −

90α(L+r)3ηgη
2
l

S − 3α(L+r)ηg
2S ,

then for all K ≥ 0 and T ≥ 1, we have:

1∑T
t=1 dt

T∑
t=1

E
∥∥∇F (wt)

∥∥2 dt ≤ F 0 − F ∗

Cαηg
∑T
t=1 dt

+ Φ, (7)

where

Φ =
1

C

[
10α2(L+ r)4η2l ρ

2σ2
l + 35α2K(L+ r)2η2l 3(σ2

g + 6(L+ r)2ρ2) + 28α2K3(L+ r)6η4l ρ
2

+2K2L4η2l ρ
2 +

α(L+ r)3η2gρ
2

2KS
σ2
l +

α(L+ r)ηg
K2SN

(30NK2(L+ r)4η2l ρ
2σ2
l

+270NK3(L+ r)2η2l σ
2
g + 540NK2(L+ r)4η2l ρ

2 + 72K4(L+ r)6η4l ρ
2

+6NK4(L+ r)2η2l ρ
2 + 4NK2σ2

g + 3NK2(L+ r)2ρ2)
]
.

and dt =
∑

i‖4t
i‖

‖∑i4t
i‖
≥ 1. Specifically, we set ηg = Θ(

√
SK√
T

) and ηl = Θ( 1√
STK(L+r)

), the

convergence rate of the FedMRUR under partial client participation can be bounded as:
T∑
t=1

E ‖∇F (xt)‖2 =O

(
1√
SKT

)
+O

(√
K

ST

)
+O

(
1√
KT

)
. (8)

Remark 2. Compared with the inequality F 0−F∗
CαηgT

+ Φ of Theorem D.7 in MoFedSAM paper[31],
the second constant term in (7) is same and the first term is less than the first term in MoFedSAM
paper, which validates FedMRUR achieves faster convergence than MoFedSAM.
Remark 3. From (8), we can find that when T is large enough, the dominant term O( 1√

SKT
) in

the bound achieves a linear speedup property with respect to the number of clients. It means that to
achieve ε−precision, there are O( 1

SKε2 ) communication rounds required at least for non-convex and
L-smooth objective functions.
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(a) Test accuracy on CIFAR-100 in the non-iid (µ = 0.3, µ = 0.6, n = 10 and n = 20) settings.
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(b) Test accuracy on TinyImageNet in the non-iid (µ = 0.3, µ = 0.6, n = 40 and n = 80) settings.
Figure 3: Test accuracy w.r.t. communication rounds of our proposed method and other approaches. Each
method performs in 1600 communication rounds. To compare them fairly, the basic optimizers are trained with
the same hyperparameters.

5 Experiments

In this section, we validate the effectiveness of the proposed FedMRUR algorithm using the exper-
imental results on CIFAR-10/100 [18] and TinyImageNet [18]. We demonstrate that FedMRUR
outperforms the vanilla FL baselines under heterogeneous settings. We also present that both manifold
regularization and the proposed normalized update aggregation can improve the performance of SGD
in FL. The experiments of CIFAR-10 are placed in the Appendix.

5.1 Experimental Setup

Datasets. We compare the performance of FL algorithms on CIFAR-10/100 and TinyImageNet
datasets with 100 clients. The CIFAR-10 dataset consists of 50K training images and 10K testing
images. All the images are with 32× 32 resolution belonging to 10 categories. In the CIFAR-100
dataset, there are 100 categories of images with the same format as CIFAR-10. TinyImageNet
includes 200 categories of 100K training images and 10K testing images, whose resolutions are
64× 64. For non-iid dataset partitioning over clients, we use Pathological-n (abbreviated as Path(n))
and Dirichlet-µ (abbreviated as Dir(µ)) sampling as [13], where the coefficient n is the number of
data categories on each client and µ measures the heterogeneity. In the experiments, we select the
Dirichlet coefficient µ from {0.3, 0.6} for all datasets and set the number of categories coefficient n
from {3, 6} on CIFAR-10, {10, 20} on CIFAR-100 and {40, 80} on TinyImageNet.

Implementation Details. For all algorithms on all datasets, following [1, 42], the local and global
learning rates are set as 0.1 and 1.0, the learning rate decay is set as 0.998 per communication round
and the weight decay is set as 5× 10−4. ResNet-18 together with group normalization is adopted as
the backbone to train the model. The clients’ settings for different tasks are summarized in Table 1.
Other optimizer hyperparameters are as follow: ρ = 0.5 for SAM, α = 0.1 for client momentum,
γ = 0.005, σ = 10000.0 and β = 1 for manifold regularization.

Table 1: The experiments settings for different tasks.

Task num of clients participated ratio batch size local epoch
CIFAR 200 0.05 50 3

Tiny 500 0.02 20 2

Baselines. To compare the performances fairly, the random seeds are fixed. We compare the proposed
FedMRUR with several competitive benchmarks: FedAvg [43], the most widely used baseline,

8



Table 2: Test accuracy (%) on CIFAR-100& TinyImagenet datasets in both Dir(µ) and Path(n)) distributions.

Algorithm CIFAR-100 TinyImagenet

Dir(µ)) Path(n) Dir(µ)) Path(n)

µ = 0.6 µ = 0.3 n = 20 n = 10 µ = 0.6 µ = 0.3 n = 80 n = 40

FedAvg 39.87 39.50 38.47 36.67 30.78 30.64 31.62 31.18
FedExp 44.51 44.26 43.58 41.00 33.49 32.68 33.65 33.39
FedProx 39.89 39.86 38.82 37.15 30.93 31.05 32.09 31.77
SCAFFOLD 47.51 46.47 46.23 42.45 37.14 36.22 37.48 35.32
FedCM 51.01 50.93 50.58 50.03 41.37 40.21 40.93 40.46
MoFedSAM 52.96 52.81 52.32 51.87 42.36 42.29 42.52 41.58

FedMRUR 55.81 55.49 55.21 53.69 45.54 45.41 45.42 45.71

Table 3: Convergence speed comparison on CIFAR100& TinyImageNet datasets. "Acc." represents the target
test accuracy on the dataset. "∞" means that the algorithm is unable to achieve the target accuracy on the dataset.

Datasets CIFAR-100 TinyImageNet

Algorithms Acc.
Dir(µ) Path(n)

Acc.
Dir(µ) Path(n)

0.6 0.3 20 10 0.6 0.3 80 40

FedAvg

38%

513 494 655 ∞

30%

972 1078 1002 1176
FedExp 715 782 795 1076 1255 1362 1327 1439
FedProx 480 488 638 ∞ 1043 1030 1163 1615

SCAFFOLD 301 322 389 585 785 850 766 967
FedCM 120 126 157 255 342 401 366 474

MoFedSAM 154 146 211 300 436 447 415 460
Our 157 179 223 341 473 517 470 570

FedAvg

42%

∞ ∞ ∞ ∞

35%

∞ ∞ ∞ ∞
FedExp 985 1144 1132 1382 ∞ ∞ ∞ ∞
FedProx ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

SCAFFOLD 406 449 558 998 1289 1444 1206 2064
FedCM 173 193 260 527 599 735 674 879

MoFedSAM 197 192 260 392 598 624 583 685
Our 192 230 266 424 671 707 653 788

FedAvg

45%

∞ ∞ ∞ ∞

40%

∞ ∞ ∞ ∞
FedExp ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
FedProx ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

SCAFFOLD 521 616 784 ∞ ∞ ∞ ∞ ∞
FedCM 276 353 470 842 1451 2173 1587 2186

MoFedSAM 243 278 400 575 950 1106 959 1162
Our 241 263 338 484 948 1050 953 1069

firstly applies local multiple training and partial participation for FL framework; SCAFFOLD [16]
utilizes the SVRG method to mitigate the client drift issue; FedProx [20] uses a proximal operator to
tackle data heterogeneity; FedCM [42] incorporates the client-momentum term in local training to
maintain the model consistency among clients; Based on FedCM, MoFedSAM [31] improves the
generalization performance with local SAM [7] optimizer; FedExp [14] determines the server step
size adaptively based on the local updates to achieve faster convergence.

5.2 Evaluation Results

Figure 3 and Table 2 demonstrate the performance of ResNet-18 trained using multiple algorithms on
CIFAR-100 and TinyImageNet datasets under four heterogeneous settings. We plot the test accuracy
of the algorithms for a simple image classification task in the figure. We can observe that: our
proposed FedMRUR performs well with good stability and effectively alleviates the negative impact
of the model inconsistency. Specifically, on the CIFAR100 dataset, FedMRUR achieves 55.49% on
the Dirichlet-0.3 setups, which is 5.07% higher than the second-best test performance. FedMRUR
effectively reduces the model inconsistency and the enlarged global update improves the speed of
convergence.

Table 3 depicts the convergence speed of multiple algorithms. From [13], a larger µ indicates less
data heterogeneity across clients. We can observe that: 1) our proposed FedMRUR achieves the
fastest convergence speed at most of the time, especially when the data heterogeneity is large. This
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validates that FedMRUR can speed up iteration; 2) when the statistical heterogeneity is large, the
proposed FedMRUR accelerates the convergence more effectively.

5.3 Ablation Study

Impact of partial participation. Figures 4(a) and 4(b) depict the optimization performance of
the proposed FedMRUR with different client participation rates on CIFAR-100, where the dataset
splitting method is Dirichlet sampling with coefficient µ = 0.3 and the client participation ratios are
chosen from 0.02 to 0.2. From this figure, we can observe that the client participation rate (PR) has a
positive impact on the convergence speed, but the impact on test accuracy is little. Therefore, our
method can work well under low PR settings especially when the communication resource is limited.
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Figure 4: (a). Training loss w.r.t different client participation rations; (b). Test accuracy w.r.t different
client participation ratios. (c). Test accuracy with different γ. (d). Train loss with different γ. The
performance of FedMRUR with different parameters on the CIFAR-100 dataset.
Hyperparameters Sensitivity. In Figures 4(c) and 4(d), we compare the performance of the proposed
FedMRUR with different hyper-parameters on the CIFAR-100 dataset. From the results, we can
see that our algorithm achieves similar test accuracy and training loss under different γ within a
certain range (γ ∈ [0.005, 0.5]) and this indicates the proposed FedMRUR is insensitive to the
hyperparameter γ. The hyperparameter γ represents the method the punishment on the model bias.

Table 4: Test accuracy % on CIFAR-100 datasets about
without each ingredients of FedMRUR.

Algorithm normalized(N) hyperbolic(H) Acc.

MoFedSAM – – 52.81
FedMRUR-N X – 54.27
FedMRUR-H – X 53.57
FedMRUR X X 55.49

Impact of Each Component. Table 4 demon-
strates the impact of each component of FedM-
RUR on the test accuracy for CIFAR-100 dataset
on the Dirichlet-0.3 setups. For convenience, we
abbreviate normalized aggregation as “normal-
ized(N)” and hyperbolic graph fusion as “hy-
perbolic(H)”, respectively. From the results, we
can find that both the normalized local update
aggregation scheme and the hyperbolic graph fusion can improve performance. This table validates
that our algorithm design and theoretical analysis are correct and effective.

6 Conclusion

In this work, we propose a novel and practical federated method, dubbed FedMRUR which applies
the hyperbolic graph fusion technique to alleviate the model inconsistency in the local training stage
and utilizes normalized updates aggregation scheme to compensate for the global norm reduction
due to the near-orthogonality of the local updates. We provide the theoretical analysis to guarantee
its convergence and prove that FedMRUR achieves a linear-speedup property of O( 1√

SKT
). We

also conduct extensive experiments to validate the significant improvement and efficiency of our
proposed FedMRUR, which is consistent with the properties of our analysis. This work inspires the
FL framework design to focus on exploiting the manifold structure of the learning models.

Limitations&Broader Impacts. Our work focuses on the theory of federated optimization and
proposes a novel FL algorithm. During the local training, the representations of the global model
must be stored locally, which may bring extra pressure on the client. This will help us in inspiration
for new algorithms. Since FL has wide applications in machine learning, Internet of Things, and
UAV networks, our work may be useful in these areas.
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In this part, we will introduce the proofs of the major theorems and some extra experiments. In
Section A, we provide the full proofs of the major theorems. In section B, we provide some extra
experiments on CIFAR-10 task.

A Proof for Convergence Analysis

In this section, we provide the convergence analysis for the proposed FedMRUR algorithm. Firstly,
we state some preliminary lemmas as follows:

Lemma 2. For random variables x1, ..., xn, we have

E
[
‖x1 + ...+ xn‖2

]
≤ nE[‖x1‖2 + ...+ ‖xn‖2].

Lemma 3. For independent, mean 0 random variables x1, ..., xn, we have

E
[
‖x1 + ...+ xn‖2

]
= E[‖x1‖2 + ...+ ‖xn‖2]

Lemma 4. The stochastic gradient ∇Fi(w, ξi) computed by the i-th client at model parameter w
using minibatch ξi is an unbiased estimator of∇Fi(w) with variance bounded by σ2. The gradient of
SAM is formulated by

E

∥∥∥∥∥
K−1∑
k=0

gt,ki

∥∥∥∥∥
2
 ≤ K K−1∑

k=0

E
[∥∥∥∇Fi(wt,ki )

∥∥∥2]+
K(L+ r)2ρ2

N
σ2
l

Proof. we can bound the inequality as follows:

E

∥∥∥∥∥
K−1∑
k=0

gt,ki

∥∥∥∥∥
2
 = E

∥∥∥∥∥
K−1∑
k=0

∇Fi(wt,ki )

∥∥∥∥∥
2
+ E

∥∥∥∥∥
K−1∑
k=0

gt,ki −∇Fi(w
t,k
i )

∥∥∥∥∥
2


≤K
K−1∑
k=0

E
[∥∥∥∇Fi(wt,ki )

∥∥∥2] (9a)

+ (L+ r)2
K−1∑
k=0

E

[
1

N

N∑
i=1

(
wt,ki + δt,ki (w̃t,ki ; ξt,ki )− wt,ki + δt,ki (w̃t,ki )

)]

≤K
K−1∑
k=0

E
[∥∥∥∇Fi(wt,ki )

∥∥∥2]+
Kρ2σ2

l

N
(L+ r)2 (9b)

where (9a) is from Assumption 1 and (9b) is from Assumption 3 and Lemma 3.

Lemma 5. The variance of local and global gradients with perturbation can be bounded as follows:

‖∇Fi(w + δi)−∇F (w + δ)‖2 ≤ 3σ2
g + 6(L+ r)2ρ2.

Proof.

‖∇Fi(w̃)−∇F (w̃)‖2 = ‖∇Fi(w + δi)−∇F (w + δ)‖2

= ‖∇Fi(w + δi)−∇Fi(w) +∇Fi(w)−∇F (w) +∇F (w)−∇F (w + δ)‖2

≤3 ‖∇Fi(w + δi)−∇Fi(w)‖2 + 3 ‖∇Fi(w)−∇F (w)‖2 + 3 ‖∇F (w)−∇F (w + δ)‖2 (10a)

≤3σ2
g + 6(L+ r)2ρ2, (10b)

where (10a) is from Lemma 2 and (10b) is from Assumption 1,2, the perturbation is limited by ρ.

Below, we bound the average client drift over all clients within the t− communication round. The
average client drift is bounded by
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Lemma 6. Given ηl ≤ 1√
30αK(L+r)

and α ≤ 1
2 , there is

εt,k =
1

|St|
∑
i∈St

E
∥∥∥wt,ki − wt∥∥∥2

≤5Kη2l
[
2α2(L+ r)2η2l ρ

2σ2
l + 7Kα2η2l (3 ∗ σ2 + 6(L+ r)2ρ2)

+14K (1− α)
2
η2l ‖∇F (wt)‖

]
+ 28K3α2(L+ r)4η4l ρ

2.

Proof. The term E
∥∥∥wt,ki − wt∥∥∥2 can be rewriteen as

E
∥∥∥wt,ki − wt∥∥∥2 = E

∥∥∥wt,k−1i − ηl
[
αg̃t,k−1i + (1− α4t)

]
− wt

∥∥∥2
≤E

∥∥∥wt,k−1i − wt − αηl
(
g̃t,k−1i −∇Fi(w̃t,k−1i ) +∇Fi(w̃t,k−1i )−∇Fi(w̃t) +∇Fi(w̃t) (11a)

−∇F (w̃t) +∇F (w̃t)
)

+ (1− α)ηlδ
t
∥∥2

≤(1 +
1

2K − 1
+ 2α2(L+ r)2η2l )E

∥∥∥wt,k−1i − wt
∥∥∥2 + 2α2(L+ r)2η2l ρ

2σ2
l (11b)

+ 7K2αη2l E
∥∥∥∇Fi(w̃t,k−1i )−∇Fi(w̃)

∥∥∥2 + 7Kα2η2l (3σ2
g + 6(L+ r)2ρ2)

+ 7Kα2η2l
∥∥∇F (w̃t)

∥∥2 + 7Kη2l (1− α)2
∥∥4t∥∥2

≤(1 +
1

2K − 1
+ 2α2(L+ r)2η2l + 14Kα(L+ r)2η2l )E

∥∥∥wt,k−1i − wt
∥∥∥2 + 2α2(L+ r)2η2l ρ

2σ2
l

(11c)

+ 7K(1− α)2η2l E
∥∥4t∥∥2 + 14Kα2(L+ r)2η2l E

∥∥∥δt,ki − δt∥∥∥2
+ 7Kα2η2l (3σ2

g + 6(L+ r)2ρ2) + 7α2KE
∥∥∥∇F (w̃t)

∥∥∥2
≤(1 +

1

2K − 1
+ 2α2(L+ r)2η2l + 14Kα(L+ r)2η2l )E

∥∥∥wt,k−1i − wt
∥∥∥2 + 2α2(L+ r)2η2l ρ

2σ2
l

(11d)

+ 14Kα2(L+ r)2η2l E
∥∥∥δt,ki − δt∥∥∥2 + 7Kα2η2l (3σ2

g + 6(L+ r)2ρ2)

+ 14K(1− α)2η2l
∥∥∇F (w̃t)

∥∥2 ,
(11e)

where (11a) follows from the fact that g̃t,k−1i is an unbiased estimator of∇Fi(w̃t,k−1i ) and Lemma 3;
(11b) is from Lemma 2 and 5; (11c) is from Assumption 3 and Lemma 2; (11d) is from Assumption
2 and due to the fact that4 ≈ ∇F (w̃t) and α < 1

2 .

15



Averaging over the clients i and learning rate satisfies ηl ≤ 1√
30αK(L+r)

, we have:

εt,k ≤(1 +
1

2K − 1
+ 2α2(L+ r)2η2l + 14Kα(L+ r)2η2l )E

∥∥∥wt,k−1i − wt
∥∥∥2

+ 2α2(L+ r)2η2l ρ
2σ2
l + 14Kα2(L+ r)2η2l E

∥∥∥δt,ki − δt∥∥∥2
+ 7Kα2η2l (3σ2

g + 6(L+ r)2ρ2) + 14K(1− α)2η2l
∥∥∇F (w̃t)

∥∥2 ,
≤(1 +

1

K − 1
)

1

N

N∑
i=1

E
∥∥∥wt,k−1i − wt

∥∥∥2 (12a)

+ 2α2(L+ r)2η2l ρ
2σ2
l + 14Kα2(L+ r)2η2l E

∥∥∥δt,ki − δt∥∥∥2
+ 7Kα2η2l (3σ2

g + 6(L+ r)2ρ2) + 14K(1− α)2η2l
∥∥∇F (w̃t)

∥∥2 ,
≤
k−1∑
τ=0

(1 +
1

K − 1
)τ
[
2α2(L+ r)2η2l ρ

2σ2
l + 7Kα2η2l (3σ2

g + 6(L+ r)2ρ2)

+14Kα2(L+ r)2η2l E
∥∥∥δt,ki − δt∥∥∥2]+ 14K(1− α)2η2l

∥∥∇F (w̃t)
∥∥2 ,

≤5K
(

2α2(L+ r)2η2l ρ
2σ2
l + 7Kα2η2l (3σ2

g + 6(L+ r)2ρ2) + 14K(1− α)2η2l
∥∥∇F (w̃t)

∥∥2)
(12b)

+ 28α2K3(L+ r)4η4l ρ
2,

where (12a) is due to the fact that ηl ≤ 1√
30αK(L+r)

and α ≤ 1
2 ; (12b) is from Lemma B.1 in

[31].

The global update can be bounded by

Lemma 7. For the partial client participation, we can bound Et
[
‖4t‖2

]
as follows:

Et
[∥∥4t+1

∥∥2] ≤ Kη2l ρ
2σ2
l

S
(L+ r)2 +

η2l
S2

∥∥∥∥∥
N∑
i=1

P
{
i ∈ St

}K−1∑
k=0

∇Fi(w̃t,ki )

∥∥∥∥∥
2


Proof.

Et
[∥∥4t+1

∥∥2] =
1

K2S2η2l
Et

∑
i∈St

∥∥∥∥∥∑
k

(
αηlg̃

t,k
i + ηl(1− α)4t

)∥∥∥∥∥
2


=
α2

K2S2
Et

∑
i∈St

∥∥∥∥∥
K−1∑
k=0

g̃t,ki −∇Fi(x̃
t,k
i )

∥∥∥∥∥
2
+

1

K2S2
Et

∑
i∈St

∥∥∥∥∥∑
k

(
α∇Fi(x̃t,ki ) + (1− α)4t

)∥∥∥∥∥
2


(13a)

≤α
2(L+ r)2ρ2

KS
σ2
l +

2(1− α2)

KS

∥∥∇F (w̃t)
∥∥2 +

2α2

K2S2

∑
i

P {i ∈ St}

∥∥∥∥∥
K−1∑
k=0

∇Fi(wt,ki )

∥∥∥∥∥
2

(13b)

=
α2(L+ r)2ρ2

KS
σ2
l +

2(1− α2)

KS

∥∥∇F (w̃t)
∥∥2 +

2α2

K2SN

N∑
i=1

Et

∥∥∥∥∥
K−1∑
k=0

∇Fi(w̃t,ki )

∥∥∥∥∥
2

+
2α2(S − 1)

K2SN2
Et

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇Fi(w̃t,ki )

∥∥∥∥∥
2

,

(13c)
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where (13a) is from Lemma 5 and (13b) is from Lemma 4.

Next, we provide the following lemma to demonstrate the descent behavior of FedMRUR under
partial client participation setting.

Lemma 8. For all t ∈ [T − 1] and i ∈ St, with the choice of learning rate, the iterates generated by
FedMRUR under partial client participation satisfy:

Et
[
F (wt+1)

]
≤F (w̃t)−Kηgηldt(

1

2
− 20K2L2η2l )

∥∥∇F (w̃t)
∥∥2 +Kηgηl

(
6K2η2l α

4ρ2

+5K2ηlα
4ρ2σ2 + 20K3η3l α

2σ2
g + 16K3η4l α

6ρ2 +
ηgηlα

3ρ2

N
σ2
l

)
.

Proof. Let’s define εδ = 1
N

∑
i E [δi,k − δ]2, where δ = argmax

δ
F (w + δ).

Et
[
F (wt+1)

]
≤ F (wt) + Et

〈
∇F (w̃t), w̃t+1 − w̃t

〉
+
L+ r

2
Et
[∥∥w̃t+1 − w̃t

∥∥2]
=F (wt)− αηg

∥∥∇F (w̃t)
∥∥2 + ηg

〈
∇F (w̃t),E

[
−4t+1 + α∇F (w̃t)

]〉
+
L+ r

2
η2gEt

[∥∥4r+1
∥∥2]
(14)

Let’s denote the
∑

i∈St
‖4t

i‖
‖
∑

i∈St
4t

i‖
as dt and bound the third term in (14) as follows:

〈
∇F (w̃t),E

[
−4t+1 + α∇F (w̃t)

]〉
≤
(

3α

2
− 1

)
dt
∥∥∇F (w̃t)

∥∥2 + α(L+ r)2dt(εt,k + εδ)

− αdt
2K2N2

Et

∥∥∥∥∥∥
∑
i,k

∇Fi(w̃t,ki )

∥∥∥∥∥∥
2

(15)

17



Plugging (15) into (14), we have:

Et
[
F (w̃t+1)

]
≤F (w̃t)−

(
ηg −

αηg
2

)
dt
∥∥∇F (w̃t)

∥∥2 + α(L+ r)2ηgdt(εt,k + εδ)

− αηgdt
2K2N2

Et

∥∥∥∥∥∥
∑
i,k

∇Fi(w̃t,ki )

∥∥∥∥∥∥
2

+
(L+ r)η2g

2
Et
[∥∥4t+1

∥∥2]
≤F (w̃t)−

(
3αηgdt

4
− 2(1− α)2(L+ r)ηgdt

KS

)∥∥∇F (w̃t)
∥∥2 + α(L+ r)2ηgdt(εt,k + εδ)

(16a)

+
α2(L+ r)3ρ2η2g

2KS
σ2
l −

αηgdt
2K2N2

Et

∥∥∥∥∥∥
∑
i,k

α∇Fi(w̃t,ki )

∥∥∥∥∥∥
2

+
(L+ r)α2η2g

2K2SN

∑
i

Et

∥∥∥∥∥∑
k

∇Fi(w̃t,ki )

∥∥∥∥∥
2

+
(L+ r)α2(S − 1)η2g

K2SN2
Et

∥∥∥∥∥∑
k

∇Fi(w̃t,ki )

∥∥∥∥∥
2

≤F (w̃t)− αηgdt
(

3

4
− 2(1− α)(L+ r)

KN
− 70(1− α)K2(L+ r)2η2l −

90α(L+ r)3ηgη
2
l

Sdt
(16b)

−3α(L+ r)ηg
2S

)∥∥∇F (w̃t)
∥∥2 + βηg

(
10α2(L+ r)4η2l ρ

2σ2
l + 28α2K3(L+ r)6η4l ρ

2

+35α2K(L+ r)2η2l (3σ2
g + 6(L+ r)2ρ2) + 2K2(L+ r)4η2l ρ

2 +
α(L+ r)3η2gd

2
tρ

2

2KS
σ2
l

+
αLηgdt
K2SN

(30NK2L4η2l ρ
2σ2
l + 270NK3(L+ r)2η2l σ

2
g + 540NK2(L+ r)4η2l ρ

2

+72K4(L+ r)6η4l ρ
2 + 6NK4L2η2l ρ

2 + 4NK2σ2
g + 3NK2(L+ r)2ρ2)

)
≤F (w̃t)− Cαηgdt

∥∥∇F (w̃t)
∥∥2 + βηg

(
10α2(L+ r)4η2l ρ

2σ2
l + 28α2K3(L+ r)6η4l ρ

2 (16c)

+35α2K(L+ r)2η2l (3σ2
g + 6(L+ r)2ρ2) + 2K2(L+ r)4η2l ρ

2 +
α(L+ r)3η2gd

2
tρ

2

2KS
σ2
l

+
αLηgdt
K2SN

(30NK2L4η2l ρ
2σ2
l + 270NK3(L+ r)2η2l σ

2
g + 540NK2(L+ r)4η2l ρ

2

+72K4(L+ r)6η4l ρ
2 + 6NK4L2η2l ρ

2 + 4NK2σ2
g + 3NK2(L+ r)2ρ2)

)
(16d)

where (16a) is from Lemma 7; (16b) is from Lemmas 6, Lemma B.1 in [31] and due to the fact that
ηg ≤ S

2αL(S−1) and (16c) is from the condition that 3
4 −

2(1−α)L
KN − 70(1 − α)K2(L + r)2η2l −

90α(L+r)3ηgη
2
l

S − 3α(L+r)ηg
2S > C > 0 and α ≤ 1

2 hold.

Finally, we provide following two theorems to charcterize the convergence rate of FedMRUR:

Theorem 9 (Extension of Theorem 1). Let all the assumptions hold and with partial client partici-
pation. If we choose learning rate ηl ≤ 1√

30αKL
, ηg ≤ S

2αL(S−1) satisfying 3
4 −

2(1−αL)
KN − 70(1−

α)K2(L+ r)2η2l −
90α(L+r)3ηgη

2
l

S − 3α(L+r)ηg
2S , then for all K ≥ 0 and T ≥ 1, we have:

1∑T
t=1 dt

T∑
t=1

E
∥∥∇F (wt)

∥∥2 dt ≤ F 0 − F ∗

Cαηg
∑T
t=1 dt

+ Φ,
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where

Φ =
1

C

[
10α2(L+ r)4η2l ρ

2σ2
l + 35α2K(L+ r)2η2l 3(σ2

g + 6(L+ r)2ρ2) + 28α2K3(L+ r)6η4l ρ
2

+2K2L4η2l ρ
2 +

α(L+ r)3η2gρ
2

2KS
σ2
l +

α(L+ r)ηg
K2SN

(30NK2(L+ r)4η2l ρ
2σ2
l

+270NK3(L+ r)2η2l σ
2
g + 540NK2(L+ r)4η2l ρ

2 + 72K4(L+ r)6η4l ρ
2

+6NK4(L+ r)2η2l ρ
2 + 4NK2σ2

g + 3NK2(L+ r)2ρ2)
]
.

If we set ηg = Θ(
√
SK√
T

) and ηl = Θ
(

1√
STK(L+r)

)
, the convergence rate of the FedMRUR under

partial client participation is:

1

T

T∑
t=1

E
∥∥∇F (wt)

∥∥2 = O(
1√
SKT

) +O

(√
K

ST

)
+O

(
1√
KT

)
.

Proof. Summing (16c) in Lemma 8 over t = {1, ..., T} and multiplying both sides by 1
Cαηg

∑T
t=1 dt

,
we have

1

T

T∑
t=1

E
∥∥∇F (wt)

∥∥2 ≤F (w̃t − F (w̃t+1))

Cαηg
∑T
t=1 dt

+ Φ

≤ F 0 − F ∗

Cαηg
∑T
t=1 dt

+ Φ,

where the second inequality comes from the fact that F 0−F ∗ ≤ F (w̃t)−F (w̃t+1). According to the

definition of dt in Lemma 8 and triangle inequality, we have 1 ≤
∑

i∈St
‖4t

i‖
‖
∑

i∈St
4t

i‖
≤ S and

∑T
t=1 dt ≥ T .

If we choose ηg = Θ(
√
SK√
T

), ηl = Θ
(

1√
STK(L+r)

)
and ρ = Θ( 1√

T
), the above ineqaulity can be

rewriteen as

1

T

T∑
t=1

E
∥∥∇F (wt)

∥∥2 = O(
1√
SKT

) +O

(√
K

ST

)
+O

(
1√
KT

)
.

B Experiments

B.1 Results for CIFAR-10

Table 5 characterizes the convergence speed of multiple algorithms on CIFAR-10. For most of the
time, our proposed method, FedMRUR outperforms the baselines. Therefore, we can conclude that:
1) our method achieves the fastest convergence speed, especially when the data heterogeneity is
large, which validates the normalized update aggregation scheme accelerate the iteration; 2) when
the statistical heterogeneity is large, the proposed FedMRUR accelerates the convergence more
effectively, which validates that utilizing the hyperbolic graph fusion is able to alleviate the issue of
the model inconsistency across clients.

Table 6 presents the final test accuracy of ResNet-18 trained using multiple algorithms on CIFAR-10
dataset under four heterogeneous settings. We plot the test accuracy of the algorithms for the image
classification task in Figure 5. We can oberserve that the proposed FedMRUR performs well with
good stability and efficently mitigates the negative effect of the model inconsistency. Specifically, on
the Dirichlet-0.3 setups, FedMRUR achieves a test accuracy of 84.53%, which is 0.51% higher than
the second-best algorithm, MoFedSAM. Based on these, we can conclude that FedMRUR reduces
the model inconsistency and improves the convergence speed effectively.

B.2 Verification of Normalized Aggregation

From the theoretical view, we can conclude that the "Normalized Aggregation of Local Updates"
can accelerate the convergence in Theorem 9. In fact, using this operator in other baselines can also

19



Table 5: Convergence speed on CIFAR-10 dataset in both Dir(µ) and Path(n) distributions. "Acc." represents
the target test accuracy on the dataset. "∞" means that the algorithm is unable to achieve the target accuracy on
CIFAR-10 dataset.

Algorithms FedAvg FedExp FedProx SCAFFOLD FedCM MoFedSAM Our
ACC. 70%

Dir(µ) 0.6 392 538 354 263 95 119 125
0.3 513 518 452 349 131 134 142

Path(n) 6 353 459 328 242 110 112 115
3 ∞ 770 ∞ 466 177 178 192

ACC. 75%

Dir(µ) 0.6 ∞ 788 ∞ 441 185 178 180
0.3 ∞ 905 ∞ 588 229 205 221

Path(n) 6 ∞ 866 ∞ 426 171 166 166
3 ∞ 1225 ∞ 1552 278 307 305

ACC. 80%

Dir(µ) 0.6 ∞ ∞ ∞ ∞ 471 384 393
0.3 ∞ ∞ ∞ ∞ 573 450 449

Path(n) 6 ∞ ∞ ∞ 1181 443 356 353
3 ∞ ∞ ∞ ∞ 810 636 630

Table 6: Test accuracy (%) on CIFAR-10 dataset in both Dir(µ) and Path(n)) distributions.

Algorithm CIFAR-10

Dir(µ) Path(n)

µ = 0.6 µ = 0.3 n = 6 n = 3

FedAvg 72.96 71.44 73.22 67.78
FedExp 79.26 76.73 78.70 74.65
FedProx 73.69 72.15 73.95 68.46
SCAFFOLD 79.69 78.49 79.77 72.72
FedCM 84.48 82.95 84.15 83.10
MoFedSAM 84.99 84.03 85.10 84.13

FedMRUR 85.70 84.53 85.61 84.89
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Figure 5: Test accuracy w.r.t. communication rounds of our proposed method and other approaches.
Each method performs in 1600 communication rounds. To compare them fairly, the basic optimizers
are trained with the same hyperparameters on CIFAR-10 dataset.
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Figure 6: Test accuracy and train loss w.r.t communication rounds of FedMRUR with different local
intervals K.

improve the performance. Here, we present the effect of the normalized aggregation method applied
to FedCM and FedAvg in Table 7. From the results, we can find that the "Normalized Aggregation"
can improve the convergence a lot (For example, when µ = 0.3, it can improve the final acc 4% over
FedCM).

Table 7: Test accuracy (%) on CIFAR-10 dataset in both Dir(µ) and Path(n)) distributions.

Algorithm CIFAR-100

Dir(µ) Path(n)

µ = 0.6 µ = 0.3 n = 20 n = 10

FedAvg 39.87 39.50 38.47 36.67
FedAvg+ 42.09 41.71 42.22 40.10
FedCM 51.01 50.93 50.58 50.03
FedCM+ 52.53 52.32 52.59 52.50

B.3 Validation for the linear speedup propoerty

In this part, we present the experiment results which veritfies the linear speedup propoerty of the
proposed FedMRUR. Because the whole dataset is fixed, increasing the number of clients changes
the amount of data in the local data, which changes the entire optimization problem, we conduct the
experiment under various settings of local intervals K fixing the number of clients to verify the linear
speedup property. From Figure 6, when K increase to 15, the algorithm achieves 1.5× than K = 10.
From (8), when local interval K is increased to O (ST )

1
2 , the impact of the second term in Theorem

1 becomes greater and the first term becomes less. Therefore, when K increase from 15 to 20, the
speedup of convergence is not obvious.

B.4 Impact of Hyperbolic space

Since hyperbolic geometry is a Riemann manifold with a constant negative curvature, its typical
geometric property is that the volume grows exponentially with its radius, whereas the Euclidean
space grows polynomially. Such a geometric trait has 2 advantages:
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• The hyperbolic space exhibits minimal distortion and it fits the hierarchies particularly well
since the space closely matches the growth rate of graph-like data while the Euclidean space
doesn’t.

• Even with a low-embedding dimensional space, hyperbolic models are surprisingly able to
produce a high quality representation, which makes them to be particularly advantageous in
low-memory and low-storage scenarios.

In realistic scenarios, there exists many graph-like data structure, such as the hypernym structure in
NLP, the subordinate structure of entities in the knowledge graph and the power-law distribution in
recommender systems. In FL, the machine learning models have a graph-like structure, so adopting
the Lorentz metric of hyperbolic space makes use of the hierarchical information in neural networks,
which are helpful to fuse the model further bring prediction gains. Using Euclidean metric, or some
Riemann metric defined by a positive definite matrix is an interesting idea. Here, we show the results
of experiments using different geometric spaces as follow (Table 8). From these results, we can find
that Lortenz metric of hyperbolic space can help the algorithm achieving the highest test accuracy.

Table 8: Test accuracy (%) on CIFAR-100 dataset using different manifolds.

Space Euclidean Hyperbolic

Test Acc. 54.01(0.36) 55.64(0.41)

The representations generated by the model have fewer dimensions than the data. Mapping the
representations to the hyperbolic space introduces less computation overhead than mapping the data.
We also conduct experiments mapping the original data to the hyperbolic space over 8 seeds. The
results are as presented in Table 9.

Table 9: Test accuracy (%) on CIFAR-100 dataset using hyperbolic model in different ways.

Orignial data Representation

56.03(0.56) 55.64(0.41)

From the table, we can see that both methods achieve similar performance. Thus, considering the
computation overhead and performance, we only map representations to hyperbolic space and do not
treat the entire learning process in hyperbolic space.

To study the impact of β for hyperbolic graph manifold regularization on the performance, we conduct
the experiment on CIFAR100 task with different β settings and present the final test accuracy in Table
10. From this table, we can find that has a limited impact on the final performance of the algorithm.

Table 10: Test accuracy (%) on CIFAR-100 dataset using different β.

β 0.1 0.5 1.0 5.0 10.0

Test Acc. 54.67 54.69 55.04 54.79 54.91

B.5 Training time

Test Experiments: Nvidia GTX-3090 GPU, CUDA Driver 11.4, Driver Version 470.10.3.01, Pytorch-
1.11.1

Table 11 shows the wall-clock time costs on the CIFAR-100 of Dirichlet-0.3 dataset split. Due to
the double computation of the gradients via SAM optimizer, MoFedSAM and FedMRUR will take
more time in a single communication round, about 1.46× over the FedCM method. However, the
communication rounds required is less than FedCM. Considering the total wall-clock time costs, the
acceleration ratio of FedMRUR achieves 2.46× compared with MoFedSAM (3.67× compared with
FedCM) at the final. Therefore, we can conclude that the FedMRUR is more efficient with respect to
the communication round and wall-clock time when high-performance models are required.
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Table 11: Test accuracy (%) on CIFAR-100 dataset to achieve 50% test accuracy.

Algorithm Times(s/round) Rounds Total(s) Cost Ratio

FedAvg 9.23 ∞ ∞ ∞
FedExp 14.82 ∞ ∞ ∞

SCAFFOLD 15.52 ∞ ∞ ∞
FedProx 12.89 ∞ ∞ ∞
FedCM 11.53 1407 16222.71 3.67×

MoFedSAM 15.53 701 10886.53 2.46×
FedMRUR 16.82 263 4423.66 1×
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