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1 Preliminaries

1.1 Quantum Information Theory

Qubits are unit vectors in C2 with a canonical basis given as |0⟩ =

(
1
0

)
and |1⟩ =

(
0
1

)
. Pure

quantum states composed of n qubits are unit vectors in C2n . Following Dirac notation we indicate a
state via |ψ⟩ and its conjugate transpose, an element of (C2n)∗, by ⟨ψ|. Outer products are indicated
by the notation |ψ⟩⟨ϕ|. Mixed states/density matrices ρ are positive semi-definite operators on
C2n such that Tr[ρ] = 1. Any mixed state can be decomposed into a probability distribution over
projectors onto pure states ρ =

∑
i λi|ui⟩⟨ui| where

∑
i λi = 1. Pure states correspond to rank 1

mixed states. We will often label the mixed state corresponding to a pure state |ψ⟩ by ψ (instead
of |ψ⟩⟨ψ|). Note that this is defined up to an absolute phase, i.e. |ψ⟩ and eiθ|ψ⟩ correspond to the
same density matrix for all θ ∈ R. Positive operator valued measures (POVMs) capture the most
general notion of quantum measurements. These are given by ensembles of positive semi-definite
operators {Ei}i such that

∑
iEi = I. The probability of measurement outcome i is given by Tr[Eiρ].

Observables M are bounded Hermitian operators on C2n , representing a measurement with values
assigned to the outcomes. The expectation value of an observable is given by Tr[Mρ]. Quantum
computers operate by applying gates (unitary matrices) to (ideally) pure states which evolve like
|ψ′⟩ = U |ψ⟩ where U is some unitary. One important gate we will see is the Hadamard gate given

by H = 1√
2

(
1 1
1 −1

)
.

1.2 Notation

Throughout for n ≥ 1, we let [n] = {1, . . . , n}. For quantum states ρ, σ, we denote dTr(ρ, σ) as the
trace distance between the states |ϕ⟩ and |ψ⟩, defined as

dTr(ρ, σ) =
1

2
∥ρ− σ∥1 ,

where ∥ · ∥1 is the Schatten-1 norm of a matrix. For pure states |ϕ⟩ and |ψ⟩ this simplies to

dTr(|ϕ⟩, |ψ⟩) =
√

1− |⟨ϕ|ψ⟩|2 .
For distributions, P,Q : {0, 1}n → [0, 1], we say Prx∼P to mean x is sampled from P . We indicate
sampling from the uniform distribution on a set C by x ∼ C. Similarly, by dTV(P,Q) we mean the
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total-variational distance between P,Q. Similarly, define the Hellinger distance between P,Q as

dH(P,Q)2 = 1−
(∑

x

√
P (x)Q(x)

)2
.

1.3 Useful theorems

Theorem 1 ([1] (paraphrased)). Given two distinct pure states |ψ⟩ and |ϕ⟩ in C2n there exists a
constant k such that if 2 < k2n−1 then with probability at least 1−exp(−k2n−1) over random bases
M we have that ∥M(|ψ⟩) −M(|ϕ⟩)∥1 >

√
2kdTr(|ϕ⟩, |ψ⟩), where M(σ) denotes the probability

distribution induced by measuring the basis M on state σ.

Theorem 2 (Levy’s lemma). Let f : Sd−1 → C be a function on the d-dimensional unit sphere
Sd−1. Let k be such that for every |ϕ⟩, |ψ⟩ ∈ Sd−1, we have that

|f(|ψ⟩)− f(|ϕ⟩)| ≤ k · ∥ϕ− ψ∥2,

then there exists a constant C > 1 such that

Pr
[
|f(ψ)− E[f(ψ)]| ≥ ε

]
≤ 2 exp(−Cdε2/k2),

where the probability and expectations are over the Haar measure on the sphere.

Fact 1. Let binary random variable b ∈ {0, 1} be uniformly distributed. Suppose an algorithm is
given |ψb⟩ (for unknown b) and is required to guess whether b = 0 or b = 1. It will guess correctly
with probability at most 1

2 + 1
2

√
1− |⟨ψ0|ψ1⟩|2.

Note that if we can distinguish |ψ0⟩, |ψ1⟩ with probability ≥ 1−δ, then |⟨ψ0|ψ1⟩| ≤ 2
√
δ(1− δ).

Fact 2. The class of degree-2 phase states
{

1√
2n

∑
x(−1)x

⊤Ax|x⟩ | A ∈ Fn×n2

}
can be learned

using O(n) entangled measurements in time O(n3).

Proof. The learning algorithm uses the Bell-sampling procedure: given two copies of |ϕA⟩ =
1√
2n

∑
x(−1)x

⊤Ax|x⟩, perform n CNOTs between the first copy and second copy and measure the
second register to obtain a uniformly random y ∈ Fn2 . The resulting quantum state can be written as

1√
2n

∑
x

(−1)x
⊤Ax+(x+y)⊤A(x+y)|x⟩ = (−1)y

⊤Ay

√
2n

∑
x

(−1)x
⊤(A+A⊤)·y|x⟩.

The learning algorithm then applies the n-qubit Hadamard transform and measures to obtain bit string
(A+A⊤) · y. Repeating this process O(n log n) many times, one can learn n linearly independent
constraints about A. Using Gaussian elimination, this procedure allows the learner to learn the
off-diagonal elements of A. In order to learn the diagonal elements of A a learning algorithm
applies the operation |x⟩ → (−1)xixj |x⟩ if Aij = 1 for every i ̸= j. The resulting quantum state is∑
x(−1)

∑
i xiAii |x⟩ and the learner can apply the n-qubit Hadamard transform to learn the diagonal

elements of A.

Fact 3. For distributions p, q : X → [0, 1], define |ψp⟩ =
∑
x∈X

√
p(x)|x⟩ and |ψq⟩ similarly. Then

dTr(|ψp⟩, |ψq⟩)2 ≤ 2dTV(p, q).

Proof. In order to see the fact, first note that we have ⟨ψp|ψq⟩ =
∑
x

√
p(x)q(x) and

dTr(|ψp⟩, |ψq⟩)2 = 1− ⟨ψp|ψq⟩2 = 1−
(∑

x

√
p(x)q(x)

)2
.

By the definition of the Hellinger distance, we have that dH(p, q)2 = 1 −
∑
x

√
p(x)q(x), so we

have

dTr(|ψp⟩, |ψq⟩)2 = 1−
(
1− dH(p, q)2

)2
= 2dH(p, q)2 − dH(p, q)4 ≤ 2dH(p, q)2 ≤ 2dTV(p, q),

where the final inequality used is [2, Proposition 1].
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Fact 4 (Discriminating coherent encodings of distributions). Consider |ψp⟩ and |ψq⟩ for some
distributions p and q over X as defined above. Let ϕ be a function from X to [−1, 1] We have:

• maxϕ:X→[−1,1] |
∑
x(p(x)− q(x))ϕ(x)| = 2dTV(p, q).

Similarly, let |ψ⟩ and |ϕ⟩ be arbitrary quantum states and M an obervable on their Hilbert space.
We have:

• maxM,∥M∥≤1 |Tr(M(ψ − ϕ))| = 2dTr(ψ, ϕ).

Proof. 1. Choose ϕ = δ(p(x) > q(x))− δ(q(x) ≤ p(x)), where δ(·) is an indicator function from
boolean clauses to {1, 0} which evaluates to 1 if its argument evaluates to true and evaluates to 0 if
its argument is false.∣∣∣∣∣∑

x∈X
(p(x)− q(x))ϕ(x)

∣∣∣∣∣ = ∑
x∈X;p(x)>q(x)

(p(x)− q(x)) +
∑

x∈X;p(x)≤q(x)

(q(x)− p(x))

=
∑
x∈X

|p(x)− q(x)| = 2dTV(p, q).

(1)

2. See for example [3, Lemma 9.1.1]. The operator ψ − ϕ is Hermitian and can be diagonalized.
Let Π+ be the projector onto the positive part of its spectrum and Π− be the projector onto the
negative part of its spectrum, so that Π− +Π+ = I. Notice that:

2dTr(ψ, ϕ) = Tr (Π+(ψ − ϕ))− Tr (Π−(ψ − ϕ)) = 2Tr (Π+(ψ − ϕ)) . (2)

Fact 5. For distinct A,B ∈ Fn×n2 , we have that Prx∼{0,1}n

[
x⊤Ax ̸= x⊤Bx

]
≥ 1/4.

Proof. Prx∼{0,1}n

[
x⊤Ax ̸= x⊤Bx

]
= Prx∼{0,1}n

[
x⊤Ax ⊕ x⊤Bx ̸= 0

]
≥ 1

4 , where the
inequality follows from the Schwartz-Zippel lemma for Boolean functions [4].

1.4 Learning models

In this section we first describe the learning models we will be concerned with in this paper.

Classical PAC learning. Valiant [5] introduced the classical Probably Approximately Correct
(PAC) learning model. In this model, a concept class C ⊆ {c : {0, 1}n → {0, 1}} is a collection of
Boolean functions. The learning algorithm A obtains labelled examples (x, c(x)) where x ∈ {0, 1}n
is uniformly random and c ∈ C is the unknown target function.1 The goal of an (ε, δ)-learning
algorithm A is the following: for every c ∈ C, given labelled examples {(xi, c(xi))}, with probability
≥ 1− δ (over the randomness of the labelled examples and the internal randomness of the algorithm),
output a hypothesis h : {0, 1}n → {0, 1} such that Prx[c(x) = h(x)] ≥ 1 − ε. The (ε, δ)-sample
complexity of a learning algorithm A is the maximal number of labelled examples used, maximized
over all c ∈ C. The (ε, δ)-sample complexity of learning C is the minimal sample complexity over all
(ε, δ)-learners for C. Similarly the (ε, δ)-time complexity of learning C is the total number of time
steps used by an optimal (ε, δ)-learner for C.

Quantum PAC learning. The quantum PAC (QPAC) model was introduced by Bshouty and
Jackson [6] wherein, they allowed the learner access to quantum examples of the form

|ψc⟩ =
1√
2n

∑
x∈{0,1}n

|x, c(x)⟩.

Note that measuring |ψc⟩ in the computational basis produces a classical labelled example, so
quantum examples are at least stronger then classical examples. Understanding their strength and

1More generally in PAC learning, there is an unknown distribution D : {0, 1}n → [0, 1] from which x
is drawn. Throughout this paper we will be concerned with uniform-distribution PAC learning, i.e., D is the
uniform distribution, so we describe the learning model for the uniform distribution for simplicity.
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weakness has been looked at by several works (we refer an interested reader to the survey [7]). Like
the classical complexities, one can similarly define the (ε, δ)-sample and time complexity for learning
C as the quantum sample complexity (i.e., number of quantum examples |ψc⟩) used and quantum
time complexity (i.e., number of quantum gates used in the algorithm) of an optimal (ε, δ)-learner
for C.

Quantum PAC learning with classification noise. Classically, the η-classification noise model
is defined as follows: for an unknown c ∈ C, a learning algorithm is given uniformly random
x ∈ {0, 1}n and b ∈ {0, 1} where, b = c(x) with probability 1 − η and b = c(x) with probability
η. In the same work, Bshouty and Jackson [6] defined quantum learning with classification noise,
wherein a learning algorithm is given access to

|ψηc ⟩ =
1√
2n

∑
x∈{0,1}n

|x⟩ ⊗ (
√

1− η|c(x)⟩+√
η|c(x)⟩).

Such quantum examples have been investigated in prior works [6, 8, 9].

Learning with entangled and separable measurements. Observe that in the usual definition
of QPAC above, a learning algorithm is given access to |ψc⟩⊗T and needs to learn the unknown
c ∈ C. In this paper we make the distinction between the case where the learner uses entangled
measurements, i.e., perform an arbitrary operation on copies of |ψc⟩ versus the setting where the
learner uses separable measurements, i.e., performs a single-copy measurement on every copy of |ψc⟩
in the learning algorithm. When discussing learning with entangled and separable measurements, in
this paper we will be concerned with exact learning, i.e., with probability ≥ 2/3, the learner needs to
identify c. We denote EntExact as the sample complexity of learning with entangled measurements
and SepExact as the sample complexity of learning with separable measurements.

Quantum statistical query learning. We now discuss the QSQ model, following the definitions
given in [10]. We first discuss the classical statistical query (SQ) model for learning an unknown
concept c ∈ C. Classically, the learner has access to a statistical query oracle Stat, that on input a
function ϕ : {0, 1}n+1 → [−1, 1] and a tolerance τ and returns a number α satisfying∣∣∣α− E

x∼{0,1}n
[ϕ(x, c(x))]

∣∣∣ ≤ τ .

A classical SQ algorithm can adaptively make a sequence of Stat queries {(ϕi, τi)}i and based
on the responses {αi} outputs a hypothesis h : {0, 1}n → {0, 1}. The goal of the classical SQ
algorithm is to, with probability at least 1− δ, output an h such that Prx[h(x) = c(x)] ≥ 1− ε. The
query complexity of a classical SQ algorithm is the number of Stat queries the algorithm makes
and the time complexity is the total number of gates used by the algorithm and in the description of
the hypothesis.

A natural way to extend the learning model is to allow the algorithm quantum statistical queries.
In the classical case, one can think of the input ϕ to the Stat oracle as a specification of a statistic
about the distribution of examples (x, c(x)), and the output of the Stat oracle is an estimation of ϕ:
one can imagine that the oracle receives i.i.d. labeled examples (x, c(x)) and empirically computes
an estimate of ϕ, which is then forwarded to the learning algorithm. In the quantum setting, one can
imagine the analogous situation where the oracle receives copies of the quantum example state |ψc⟩,
and performs a measurement indicated by the observable M on each copy and outputs an estimate
of ⟨ψc|M |ψc⟩.

Generally, in order to learn an unknown quantum state ρ in the QSQ model the learner makes
Qstat queries taking as input an observable M and tolerance τ and recieves a τ -approximation of
Tr[Mρ], i.e.,

Qstat : (M, τ) 7→ α ∈ [Tr(Mρ) + τ,Tr(Mρ)− τ ].

In the case of quantum example states, ρ = |ψc⟩⟨ψc|, M is an operator on C2n+1

, and the Qstat
oracle functions as

Qstat : (M, τ) 7→ α ∈ [⟨ψc|M |ψc⟩+ τ, ψc|M |ψc⟩ − τ ].
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Like in the classical SQ model, the goal of the QSQ learner is still to output a hypothesis
h : {0, 1}n → {0, 1} that satisfies Prx∼{0,1}n [h(x) = c(x)] ≥ 1 − ε2. We emphasize that the
learning algorithm is still a classical randomized algorithm and only receives statistical estimates of
measurements on quantum examples. The quantum query complexity of the QSQ algorithm is the
number of Qstat queries the algorithm makes and the quantum time complexity is the total number of
gates used by the algorithm and in the description of the hypothesis. There are three ways to motivate
the QSQ model

1. Clearly any binary measurement {M, I −M} can be simulated with a Qstat query to M or
I −M . In the opposite direction, any observable M such that ∥M∥ ≤ 1 can be converted
into the POVM { I+M2 , I−M2 }. Thus, Qstat queries as defined above and binary POVMs
are essentially the same model. From a theoretical perspective, performing 2-outcome
measurements are weaker (and easier to implement) than arbitrary separable measurements,
which is in turn weaker (and easier to implement) than entangled measurements, so it is
useful to understand the power of expectation values in quantum learning theory and the
QSQ captures this question in a theoretical framework.

2. One could envision a situation where quantum states ρ are prepared in the “cloud" and the
classical learning algorithm needs to only interact with the cloud classically. An efficient
QSQ model allows a quantum advantage in learning in this framework.

3. The QSQ model naturally extends recent works [11–13] wherein they consider the limita-
tions of classical SQ algorithms for learning a quantum state ψU = U |0n⟩, i.e. they consider
the model where M is diagonal specifiable as M =

∑
x ϕ(x)|x⟩⟨x|, then

⟨ψU |M |ψU ⟩ =
∑
x

ϕ(x)⟨x|U |0n⟩2 =
∑
x

ϕ(x)PU (x) = Ex∼PU
[ϕ(x)],

which is precisely αϕ they assume access to, in order to learn the unknown U

Throughout this paper, for notational convenience we use the following notation: (i) for an n-bit
problem, when we do not specify a tolerance for the Qstat oracle, we implicitly assume that the
tolerance is τ = 1/poly(n), (ii) we always make Qstat queries with an operator M that satisfies
∥M∥ ≤ 1, so we do not explicitly state this when discussing Qstat queries, (iii) We say a n-bit
concept class C is QSQ learnable if C can be learned using poly(n) many Qstat queries, each with
tolerance τ = 1/ poly(n) and observable M which is implementable using poly(n) many gates.

2 Relating separable and entangled measurements

Before proving our main theorem, we will use the following proposition, which was proven earlier
in [14] in the context of learning quantum channels.
Proposition 1. Let C ⊆ {c : {0, 1}n → {0, 1}} and ε > 0. Given

T = O
( log |C|+ log 1/δ

ε

)
(3)

copies of |ψc⟩ = 1√
2n

∑
x |x, c(x)⟩ for an unknown c ∈ C, there exists an algorithm that uses

separable measurements and with probability ≥ 1− δ, outputs a c′ ∈ C such that Prx∼{0,1}n [c(x) =
c′(x)] ≥ 1− ε.

Note that their proposition deals with general states and T = O
(

log |C|+log 1/δ
ε2

)
. For our purposes

the 1
ε2 is improved to 1

ε by the fact that dTr(ρf , ρh) = ε implies that Prx∼{0,1}n [f(x) ̸= h(x)] =

Θ(
√
ε).

Theorem 3. Let C be a concept class C ⊆ {c : {0, 1}n → {0, 1}} and

ηm = min
c,c′∈C

Pr
x∼{0,1}

[c(x) ̸= c′(x)], ηa = E
c,c′∈C

Pr
x∼{0,1}

[c(x) ̸= c′(x)].

2Generally we relax this assumption and implicitly assume that the learner is outputting a quantum state that
is close in trace distance to the unknown state. This is a more general model and clearly lower bounds then carry
over to algorithms that output classical functions as well.
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Then we have that

SepExact(C) ≤ O
(
n · EntExact(C) ·min

{
ηa/ηm , EntExact(C)

})
.

Furthermore, there exists C for which this inequality is tight.

Proof. First observe that

SepExact ≤ 2/ηm · log |C|. (4)

This is easy to see: fix ε = ηm/2 in Proposition 1 and consider a separable approximate
algorithm that, given copies of |ψc⟩, an approximate learning algorithm outputs c′ such that
Prx∼{0,1}n [c(x) ̸= c′(x)] ≤ ε, then c = c′ by definition of ηm, hence this algorithm is a sepa-
rable exact learning algorithm.

Next, we prove two lower bounds on EntExact:

EntExact ≥ max
{ 1

ηm
,
log |C|
nηa

}
(5)

To see the first lower bound in Eq. (5), observe the following: consider the c, c′ ∈ C for which
Prx∼{0,1}[c(x) ̸= c′(x)] = ηm, then every exact learning algorithm needs to distinguish between
c, c′. Since ⟨ψc|ψc′⟩ = 1 − ηm, by Fact 1, this implies a lower bound of T = Ω(1/ηm) many
quantum examples to distinguish between c, c′ with bias Ω(1).

To see the second lower bound in Eq. (5), first note that 1− ηa = Ec,c′∈CEx∼{0,1}[c(x) = c′(x)].
Next, observe that

EntExact ≥ log |C|
nηa

. (6)

The proof of this is similar to the information-theoretic proof in [8]. We prove the lower bound for
C using a three-step information-theoretic technique. Let A be a random variable that is uniformly
distributed over C. Suppose A = cV , and let B = B1 . . .BT be T copies of the quantum example

|ψc⟩ =
1√
2n

∑
x∈{0,1}n

|x, c(x)⟩

for c ∈ C. The random variable B is a function of the random variable A. The following upper and
lower bounds on I(A : B) are similar to [8, Theorem 12] and we omit the details of the first two
steps here.

1. I(A : B) ≥ Ω(log |C|) because B allows one to recover A with high probability.

2. I(A : B) ≤ T · I(A : B1) using a chain rule for mutual information.

3. I(A : B1) ≤ O(n · ηa).
Proof (of 3). Since AB is a classical-quantum state, we have

I(A : B1) = S(A) + S(B1)− S(AB1) = S(B1),

where the first equality is by definition and the second equality uses S(A) = log |C| since
A is uniformly distributed over C, and S(AB1) = log |C| since the matrix

σ =
1

|C|
∑
c∈C

|c⟩⟨c| ⊗ |ψc⟩⟨ψc|

is block-diagonal with |C| rank-1 blocks on the diagonal. It thus suffices to bound the
entropy of the (vector of singular values of the) reduced state of B1, which is

ρ =
1

|C|
∑
c∈C

|ψc⟩⟨ψc|.
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Let σ0 ≥ σ1 ≥ · · · ≥ σ2n+1−1 ≥ 0 be the singular values of ρ. Since ρ is a density matrix,
these form a probability distribution. Now observe that σ0 ≥ 1− ηa: consider the vector
u = 1

|C|
∑
c′∈C |ψc′⟩ and observe that

u⊤ρu =
1

|C|3
∑

c,c′,c′′∈C
⟨ψc|ψc′⟩⟨ψc|ψc′′⟩

= Ec
[
Ec′ [⟨ψc|ψc′⟩]

]
·
[
Ec′′ [⟨ψc|ψc′′⟩]

]
≥
(

E
c,c′

[⟨ψc|ψc′⟩]
)
·
(

E
c,c′′

[⟨ψc|ψc′′⟩]
)
=
(

E
c,c′∈C

Pr
x∼{0,1}

[c(x) = c′(x)]
)2 ≥ 1− 2ηa,

where the first inequality is by Chebyshev’s sum inequality (since all the inner products
are non-negative) and the second inequality follows from the definition of ηa. Hence we
have that σ0 = maxu{u⊤ρu/u⊤u} ≥ 1 − 2ηa (where we used that ∥u∥2 ≤ 1). Let
N ∈ {0, 1, . . . , 2n+1−1} be a random variable with probabilities σ0, σ1, . . . , σ2n+1−1, and
Z an indicator for the event “N ̸= 0.” Note that Z = 0 with probability σ0 ≥ 1− 2ηa, and
H(N | Z = 0) = 0. By a similar argument as in [8, Theorem 15], we have

S(ρ) = H(N) = H(N,Z) = H(Z) +H(N | Z)
= H(σ0) + σ0 ·H(N | Z = 0) + (1− σ0) ·H(N | Z = 1)

≤ H(ηa) + ηa(n+ 1)

≤ O(ηa(n+ log(1/ηa))

using H(α) ≤ O(α log(1/α)).

Combining these three steps implies T = Ω(log |C|/(nηa)).
Now putting the relations between EntExact,SepExact together we get

SepExact ≤ n · ηa/ηm · EntExact ≤ n · EntExact2,

hence we have the desired upper bound as in the theorem statement3

SepExact ≤ O
(
n · EntExact ·min

{
ηa/ηm,EntExact

})
.

To show that this inequality is optimal, observe that: if C is the class of degree-2 phase states, i.e.,
C = {fA(x) = x⊤Ax : A ∈ {0, 1}n×n}, then ηm = ηa = Θ(1) by Fact 5. We saw in Fact 2 that
this class can be learned using Θ(n) entangled measurements, so EntExact = Θ(n) and the above
upper bound implies SepExact = O(n2), which was shown to be optimal in [15].

3 Lower bounds for Quantum statistical query learning

Here we prove our main theorem which provides combinatorial quantities one can use to lower bound
the QSQ complexity of learning. The techniques and parameters used in this section are inspired by
several seminal classical works on classical SQ learning [16–19]. We first define statistical decision
problems, then define the quantum statistical dimension which lower bounds the decision problem
complexity and finally discuss the variance and average correlation bound to lower bound the QSD
dimension. For notational convenience we discuss some notation we use in this section: throughout
this section, we will let C be a collection of n-qubit quantum states. We let QSQ(C) be the complexity
of learning C using Qstat queries, QSD is the complexity of the decision problem, QQC is the
quantum statistical dimension, QAC is the average correlation bound.

3.1 Learning is as hard as deciding

Definition 1 (Quantum (many-vs-one) Decision Problem). Let τ ∈ [0, 1] and let σ ̸∈ C. A quantum
statistical decision problem for (C, σ) is defined as: for an unknown state ρ, given Qstat(τ) access
to ρ decide if ρ ∈ C or ρ = σ. Let QQCτ (C, σ) be the number of Qstat(τ) queries made by the best
algorithm for the decision problem that succeeds with probability at least 1− δ.

3We state the theorem as below, since it is apriori unclear as to why 1/ηm is a lower bound on EntExact.

7



We now prove our first lemma that QQC is actually a lower bound on QSQ learning the concept
class C. We remark that a similar lemma appears for classical SQ in [13], we want to thank the
authors for sharing their manuscript during the completion of our work.
Lemma 1 (Learning is at least as hard as deciding). Let ε ≥ τ > 0 and σ /∈ C be such that
minρ∈C [dTr(ρ, σ)] > 2(τ + ε). Let QSQε,δτ (C) be the number of Qstat(τ) queries made by a QSQ
algorithm that on input ρ outputs π, such that dTr(π, ρ) ≤ ε with probability ≥ 1− δ. Then

QSQε,δτ (C) ≥ QQCτ (C, σ)− 1.

Proof. We show this by solving the statistical quantum decision problem by querying a QSQε,δτ (C)
learning algorithm A. For ρ ∈ C, A outputs, with probability ≥ 1 − δ, a classical description of
quantum state π such that dTr(ρ, π) ≤ ε. Note that for σ /∈ C, the output of A is not well-defined and
we assume that A can output anything.

Let the output of A be π. If π is not a valid quantum state, return “ρ = σ”. We then check if
minρ∈C dTr(π, ρ) > ε. If yes, return “ρ = σ”. At this point, we know the classical description of
both π and σ and also know that there exists some ν ∈ C, such that dTr(π, ν) ≤ ε. We can find such
ν that is closest to π, as well as an operator Π+ which is a projector onto the positive part of the
spectrum of the hermitian operator ν − σ. Finding this may be computationally difficult, but does
not require additional Qstat(τ) queries. We then query Qstat(τ) with Π+ to obtain a response R. If
|R− Tr(Π+σ)| ≤ τ , return “ρ = σ”. Return “ρ ∈ C” otherwise.

The algorithm outputs “ρ = σ" on all inputs ρ = σ with certainty. On input ρ ∈ C, the algorithm
A returns, with probability at least (1− δ) a description of a state π that is ε close to the input. Our
algorithm then uses this information to find a state ν ∈ C, such that dTr(π, ν) ≤ ε. We have from
reverse triangle inequality that:

|Tr(Π+(ρ− σ))| ≥ | |Tr(Π+(σ − ν))|︸ ︷︷ ︸
dTr(σ,ν)

− |Tr(Π+(ν − ρ))|︸ ︷︷ ︸
<2ε

| ≥ dTr(ν, σ)− 2ε > 2τ, (7)

where we used that |Tr(Π+(ν − ρ))| ≤ dTr(ν, ρ) ≤ dTr(ν, π) + dTr(ρ, π) < 2ε.4 It follows that:

|R− Tr(Π+σ)| ≥ |Tr(Π+(ρ− σ))| − |R− Tr(Π+ρ)|︸ ︷︷ ︸
≤τ

> τ, (8)

The algorithm outputs “ρ ∈ C” with probability at least (1− δ), as expected.

For completeness, we also include a proof of a lower bound on the learning complexity by a
decision problem hidden completely (that is, σ ∈ C) inside of C.
Lemma 2 (Learning is as hard as deciding, alternative take). Let D ⊂ C and let σ ∈ C, σ /∈ D,
dTr(D, σ) > ε and ε ≥ τ > 0. Then:

QSQε,δτ (C) ≥ QQCτ (D, σ). (9)

Proof. Let A be a statistical ε, δ learning algorithm for C that uses Qstat(τ) queries. On input
ρ ∈ C, the algorithm A outputs (with probability at least 1− δ) a state ν, such that dTr(ν, ρ) ≤ ε and
uses QSQε,δτ (C) many queries. Output “ρ = σ” if dTr(ν, σ) < ε, otherwise output “ρ ∈ D”. The
algorithm clearly succeeds with probability at least 1− δ.

3.2 Quantum statistical dimension to bound the decision problem

With this lemma, in order to lower bound QSQ learning it suffices to lower bound QQC, which we
do via the quantum statistical dimension that we define now.
Definition 2 (Quantum Statistical Dimension). Let τ ∈ [0, 1] and µ be a distribution over a set of
n-qubit quantum states C and σ /∈ C be an n-qubit state. Define the maximum covered fraction:

κτ -frac(µ, σ) = max
M :∥M∥≤1

{ Pr
ρ∼µ

[|Tr(M(ρ− σ))| > τ ]}. (10)

4Note that this inequality is maximized if ν ̸= ρ. This can happen if the input state ρ ∈ C is less than 2ε far
from another state ρ′ ∈ C and the learning algorithm outputs π that is closer to ρ′ ∈ C.
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The quantum statistical dimension is:

QSDτ (C, σ)) = sup
µ

[κτ -frac(µ, σ)]−1
, (11)

where the supremum is over distibutions over C.

This definition is essentially the same as Feldman’s definition of randomized statistical dimension
in [18], but uses the difference between the expectation values of quantum observables. Sections 4, 5
and 6 of our work show that this has many nontrivial and interesting consquences. The following
lemma, following similarly from Feldman’s work [18, Lemma 3.8], will be convenient later:
Lemma 3. Let τ > 0, C be a set of quantum states and σ /∈ C be another quantum state. Let d be the
smallest integer such that: there exists a distribution ν over Qstat queries M satisfying

∀ ρ ∈ C : Pr
M∼ν

[|Tr(M(ρ− σ))| > τ ] ≥ 1/d,

then d = QSDτ (C, σ).

Proof. See also [18, Lemma 3.8.]. Suppose that the Qstat tolerance is fixed to τ and let M be the
set of all valid Qstat queries. Define G : C ×M → {0, 1} as G(ρ,M) = δ[|Tr(M(ρ− σ))| > τ ],
where δ[·] is the indicator function. Let µ be distribution over C and let ν be distribution over M.
Consider the bilinear function:

F (µ, ν) =

∫
M
dν(M)

∑
ρ∈C

µ(ρ)G(M,ρ) = Prρ∼µPrM∼ν [|Tr(M(ρ− σ))| > τ ]. (12)

It follows by von Neumann’s minimax theorem that:

min
µ

max
ν

F (µ, ν) = max
ν

min
µ
F (µ, ν) =: 1/d, (13)

where the optimization is over possible distributions µ over C and distributions ν over M. For a
distribution µ over C, there exists an optimal distinguishing measurement M ∈ M, from which:

min
µ

max
ν

F (µ, ν) = min
µ

max
M∈M

Prρ∼µ[|Tr(M(ρ− σ))| > τ ]. (14)

Observe that:

d = sup
µ
( max
M∈M

Prρ∼µ[|Tr(M(ρ− σ))| > τ ])−1, (15)

which is the definition of QSDτ by Eq. 11. Similarly, we have that:

d = (max
ν

min
µ
F (µ, ν))−1 = inf

ν
(min
ρ∈C

Prρ∼µ[|Tr(M(ρ− σ))| > τ ])−1. (16)

For a given distribution ν over M, it then holds for all ρ ∈ C that PrM∼ν [|Tr(M(ρ−σ))| > τ ] ≥ 1/d.
This is the definition in Lemma 3.

We now show that the QQC complexity is lower bounded by QSD.
Lemma 4. For every σ /∈ C and τ ∈ [0, 1], we have that

QQCτ (C, σ) ≥ (1− 2δ)QSDτ (C, σ). (17)

Proof. Let A be the best algorithm that solves (C, σ) with probability at least 1− δ using q Qstat(τ)
queries M1, . . .Mq chosen according to the internal randomness of A. Suppose, for contradiction,
that the response to every such query was Tr(Miσ). Let pρ = PrA [∃i ∈ [q]||Tr(Mi(ρ− σ)| > τ ]
be the probability that ρ ∈ C can be distinguished from σ by at least one of queries. If pρ ≤ 1− 2δ,
then with probability 2δ, the responses Tr(Miσ) are valid Qstat(τ) responses. By correctness, on
input ρ = σ, the algorithm can output “ρ ∈ C” with probability at most δ. This however means that
on input ρ ∈ C, the algorithm can output “ρ ∈ C” with probability at most δ (since the responses did
not change), which contradicts the algorithm correctness. It follows that pρ ≥ 1− 2δ for every ρ ∈ C
and with probability 1 − 2δ, there exists a Mi that distinguishes ρ and σ. Running A and picking
one of its queries uniformly randomly then gives PrM [|Tr(M(ρ− σ)| > τ ] ≥ 1−2δ

q . Lemma 3 then
implies that q ≥ (1− 2δ)QSDτ (C, σ).
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3.3 Variance and average correlation lower bound quantum statistical dimension

We now present our main lower bound theorem, wherein we show that there are two combinatorial
parameters that can be used to lower bound QSD, which in turn lower bounds sample complexity
in the QSQ model. Throughout the paper we will use these two two parameters to prove our QSQ
lower bounds.

Theorem 4 (Lower bounds). Let τ > 0, C be the class of n-qubit states. Then

1. Variance bound: Let µ be a distribution over C, such that Eρ∼µ[ρ] /∈ C. Then:

QSDτ (C,Eρ∼µ[ρ]) ≥ τ2 · min
M,∥M∥≤1

(
Var
ρ∼µ

[Tr[ρM ]]
)−1

, (18)

where

Var
ρ∼µ

[Tr(ρM)] = E
ρ∼µ

[Tr(ρM)2]−
(

E
ρ∼µ

[Tr(ρM)]
)2
.

2. Average correlation: For a full-rank quantum state σ /∈ C, define ρ̂ := (ρσ−1 − I) and:

γ(C, σ) = 1

|C|2
∑

ρ1,ρ2∈C
|Tr(ρ̂1ρ̂2σ)|, κγτ -frac(C0, σ) := max

C′⊆C0

{
|C′|
|C0|

: γ(C′, σ) > τ

}
.

(19)

Let QACτ (C, σ) = supC0⊆C(κ
γ
τ -frac(C0, σ))−1. Then, QSDτ (C, σ) ≥ QACτ2(C, σ).

Proof. 1. We first prove the Let µ be a distribution over C and M be a hermitian operator such that
∥M∥ ≤ 1. By Chebyshev’s inequality, we have that:

Pr
ρ∼µ

[
|Tr(ρM)− E

ρ∼µ
[Tr(ρM)]| ≥ τ

]
≤ Var
ρ∼µ

[Tr(ρM)] · τ−2, (20)

where

Var
ρ∼µ

[Tr(ρM)] = E
ρ∼µ

[Tr(ρM)2]−
(

E
ρ∼µ

[Tr(ρM)]
)2
.

Let ν be a distribution over the queries M that are made by a randomized algorithm for the
many-one distinguishing problem (C,Eρ∼C [ρ]). Lemma 3 then implies for d = QSDτ (C,Eρ∼C [ρ])
that:5

1

d
≤ Pr
M∼ν

Pr
ρ∼µ

[|Tr(ρM)− Eρ∼µ[Tr(ρM)]| ≥ τ ] ≤ Pr
M∼ν

Varρ∼µ[Tr(ρM)]

τ2
. (21)

Since this inequality holds for any such distribution ν, it holds for every query M . Hence,

QSDτ (C, σ) ≥ min
M,∥M∥≤1

τ2

Varρ∼µ[Tr[ρM ]]
. (22)

2. We now prove the average correlation bound. Let C′ be a set of quantum states. Let ρ̂ := (ρσ−1−I)
and define:

γ(C′, σ) =
1

|C′|2
∑

ρi,ρj∈C′

|Tr[ρ̂iρ̂jσ]| (23)

We will first show that for any such C′ and any observable M, ∥M∥ ≤ 1, we have that:∑
ρ∈C′

|Tr(M(ρ− σ)|

2

≤ |C′|2γ(C′, σ). (24)

5Note that if Eρ∼C [ρ] ∈ C, then d → ∞, since the average is not distinguishable from each state in C by any
measurement. This edge case happens for example for |C| = 1.
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To that end, observe that:∑
ρ∈C′

|Tr(M(ρ− σ)|

2

=

∑
ρ∈C′

|Tr(Mρ̂σ)|

2

=

Tr
√

σM
∑
ρ∈C′

sign(Tr(Mρ̂σ)ρ̂
√
σ

2

≤ Tr(σM2)Tr


∑
ρ∈C′

sign(Tr(Mρ̂σ)ρ̂

2

σ

 ,

(25)
where the above follows from Cauchy-Schwartz inequality. Since ∥M∥ ≤ 1, we have that
Tr(σM2) ≤ 1 and also that:

Tr


∑
ρ∈C′

sign(Tr(Mρ̂σ)ρ̂

2

σ

 =
∑

ρ1,ρ2∈C′

sign(Tr(Mρ̂1σ))sign(Tr(Mρ̂2σ))Tr [ρ̂1ρ̂2σ]

≤ |C′|2γ(C′, σ).

(26)

We show the claim by upper-bounding the κτ -frac(µ, σ) for µ uniform over some subset C0 ⊆ C
by κγτ -frac(C0, σ). Recall that for a distribution µ over quantum states, we have that:

κτ (µ, σ) = max
M,∥M∥≤1

{
Pr
ρ∼µ

[|Tr(M(ρ− σ)| > τ ]

}
(27)

For a uniform distribution µC0
over C0 ⊆ C, this gives:

κτ (µC0 , σ) = max
M,∥M∥≤1

1

|C0|
∑
ρ∈C0

δ [|Tr(M(ρ− σ)| > τ ] , (28)

where δ[x] = 1 if the clause x is true, and 0 otherwise. From here onwards, fix M to be the
operator that maximizes the above expression. Let C′ ⊆ C0 to be the largest subset of C0, such
that |Tr(M(ρ − σ))| > τ for all ρ ∈ C′. Then

∑
ρ∈C′ |Tr(M(ρ − σ)| > |C′|τ . Along with∑

ρ∈C′ δ[|Tr(M(ρ− σ)| > τ ] = |C′| this implies that:

∑
ρ∈C0

δ [|Tr(M(ρ− σ)| > τ ] ≤ max
C′⊆C0

|C′|δ

∑
ρ∈C′

|Tr(Mρ− σ)| > |C′|τ

 . (29)

Combining this with Eq. (28), this gives:

κτ (µC0 , σ) ≤ max
C′⊆C0

 |C′|
|C0|

∣∣∣∣∣ ∑
ρ∈C′

|Tr(M(ρ− σ)| > |C′|τ

 . (30)

Using
(∑

ρ∈C′ |Tr(M(ρ− σ)|
)2

≤ |C′|2γ(C′, σ) implies

κτ−frac(µC0
, σ) ≤ min

C′⊆C
κγτ2−frac(C′, σ). (31)

Hence we have that
QSDτ (C, σ) = sup

µ
(κτ (µ, σ)

−1) ≥ (κτ (µC0 , σ)
−1) ≥ max

C′⊆C
(κγτ2−frac(C′, σ)−1) = QACτ2(C, σ).

This proves the lower bounds in the theorem statement.

In many of the bounds to be proved in the following sections we consider converting a learning
problem to a decision problem C versus σ where minρ∈C dTr(ρ, σ) ≥ ζ, where ζ is some constant.
For large enough τ lemma 1 may no longer hold. Fixing an approximation error ε, lemma 1 then
holds if ζ − 2ε > 2τ . Note that the left hand side is some constant and we implicitly assume this
upper bound on τ in the following proofs. This is without loss of generality: the existence of a QSQ
algorithm with tolerance τ greater than or equal to ζ − 2ε then further implies that one exists for all
tolerances of smaller value. That is, smaller tolerance cannot increase the query/time complexity. As
many of the results are asymptotics, requiring that τ be at most some constant does not change the
results where τ appears in the complexity.
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4 Separations between statistical and entangled measurements

In this section we prove our main theorem separating noisy entangled QPAC learning and QSQ
learning, and next show that for a “small" circuit one can witness such an exponential separation.

4.1 Separation between QSQ and QPAC with classification noise

In this section we prove our main theorem. Consider the class of function states

C =
{
|ψA⟩ =

1√
2n

∑
x∈{0,1}n

|x, x⊤Ax (mod 2)⟩ : A ∈ Fn×n2

}
.

The sample complexity of learning this class in the following models is given as follows

1. Entangled measurements: Θ(n)

2. Separable measurements: Θ(n2)

3. Statistical query learning: Ω(τ2 · 2n/2) making Qstat(τ) queries.
4. η-random classification noise: O( n

(1−2η)2 ). The algorithm runs in time O(n3/(1− 2η)2).

Points (1), (2) above were proved in [15] and we do not prove it here. In the following two
theorems we prove points (3), (4) above.
Theorem 5. The concept class

C =
{
|ψA⟩ =

1√
2n

∑
x∈{0,1}n

|x, x⊤Ax (mod 2)⟩ : A ∈ Fn×n2

}
requires 2Ω(n) many Qstat(1/ poly(n)) to learn below error 0.05 in trace distance.

Proof. We prove the hardness for algorithms using Qstat queries using the variance lower bounding
technique in Theorem 4. In particular, we show an exponentially small upper bound for the variance
for any observable: for every n+ 1 qubit operator M such that ∥M∥ ≤ 1 we have that

VarA(Tr[MψA]) = 2−Ω(n), (32)

where we let ψA = |ψA⟩⟨ψA| for notational simplicity. To apply our results linking learning and
decision problems we note that

dTr(ψA,EB [ρB ]) ≥ 1−
√

EB [|⟨ψA|ψB⟩]|2 ≥ 1−
√

(2n(n+1)/2 − 1) · 9/16 + 1

2n(n+1)/2
≥ 1−

√
17/32 ,

where the first inequality follows from the lower bound on trace distance by fidelity [20] and the
second by fact 5 and that ⟨ψA|ψB⟩ = Prx[fA(x) = fB(x)]. Fix ε = 0.05. Then lemma 1 holds
if τ < 0.085, which we assume without loss of generality as previously discussed6. Along with
Theorem 4, we obtain our lower bound on the QSQ complexity of learning C. It remains to establish
Eq. (32). To this end, we need to understand

VarA(Tr[MψA]) = EA[Tr[MψA]
2]− (EA[Tr[MψA]])

2 (33)

To do so, we decompose ψA as follows. For every f : {0, 1}n → {0, 1} let |ψf ⟩ = 1√
2n

∑
x |x, f(x)⟩

and |ϕf ⟩ =
∑
x(−1)f(x)|x⟩. For convenience we let |u⟩ = 1√

2n

∑
x |x⟩. Then we see that

(I⊗H)ψA(I⊗H) (34)

=
1

2

∑
x,y,a,b

(−1)a·f(x)+b·f(y)|x, a⟩⟨y, b| (35)

=
1

2

(
|ϕA⟩⟨ϕA| ⊗ |1⟩⟨1| − 1

2
|ϕA⟩⟨u| ⊗ |1⟩⟨0| − 1

2
|u⟩⟨ϕA| ⊗ |0⟩⟨1|+ 1

2
|u⟩⟨u| ⊗ |0⟩⟨0|

)
(36)

6The choice of ε = 0.05 is arbitrarily and done for readability. A similar result holds for any ε <

1/2(1−
√

17/32) by the same argument.
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hence we have that

|ψA⟩⟨ψA| =
1

2

(
|ϕA⟩⟨ϕA| ⊗ |−⟩⟨−|︸ ︷︷ ︸

ρA1

− |ϕA⟩⟨u| ⊗ |−⟩⟨+|︸ ︷︷ ︸
ρA2

− |u⟩⟨ϕA| ⊗ |+⟩⟨−|︸ ︷︷ ︸
ρA3

+ |u⟩⟨u| ⊗ |+⟩⟨+|︸ ︷︷ ︸
ρA4

)
.

We now note that any n+1 qubit observable M can be decomposed as M =
∑
a,bMa,b⊗ |a⟩⟨b|

where now a, b ∈ {+,−}. Since ∥M∥ ≤ 1 we also have that ∥Ma,b∥ ≤ 1, however the off-
diagonal blocks now no longer need be Hermitian. In an abuse of notation we now discard the last
qubit of ρAi and denote the resulting state also as ρAi . For ease of notation we further introduce
the notation M1 = M−,−, M2 = M−,+, M3 = M+,−, and M4 = M+,+ Thus, we see that
Tr[MψA] =

1
2

∑
i Tr[Miρ

A
i ] and further the variance can be written as

VarA(Tr[MψA]) =
1

4
(EA[

∑
i,j

Tr[Miρ
A
i ]Tr[Mjρ

A
j ]]− (EA[

∑
i

Tr[Miρ
A
i ]])

2) (37)

=
1

4

∑
i,j

[
EATr

(
Miρ

A
i

)
· Tr
(
Mjρ

A
j

)
− Tr(MiEA[ρAi ]) · Tr(MjEA[ρAj ])

]
. (38)

Below we drop the factor of 1/4 and bound the magnitude of each term for i, j ∈ [4]. As we will
show, each term must be exponentially small. To do so, we use the following facts which will be
proven later.

Fact 6. We have the following

EA[|ϕA⟩] = |0n⟩/
√
2n, EA[|ϕA⟩⊗2] = |Φ+⟩/

√
2n, EA[|ϕA⟩⟨ϕA|] = I/2n,

EA[|ϕA⟩ ⊗ ⟨ϕA|] =
1

2n

∑
x

|x⟩ ⊗ ⟨x|, EA[|ϕA⟩ ⊗ |ϕA⟩⟨ϕA|] =
1

23n/2
|0⟩ ⊗ |0⟩⟨0|,

EA[|ϕA⟩⟨ϕA| ⊗ |ϕA⟩] =
1

23n/2
(
∑
x

|x⟩⟨x| ⊗ |0⟩+ |x⟩⟨0| ⊗ |x⟩+ |0⟩⟨x| ⊗ |x⟩ − 2|0⟩⟨0| ⊗ |0⟩),

EA[|ϕA⟩⟨ϕA|⊗2] =
1

4n
(I+ SWAP) +

1

2n
|Φ+⟩⟨Φ+| − 2

4n

∑
x

|x, x⟩⟨x, x|,

where SWAP swaps two n-qubit registers via SWAP|ψ⟩ ⊗ |ϕ⟩ = |ϕ⟩ ⊗ |ψ⟩ and |Φ+⟩ =
2−n/2

∑
x |x, x⟩. is the EPR state of 2n qubits.

First note that ρA4 does not depend on A. Thus, for all i ∈ [4] we have that

EA[Tr[Mi ⊗M4(ρ
A
i ⊗ ρA4 )] = Tr[MiEA[ρAi ]]Tr[M4EA[ρA4 ]] . (39)

The contribution to the variance from these cases equals 0. We are left with analyzing i, j ∈ [3]. We
analyze these cases now separately. Case i = j = 1. Using Fact 6 above, we get that

Tr(M1EA[ρA1 ]) = Tr(M1 · EA[|ϕA⟩⟨ϕA|]) = Tr(M1)/2
n.

Next, observe that

EA
(
Tr(M1ρ

A
1 )
)2

= Tr(M1 ⊗M1 · EA[ρA1 ⊗ ρA1 ])

= Tr
(
M1 ⊗M1 ·

( 1

4n
(I+ SWAP) +

1

2n
|Φ+⟩⟨Φ+| − 2

4n

∑
x

|x, x⟩⟨x, x|
))

=
1

4n
(
Tr(M1)

)2
+

1

4n
Tr
(
M1)

2
)
+

1

2n
⟨Φ+|M1|Φ+⟩ − 2

4n

∑
x

M1(x, x)
2

≤ 1

4n
(
Tr(M1)

)2
+

1

2n
+

1

2n
,

where the third equality used that Tr(M1 ⊗M1 · SWAP) = Tr(M2
1 ), the fourth equality used that

Tr(M2
1 ) ≤ 2n and ∥M⊗2

1 ∥ ≤ 1. Implicitly we have used that M1 is Hermitian and ∥M1∥ ≤ 1.
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Hence we have that variance term contribution is
EA[Tr

(
M1ρ

A
1

)
· Tr
(
M1ρ

A
1

)
]− Tr(M1EA[ρA1 ]) · Tr(M1EA[ρA1 ])

≤ 1

4n
(
Tr(M1)

)2
+

2

2n
−
(
Tr(M1)/2

n
)2

= 2/2n.

Case i = j = 2. Using Fact 6 above, we get that

Tr(M2EA[ρA2 ]) = Tr(M2 · EA[|ϕA⟩⟨u|]) = ⟨0|M2|u⟩/
√
2n.

Next note that
EA[Tr[M2ρ

A
2 ]

2] = Tr[M2 ⊗M2 EA[ρf2 ⊗ ρA2 ]] (40)

= Tr[M2 ⊗M2 EA[|ϕA⟩⊗2]⟨u|⊗2] (41)

=
1√
2n

⟨u, u|M2 ⊗M2|Φ+⟩ = 1

2n

∑
x

⟨u|M2|x⟩2 =
1

4n

∑
x

(M2(y, x))
2 (42)

We now bound the norm of each of these terms individual as then, by triangle inequality, the norm of
the contribution from the case is exponentially small as well.

|(⟨0|M2|u⟩/
√
2n)| ≤ 1√

2n

√
∥|0⟩∥2 ∥M2|u⟩∥2 ≤ 1√

2n
, (43)

and thus |Tr(M2EA[ρA2 ])| ≤ 1
2n . For the other term we use that |

∑
x(M2(y, x))

2| ≤∑
x |
∑
yM2(y, x)|2. Then we can rewrite this as 1

2n ∥M2|u⟩∥22 ≤ 1
2n ∥M2∥ ≤ 1

2n . Thus, the
contribution from this case is exponentially small. Case i = j = 3. This is the same as the case
i = j = 2, thus the norm of this case is upper bounded by 2

2n as well. Case i = 2 and j = 3 Using
Fact 6 note that

Tr[M2 ⊗M3EA[ρA2 ⊗ ρA3 ]] = Tr[M2 ⊗M3(I⊗ |u⟩)EA[|ϕA⟩ ⊗ ⟨ϕA|](⟨u| ⊗ I)] (44)

=
1

2n

∑
x

Tr[M2 ⊗M3(|x⟩⟨u| ⊗ |u⟩⟨x|) (45)

Now we use that M3 =M†
2 to rewrite this as 1

2n

∑
x |⟨u|M2|x⟩|2

1

4n

∑
x

|⟨u|M2|x⟩|2 =
1

2n
∥M2|u⟩∥22 ≤ 1

2n
(46)

We have already shown the subtracted terms to be exponentially small in magnitude and thus the
magnitude of this case must be exponentially small. Case i = 1 and j = 2, 3. Here we work out
j = 2 as the result then holds similarly for j = 3.

|Tr[M1 ⊗M2EA[ρA1 ⊗ ρA2 ]]| = |Tr[M1 ⊗M2EA[|ϕA⟩⟨ϕA| ⊗ |ϕA⟩](I⊗ ⟨u|)]| (47)

= | 1

23n/2
Tr[M1 ⊗M2(

∑
x

|x⟩⟨x| ⊗ |0⟩⟨u|+ |x⟩⟨0| ⊗ |x⟩⟨u|+ |0⟩⟨x| ⊗ |x⟩⟨u| − 2|0⟩⟨0| ⊗ |0⟩⟨u|)]|

(48)
We deal with each term in the trace above separately. First:

1

23n/2
|Tr[M1 ⊗M2(

∑
x

|x⟩⟨x| ⊗ |0⟩⟨u|)] = 1

23n/2
|Tr[M2] · ⟨u|M2|0⟩| ≤

1

2n/2
. (49)

The next two terms are similar and we bound the first here (which implies the same upper bound for
the second via nearly identical steps).

1

23n/2
|Tr[M1 ⊗M2(

∑
x

|x⟩⟨0| ⊗ |x⟩⟨u|)] = 1

2n
|⟨0, u|M1 ⊗M2|Φ+⟩| ≤ 1

2n
. (50)

The last remaining term is bounded as follows:
1

23n/2
|Tr[M1 ⊗M2|0⟩⟨0| ⊗ |0⟩⟨u|]| = 1

23n/2
|Tr[M1|0⟩⟨0|]| · |Tr[M2|0⟩⟨u|]| ≤

1

23n/2
. (51)

Thus, the contribution from the second moments is of magnitude at most O(2−n/2). While
|Tr[M1EA[ρA1 ]]| may be large (up to 1), we also have that |Tr[M2EA[ρA2 ]]| ≤ 1√

2n
and thus all

terms in the case are exponentially small in norm as well. We have thus shown that the norms of
the contributions for each case are all exponentially small. Thus, the variance must be exponentially
small as well. It remains to prove Fact 6 which we prove now.
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Proof of Fact 6. Most of the desired expectation values stem from the following observation: for the
uniform distribution over upper triangular binary matrices A, we have that

EA[(−1)x
⊤Ax+y⊤Ay+z⊤Az] = EA[(−1)⟨X+Y+Z,A⟩] (52)

= δX+Y+Z,0 (53)
= δx,yδz,0 + δx,zδy,0 + δy,zδx,0 − 2δx,0δy,0δz,0, (54)

where X,Y, Z are defined as xx⊤, yy⊤, zz⊤ respectively and the second equality follows from
Ez[(−1)⟨x,z⟩] = δx,z . Now the first three inequalities in the fact are now easy to see. Setting
y = z = 0 we have that

EA[|ϕA⟩] = EA[
1√
2n

∑
x

(−1)x
⊤Ax|x⟩] = 1√

2n

∑
x

EA[(−1)x
⊤Ax]|x⟩ = |0n⟩/

√
2n .

Similarly, setting z = 0 yields

EA[|ϕA⟩⊗2] = EA[
1

2n

∑
x,y

(−1)x
⊤Ax+y⊤Ay|x, y⟩] = 1

2n

∑
x,y

EA[(−1)x
⊤Ax+y⊤Ay]|x, y⟩ = 1

2n

∑
x

|x, x⟩ .

Similar reasoning implies EA[|ϕA⟩⟨ϕA|] = I/2n, EA[|ϕA⟩ ⊗ ⟨ϕA|] = 1
2n

∑
x |x⟩ ⊗ ⟨x|, and

EA[|ϕA⟩⟨ϕA| ⊗ |ϕA⟩] =
1

23n/2
(
∑
x

|x⟩⟨x| ⊗ |0⟩+ |x⟩⟨0| ⊗ |x⟩+ |0⟩⟨x| ⊗ |x⟩ − 2|0⟩⟨0| ⊗ |0⟩) .

The final decomposition of EA[|ϕA⟩⟨ϕA|⊗2] follows from [15, Proposition 2].

The proof of the fact concludes the proof of the theorem.

Here we note that an alternative proof technique, similar to that used later to prove lower bounds
on purity testing and learning distributions, extends this result to hold for ε <

√
7/16. However, we

omit it here in the interest of cohesiveness.
Next, we show that C is efficiently learnable in QPAC even in the presence of classification noise.

Theorem 6. The concept class

C =
{
|ψA⟩ =

1√
2n

∑
x∈{0,1}n

|x, x⊤Ax (mod 2)⟩ : A ∈ Fn×n2

}
can be learned in the η-random classification model, using O(n/(1− 2η)2) copies of the noisy state
and time O(n3/(1− 2η)2).

Proof. Below, let |ϕf ⟩ = 1√
2n

∑
x(−1)f(x)|x⟩. In the random classification noise model, we are

given copies of

|ψf ⟩ =
1√
2n

∑
x

|x⟩ ⊗
(√

1− η|f(x)⟩+√
η|f(x)⟩.

We first show that using two copies of |ψf ⟩, with probability ≥ · · · , we can obtain |ψf ⟩⊗2. In order
to do so, observe the following

(I⊗H)|ψn⟩ =
1√
2n+1

∑
x,b

|x⟩
(
(−1)b·f(x)|b⟩+√

η(−1)b·f(x)|b⟩
)

=
1√
2n+1

∑
x,b

(√
1− η(−1)b·f(x) +

√
η(−1)b·f(x)

)
|x, b⟩.

Now, measuring the last qubit, the probability of seeing b = 1 is given by∥∥∥ 1√
2n+1

∑
x

(√
1− η(−1)f(x) −√

η(−1)f(x)
)
|x⟩
∥∥∥2
2

=
1

2n+1

∑
x

(√
1− η(−1)f(x) −√

η(−1)f(x)
)2

=
1

2
(
√

1− η −√
η)2 =: p.
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The post-measurement state is given by√
1/p ·

(√
1− η −√

η
)
· 1√

2n+1

∑
x

(−1)f(x)|x⟩ = |ψf ⟩.

Hence with probability exactly p = 1
2 (1 − 2

√
η(1− η)) ≤ (1 − 2η)2 (which holds for every

η ≤ 1/2), given two copies of |ψf ⟩, we can produce two copies of |ϕf ⟩.
Now, if we focus on the concept class fA(x) = x⊤Ax. The learning algorithm first takes

O(1/(1− 2η)2) copies of |ψA⟩ to produce two copies of |ϕA⟩. Note that the algorithm knows when
it succeeded, i.e., when the measurement of the last qubit is 1, the algorithm knows that the above
procedure performed the transformation |ψn⟩⊗2 → |ψA⟩⊗2. Now using Fact 2 we can learn fA given
O(n) copies of |ψA⟩ and O(n3) time. Overall, the sample complexity and time complexity of the
procedure is O(n/(1− 2η)2) and O(n3/(1− 2η)2) respectively.

4.2 Smallest class separation

In the previous section we saw that the concept class of quadratic functions separated QPAC from
QSQ. Observe that states in this concept class can be prepared by circuits of size O(n2) and depth
O(n) consisting of {Had,X,CX} gates. A natural question is, can states prepared by smaller circuits
also witness such a separation between QPAC and QSQ? In the theorem below we answer this in the
positive, by using a simple padding argument inspired by a prior work of Hinshe et al. [12].

Theorem 7. Let α ∈ (0, 1) there exists a family of n qubit Clifford circuits of depth d = (log n)1/α

and size d2 that requires 2Ω(d) Qstat queries to learn the state to error ≤ 0.05 in trace distance.

Proof. The idea is to “pad" a family of circuits with auxilliary qubits. In the previous section, from
Theorem 5 we saw that the set of example states {|ψA⟩ = 1√

2n

∑
x |x, x⊤Ax⟩}A, is hard to learn

to trace distance 0.05. Instead of the example state |ψA⟩ now instead consider the “padded state"
|ψA⟩ ⊗ |0⟩k(n). Clearly the trace distance between |ψA⟩ ⊗ |0⟩k(n) and |ψB⟩ ⊗ |0⟩k(n) remains
unchanged. Say a QSQ algorithm learns these padded states with the set of Qstat queries given by
{Mi}i. Let’s decompose each Mi as Mi =

∑
x,y∈{0,1}k(n) M

x,y
i ⊗ |x⟩⟨y|, where ∥Mx,y

i ∥ ≤ 1 and
Mx,x
i is Hermitian. Since the auxiliary qubits are fixed, it is clear that

Tr[M · |ϕA⟩⟨ϕA| ⊗ |0⟩⟨0|⊗k(n)] = Tr[M0,0
i ϕA].

Furthermore, we can assume without loss of generality that the algorithm always outputs a state
of the form |φ⟩ ⊗ |0⟩⊗k(n) (as otherwise we could improve A by requiring it to do so) . Thus,
a QSQ algorithm for the padded states implies a QSQ algorithm with queries {M0,0

i }i. Say that
this algorithm uses at most t Qstat queries. Then Theorem 5 implies that t ≥ 2Ω(n). The state is
now composed of m = k(n) + n qubits. Pick k = 2n

α

for some α < 1, so m = Θ(k(n)) and
n = (log k)1/α. Then we have that t ≥ 2Ω(logm)1/α). To see the theorem, note that |ψA⟩ ⊗ |0⟩k(n)
circuit of size O(k(n)2) = O(m2) and depth O(k(n)) = O(m). Thus, the padded states can be
prepared with circuits of size (logm)2/α and depth (logm)1/α.

5 New upper and lower bounds on QSQ learning states

In this section we first give a couple of classes of states which can be learned in the QSQ framework
before discussing lower bounds for other class of states.

5.1 New upper bounds

We first prove that the class of functions that are k-Fourier-sparse Boolean functions on n bits, i.e.,

C1 = {f : {0, 1}n → {0, 1} : |supp(f̂)| = k}

can be learned in time poly(n, k) in the QSQ model. This generalizes the results in [21, 10], which
showed that showed parities and O(log n)-juntas (which are a subset of Fourier-sparse functions) are
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poly(n)-time learnable.7 We observe that the quantum coupon collector problem, i.e., learnability of

C2 = {S ⊆ [n] : |S| = k}

considered in [23] can be implemented in QSQ. Finally, we also observe that one can learn codeword
states defined in [8]: consider an [n, k, d]2 linear code {Mx : x ∈ {0, 1}k} where G ∈ Fn×k2 is a
rank-k generator matrix of the code, k = Ω(n), and distinct codewords have Hamming distance at
least d, then define the concept class

C3 = {fx(i) = (Gx)i : x ∈ {0, 1}k},

where G is known the learning algorithm. Below we show we can learn C3 in the QSQ model. Prior
learning protocols [8, 23, 21, 10] showed that these concept classes are learnable with quantum
examples (a stronger model than QSQ) whereas here we show they are learnable in the weaker QSQ
framework. Before we prove this theorem, we will use the following lemmas.

Lemma 5. [24, Theorem 12] Let k ≥ 2. The Fourier coefficients of a k-Fourier-sparse Boolean
function f : {0, 1}n → {−1, 1} are integer multiples of 21−⌊log k⌋.

Lemma 6. [10, Theorem 4.4] Let f : {−1, 1}n → {−1, 1}, τ ∈ (0, 1]. There exists a
poly(n, 1/τ, ℓ)-time quantum statistical learning algorithm that with high probability outputs
U = {T1, . . . , Tℓ} ⊆ [n] such that: (i) if |f̂(T )| ≥ τ , then T ∈ U ; and (ii) if T ∈ U , then
|f̂(T )| ≥ τ/2.

Theorem 8. The concept classes C1, C2, C3 defined above can be learned in the QSQ model.

Proof. We first give a learning algorithm for C1. For every f ∈ C1, observe that it’s Fourier
coefficients satisfy |f̂(S)| ≥ 1/k by Lemma 5. We can now use Lemma 6 to collect all the non-zero
Fourier coefficients in time poly(n, 1/τ, k) in the QSQ model. Call these non-zero coefficients
S1, . . . , Sk. Next, we learn all these Fourier coefficients up to error ε/k using Stat queries: for
i ∈ [k], let ϕ(x, b) = b · (−1)Si·x for all x ∈ {0, 1}n, b ∈ {0, 1}, hence Ex[ϕ(x, f(x))] = Ex

[
f(x) ·

(−1)Si·x
]
= f̂(Si). Overall this takes time O(k). Once we obtain all these approximations {αi}i∈[k],

we output the function g(x) = sign
(∑

i∈[k] αi · χSi(x)
)

for every x ∈ {0, 1}n. Using the same
reasoning as in [10, Eq. (7)] it is not hard to see that g is ε-close to f (i.e., Prx[g(x) = f(x)] ≥ 1−ε).

We next give a learning algorithm for C2. Let S ⊆ [n] of size k. Given copies of 1√
k

∑
i∈S |i⟩,

learn S. We now show how to learn S in QSQ using k log n Qstat queries. Let M1 =
∑n/2
i=1 |i⟩⟨i|.

This satisfies ∥M1∥ ≤ 1 and M1 can be implemented using a poly(n)-sized circuit. Observe that

⟨ψ|M1|ψ⟩ =
1

k

∑
q,q′∈S

∑
i∈[n/2]

[q = i = q′] =
|[n/2] ∩ S|

k

which is at least 1/k if and only if there is an i ∈ [n/2] ∩ S. So if we do a Qstat query with M1 and
tolerance 1/(2k), the learning algorithm learns if there is an i ∈ [n/2] such that i ∈ S. Repeat this
using a binary search and we will eventually find one element in S using O(log n) Qstat queries.
Repeat this to find all the elements in S, so the overall complexity is O(k log n).

We next give a learning algorithm for C3. Consider the QSQ queries Mj = |ej⟩⟨ej | ⊗ |0⟩⟨0| and
τ = 1/(2n). Then observe that

⟨ψx|Mj |ψx⟩ = [e⊤j Mx = 0]/n,

which equals 1/n if e⊤j Mx = 0 and 0 otherwise, so with tolerance 1/(2n), we can learn which is
the case. Since G is the generator matrix of a good code, i.e., G has rank k, there are k linearly
independent rows in G ∈ Fn×k2 (say they are Gi1 , . . . , Gik ). The learning algorithm can perform
these Qstat measurements for all Mi1 , . . . ,Mik in order to learn Gi1x, . . . , Gikx. Since Gis are
linearly independent, these k linearily independent constraints on x suffice to learn x.

7We remark that the same proof also shows that k-term DNF formulas are learnable: for every g ∈ C1, there
exists S s.t. |ĝ(S)| ≥ 1/k and the proof of Theorem 8 can identify such an S using QSQ queries and then one
can use the algorithm of Feldman [22] for learning the unknown DNF formulas.
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We next observe that the set of trivial states, i.e., states |ψ⟩ = C|0n⟩ where C is a constant-depth
n-qubit circuits, can be learned in polynomial time in the QSQ model. An open question of this work,
and also the works of [12, 13], is if we can learn the distribution PC = {⟨x|ψ⟩2}x using classical
SQ queries. The theorem below shows that if we had direct access to |ψ⟩, one can learn the state and
the corresponding distribution PC , using QSQ queries. In the next section we show that once the
depth d = ω(log n), these states are hard for QSQ queries as well.
Theorem 9. The class of n-qubit trivial states can be learned up to trace distance ≤ ε using
poly(n, 1/ε) Qstat queries with tolerance poly(ε/n).

Proof. Say that the circuit depth is d. Via theorem 4 of [25] it is sufficient to tomography allD := 2d-
body reduced density matrices up to precision ε2

4n with respect to trace distance. Thus, it is sufficient
to show that such a tomography can be accomplished with Qstat queries. This can be achieved by
simply querying all 4D − 1 non-identity Pauli strings acting on a party of size D and reconstructing
the state as ρ̂ = 1

2D
(I+

∑
x αxPx), where Px is a Pauli string and αx is the response upon querying

Px. The Hilbert-Schmidt distance between the resulting state and the true state ρ must satisfy
∥ρ − ρ̂∥HS ≤ 2Dτ , where τ is the Qstat tolerance. In general, dTr(ρ, ρ̂) ≤ 2D/2−1

√
∥ρ− ρ̂∥HS

[26]. Thus, dTr(ρ, ρ̂) ≤ 2D−1
√
τ . Taking τ ≤ 1

22D−2
ε4

16n2 = O( ε
4

n2 ) yields a tomography with the
desired precision. There are

(
n
D

)
= O(nD) such reduced density matrices. For each one, we require

a constant number of Qstat queries, each requiring O(D) gates. Thus, the overall complexity is
O(nD) ∈ poly(n) for both query and time complexity.

5.2 Hardness of testing purity

Theorem 10. Let A be an algorithm that upon the input of a quantum state ρ outputs an estimate, to
accuracy 1/3, of the purity of ρ with high probability using Qstat(τ). Then A must make at least
2Ω(τ2·2n) such queries.

Proof. Using A one could solve the many-vs-one problem of C = {U |0⟩⟨0|U† | U ∈ U(2n)} (where
U is drawn from the Haar measure) versus σ = 1

2n I. We prove that this decision problem is hard via
a concentration of measure argument similar to the variance method. Note that E[U |0⟩⟨0|U†] = 1

2n I.
Upon querying an observable M , consider the adversarial response of 1

2nTr[M ]. By Levy’s lemma 2,
most Haar random states cannot deviate much from this average. For our purposes, we are concerned
with functions of the form f(|ψ⟩) = Tr[M |ψ⟩⟨ψ|] where ∥M∥ ≤ 1. We immediately observe that
such f ’s have Lipschitz constant 2 [27]. By Levy’s lemma 2 we thus have that

Pr[|Tr[MU |0⟩⟨0|U†]− 1

2n
Tr[M ]| > τ ] ≤ 2 exp(−2n+1τ2

36π3
) (55)

To conclude we note that Levy’s lemma directly lower bounds QQCτ (in a manner similar to that of
the variance lower bound). Recall that QQCτ (C, σ) is the smallest integer d such that there exists a
distribution η over Qstat queries M such that ∀ρ ∈ C : PrM∼η[|Tr[M(ρ− σ)]| > τ ] ≥ 1/d. From
this definition we have that

1

d
≤ Pr
M∼η

Pr
ρ∼µ

[Tr[M(ρ− σ)]| > τ ] ≤ 2 exp(−2n+1τ2

36π3
) . (56)

Thus, QQCτ (C, σ) ≥ 2Ω(τ22n). Finally, observe that to succeed on at least a set of measure 0.99,
any deterministic algorithm thus requires 2Ω(τ22n) Qstat queries. Thus, via Yao’s principle the
randomized complexity is 2Ω(τ22n) for any algorithm that succeeds with probability at least 0.99.

5.3 Hardness of learning Coset states

One of the great successes of quantum computing is solving the hidden subgroup problem for Abelian
groups, one such example is that of Shor’s factoring algorithm. In this problem, we are given query
access to a function f on a group G such that there is some subgroup H ≤ G satisfying f is constant
every left coset of H and is distinct for different left cosets of H . How many queries to f suffice to
learn H? When G is a finite abelian group, H can be efficiently determined via separable quantum
algorithms. One approach which is often used to analyze the general Hidden subgroup problem is the
standard approach, which we describe now [28]:
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1. Prepare the superposition 1√
|G|

∑
g∈G |g⟩ ⊗ |0⟩ via a Fourier transform over the group G.

2. Use a single query to prepare the superposition state 1√
|G|

∑
g∈G |g⟩ ⊗ |f(g)⟩.

3. Measure the second register and obtain a superposition over elements in some coset
with representative g′. That is, the algorithm can be viewed as having the state ρH =∑

g′ |ψg′H⟩⟨ψg′H | where |ψg′H⟩ = 1√
|H|

∑
g∈g′H |g⟩.

4. Again apply a quantum Fourier transform and measure the state to obtain an element
g ∈ H⊥, where H⊥ = {g ∈ G|χg(H) = 1}.

Repeating the above procedure Õ(log |G|) times yields a generating set for H⊥ with high probability,
allowing one to reconstruct H as well. In fact observe that the above algorithm works even if one
just makes separable measurements. The state ρH in step (3) of the algorithm above is called a coset
state. Here, we show that solving the Hidden subgroup problem for even Abelian groups is hard
when the learning algorithm has access only to QSQ queries.

Consider the additive group G = Zn2 . In Simon’s problem, a version of the hidden subgroup
problem on Zn2 , the hidden subgroups are of the form H = {0, s}. While solving Simon’s problem
is easy via separable quantum measurements, it cannot be readily replicated via Qstat queries.
Intuitively, every y in the orthogonal complement of s is equally likely to be observed upon a
computational basis measurement. To see this, note that after discarding the register containing the
function value, the resulting mixed states are ρs = 1

2n−1

∑
x |x⟩⟨x|, where x is a coset representative

and |x⟩⟨x| is the projector onto the corresponding coset. Thus, accurately simulating this measurement
with Qstat queries requires exponentially small tolerance τ . The following theorem formalizes
this notion.

Theorem 11. Solving the hidden subgroup problem for the Abelian group Zn2 with Qstat queries of
the form M =M ′ ⊗ I requires Ω(τ2 · 2n) many such queries to succeed with high probability.

Proof. We prove the theorem via a bound on QACτ (C, σ) where σ = 1
2n I. Say that A is an algorithm

which solves the hidden subgroup problem with high probability using Qstat queries of the form
M = M ′ ⊗ I . Thus, the queries {Mi}i used by A imply the existence of queries {M ′

i}i where
M ′
i ∈ C2n × C2n which suffice to identify the coset states ρH = 1

|H|
∑
x |x⟩⟨x|, where x denotes a

coset and |x⟩⟨x| the projector onto this coset.
Consider the subset C0 ⊂ C of coset states of subgroups of the form Hs = {0, s}. For such a

subgroup Hs the corresponding coset state is ρs = 1
2n−1

∑
x |x⟩⟨x|, where {x} are a set of 2n−1

coset representatives and |x⟩ = 1√
2
(|x⟩+ |x⊕ s⟩). If f is a constant function, then ρH = 1

2n I . Thus,
the correctness of A implies the existence of a QSQ algorithm that can solve the decision problem of
{ρH={0,s}}H versus σ = 1

2n I.
For such a decision problem, ρ̂s = 2nρs− I and Tr[ρ̂sρ̂s′σ] = 2nTr[ρ̂sρ̂s′ ]− 1. Let s = s′. Then

Tr[ρ2s] = 2−2(n−1) and Tr[ρ̂2sσ] = 1. Now instead consider when s ̸= s′. For every coset x of Hs

there exist two cosets y1 and y2 of Hs′ with a non-empty intersection (of exactly one element) with
x. Thus, we have that Tr[|x⟩⟨x||y1⟩⟨y1|] = Tr[|x⟩⟨x||y2⟩⟨y2|] = 1

4 and

Tr[ρ̂sρ̂s′σ] = 2nTr[ρsρs′ ]− 1 =
2n

22(n−1)

∑
x,y

|⟨x|y⟩ − 1 =
2n

22(n−1)

∑
x

1

2
− 1 = 0 . (57)

For any subset C′ ⊆ C0 we thus have that γ(C′, σ) = 1
|C′| . If |C′| < 1

τ then γ(C′, σ) > τ . Note that
|C0| = 2n − 1 and thus κγτ − frac(C0, σ) = Θ( 1

τ2n ) and QACτ (C, σ) = Ω(τ · 2n). Via Theorem 4
we thus have that QQCτ (C, σ) ≥ QACτ2(C, σ) = Ω(τ2 · 2n).

Thus, any QSQ algorithm for solving the hidden subgroup problem on Zn2 must depend non-
trivially on the register holding the function value. This is in contrast to the standard Fourier sampling
method which has no dependence on the function register.

Remark 1. The average correlation argument above also implies that learning coset state below
trace distance 1

2 with high probability requires Ω(τ2 · 2n) Qstat queries of tolerance τ .
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Proof. Note that the trace distance between ρH for H = {0, s} and 1
2n I is 1

2 . Thus, via lemma 2,
QSQ

1/2,δ
τ (C) ≥ QQCτ (D, 1

2n I), where D = {ρH |H = {0, s}}. From section 3 we know that
QQCτ (D, 1

2n I) ≥ (1 − 2δ)QACτ2(C, 1
2n I). The average correlation argument above yields that

QACτ2(C, 1
2n I) = Ω(τ2 · 2n), thus proving the claim.

5.4 Hardness of shadow tomography

In [29] the authors derive lower bounds on the sample complexity of shadow tomography using
separable measurements. Recall that in shadow tomography, given copies of ρ, the goal of a learner
is to predict the expectation value Tr[Oiρ] of a collection of known observables {Oi}i up to error ε.
To prove these lower bounds the authors construct a many-vs-one decision task where σ = I/2n and

C = {ρi =
I+ 3εOi

2n
} . (58)

Assuming that Tr[Oi] = 0 and Tr[O2
i ] = 2n for all Oi, then an algorithm which solves the shadow

tomography problem with high probability also solves the decision problem. Thus, a lower bound on
the latter is also a lower bound on the sample complexity of shadow tomography.
Theorem 12. Any algorithm that uses Qstat(τ) queries and predicts Tr[Pρ] up to error ε for all
non-identity Pauli strings P with high probability requires Ω(τ2 · 22n/ε2) queries.

Proof. We prove the theorem via a bound on QACτ (C, σ) where σ = 1
2n I. For convenience we label

the states from the many-vs-one decision task as ρi where i ∈ [4n − 1]. For such a σ we further
have that Tr[ρ̂iρ̂jσ] = 2nTr[ρρ′] − 1. Via the orthogonality of Pauli strings, Tr[ρ̂iρ̂jσ] = 9ε2δi,j .
For any subset C′ ⊆ C we thus have that γ(C′, σ) = 9ε2

|C′| . If |C′| < 9ε2

τ then γ(C′, σ) > τ . Thus,

κγτ − frac(C, σ) = Θ(ε2 · τ−1 · 22n) and QACτ (C, σ) = Ω( τ ·2
2n

ε2 ). Via Theorem 4 we know that
QQCτ (C, σ) ≥ QACτ2(C, σ) = Ω(τ2 · 22n/ε2).

We remark that when using separable measurements, the result of Chen et al. [29] showed that
O(2n) many copies of ρ suffice for the task above, whereas our lower bound shows that Ω(4n)
copies are necessary if one only has access to Qstat measurements (in other words, obtaining the
expectation value with every Pauli observable is necessary). This implies that measurements not just
their statistics play a non-trivial role in shadow tomography.

5.5 Learning quantum biclique states

An influential work of Feldman et al. [19] considers the planted biclique problem. The goal here
is to learn the class of distributions each indexed by subsets S ⊆ {1, 2 . . . , n}. For every S, the
distribution DS is defined as follows

DS(x) =

{
k/n
2n−k + 1−k/n

2n x ∈ 1S × {0, 1}n−k
1−k/n

2n x /∈ 1S × {0, 1}n−k,

where above 1S × {0, 1}n−k is the set {x ∈ {0, 1}n : xS = 1S}.
A natural way of generalizing problems over distributions to quantum statistical queries is to

consider coherent encodings of distributions, i.e., for a given distribution D over X , we define a
quantum state |ψ⟩ =

∑
x

√
D(x)|x⟩. Classical Stat queries then correspond to Qstat with diagonal

observables and a natural question is, how much can coherent examples help?
In what follows, we first show that for the task of distinguishing two coherent encodings, there

can be at most a quadratic gap between the precision that is tolerated by Qstat and Stat queries. We
use this to show that, for some choice of parameters, there are large gaps between the classical and
quantum statistical query complexity of the k-biclique problem. We demonstrate below that Qstat
measurements can help significantly in certain regimes of tolerance.
Lemma 7. For large enough n and k ≥ 2 log n, the k-planted biclique problem with coherent
encodings can be solved with statistical quantum algorithm that makes at most

(
n
k

)
Qstat

(√
k/n

)
queries, but cannot be solved by any algorithm that makes Stat

(√
k/n

)
queries.
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Proof. First observe that dTr(|ψS⟩, |+n⟩) =
√

1− |⟨ψS |+n⟩|2, and

⟨+n|ψS⟩ =

(√
k

n
+

1− k/n

2k
−
√

1− k/n

2k

)
1√
2k

+

√
1− k

n
. (59)

Define |ϕ⟩ = (|+⟩ + |ψS⟩)/
√
2 + 2⟨ψS |+⟩ and |ϕ⊺⟩(|+⟩ − |ψS⟩)/

√
2− 2⟨ψS |+⟩. The optimal

distinguishing Qstat query between |+n⟩ and |ψS⟩ is the difference between projectors on the state
|PS⟩ = |ϕ⟩+|ϕ⊺⟩√

2
and its orthogonal complement in the span of |+n⟩ and |ψS⟩ (see for example [30,

Theorem 3.4]). Call this measurement MS and notice that it is implementable by a k-qubit controlled
rotation. A (possibly inefficient) quantum algorithm for detecting the planted clique would query
Qstat(τ) oracle with MS for every subset S ⊆ [n] of cardinality |S| = k. From Lemma 4 and
optimality of the measurement, we know that |Tr(MS(ψS − ψ0))| = 2dTr(ψS , ψ0). It follows that
as long as τ ≤ dTr(|ΨS⟩, |+n⟩), such algorithm succeeds.

We now bound dTr(|ΨS⟩, |+n⟩). To that end, observe that:(√
k

n
+

1− k/n

2k
−
√

1− k/n

2k

)
1√
2k

≤ 1√
2k+1

√
1− k

n
. (60)

from which we have that:(
1 + 2−(k+1)/2

)√
1− k

n
≥ ⟨+n|ψS⟩ ≥

√
1− k

n
, (61)

and8
√

k
n ≥ dTr(ψ0, ψS) ≥

√
k
n − 4

2k/2 . For k ≥ 2 log n, n ≥ 5 and τ ≤
√

2 log(n/4)
n , the

planted biclique can be detected by at most
(
n
k

)
Qstat(τ) queries. On the other hand, the k-planted

biclique problem has dTV(D,Di) = k
n

(
1− 2−k

)
for all Di ∈ DD, from which dTV(D,D0) =

k
n (1− 2−k) < k

n . It follows that:

max
ϕ,|ϕ|≤1

Pr
D∼D

[|D[ϕ]−D0[ϕ]| ≥ 2τ ] ≤ Pr
D∼D

max
ϕ,|ϕ|≤1

[|D[ϕ]−D0[ϕ]| ≥ 2τ ]

= Pr
D∼D

[dTV(D,D0) ≥ τ ] .
(62)

For τ = k/n, we have PrD∼D
[
dTV(D,D0) ≥ k

n

]
= 0, which means that the clique state is

undetectable to a Stat(τ) algorithm. For k ≥ 2 log n and large enough n (n ≳ 72), the statistical
queries have better tolerance than the quantum queries. It follows that for k ≥ 2 log n, n ≥ 72 and

τ =
√

2 log(n/4)
n , the k-planted biclique problem cannot be solved by a Stat(τ) algorithm, but can

be solved with an algorithm that can makes Qstat(τ) queries.

5.6 Hardness of Learning Approximate Designs

In this class we show that the classes of quantum states which form approximate 2-designs are hard
to learn in the QSQ model.
Theorem 13. Let C be an ensemble of states forming a γ-approximate 2−design where γ = O(2−n).
Learning states from C with error ≤ 1/3 in trace distance requires Ω(τ2 · 2n) Qstat(τ) queries.

Proof. We prove the theorem by showing that the variance of {Tr[Mρ]}ρ∈C for any such design must
be exponentially small. By the definition of an approximate design, we have that

dTr( E
ρ∼C

[ρ],
1

2n
I) ≤ γ, dTr( E

ρ∼C
[ρ⊗2],

1

4n + 2n
(I+ SWAP)) ≤ γ , (63)

where 1
2n I and 1

4n+2n (I+ SWAP) are respectively the first and second moments of Haar distribution
on pure states. For any observable M , by the definition of trace distance we have that

|Tr[M(
1

2n
I− Eρ∼C [ρ])]| ≤ 2γ, |Tr[M(

1

4n + 2n
(I+ SWAP)− Eρ∼C [ρ

⊗2])]| ≤ 2γ . (64)

8Using
√
1 + 3× 2−(k+1)/2 ≥ 1 + 2−(k+1)/2 for all k ≥ 1.
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Thus, Varρ∼C(Tr[Mρ]) ≤ Varρ∼U(2n)(Tr[Mρ]) + O(2−n). We now show that
Varρ∼U(2n)(Tr[Mρ]) = O(2−n) for any ∥M∥ ≤ 1.

Var
ρ∼U(2n)

(Tr[Mρ]) =
1

4n + 2n
Tr[M⊗2(I+ SWAP)]− 1

4n
Tr[M ]2 (65)

=
1

4n + 2n
Tr[M2]− 1

2n(4n + 2n)
Tr[M ] , (66)

where we have used that fact that Tr[M⊗2] = Tr[M ]2 and Tr[M⊗2SWAP] = Tr[M2]. As ∥M∥ ≤ 1
we have that Tr[M2] ≤ 2n. Thus, taking M to have 2n−1 eigenvalues equal to +1 and 2n−1 equal to
−1 maximizes the variance yielding

Var
ρ∼C

(Tr[Mρ]) ≤ Var
ρ∼U(2n)

(Tr[Mρ]) +O(2−n) ≤ 2n

4n + 2n
+O(2−n) = O(2−n) . (67)

To invoke Theorem 4 and Lemma 1 we first note that all ρ′ ∈ C are far from Eρ∼C [ρ] in trace distance.
This follows via triangle inequality:

dTr(ρ
′,Eρ∼C [ρ]) ≥ dTr(ρ

′,
1

2n
I)− dTr(

1

2n
I,Eρ∼C [ρ]) =

2n − 1

2n
−O(2−n).

Fix ε = 1/3. We assume that τ < 1
6 without loss of generality9. Thus, there is some n0 such that for

all n ≥ n0 we have that dTr(ρ′,Eρ∼C [ρ]) > 2(τ + ε). Using Lemma 1 we thus have that learning
states from C requires Ω(τ2 · 2n) Qstat queries.

6 Applications

6.1 Error mitigation

In this section, we show how to use our QSQ lower bound to resolve an open question posed by
Quek et al. [11]. Therein the authors consider two forms of quantum error mitigation, which they call
strong and weak error mitigation. We first describe these two models before stating our result.
Definition 3 (Weak Error Mitigation). An (ε, δ) weak error mitigation algorithm A takes an input a
series of observables {O1, . . . , Om} satisfying ∥Oi∥ ≤ 1 and outputs a set of values {α1, . . . , αm}
such that with probability at least 1− δ we have that

|Tr[Oiρ]− αi| ≤ ε . (68)

Definition 4 (Strong Error Mitigation). An (ε, δ)-strong error mitigation algorithm A outputs a
bitstring z sampled from a distribution µ such that, with probability at least 1− δ, dTV(µ, µρ) ≤ ε
where µρ is the distribution on the computational basis induced by the state ρ.

In [11] the authors show that strong error mitigation implies weak error mitigation for local
observables. They then prove a partial converse and show that for a restricted family of observables
weak error mitigation cannot recover strong error mitigation (for polynomial-sized inputs). The
question of an unconditional separation is left open. Here we will show that Theorem ?? closes this
open question and implies that weak error mitigation with polynomial numbers of observables does
not suffice to recover strong error mitigation. First, note that by definition weak error mitigation
outputs QSQ queries with tolerance τ = ε. To match our notation, we will continue by using τ
instead of ε. This is the equivalent of Lemma 5 of [11]. Second, we note that Theorem 5 of [11] still
holds for our purposes. We repeat it here for completeness.
Theorem 14. [11, Theorem 5] For a class of distributions Q = {q1, . . . , qk} and ε, δ > 0 there is
an algorithm which takes O( log |Q|

ε2 ) samples from a target distribution p (not necessarily in Q) and
outputs a q∗ ∈ Q such that

dTV(p, q
∗) ≤ 3min

i∈[k]
dTV(p, qi) + ε . (69)

With these tools we can now prove a separation between strong and weak error mitigation.

9Again, these choices of constants are arbitrary. Choosing any ε < 1/2 is sufficient.
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Fact 7. For a distribution p : {0, 1}n → [0, 1], let |ψp⟩ =
∑
x

√
p(x)|x⟩. Suppose there exists an

algorithm that makes t Qstat queries and learns p up to total variation distance ε2, then there exists
an algorithm that makes t Qstat queries and learns |ψp⟩ up to trace distance

√
2ε.

Proof. By Fact 3, first observe that dTr(|ψp⟩, |ψq⟩)2 ≤ 2dTV(p, q) . Now the lemma statement
follows by immediately: suppose there exists an algorithm that makes Qstat queries to |ψp⟩ and
outputs a q such that dTV(p, q) ≤ ε2, then that implies that dTr(|ψp⟩, |ψq⟩) ≤

√
2ε.

Theorem 15. Let A be an algorithm that takes as inputs the estimates for weak error mitigation with
τ = 1/poly(n) and outputs O(n2) samples from some distribution µ such that dTV(µ, µρ) ≤ 1/64

with probability at least 0.99. Then, A requires estimates of Ω(τ2 · 2n/2) distinct observables.

Proof. We show that such samples would give one the ability to learn quadratic polynomial states
with polynomial QSQ queries, contradicting Theorem 5. First, we give a lemma connecting learning
states of a specific form to learning their output distributions. Say that such an algorithm A does
indeed exist. Then via Theorem 14, and noting that log |C| = O(n2), we can obtain a µf∗ such that

dTV(µ, µf∗) ≤ 3min
f∈C

dTV(µ, µf ) +
1

64
. (70)

By the assumption upon µ we further have that dTV(µ, µf∗) < 1/16. As dTV(µf , µg) ≥ 1
8 for f ̸= g,

we thus have, via triangle inequality, that f∗ = f and the true polynomial (and quantum state) can
be recovered. This implies that the inputs to A could have been used a Qstat queries to solve the
approximate state learning problem of Theorem 4. Thus, A requires Ω(τ2 · 2n/2) distinct observables
as inputs.

Remark 2. For some forms of error mitigation it may be interesting to consider not just allowing the
algorithm to query the circuit UC but also modified circuits UC′ . However this can be subsumed into
the framework of weak error mitigation as given. To return an estimate of O for UC′ the algorithm
returns an estimate of UCU

†
C′OUC′U†

C from the original circuit.

6.2 Learning distributions

In this section, we consider the following setup of statistical query learning that was considered in
the work of [12]. Let U be a unitary and consider the induced distribution PU on the computational
basis, i.e.,

PU (x) = ⟨x|U |0n⟩2.
In [12, 13] they considered learning algorithms that were given access to the following: for ϕ :
{0, 1}n → [−1, 1] and τ ∈ [0, 1],

Stat : ϕ, τ → αϕ ∈
[
Ex∼PU

[ϕ(x)] + τ,Ex∼PU
[ϕ(x)]− τ

]
.

The goal of the learning algorithm is to learn PU up to total variational distance ≤ ε by making
poly(n) many Stat queries each with tolerance τ = 1/poly(n). Hinsche et al. [12] showed the
hardness of learning the distribution PU when U is a Clifford circuit of depth ω(log n) and recently
Neitner et al. [13] showed that if U is a depth-Ω(n) circuit where each gate is picked from U(4), then
PU is not learnable using just Stat queries.

In this section we consider a stronger question. One can also just directly look at the quantum
state |ψU ⟩ = U |0n⟩ and ask how many Qstat queries of the form

Qstat :M, τ → αM ∈
[
⟨ψU |M |ψU ⟩+ τ, ⟨ψU |M |ψU ⟩ − τ

]
.

suffice to learn PU upto small trace distance? Note that the learning model in [12, 13] is a strict
restriction of this model, cause one could just consider M =

∑
x ϕ(x)|x⟩⟨x|, then

⟨ψU |M |ψU ⟩ =
∑
x

ϕ(x)⟨x|U |0n⟩2 =
∑
x

ϕ(x)PU (x) = E
x∼PU

[ϕ(x)],

which is precisely αϕ. To this end, we first generalize [12] in the following theorem.
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Theorem 16. For constant α ∈ (0, 1), there is a family of n-qubit circuits of depth d = (log n)1/α

and size d2 that requires 2Ω(d) Qstat queries to learn the output distribution in the computational
basis to error ≤ 0.00125 in total variational distance. Lastly, note that these states can be prepared
by performing Hadamard gates to obtain 1√

2n

∑
x |x, 0⟩ followed by O(n2) tiffoli and CNOT gates,

corresponding to the terms in the polynomial x⊤Ax.

Proof. Consider the padded states |ψA⟩ ⊗ |0⟩⊗k(n), similar to those in Theorem 7 (here {|ψA⟩ =
1√
2n

∑
x |x, x⊤Ax⟩}A). Using Fact 3 learning the output distributions of these states below total

variational distance 0.00125 implies the existence of an algorithm learning the states up to trace
distance 0.05. However, we know that doing so requires 2Ω(d) queries via Theorem 7. Thus, learning
the output distributions requires at least 2Ω(d) Qstat queries as well.

We next prove a generalization of [13]. Before that, we need the following result.
Theorem 17. [13, Theorem 36] There exists a d = O(n) such that for any circuit depth d′ ≥ d and
any distribution Q over {0, 1}n, we have that

Pr
ψ∼µd′

[dTV(Pψ, Q) ≥ 1

225
] ≥ 1−O(2−n).

Theorem 18. Let A be an algorithm that satisfies the following: making T many Qstat(τ) queries,
with probability ≥ 0.9, A learns the output distributions of O(n)-depth random circuits, to error
< 1/225 in total variational distance, then T = Ω(τ2 · 2n).

Proof. This is a generalization of [13, Theorem 6] and follows by a similar analysis to their lower
bound. For d ≥ 3.2(2 + ln 2)n + lnn we have that the uniform distribution over depth d random
circuits is a 2−n approximate 2-design [13]. Like we saw in the proof of Theorem 13, for every
observable ∥M∥ ≤ 1, we have that Varρ∼C(Tr[Mρ]) = O(2−n). We proceed with the same
adversarial lower bound. Upon making a Qstat query with observable M , the adversary responses
with Eρ∼C [Tr[Mρ]]. Using Chebyshev’s inequality,

Pr
ρ∼C

[
|Tr[Mρ]− Tr[M E

ρ∼C
[ρ]]| > τ

]
= τ−2 · 2−n. (71)

While the proof could continue using Theorem 4 (by reducing to the many-vs-one decision problem),
it is more direct to note that the above inequality implies that every deterministic algorithm cannot
identify the correct ρ ∈ C for a large fraction of states in C. In particular, say A is a deterministic
algorithm that outputs an estimate of a distributionQ such that dTV(Pψ, Q) < 1/225 and uses at most
t Qstat(τ) queries. Using Eq. (71), there is a fraction of C′ of measure at least 1−O(t · τ−2 · 2−n)
that are consistent with Tr[MiEρ∼C [ρ]] for the Qstat(τ) queries {M1, . . . ,Mt} made by A. Since
A is deterministic, it must output the same distribution Q for all ρ ∈ C′. We now use Theorem 17 to
claim that there is a large set of states that are both consistant with Tr[MiEρ∼C [ρ]] and far from Q in
total variational distance.

Pr
ρ∼C

[ρ ∈ C′ ∧ dTV(Pρ, Q) ≥ 1/225] = 1− Pr
ρ∼C

[ρ /∈ C′ ∨ dTV(Pρ, Q) < 1/225] (72)

≥ 1−O(t · τ−2 · 2−n) , (73)

where the inequality follows from the union bound, Theorem 17, and the concentration of measure
shown above. Thus, there is a set C′′ of measure at least 1−O(t · τ−2 · 2−n) that is both consistent
with Tr[MiEρ∼C [ρ]] for all queries Mi and also dTV(Pρ, Q) ≥ 1/225 for all ρ ∈ C′′. Upon the
input of a ρ ∈ C′′, A fails to provide a distribution Q such that dTV(Pρ, Q) < 1/225. Note that the
measure of C′′ is at least 0.99 for all n sufficiently large and t ∈ poly(n). Via Yao’s Principle, thus
any randomized algorithm using t ∈ poly(n) Qstat queries must fail with probability at least 0.99
for n sufficiently large. Further, for the measure of C′′ to be at most 0.01 for all n, the algorithm must
use t = Ω(τ2 · 2n) Qstat queries.

References
[1] Pranab Sen. Random measurement bases, quantum state distinction and applications to the

hidden subgroup problem. In 21st Annual IEEE Conference on Computational Complexity
(CCC’06), pages 14–pp. IEEE, 2006. 2

24



[2] Constantinos Daskalakis, Gautam Kamath, and John Wright. Which distribution distances are
sublinearly testable? In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2747–2764. SIAM, 2018. 2

[3] Mark M Wilde. Quantum information theory. Cambridge University Press, 2013. 3

[4] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, Dec 1994. 3

[5] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984. 3

[6] Nader H. Bshouty and Jeffrey C. Jackson. Learning DNF over the uniform distribution using
a quantum example oracle. In Wolfgang Maass, editor, Proceedings of the Eigth Annual
Conference on Computational Learning Theory, COLT, pages 118–127. ACM, 1995. 3, 4

[7] Srinivasan Arunachalam and Ronald de Wolf. Guest column: A survey of quantum learning
theory. ACM Sigact News, 48(2):41–67, 2017. 4

[8] Srinivasan Arunachalam and Ronald de Wolf. Optimal quantum sample complexity of learning
algorithms. Journal of Machine Learning Research, 19(71):1–36, 2018. 4, 6, 7, 17

[9] Alex B Grilo, Iordanis Kerenidis, and Timo Zijlstra. Learning-with-errors problem is easy with
quantum samples. Physical Review A, 99(3):032314, 2019. 4

[10] Srinivasan Arunachalam, Alex B Grilo, and Henry Yuen. Quantum statistical query learning.
arXiv:2002.08240, 2020. 4, 16, 17

[11] Yihui Quek, Daniel Stilck França, Sumeet Khatri, Johannes Jakob Meyer, and Jens Eisert.
Exponentially tighter bounds on limitations of quantum error mitigation. arXiv:2210.11505,
2022. 5, 22

[12] Marcel Hinsche, Marios Ioannou, Alexander Nietner, Jonas Haferkamp, Yihui Quek, Dominik
Hangleiter, Jean-Pierre Seifert, Jens Eisert, and Ryan Sweke. A single T -gate makes distribution
learning hard. arXiv:2207.03140, 2022. 16, 18, 23

[13] Alexander Nietner, Marios Ioannou, Ryan Sweke, Richard Keung, Jens Eisert, Marcel Hinsche,
and Jonas Haferkamp. On the average-case complexity of learning output distributions of
quantum circuits, 2023. arXiv:2305.05765. 5, 8, 18, 23, 24

[14] Kai-Min Chung and Han-Hsuan Lin. Sample efficient algorithms for learning quantum channels
in PAC model and the approximate state discrimination problem. In Min-Hsiu Hsieh, editor,
16th Conference on the Theory of Quantum Computation, Communication and Cryptography,
TQC 2021, July 5-8, 2021, Virtual Conference, volume 197 of LIPIcs, pages 3:1–3:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 5

[15] Srinivasan Arunachalam, Sergey Bravyi, Arkopal Dutt, and Theodore J Yoder. Optimal algo-
rithms for learning quantum phase states. arXiv:2208.07851, 2022. 7, 12, 15

[16] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998. 7

[17] Vitaly Feldman, Will Perkins, and Santosh Vempala. On the Complexity of Random Satisfiability
Problems with Planted Solutions. arXiv e-prints, page arXiv:1311.4821, November 2013.

[18] Vitaly Feldman. A General Characterization of the Statistical Query Complexity. arXiv e-prints,
page arXiv:1608.02198, August 2016. 9

[19] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S Vempala, and Ying Xiao. Statistical
algorithms and a lower bound for detecting planted cliques. Journal of the ACM (JACM),
64(2):1–37, 2017. 7, 20

[20] C. A. Fuchs and J. van de Graaf. Cryptographic distinguishability measures for quantum-
mechanical states. IEEE Trans. Inf. Theor., 45(4):1216–1227, sep 2006. 12

25



[21] Srinivasan Arunachalam, Sourav Chakraborty, Troy Lee, Manaswi Paraashar, and Ronald
De Wolf. Two new results about quantum exact learning. Quantum, 5:587, 2021. 16, 17

[22] V. Feldman. Learning DNF expressions from Fourier spectrum. In COLT 2012 - The 25th
Annual Conference on Learning Theory, pages 17.1–17.19, 2012. 17

[23] Srinivasan Arunachalam, Aleksandrs Belovs, Andrew M Childs, Robin Kothari, Ansis Rosmanis,
and Ronald De Wolf. Quantum coupon collector. arXiv:2002.07688, 2020. 17

[24] P. Gopalan, R. O’Donnell, R. A. Servedio, A. Shpilka, and K. Wimmer. Testing Fourier
dimensionality and sparsity. SIAM Journal on Computing, 40(4):1075–1100, 2011. Earlier
version in ICALP’09. 17

[25] Nengkun Yu and Tzu-Chieh Wei. Learning marginals suffices! arXiv:2303.08938, 2023. 18

[26] Patrick J. Coles, M. Cerezo, and Lukasz Cincio. Strong bound between trace distance and
hilbert-schmidt distance for low-rank states. Phys. Rev. A, 100:022103, Aug 2019. 18

[27] Sandu Popescu, Anthony J. Short, and Andreas Winter. Entanglement and the foundations of
statistical mechanics. Nature Physics, 2(11):754–758, 2006. 18

[28] Frédéric Wang. The hidden subgroup problem, 2010. 18

[29] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. Exponential separations between
learning with and without quantum memory. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, pages 574–585. IEEE, 2021. 20

[30] John Watrous. The theory of quantum information. Cambridge university press, 2018. 21

26


	Preliminaries
	Quantum Information Theory
	Notation
	Useful theorems
	Learning models

	Relating separable and entangled measurements
	Lower bounds for Quantum statistical query learning
	Learning is as hard as deciding
	Quantum statistical dimension to bound the decision problem
	Variance and average correlation lower bound quantum statistical dimension

	Separations between statistical and entangled measurements
	Separation between QSQ and QPAC with classification noise
	Smallest class separation

	New upper and lower bounds on QSQ learning states
	New upper bounds
	Hardness of testing purity
	Hardness of learning Coset states
	Hardness of shadow tomography
	Learning quantum biclique states
	Hardness of Learning Approximate Designs

	Applications
	Error mitigation
	Learning distributions


