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Abstract

In this work we make progress in understanding the relationship between learning
models when given access to entangled measurements, separable measurements
and statistical measurements in the quantum statistical query (QSQ) model. To this
end we prove the following results

1. For learning Boolean concept classes, we show that the entangled and separa-
ble sample complexity are polynomially related.

2. We give a concept class that shows an exponential separation between quan-
tum PAC learning with classification noise and QSQ learning. This proves
the “quantum analogue" of the seminal result of Blum et al. [1] that separates
classical SQ learning from classical PAC learning with classification noise.

3. The main technical contribution is to introduce a quantum statistical query
dimension (QSD), which we use to give lower bounds on the QSQ learning.
Using this, we prove exponential QSQ lower bounds for testing purity of
quantum states, shadow tomography, learning coset states for the Abelian
hidden subgroup problem, degree-2 functions, planted bi-clique states and
learning output states of Clifford circuits of depth polylog(n).

4. Using our QSQ lower bounds, we give an unconditional separation between
weak and strong error mitigation and prove lower bounds for learning dis-
tributions in the QSQ model. Prior works by Quek et al. [2], Hinsche et
al. [3] and Neitner et al. [4] proved the analogous results assuming diagonal
measurements and our work removes this assumption.

1 Introduction

In the last few decades, machine learning (ML) has emerged as one of the most successful parts of
artificial intelligence with wide-ranging applications in computer vision, image recognition, natural
language processing. More recently, ML has been used in popular applications such as AlphaGo
and Alpha zero (to play the games of Go and chess), chatGPT (to mimic a human conversation) and
Alphafold (for solving some hard instances of protein folding). Simultaneously, understanding the
power of quantum physics for ML has received much attention in the quantum computing community.
There have already been many theoretical proposals for quantum algorithms providing speedups for
practically relevant ML tasks such as clustering, recommendation systems, linear algebra, convex
optimization, SVMs, kernel-based methods, topological data analysis [5–14]. There are several
surveys dedicated to understanding the power of quantum methods for ML [15–18].
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Quantum learning theory provides a theoretical framework to understand quantum advantages
in ML. Here, there is a concept class C which is a collection of n-qubit quantum states, a learner is
provided with several copies of a state ρ ∈ C, performs an arbitrary entangled operation on ρ⊗T and
the goal is to learn ρ well-enough. This framework encompasses several results in quantum learning
such as tomography, shadow tomography, learning interesting classes of states, learning an unknown
distribution and functions encoded as a quantum state [19–26, 3, 2, 4, 17].

Given that machine learning is believed to be one of the first near-term applications of quantum
computers, a natural question is how implementable are these algorithms in order to see quantum
computational advantage in practice? The concern when considering near-term implementation
of the above learning algorithms is twin-fold, (i) the infeasibilty of preparing copies of ρ and (ii)
performing arbitrary entangled measurements on many copies of ρ at once, both of which seem out
of reach for near-term devices. Motivated by near-term implementations, recently [27] introduced
the model of quantum statistical query (QSQ) learning to understand the power of measurement
statistics for learning, inspired by Kearns [28] classical SQ model. Since its introduction, variations
of it have found applications in differential privacy, quantum supremacy, quantum neural networks,
learning distributions and error mitigation [2–4, 29–31]. In the QSQ model, a learning algorithm can
perform poly(n)-many efficiently-implementable two-outcome measurements {Mi, I−Mi} and the
goal is to learn the unknown ρ well enough using the measurement statistics. Clearly this model is
weaker than that given access to ρ⊗T , since the learner is only allowed access to expectation values
over a single copy of ρ. Given that recent works on error mitigation have shown that good estimates
of expectation values may be accessible well before fault-tolerant quantum computation [32, 33],
understanding the power of QSQ algorithms is of fundamental importance.

In this work, we primarily consider concept classes constructed from Boolean functions. In
Valiant’s PAC learning framework, the goal is to learn a concept class C ⊆ {c : {0, 1}n → {0, 1}}.
In the PAC model,1 a learning algorithm is given many uniformly random (xi, c⋆(xi)) where c⋆ ∈ C
is unknown and it uses these to learn c⋆ approximately well. Bshouty and Jackson introduced the
quantum PAC (QPAC) model [34] wherein a quantum learner is given quantum examples |ψc⋆⟩⊗T ,
i.e., coherent superpositions |ψc⋆⟩ = 1√

2n

∑
x |x, c⋆(x)⟩, and it needs to learn the unknown c⋆ ∈ C

well enough. The complexity measure here is the sample complexity, i.e., copies of classical or
quantum examples used by the algorithm. There have been works that have looked at this model and
proven positive and negative results for learning function classes (see [17] for a survey).

Relationships Between Models. First, in the distribution-independent setting it is known that
PAC and QPAC have the same sample complexity [35]. However, the same need not be true in
the distribution-dependent setting, where, for example, quantum learners can efficient learn DNF
formulas over the uniform distributions [34]. Second, it is a well-known fact that the classical
statistical query (SQ) model is exponentially-separated from PAC learning as witnessed by the class
of parity functions [28]. However, in [27] they show that parities can be learned in the QSQ model
efficiently. In fact, in [27] they observed that, many positive results using quantum examples can be
transformed into algorithms in the weaker QSQ framework. This motivates the following questions:

1. Do entangled measurements offer any advantages in learning function classes?
2. Do measurement statistics suffice for learning function classes, i.e. is there a
separation between QSQ and QPAC?

Here, we resolve both these questions. We show that (i) for learning Boolean function classes
the sample complexity of learning with entangled measurements and separable measurements are
polynomially related, thereby showing that separable measurements are sufficient to witness quantum
speedups in practice and (ii) there is an exponential separation between learning with entangled mea-
surements (even in the presence of classification noise) and learning with just measurement statistics,
thereby showing that just measurement statistics might be insufficient to witness quantum speedups
in practice.

1.1 Main results

We now give a detailed description of our main results before we give an overview of their proofs in
the next section.

1For simplicity, we discuss PAC learning under the uniform-distribution, i.e., x is uniform in {0, 1}n.
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Entangled versus Separable measurements. Since entangled measurements are vastly more
difficult to realize experimentally, much recent work has gone into characterizing the limitiations
of separable measurements. Bubeck et al. [36] gave a property testing task for which entangled
measurements are necessary for obtaining the optimal bounds. More recently, for learning classes of
arbitrary quantum states (i.e., not necessarily states constructed from function classes), two recent
works by [26, 37] showed exponential separations for learning properties of quantum states with
entangled vs separable measurements. Here, we study if similar separations exist when considering
function classes, a small subset of all quantum states. Our first result shows that in order to exactly
learn a function class, every learning algorithm using entangled measurements can be transformed
into a learning algorithm using just separable measurements with a polynomial overhead in sample
complexity.
Result 1. For a concept class C ⊆ {c : {0, 1}n → {0, 1}}, if T copies of |ψc⟩ suffice to learn an
unknown c ∈ C, then O(nT 2) copies to learn c using only separable measurements.

QSQ versus noisy-QPAC learning. Classically, Kearns posed the question if SQ learning is equal
to PAC learning with classification noise. The seminal result of Blum et al. [1] resolves this question
by showing that the class of parity functions acting on the first O((log n) · log log n) bits separates
these two models of learning (under constant noise rate). In [27], the authors asked a question if there
is a natural class of Boolean functions for which, QSQ learning can be separated from QPAC learning
with noise (in fact, prior to our work, no separation was known even in the presence of no noise).
Classically it is well-known that parities separates SQ learning from PAC learning. In [27], it was
observed that the class of parities, juntas, and DNF formulas are learnable in the QSQ framework,
leaning no clear candidate to separate QSQ from QPAC. This motivates the following questions:

(a) In the noisy-quantum PAC model [34, 35], a learning algorithm is given copies of

|ψn
c⋆⟩ =

1√
2n

∑
x∈{0,1}n

|x⟩
(√

1− η|c⋆(x)⟩+√
η|c⋆(x)⟩

)
, (1)

and the goal is to learn c⋆. Is there a class that separates noisy-quantum PAC from QSQ
learning?

(b) Admittedly, the class constructed by Blum et al. [1] is “unnatural", can we obtain the
separation in (a) for a natural concept class?

(c) Does such a separation hold for non-constant error rate η?

Here, we describe a natural problem that witnesses this separation, resolving the three questions.
Result 2. The concept class C = {fA : {0, 1}n → {0, 1} | fA(x) = x⊤Ax (mod 2), A ∈ Fn×n

2 }
of all degree-2 Boolean functions can be (exact) learned using quantum examples and separable
measurements even in the presence of η-classification noise in time poly(n, 1/(1− 2η)), whereas
every QSQ algorithm requires 2Ω(n) queries to (approximately) learn C.

Further applications. While we first considered learning function classes, the QSQ model is
meaningful for a much broader class of tasks in quantum information theory and to that end we
prove the following: (a) we show hardness of shadow tomography (quadratically improving the prior
bound [26] for separable measurements) and show hardness of even the simplest Abelian hidden
subgroup problem in the QSQ model; (b) we give a doubly-exponential lower bound for testing purity
of an unknown state; (c) we give an exponential separation between weak and strong error mitigation
and (d) we give superpolynomial lower bounds for learning output distributions of quantum circuits
(when measured in the computational basis). Prior works [2–4] considered tasks (c), (d) and showed
these separations when the QSQ queries correspond to diagonal measurements, and we remove the
diagonal assumption here. We discuss this further in Section 4.2.

2 Models of learning

We discuss the learning models of interest in our submission in this section. For a quick introduction
to quantum information notation, we refer the reader to Section 1 in the Supplementary material. In
all models, we are primarily interested in improper learning, i.e. the learner need not output a state or
function from the concept class.
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Classical PAC learning. Valiant [38] introduced the classical Probably Approximately Correct
(PAC) learning model. In this model, a concept class C ⊆ {c : {0, 1}n → {0, 1}} is a collection of
Boolean functions. The learning algorithm A obtains labelled examples (x, c(x)) where x ∈ {0, 1}n
is uniformly random and c ∈ C is the unknown target function.2 The goal of an (ε, δ)-learning
algorithm A is the following: for every c ∈ C, given labelled examples {(xi, c(xi))}, with probability
≥ 1− δ (over the randomness of the labelled examples and the internal randomness of the algorithm),
outputs a succint circuit-representation for an hypothesis h : {0, 1}n → {0, 1} such that Prx[c(x) =
h(x)] ≥ 1− ε. The sample complexity and time complexity of a learning algorithm is the maximal
number of labelled examples and time used by the optimal learning algorithm respectively.

Quantum PAC learning. The quantum PAC model was introduced by Bshouty and Jack-
son [34] wherein, they allowed the learner access to quantum examples of the form |ψc⟩ =
1√
2n

∑
x∈{0,1}n |x, c(x)⟩. Like the classical complexities, one can similarly define the (ε, δ)-sample

and time complexity for learning C as the quantum sample complexity (i.e., number of quan-
tum examples |ψc⟩) used and quantum time complexity (i.e., number of quantum gates used
in the algorithm) of an optimal (ε, δ)-learner for C. Similarly, Bshouty and Jackson [34] de-
fined quantum learning with classification noise, wherein a learning algorithm is given access to
|ψn

c ⟩ = 1√
2n

∑
x |x⟩ ⊗ (

√
1− η|c(x)⟩+√

η|c(x)⟩). Such quantum examples have been investigated
in prior works [34, 35, 39].

Learning with entangled versus separable measurements. Observe that in the usual definition
of QPAC above, a learning algorithm is given access to |ψc⟩⊗T and needs to learn the unknown
c ∈ C. In this paper we make the distinction between the case where the learner uses entangled
measurements, i.e., perform an arbitrary operation on copies of |ψc⟩ versus the setting where the
learner uses separable measurements, i.e., performs a single-copy measurement on every copy of |ψc⟩
in the learning algorithm. When discussing learning with entangled and separable measurements, in
this paper we will be concerned with exact learning, i.e., with probability ≥ 2/3, the learner needs to
identify c. We denote EntExact as the sample complexity of learning with entangled measurements
and SepExact as the sample complexity of learning with separable measurements.

Quantum statistical query learning. We now discuss the QSQ model, following the definitions
given in [27]. More generally, in order to learn an unknown quantum state ρ, in the QSQ model, the
learner makes Qstat queries that take as input a bounded linear operator M over the Hilbert space
of ρ, satisfying ∥M∥ ≤ 1, and tolerance τ and outputs a τ -approximation of Tr(Mρ), i.e.,

Qstat : (M, τ) 7→ α ∈ [Tr(Mρ)− τ,Tr(Mρ) + τ ].

The goal of the QSQ learner is: with probability ≥ 1−δ, output a succinct description of a state σ such
that ∥ρ−σ∥Tr ≤ ε. In order to learn a function class using quantum examples, we have ρ = |ψf ⟩⟨ψf |
and on input M , the Qstat oracle responds with α ∈ [⟨ψf |M |ψf ⟩ − τ, ⟨ψf |M |ψf ⟩+ τ ].

In this case, the goal of a QSQ learner is to output a hypothesis h that satisfies
dTr(|ψf ⟩⟨ψf |, |ψh⟩⟨ψh|) ≤ ε, which translates to Prx[h(x) = f(x)] ≥ 1 −

√
ε. The query com-

plexity for learning C, denoted QSQ(C), is the number of Qstat queries an optimal algorithm makes
and the quantum time complexity is the total number of gates used by an optimal algorithm (which
includes the gates to number of gates to implement M ). We say a n-bit concept class C is QSQ
learnable if C can be learned using poly(n) many Qstat queries, each with tolerance τ = 1/ poly(n)
and observable M which is implementable using poly(n) many gates. There are three ways to
motivate the QSQ model

1. From a theoretical perspective, performing 2-outcome measurements is easier to implement
than arbitrary separable measurements, which is in turn easier to implement than entangled
measurements, so it is useful to understand the power of expectation values in quantum
learning theory and the QSQ captures this question in a theoretical framework.3

2More generally in PAC learning, there is an unknown distribution D : {0, 1}n → [0, 1] from which x
is drawn. Throughout this paper we will be concerned with uniform-distribution PAC learning, i.e., D is the
uniform distribution, so we describe the learning model for the uniform distribution for simplicity.

3Clearly any binary measurement {M, I −M} can be simulated with a Qstat query to M or I −M . In
the opposite direction, any observable M such that ∥M∥ ≤ 1 can be converted into the POVM { I+M

2
, I−M

2
}.

Thus, Qstat queries as defined above and binary POVMs are essentially the same model.
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2. We emphasize that a QSQ learner is a classical algorithm since it receives statistical estimates
of measurements on quantum states. One could envision a framework of learning where
quantum states are prepared in the “cloud" and a classical learner needs to interact with the
cloud only classically: QSQ models such a quantum framework.

3. Most quantum complexity classes are defined by making a binary measurement on a read-
out qubit. This can be readily subsumed into the QSQ framework. The QSQ model also
naturally extends recent works [2–4] wherein they consider the limitations of classical SQ
in the setting where M =

∑
x ϕ(x)|x⟩⟨x| is diagonal.

4. QSQ naturally generalizes SQ. That is, one can think of QSQ as being a form of statistical
learning where the learner can change the basis of their statistics. Indeed, SQ corresponds
to the case when all queried observables are diagonal.

Some positive results in QSQ In quantum learning theory, there are a few well-known function
classes that are learnable using quantum examples: parities, juntas, DNF formulas, the coupon
collector problem, learning codeword states. It was observed in [35] that the first three classes are
learnable in QSQ already, primarily because a version of Fourier sampling is implementable in QSQ.
In this work we first observe that the coupon collector problem and learning codeword states are also
learnable in the QSQ framework. We next observe that the class of Fourier-sparse functions are QSQ
learnable (which subsumes all the positive results in [27]).
Theorem 1. The class of k-Fourier sparse functions, the class of codeword states, coupon collector
problem can be learned in the QSQ model.

Beyond learning example states, we next observe that one can do tomography on the set of
trivial states, i.e., states |ψ⟩ = C|0n⟩ where C is a constant-depth n-qubit circuits, in polynomial
time in the QSQ model. An open question of this work, and also the works of [3, 4], is if we can
learn the distribution PC = {⟨x|ψ⟩2}x using classical SQ queries. The theorem below shows that
if we had direct access to |ψ⟩, one can learn the state and the corresponding distribution PC , using
Qstat queries.
Theorem 2. The class of n-qubit trivial states can be learned up to trace distance ≤ ε using
poly(n, 1/ε) Qstat queries with tolerance poly(ε/n).

For further details we defer the corresponding proofs to Section 5.1 in the Supplementary material.

3 Proof of results

In this section we outline the proof our two results.

3.1 Proof overview for Result 1

Our starting point towards proving this result is that one could use a result of Sen [40] that, given
copies of |ψc⋆⟩, one could apply random measurements on single copies of this state and produce
an h that is approximately close to c⋆ using at most T = (log |C|)/ε copies of |ψc⋆⟩.4 So, for
separable learning, by picking ε = ηmin as the minimum distance between concepts in C, one
could exactly learn C using T quantum examples. Proving a lower bound on entangled learning C
is fairly straightforward as well: first observe that (log |C|)/n is a lower bound on learning (since
each quantum example gives n bits of information and for exact learning one needs Ω(log |C|) bits
of information) and also observe that 1/ηmin is a lower bound, since to distinguish just between
c, c′ ∈ C that satisfy Prx[c(x) = c′(x)] = 1−ηmin, so one needs 1/ηmin copies of the unknown state.
Putting this separable upper bound and entangled lower bound together gives us SepExact(C) ≤
n · EntExact(C)2 for all C. This relation is however sub-optimal.

We further improve the entangled lower bound as follows. Let ηa = Ec,c′∈C Prx[c(x) ̸= c′x)].
We use a information-theoretic argument (inspired by a prior work [35]) as follows: define a random
variable A,B and the quantum state ρA,B =

∑
c∈C |c⟩⟨c|⊗ |ψc⟩⟨ψc|⊗k (assuming that k is the sample

complexity of EntExact). For exact learning we know that I(A : B) = Ω(log |C|) again because one
needs to learn A exactly. Next we know that I(A : B) ≤ k · I(A : B1) (where B1 corresponds to the

4This idea was used in an earlier work of Chung and Lin [41] as well, but they weren’t concerned with
entangled and separable measurements.
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first register in B1). Now using a non-trivial analysis, one can analyze the reduced density matrix
on the subsystem A,B1 and analyze its eigenvalues to show that I(A : B1) ≤ nηa. Chaining these
inequalities gives that EntExact ≥ max{1/ηm, (log |C|)/(nηa)}. Combining this entangled lower
bound with the separable upper bound, we get that

SepExact ≤ O
(
n · EntExact ·min

{
ηa/ηm , EntExact

})
.

For further details we defer the proof to Section 2 in the Supplementary material. It is not hard to see
that this relation is optimal as well for the class of degree-2 functions defined as

C = {f(x) = x⊤Ax (mod 2) : A ∈ Fn×n
2 }. (2)

For this class ηa = ηm = O(1) by the Schwartz-Zippel lemma. Recently it was shown [24] that
SepExact = Θ(n2) and EntExact = Θ(n) showing the optimality of our relation above.

3.2 Proof overview for Result 2

3.2.1 Technical contribution.

A fundamental issue in proving our QSQ result is, what techniques could one use to prove these lower
bounds? Prior to our work, in [27] they introduced two new techniques based on differential privacy
and communication complexity that give lower bounds on QSQ complexity. However, both these
lower bounds are exponentially weak! In particular, the lower bounds that they could prove were
linear in n for learning an n-bit concept class. Classically, there have been a sequence of works [42–
44] with the goal of proving SQ lower bounds and finally the notion of statistical dimension was
used to obtain close-to-optimal bounds for SQ learning certain concept classes and the breakthrough
works of [44] used it to settle the complexity of learning the planted k-biclique distribution.

In this work, our technical contribution is a combinatorial parameter to lower bound QSQ
complexity akin to the classical parameter. To this end, we follow a three-step approach.

1. Reduction to Decision Problems. We show that an algorithm A that learns a concept class
below error ε in trace distance using Qstat queries of tolerance τ can also be used to solve
the following decision problem: for a fixed σ such that minρ∈C dTr(ρ, σ) > 2(τ +ε), decide
if an unknown state is either some ρ ∈ C or equals σ. Calling QQC the complexity of such
decision problem, we show that

QSQ(C) ≥ max
σ

{QQC(C, σ)− 1 : min
ρ∈C

dTr(ρ, σ) > 2(τ + ε)}.

2. Quantum Statistical Dimension. Next, we define the notion of quantum statistical di-
mension QSD: for τ > 0, a class of states C and a σ /∈ C, the QSDτ (C, σ) is the
smallest integer such that there exists a distribution ν over Qstat queries M satisfying
PrM∼ν [|Tr(M(ρ− σ))| > τ ] ≥ 1/d for all ρ ∈ C. From an operational perspective QSD
is natural, as it can be viewed as the smallest expected number of observables that can
distinguish all states in C from σ. We then show that if the decision algorithm succeeds with
probability at least 1− δ, we have that:

QQC(C, σ) ≥ (1− 2δ)QSDτ (C, σ).

3. Lower Bounds on QSD. Even with this lower bound, proving bounds on QSD(C, σ) is
non-trivial. To this end, we further give two lower bounding techniques for QSD(C, σ), one
based on the variance of Qstat queries across C (inspired by the work of Kearns [28]) and
one based on average correlation (inspired by the work of Feldman [43]). In particular, we
define two combinatorial quantities Var(C) and QAC(C, σ) which can be associated with
every class and use it to lower bound QSD.
Let µ be a distribution over C, such that σ1 := Eρ∼µ[ρ] /∈ C. We define Var(C) as follows:

Var(C) = τ2 · min
M,∥M∥≤1

(
Var
ρ∼µ

[Tr[ρM ]]
)−1

, (3)

where
Var
ρ∼µ

[Tr(ρM)] = E
ρ∼µ

[Tr(ρM)2]−
(

E
ρ∼µ

[Tr(ρM)]
)2

.
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We show that QSDτ (C, σ1) ≥ Var(C), which we eventually use to lower bound QSQ(C).
Next, for σ2 /∈ C, we define the average correlation QAC(C, σ2) as

QAC(C, σ2) = sup
C0⊂C

(κγτ -frac(C0, σ2))−1 , (4)

where κγτ -frac(C0, σ2) is a combinatorial parameter capturing correlations between states
in C0 and σ2. We then show that QSDτ (C, σ2) ≥ QAC(C, σ2) and use this in turn to lower
bound QSQ(C).5

Putting together the three bullets above, the QSQ complexity of learning can be lower bounded by
the variance bound and the average correlation bound that we define in this work. We remark that
although, our quantum combinatorial parameters are inspired by the classical works of Feldman et
al. [42–44], proving that they lower bound QSQ complexity and also giving lower bounds for the
corresponding concept class using these parameters is non-trivial and is a key technical contribution
of our work. Below, we apply these lower bounds to obtain our learning results. For further details
we defer the formal definitions and proofs to Section 3 in the Supplementary material.

3.2.2 QSQ versus noisy QPAC

We now sketch the proof of Result 2. As mentioned earlier, previous to our work we did not have a
candidate class to separate QPAC from QSQ (let alone with noise). There have been a few works that
have shown exponential lower bounds for learning using separable measurements [26, 37, 45], but
all these lower bounds correspond to learning classes of mixed quantum states. Hence it was open
if there is very simple structured function class such that quantum examples corresponding to this
function class is hard for QSQ (in fact given our polynomial relation between entangled and separable
learning, it is conceivable that for the small class of function states, QSQ are QPAC are polynomially
related as well). In this work, we look at the degree-2 concept class C defined in Eq. (2).

Recently, it was observed that [24] this class is learnable using O(n) quantum examples with
entangled measurements and O(n2) quantum examples with separable measurements. Our main
contribution is in showing that the QSQ complexity of learning C with tolerance τ is Ω(2n/2 · τ2).
When τ = 1/ poly(n) this is an exponential, 2Ω(n), lower bound. We prove the hardness for
algorithms using Qstat queries using the variance lower bounding technique. In particular, we show
that for every n+ 1 qubit operator M such that ∥M∥ ≤ 1, we have that

Varf (Tr[Mψf ]) = O(2−n/2), (5)

where we let ψf = |ψf ⟩⟨ψf | for notational simplicity. Combined with our variance lower bound
introduced in Section 3.2.1, we obtain our lower bound on the QSQ complexity of learning C. It
remains to establish Eq. (5). To this end, we need to understand

Varf (Tr[Mψf ]) = Ef [Tr[Mψf ]
2]− (Ef [Tr[Mψf ]])

2 (6)

To do so, we decompose ψf as follows. For every f : {0, 1}n → {0, 1} let |ψf ⟩ = 1√
2n

∑
x |x, f(x)⟩

and |ϕf ⟩ =
∑

x(−1)f(x)|x⟩. For convenience we let |u⟩ = 1√
2n

∑
x |x⟩. Then we see that

|ψf ⟩⟨ψf | =
1

2

(
|ϕf ⟩⟨ϕf | ⊗ |−⟩⟨−|︸ ︷︷ ︸

ρf
1

− |ϕf ⟩⟨u| ⊗ |−⟩⟨+|︸ ︷︷ ︸
ρf
2

− |u⟩⟨ϕf | ⊗ |+⟩⟨−|︸ ︷︷ ︸
ρf
3

+ |u⟩⟨u| ⊗ |+⟩⟨+|︸ ︷︷ ︸
ρf
4

)
.

We now note that any n+ 1 qubit observable M can be decomposed as M =
∑

a,bMa,b ⊗ |a⟩⟨b|
where now a, b ∈ {+,−}. Since ∥M∥ ≤ 1 we also have that ∥Ma,b∥ ≤ 1, however the off-
diagonal blocks now no longer need be Hermitian. In an abuse of notation we now discard the
last qubit of ρfi and denote the resulting state also as ρfi . For ease of notation we further introduce
the notation M1 = M−,−, M2 = M−,+, M3 = M+,−, and M4 = M+,+ Thus, we see that
Tr[Mψf ] =

1
2

∑
i Tr[Miρ

f
i ] and further the variance can be written as

5We point out two subtleties, discussed in detail in Section 3 of the Supplementary Material. Firstly, our
definition of QAC is defined only for σs that are full rank. Secondly, as stated, the Var(C) lower bound only
yields a QSQ lower bound if minρ∈C dTr(ρ, σ1) > 2(τ + ε). This does not impact the lower bound proofs
by this technique that we present here. In Section 3 of the supplementary material, we also briefly discuss an
alternative approach to hiding decision problems in C that relaxes this condition.
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Varf (Tr[Mψf ]) =
1

4

∑
i,j

[
EfTr

(
Miρ

f
i

)
· Tr

(
Mjρ

f
j

)
− Tr(MiEf [ρ

f
i ]) · Tr(MjEf [ρ

f
j ])

]
. (7)

At this point, we upper bound all these terms by exp(−n/2). Proving this upper bound is fairly
combinatorial but crucially it involves understanding the properties of the ensemble {|ψf ⟩}f and its
moments for a uniformly random degree-2 functions f . Finally, we observe that the concept class can
be learned given noisy quantum examples like in Eq. (1) using poly(n, 1/(1−2η)) examples (proving
this uses the standard procedure to take derivatives of quantum states and the observation that this
procedure is noise-resilient). This gives us the claimed separation between QSQ and noisy-QPAC, the
“quantum analogue" of the seminal result of Blum et al. [1] for a natural class and with non-constant
error rate close to 1/2. We refer the interested reader to Section 4.1 in the Supplementary material.

3.3 Smallest class separation

Above we saw that the concept class of quadratic functions separated QPAC from QSQ. Observe
that states in this concept class can be prepared by circuits of size O(n2) and depth O(n) consisting
of {Had,X,CX} gates. A natural question is, can states prepared by smaller circuits also witness
such a separation between QPAC and QSQ? In Section 2 we saw that trivial states are learnable
in QSQ, so is it necessary to have super-constant depth in order to show super-polynomial lower
bounds? In the theorem below we answer this in the positive, by using a simple padding argument
inspired by a prior work of Hinshe et al. [3]. In particular, we show that the class of states produced
by ω(log n)-depth is already hard to learn for QSQ algorithms using a polynomial number of queries.
For further details we defer the proof to Section 4.2 in the Supplementary material.
Theorem 3. For any α ∈ (0, 1) there exists a family of n qubit Clifford circuits of depth
d = (log n)1/α and size d2 that requires 2Ω(d) Qstat queries to learn the state to error ≤ 1/2
in trace distance.

4 Further applications

In this section we first use our lower bound techniques to give QSQ lower bounds for interesting
classes of states and then use our QSQ lower bounds for further applications outside learning. For
further details we defer the proof to Sections 4 and 5 in the Supplementary material.

4.1 QSQ lower bounds for learning states

Extending our lower bounds from above, we consider fundamental problems in quantum computing
and prove QSQ lower bounds for these tasks. We summarize our results in the table below, for
τ = O( 1

poly(n) ), before expanding upon these in the following subsections.

Problem QSQ Bound General Complexity
Shadow tomography

with Pauli observables Ω(4n) O(2n) with separable measurements [26]

Learning coset states
from Abelian hidden subgroup problem 2Ω(n) O(n) with separable measurements

Purity testing 22
Ω(n) O(1) with entangled measurements

Θ(2n) with separable measurements [26]
Learning states from

O(2n) approximate 2-designs 2Ω(n) O(n) for stabilizer states
with entangled measurements

Hidden subgroup problem. Coset states appear often in the hidden subgroup problem (HSP) [46,
47], a fundamental problem in quantum computing. It is well-known that coset states of the Abelian
HSP can be learned exactly from separable measurements in polynomial sample complexity and for
non-Abelian groups, it was well-known that separable measurements [48, 49] require exponential
many copies to learn a coset state. A natural question is, what is the QSQ complexity of learning coset
states? Given that the standard approach for HSP is based of Fourier sampling and [27] showed that
a version of Fourier sampling is easy in QSQ, it is natural to expect that HSP is implementable in
QSQ. Surprisingly, in this work, we show that, even for Abelian groups, the QSQ sample complexity
of learning the unknown coset state is exponentially large. In particular, we show a lower bound of
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Ω(τ4 · 2n) on the QSQ complexity of learning using Qstat(τ) queries and the proof of this is done
via the average correlation method we introduced in Section 3.2.1.

Shadow tomography. In recent times, there have been a lot of works surrounding the framework
of shadow tomography [21, 37]. The goal here is, given copies of an unknown quantum state ρ, the
learner has to predict the expectation value Tr[Oiρ] of a collection of known observables {Oi}i∈[k] up
to error ε. It is well-known to be solvable using poly(n, log k) copies of ρ. In [26] the authors show
Θ(2n) copies of ρ are necessary and sufficient for shadow tomography using separable measurements.
To prove the lower bounds the authors construct a many-vs-one decision task where σ = I/2n and
C = {ρi = I+3εOi

2n }. Assuming that Tr[Oi] = 0 and Tr[O2
i ] = 2n for all Oi, then an algorithm which

solves the shadow tomography problem with high probability also solves the decision problem. Thus,
a lower bound on the latter is also a lower bound on the sample complexity of shadow tomography.
Here we give a quadratically stronger lower bound of Ω(4n) when given access to only Qstat
measurements, which we prove using the average correlation method. Our result shows that even
separable measurements and not just statistics play a non-trivial role in shadow tomography.

Does tolerance matter? A natural question when discussing QSQ learning is, is there a natural
distribution learning task that can be solved with tolerance τQ ≥ τC such that classical Stat(τC)
queries cannot solve the task but Qstat(τQ) can solve the task? Here we consider the class of
bi-clique states introduced in the seminal work of Feldman et al. [44]. In their work they showed that
for detecting a planted bipartite k-clique distributions when the planted k-clique has size n1/2−ε (for
constant ε > 0), it is necessary and sufficient to make superpolynomial in n many Stat(k/n) queries.
Here we show that one can achieve the same query complexity quantumly but with Qstat(

√
k/n),

i.e., with quadratically larger tolerance we can detect a k-biclique. A classical SQ algorithm cannot
solve this task with τC =

√
k/n queries.

A doubly exponential lower bound? So far all our lower bounds for learning n-qubit quantum
states are exponential in n. A natural question is, can one prove a doubly exponential lower bound
for some task? In this work, we show that the natural problem of testing purity, i.e., given a quantum
state ρ return an estimate of Tr[ρ2], requires exp(2nτ2) many QSQ queries to solve. Previous work
of [26] showed that it is necessary and sufficient to use Θ(2n) many copies of ρ to test purity if we
were allowed separable measurements, but our work considers the weaker QSQ model and proves a
doubly-exponential lower bound. The proof of this uses Levy’s lemma and the ensemble of Haar
random states to lower bound the quantum statistical dimension in a manner similar to that of the
variance based technique.

4.2 Applications outside learning

Using our QSQ results we present two applications. First we give an exponential separation between
weak and strong error mitigation, resolving an open question of Quek et al. [2]. Second, we show
super-polynomial lower bounds for learning output distributions (in the computational basis) of n-
qubit Clifford circuits of depth ω(log n) and Haar random circuit of depth-O(n), extending the works
of [3, 4]. All these results [2–4] proved these lower bounds for QSQ algorithms assuming diagonal
observables. For further details we defer the proof to Section 6 in the Supplementary material.

Error mitigation. Error mitigation (EM) was introduced as an algorithmic technique to reduce
the noise-induced in near-term quantum devices, hopefully with a small overhead, in comparison to
building a full-scale fault-tolerant quantum computer to harness general quantum advantages [50].
In recent times, EM has obtained a lot of attention with several works understanding how to obtain
near-term quantum speedups as a surrogate to performing error correction. EM has been an important
component in recent QML demonstrations [37, 51, 10].

More formally, an EM algorithm A takes as input a quantum circuitC, noise channel N and copies
of |ψ′⟩ = N (C)|0n⟩. In a strong EM protocol, A needs to produce samples from a distribution D
that satisfies dTV(D, {⟨x|C|0n⟩2}x) ≤ ε and in the weak EM setting, given observablesM1, . . . ,Mk

the goal is to approximate ⟨ψ|Mi|ψ⟩ upto ε-error. In [2], they asked the question: how large should
k be in order to simulate weak EM by strong EM? They show that when Mis are diagonal, then
k = Ω(2n), i.e., they gave an exponential separation between weak and strong EM. In this work, our
main contribution is to use Result 2 to remove the assumption that Mis are diagonal and show an
exponential separation unconditionally between weak and strong EM.
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Learning distributions. Recently, the works of Hinsche et al. [3] and Nietner et al. [4] initiated
the study of learning output distributions of quantum circuits. In particular, they considered the
following general question: Let |ψU ⟩ = U |0n⟩ where U ∈ U is a family of interesting unitaries and
let PU (x) = ⟨x|U |0n⟩2 be a distribution. How many QSQ queries does one need to learn the PU to
dTV at most ε? To this end, the works of [3, 4] looked at diagonal Ms, i.e., M =

∑
X ϕ(x)|x⟩⟨x| for

ϕ : {0, 1}n → [−1, 1] and showed the hardness of approximately learning PU for U being ω(log n)-
depth Clifford circuits and depth-d ∈ {ω(log n), O(n)} and d→ ∞-depth Haar random circuits.6

In this work, we improve upon their lower bounds by removing the assumption that M is diagonal
and prove a general QSQ lower bounds for these circuit families that is considered in their work.
In order to prove this bound, we follow the following three step approach (i) We first observe the
following simple fact: for distributions p, q : Z → [0, 1], define |ψp⟩ =

∑
z∈Z

√
p(z)|z⟩ and |ψq⟩

similarly. Then ∥|ψp⟩ − |ψq⟩∥2Tr ≤ 2∥p− q∥tvd. So it suffices to prove the hardness of learning the
output state, in order to prove the hardness of learning the distribution. (ii) Next we consider the
class C of states forming a γ-approximate 2−design where γ = O(2−n) and show that learning
states from C with error ≤ 2/3 in trace distance requires Ω(τ2 · 2n) Qstat(τ) queries. (iii) Finally,
using that depth-O(n) circuits form a design, we invoke our QSQ lower bound in order to prove
the hardness of learning the output states of these circuits. These three steps proves the hardness of
learning output distributions (in the computational basis) of quantum circuits.

Open questions. There are a few natural questions that our work opens up: (i) Can we show that
for every concept class C, we have that SepExact ≤ O(n ·EntExact)?, (ii) Following [3, 4] what is
QSQ complexity of learning the output distribution of constant-depth circuits assuming we only use
diagonal operators? (iii) Theoretically our work separates weak and strong error mitigation, but in
practice there are often assumptions in the mitigation protocols, can we show theoretical separations
even after making these assumptions? (iv) Classically it is well-known that several algorithms can be
cast into the QSQ framework, is the same true quantumly? If so, that would suggest that QSQ as a
unifying framework for designing new learning algorithms. (v) What is the QSQ complexity of the
Hidden subgroup problem when given access to function states, instead of coset states (which is the
case only in the standard approach).
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