
A Essential foundations of differential privacy

The Neyman-Pearson lemma (cf., [27]) is crucial in the proof as it establishes the likelihood ratio test
as the most powerful test.
Lemma A.1 (Neyman-Pearson). Let P and Q be probability distributions on Ω with densities p and
q, respectively. For the hypothesis testing problem H0 : P vs H1 : Q, a test ϕ : Ω → [0, 1] is the
most powerful test at level α if and only if there are two constants t ∈ [0,+∞] and c ∈ [0, 1] such
that ϕ has the form

ϕ(ω) =

{
1, if p(ω) < tq(ω),
c, if p(ω) = tq(ω),
0, if p(ω) > tq(ω).

As an application of the Neyman-Pearson lemma, the type I error α(t) has the form

α(t) = EP [ϕ] = PX∼P

[
p(X)

q(X)
< t

]
+ cPX∼P

[
p(X)

q(X)
= t

]
,

and the type II error is

β(t) = 1− EQ[ϕ] = PX∼Q

[
p(X)

q(X)
> t

]
+ (1− c)PX∼Q

[
p(X)

q(X)
= t

]
.

One of the most important properties of differential privacy is that DP is immune to data-independent
post-processing. Precisely, we introduce the following information processing inequality given by
[14].
Lemma A.2 (Theorem 2.10 in [14]). Let P and Q be two distributions on a probability space Z and
let P̃ and Q̃ be two distributions on another probability space Z̃. The following two statements are
equivalent:

(a) T (P,Q) ≤ T (P̃ , Q̃).

(b) There exists a post-processing algorithm Proc : Z → Z̃ such that Proc(P ) = P̃ and
Proc(Q) = Q̃.

The primal-dual perspective, initially introduced by [14], will be employed to explore the relationship
between (ϵ, δ)-DP and f -DP. Recall that for a function g, its convex conjugate g∗ is defined by
g∗(y) = supx{xy − f(x)}.
Lemma A.3 (Proposition 2.12 in [14]). Let f be a symmetric trade-off function. A mechanism is
f -DP if and only if it is (ϵ, δ(ϵ))-DP for all ϵ > 0 with δ(ϵ) = 1 + f∗(−eϵ).

To make use of Lemma 6.3, we recall the symmetrization of a trade-off function as defined in
Definition F.1 of [14]. Let f be a trade-off function, the symmetrization of f is given by

Symm(f) =

{
min{f, f−1}∗∗, if x̄ ≤ f(x̄),
max{f, f−1}, if x̄ > f(x̄),

with x̄ = inf{x ∈ [0, 1] : −1 ∈ ∂f(x)}.
According to Section F in [14], we have

min{f, f−1}∗∗ =

 f(x), 0 ≤ x ≤ x̄,
x̄− f(x̄)− x, x̄ ≤ x ≤ f(x̄),
f−1(x), f(x̄) ≤ x ≤ 1.

(3)

Another useful tool is the advanced joint convexity first introduced in [4].
Lemma A.4 (Theorem 2 in [4]). Let P and Q be two distributions such that P = (1− w)P0 + wP1

and Q = (1−w)P0+wQ1, for some 0 ≤ w ≤ 1. Given γ ≥ 1, let γ′ = 1+w(γ−1) and η = γ′/γ.
Then, it holds

Hγ′(P∥Q) = wHγ(P1∥(1− η)P0 + ηQ1).
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B Technical details of Section 3

In this section, we discuss the omitted details of Section 3. Prior to delving into the proofs, we provide
a reminder of the notations. Let {Pi}mi=1 and {Qi}mi=1 be two sequences of probability distributions.
For a weight vector w = (w1, · · ·wm), let Pw =

∑m
i=1 wiPi and let Qw =

∑m
i=1 wiQi. Let I be a

random variable such that P[I = i] = wi.

B.1 Proof of Lemma 3.1 and discussions

Proof of Lemma 3.1. Consider X ∼ Pw and Y ∼ Qw. Here, (X|I, I) denotes the observation of
X|I = i ∼ Pi along with an index i, indicating that X is drawn from the I-th distribution PI .
Therefore, (X|I, I) → X represents a post-processing step where we remove the information about
I . Since we solely manipulate the indices, this post-processing is independent of the data, leading to
the inequality T (X,Y ) ≥ T ((X|I, I), (Y |I, I)).
The next step is to specify T ((X|I, I), (Y |I, I)). Let pI and qI be the pdfs of PI and QI , respectively.
According to Lemma A.1, the most powerful test is the likelihood ratio test. Then, the type I error is

α(t, c) = PX∼PI ,I

[
pI(X)

qI(X)
< t

]
+ cPX∼PI ,I

[
pI(X)

qI(X)
= t

]
= EI

[
PX∼PI

[
pI(X)

qI(X)
< t

∣∣∣∣ I]+ cPX∼PI

[
pI(X)

qI(X)
= t

∣∣∣∣ I]]
=

m∑
i=1

wiαi(t, c),

where

αi(t, c) = PX∼PI

[
pI(X)

qI(X)
< t

∣∣∣∣ I = i

]
+ cPX∼PI

[
pI(X)

qI(X)
= t

∣∣∣∣ I = i

]
= PX∼Pi

[
pi(X)

qi(X)
< t

]
+ cPX∼Pi

[
pi(X)

qi(X)
= t

]
.

Similarly, the type II error is

β(t, c) = EI

[
PX∼QI

[
pI(X)

qI(X)
> t

∣∣∣∣ I]+ (1− c)PX∼QI

[
pI(X)

qI(X)
= t

∣∣∣∣ I]]
=

m∑
i=1

wi

(
PX∼Qi

[
pi(X)

qi(X)
> t

]
+ (1− c)PX∼Qi

[
pi(X)

qi(X)
= t

])

=:

m∑
i=1

wiβi(t, c).

We complete the proof by noting that βi = T (Pi, Qi)(αi).

Remark. Lemma 3.1 can be extended to continuous weights I . In fact, for I being a random variable
with pdf φ, one still has T (X,Y ) ≥ T ((X|I, I), (Y |I, I)) using the same post-processing. Then,
we have

α(t, c) = EI

[
PX∼PI

[
pI(X)

qI(X)
< t

∣∣∣∣ I]+ cPX∼PI

[
pI(X)

qI(X)
= t

∣∣∣∣ I]] (4)

and

β(t, c) = EI

[
PX∼QI

[
pI(X)

qI(X)
> t

∣∣∣∣ I]+ (1− c)PX∼QI

[
pI(X)

qI(X)
= t

∣∣∣∣ I]] , (5)

which are non-elementary integrals. This continuous analog of Lemma 3.1 will be used to prove
Theorem 5.1.

Lemma 3.1 can be extended to Pw and Qw′ with different weights w and w′.
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Proposition B.1. Let w = (w1, w2) and w′ = (w′
1, w

′
2). It holds

T (Pw, Qw′) ≥ min{w1, w
′
1}T (P1, Q1) + min{w2, w

′
2}T (P2, Q2)

+ (w′
2 −min{w2, w

′
2})T (P1, Q2) + (w′

1 −min{w1, w
′
1})T (P2, Q1).

In addition, similar results hold for any m ≥ 2.

B.2 Characterization of T ((X|I, I), (Y |I, I)) and proof of Proposition 3.2

The type I error αi(t) can be represented by the trade-off function T (Pi, Qi) and the rejection region
decided by t and c. For simplicity, in the following of this section, we only discuss the continuous
case with P[q/p = t] = 0, where the trade-off function is differentiable, and rewrite αi(t, c) = αi(t).
Precisely, we have the following proposition.
Proposition B.2. Let T (Pi, Qi) = fi with some differentiable trade-off function fi. Suppose that∫

R
δ

(
t− qi(x)

pi(x)

)
qi(x)dx =

∫
qi(x)

pi(x)
=t

qi(x)

D
(

qi
pi

)
(x)

dx < ∞, (6)

for any t > 0 and 1 ≤ i ≤ m, where δ is the Dirac delta function and D( qipi
)(x) is the weak

derivative of qi/pi. Then, we have

α(t) =

m∑
i=1

wi (f
′
i)

−1
(−t) and T (PI , QI)(α(t)) =

m∑
i=1

wifi

(
(f ′

i)
−1

(−t)
)
. (7)

The key observation from Proposition B.2 is that

dfi
dαi

∣∣∣
αi=αi(t)

= −t and
dT (X|I, Y |I)(α)

dα

∣∣∣
α=α(t)

= −t,

which means fi and T (PI , QI) have the same derivative at points αi(t) and α(t) induced by the
same threshold t. This observation is important in our analysis of the applications to shuffling models
and to derive the joint convexity of F -divergences. Equation (6) is not a strong assumption. For
example, when qi/pi is strictly monotone, we have δ(t− qi/pi(x)) = δ(x− xt) with qi/pi(xt) = t
and ∫

R
δ

(
t− qi(x)

pi(x)

)
qi(x)dx = qi (xt) ≤ 1.

Corollary B.3. Let T (Pi, Qi) = fi with some differentiable trade-off function fi. Suppose
that pi/qi is monotone. Then, we have α(t) =

∑m
i=1 wi (f

′
i)

−1
(−t) and T (PI , QI)(α(t)) =∑m

i=1 wifi

(
(f ′

i)
−1

(−t)
)
.

Proof of Proposition B.2. Rewrite αi(t) and βi(t) = fi(αi(t)) as

αi(t) =

∫
R
1 [qi(x)/pi(x) < t] pi(x)dx =

∫
R
1 [qi(x)/pi(x) < t]

pi(x)

qi(x)
qi(x)dx

and

βi(t) =

∫
R
1 [pi(x)/qi(x) > t] qi(x)dt.

Then we have

dαi

dt
=

∫
R
−δ

(
t− qi

pi
(x)

)
pi
qi
(x)qi(x)dx,

where δ is the Dirac delta function. Note that

δ

(
t− qi

pi
(x)

)
pi
qi
(x) =

δ
(
t− qi

pi
(x)
)

t
.
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We get
dαi

dt
= −1

t

∫
R
δ

(
t− qi

pi
(x)

)
qi(x)dx.

Since
dβi

dt
=

∫
R
δ

(
t− qi

pi
(x)

)
qi(x)dx,

we obtain

f ′
i(αi) =

dβi

dαi
=

dβi

dt

dt

dαi
= −t

and αi = (f ′
i)

−1(−t).

Based on the proof of Proposition B.2, we now prove Proposition 3.2.

Proof of Proposition 3.2. It is sufficient to show that, for any (α(t), β(t)) such that β(t) = f(α(t)),
there is a t̃ such that β(t̃) = α(t) = f(α

(
t̃
)
) with

α(t̃) =

m∑
i=1

wiαi(t̃) =

m∑
i=1

wiβi(t).

As fi is symmetric, for any 1 ≤ i ≤ m, there is t̃i such that αi(t̃i) = βi(t) and βi(t̃i) = αi(t). So, it
is enough to show that t̃i = t̃ for all i. Recall that in the proof of Proposition B.2, we have

dβi

dαi

∣∣∣∣∣
αi=αi(t)

= −t.

Now we consider dβi(t̃i)/dαi(t̃i) = −t̃i. On the other hand, since

βi(t̃i) = fi(αi(t̃i)) = f−1
i (αi(t̃i)),

using the inverse funciton theorem, we have

dβi(t̃i)/dαi(t̃i) =
1

f ′
i(f

−1
i (αi(t̃i)))

=
1

f ′
i(αi(t))

= −1

t
,

where the second equality is because αi(t̃i) = βi(t) = fi(αi(t)) and the third equality is from
αi(t) = (f ′

i)
−1(−t) that appears in Proposition B.2. Overall, we obtain t̃i =

1
t for all i.

B.3 Conversion from Lemma 3.1 to F -divergences

In this section, we investigate the relationship between Lemma 3.1 and F -divergences. For two
distributions P and Q, the F -divergence between P and Q is given by

DF (P∥Q) =

∫
pq>0

F (p/q)dQ+ F (0)PQ[p = 0] + τF · PP [q = 0],

where F (0) = lims→0 F (s)/s and τF = limt→∞ F (t)/t.

To convert Lemma 3.1 to F -divergences, we recall the relationship between trade-off functions and
F -divergences in [14]. Precisely, for any F -divergence DF (P∥Q) between two distributions P and
Q, there is a functional lF (T (P,Q)) such that DF (P∥Q) = lF (T (P,Q)). This functional lF can be
specified using the following lemma.
Lemma B.4 (Proposition B.4 in [14]). Let zf := inf{x ∈ [0, 1], f(x) = 0} be the first zero of
a trade-off function f . The functional lF that computes the F -divergence DF has the following
expression

lF (f) =

∫ zf

0

F

(
1

|f ′(x)|

)
· |f ′(x)|dx+ F (0)(1− f(0)) + τF (1− zf ).

In particular, if f is symmetric with f(0) = 1, then we have

lF (f) =

∫ zf

0

F

(
1

|f ′(x)|

)
· |f ′(x)|dx.
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Now we prove Proposition 3.3.

Proof of Proposition 3.3. Let f(α) := T (PI , QI)(α). According to Lemma 3.1 and Proposition B.2,
we have

f(α(t)) =

m∑
i=1

wifi(αi(t))

with fi = T (Pi, Qi) and αi(t) = (f ′
i)

−1(t). Note that

df

dα
=

df

dt

dt

dα
=

∑m
i=1 wif

′
i(αi(t))α

′
i(t)∑

i=1 wiα′
i(t)

= −t,

where the second equality is a result of the inverse function theorem and the last equality is because
f ′
i(αi(t)) = −t. Thus, using Lemma 3.1 and Lemma B.2 in [14], we have

DF

(
Pw

∥∥Qw

)
= lF (T (Pw, Qw)) ≤ lF (f) =

∫ 1

0

F

(
1

|f ′(α)|

)
|f ′(α)|dα

=

∫ ∞

0

F

(
1

t

)
· t · dα

dt
dt =

m∑
i=1

wi

∫ ∞

0

F

(
1

t

)
· t · α′

i(t)dt.

Since

dfi
dαi

=
dfi
dt

dt

dαi
= −t,

we have ∫ ∞

0

F

(
1

t

)
· t · α′

i(t)dt =

∫ 1

0

F

(
1

|f ′
i(αi)|

)
· |f ′

i(αi)| · dαi = DF (Pi∥Qi)

and

DF

(
Pw

∥∥Qw

)
≤

m∑
i=1

wi

∫ 1

0

F

(
1

|f ′
i(αi|)

)
· |f ′

i(αi)| · dαi =

m∑
i=1

wiDF (Pi∥Qi).

Let Hγ(P∥Q) =
∫ [p(x)

q(x) − γ
]
+
dQ(x) be the hockey-stick divergence between P and Q. Note that

the hockey-stick divergence Hγ is an F -divergence with F (s) = (s− γ)+. It holds the following
Corollary.

Corollary B.5 (An application of Proposition 3.3 to the hockey-stick divergence.). For any γ ≥ 1,
we have

Hγ(Pw∥Qw) ≤
m∑
i=1

wiHγ(Pi∥Qi).

Let Rα̃(P∥Q) be the Rényi divergence of order α̃ between two distributions P and Q. Rα̃ is not an
F -divergence with convex F . However, the scaled exponentiation of Rényi divergence e(α̃−1)Rα̃ is
known as the power divergence that corresponds to Fα̃(s) =

sα̃−α̃(s−1)−1
α̃(α̃−1) . The joint convexity of

the scaled exponentiation of Rényi divergence can be derived from Proposition 3.3.

Corollary B.6 (An application of Proposition 3.3 to the Rényi divergence). It holds

e
(α̃−1)Rα̃

(
Pw

∥∥Qw

)
≤

m∑
i=1

wi

∫ 1

0

|f ′
i(x)|

1−α̃
dx =

m∑
i=1

wie
(α̃−1)Rα̃

(
Pi

∥∥Qi

)
,

for any α̃ ≥ 1.
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Corollary B.6 is in line with Lemma 4.1 in [45]. Conversion from a trade-off function to an F -
divergence is straightforward using Section B in [14]. However, conversion from an F -divergence
to a trade-off function is highly non-trivial. In fact, the trade-off function is a (global) integral over
the whole space while Lemma 3.1 holds pointwisely, which is a local property. This explains why
the divergence-based DP is not as informative as f -DP since some information is lost due to the
integration. Specifically, the following proposition says the length of a trade-off function (which is
also a global property) is related to an F -divergence.
Proposition B.7. Let f be a trade-off function and let len(f) be the length of f . Then we have

len(f) =

∫ 1

0

√
(1 + f ′(x)2) =

∫ 1

0

F

(
1

|f ′
i(x)|

)
|f ′

i(x)|dx

with F (y) =
√
1 + y2.

C Technical details for shuffling models in Section 4.1

In this section, we delve into the discussion on shuffling models as introduced in Section 4.1. To
specify the distribution of the output of shuffling models, we refer to the work of [23]. Recall that in
shuffling models, a dataset D ∈ Zn is privatized by a local randomizer A : Zn → Z̃n that is ϵ0-DP.
Then, a shuffler AShuffle : Z̃n → Z̃n applies a uniformly random permutation to A(D).

According to Theorem 3.1 in [23], for any two neighboring datasets D0 and D1, there is a post-
processing procedure Proc such that AShuffle ◦A(D0) = Proc(X) and AShuffle ◦A(D1) = Proc(Y )
with X ∼ P and Y ∼ Q. Here P = (1 − w)P0 + wQ0 and Q = (1 − w)Q0 + wP0 are two
distributions with (A + 1, C − A) ∼ P0, (A,C − A + 1) ∼ Q0, and w = 1/(eϵ0 + 1), where
A ∼ Binom(C, 1/2) and C ∼ Binom(n− 1, 2/(eϵ0 +1)). As a result of Lemma A.2, it is sufficient
to bound T (P,Q).

In the subsequent part of this section, we bound T (P,Q) through the following two steps. First,
we bound T (P0, Q0) using the joint concavity Lemma 3.1, and the resulting bound is provided by
Proposition 4.1. Next, we can establish a bound for the trade-off function T (P,Q) by applying
Proposition 6.4.

C.1 Proof of Proposition 4.1 and Theorem 4.2

In this section, we present the proof of Theorem 4.2. Since the proof relies on Proposition 4.1, we
will begin by proving Proposition 4.1.

C.1.1 Proof of Proposition 4.1

The upper bound can be derived directly from Lemma 3.1. It is enough to show that the equality in
Proposition 4.1 holds.

Let p0 and q0 be the probability density functions of P0 and Q0, respectively. As stated in Lemma
A.1, our initial step is to verify the likelihood ratio p0/q0. For any (a, b) belongs to the support of
both P0 and Q0, we have

p0(a, b) = P [A+ 1 = a,C −A = b] = P [Ai = a− 1, i−Ai = b|C = i]P[C = i]

= P [Ai = a− 1, i = a+ b− 1|C = i]P[C = i]

and

q0(a, b) = P [A = a,C −A+ 1 = b] = P [Ai = a, i = a+ b− 1|C = i]P[C = i].

Thus,

p0(a, b)

q0(a, b)
=

P [Ai = a− 1, i = a+ b− 1]

P [Ai = a− 1, i = a+ b− 1]
=

a

b
.

When p0(a, b) = 0 and q0(a, b) ̸= 0, we have a = 0, b = C + 1, and a/b = 0 = p0(a, b)/q0(a, b).
Similarly, for the case p0(a, b) ̸= 0 and q0(a, b) = 0, we have a = C + 1, b = 0, and a/b = ∞ =

p0(a, b)/q0(a, b). In conclusion, it holds p0(a,b)
q0(a,b)

= a
b .
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The corresponding type I error is

α0(t, c) = PA,C

[
A+ 1

C −A
< t

]
+ cPA,C

[
A+ 1

C −A
= t

]
,

for any t ≥ 0 and c ∈ [0, 1], and the type II error is given by

β0(t, c) = PA,C

[
A

C −A+ 1
> t

]
+ (1− c)PA,C

[
A

C −A+ 1
= t

]
.

Since the distributions of A and C are discrete, the trade-off function between α0 and β0 is piece-wise
linear and each knot corresponds to some t with c = 1. For simplicity, we define

α0(t) = α0(t, 1) = PA,C

[
A+ 1

C −A
≤ t

]
and

β0(t) = β0(t, 1) = PA,C

[
A

C −A+ 1
> t

]
.

Note that given C = i, (A+ 1, C −A) = (Ai + 1, i−Ai) with Ai ∼ Binom(i, 1/2). We have P0

is a mixture of {(Ai +1, i−Ai)}n−1
i=0 and the weights are {w0

i }
n−1
i=0 with w0

i = P[C = i]. Using this
observation, we rewrite

α0(t) = EC

{
P
[
A+ 1

C −A
≤ t

∣∣∣∣C]} =

n−1∑
i=0

w0
i

{
P
[
Ai + 1

i−Ai
≤ t

]}
=:

n−1∑
i=0

w0
i α

0
i (t).

For each α0
i (t), it holds

α0
i (t) = P

[
Ai + 1

i−Ai
≤ t

]
= Fi

(
i− i+ 1

t+ 1

)
.

Similarly, we can decompose β0(t) =
∑n−1

i=0 w0
i β

0
i (t), where

β0
i (t) = P

[
Ai

i−Ai + 1
> t

]
= 1− Fi

(
i+ 1− i+ 1

t+ 1

)
.

Since

α0
i (t) = Fi

(
i− i+ 1

t+ 1

)
= Fi(si)

with si = F−1
i (α0

i (t)) ∈ N, we have

β0
i (t) = Fi

(
i+ 1− i+ 1

t+ 1

)
= Fi(si + 1) = Fi(F

−1
i (α0

i (t)) + 1),

where the second equality is because the support of Fi is {0, 1, · · · , i} and si, si + 1 ∈ N. In
conclusion, it holds

β0(t) =
n−1∑
i=0

w0
i β

0
i (t) =

n−1∑
i=0

w0
i

{
Fi(F

−1
i (α0

i (t)) + 1)
}
,

which completes the proof.

C.1.2 Proof of Theorem 4.2

Now we compute the trade-off function fShuffle at each knot α(t). Let f0 = C(T (P0, Q0)) be the
symmetrization of T (P0, Q0) and rewrite fP,Q = T (P,Q).

Proof of Theorem 4.2. The proof is a straightforward conclusion from Proposition 6.4. To complete
the proof, we still need to show that C(fP,Q) = C(fShuffle) with fShuffle = 2w · Id + (1 − 2w) ·
T (P0, Q0). By the proof of Proposition F.2 in [14], we have C(f)(x) = f(x) for any x ≤ x̄f

and any trade-off function f , where x̄f is such that inf{x ∈ [0, 1],−1 ∈ f(x)}. Thus, we have
f0(x) = T (P0, Q0)(x) for any x ≤ x̄f0 . Note that −1 ∈ ∂fP,Q(x) if and only if −1 ∈ ∂f0(x). We
obtain x̄fP,Q

= x̄f0 . Moreover, for x ≤ x̄f0 , it holds

fP,Q(x) = 2wId(x) + (1− 2w)f0(x) = 2wId(x) + (1− 2w)T (P0, Q0)(x) = fShuffle(x).

Using the symmetry of C(fShuffle) and C(fP,Q) in Equation (3), we have C(fShuffle) = C(fP,Q).
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C.2 Proof of Corollary 4.3

According to [14] and the proof of Theorem 4.2, we have AShuffle ◦ A is (ϵ, δ)-DP with δ(ϵ) =
1 + f∗

P,Q(−eϵ).

Recall the definition f∗(y) = supα{yα − f(α) =: hy(α)}. Then, by the first-order optimality
condition, we have f∗(y) = hy(α̃) with α̃ = inf{α ∈ [0, 1], 0 ∈ ∂hy(α)}.

For α(t) such that fP,Q is differentiable at α(t), we have f ′
P,Q(α(t)) = −2w + (1− 2w)l(t) with

l (t) = −

∑n−1
i=0 w0

i pi

(⌊
i+ 1− i+1

t+1

⌋)
∑n−1

i=0 w0
i pi

(⌊
i− i+1

t+1

⌋) .

Here pi is the probability mass function of Ai. Thus, h′
y(α(t)) = y + 2w − (1− 2w)l(t). And α̃(t)

is then given by inf{α : h′
y(α) ≤ 0}. Since α(t) is an increasing function of t, we obtain

α̃(t) = α(ty), with ty = inf{t : y + 2w − (1− 2w)l(t) ≤ 0}

and

f∗
Shuffle(y) = hy(α(ty)) = yα(ty)− fP,Q(α(ty)) = yα(ty)− β(ty).

We end the proof by taking y = −eϵ.

D Omited details of Section 5

D.1 Proof of Theorem 5.1

According to a continuous version of Lemma 3.1 , that is given by Equation (4) and Equation (5),
T (X,Y ) in Theorem 5.1 is lower bounded by the trade-off function T (PI , QI) with I ∼ N (0, 1),
PI = N (0, 1) and QI = N (µI , 1). For this example,we have pI(x) = e−x2/2 and qI(x) =

e−(x−µI)
2/2. Then the type I error is

α(t) =

∫ ∞

−∞
PX∼N (0,1)

[
−µwX +

µ2
w

2
≤ t

]
e−

w2

2 dw

=

∫
µw≤0

Φ(tw)e
−w2

2 dw +

∫
µw>0

Φ(−tw)e
−w2

2 dw

with tw = − t
µw

+ µw

2 . Similarly, the type II error is

β(t) =

∫ ∞

−∞
PX∼N (µw,1)

[
−µwX +

µ2
w

2
> t

]
e−

w2

2 dw

=

∫
µw≤0

[Φ(−tw + µw)] e
−w2

2 dw +

∫
µw>0

[Φ(tw − µw)] e
−w2

2 dw,

which completes the proof of Theorem 5.1.

D.2 Examples for different loss functions

Recall the noiseless linear model with D0 = {(xi, yi)}ni=1 with yi = axi and x2
i = 1 for some

constant a and we defined D1 by removing an arbitrary element in D0.
Example D.1 (Least-squares loss without gradient clipping). For linear least squares regression with
ℓ(θ,D) =

∑n
i=1(yi − θxi)

2 , we have g(θ,D) =
∑n

i=1(yi − θxi)(−xi) and µI = a− I .

In Example D.1, the gradient is unbounded due to an unbounded initializtion, and so is its sensitivity.
In this example, the dominate pair for θ(D0) and θ(D1) is (N (0, σ2),N (0, σ2) + a− I). Note that
N (0, σ2) + a − I is a Gaussian distribution with mean a and variance 1 + σ2. Thus, under the
framework of RDP, the goal is to bound the Rényi divergence between two Gaussian distributions
with different variances, which is unbounded for α̃ large enough.
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Example D.2 (Least squares loss with gradient clipping). Consider a linear least squares regression
problem in Example D.1. For DP-GD with gradient clipping, we have

µI =

{
a− I, |a− I| ≤ c,
c, a− I ≥ c,
−c, a− I ≤ −c.

Example D.3 (Logistic loss). For the logistic loss, we have

µmax
I = sup

x,y

∣∣∣∣ e−I·yx

1 + e−I·yx

∣∣∣∣
as the gradient of the logistic loss is the softmax function. µmax

I is bounded when |xy| ≤ M for some
M > 0. Furthermore, extending the logistic loss to other strongly convex losses is straightforward,
given that the key feature is the gradient being a monotone function of I · yx.

E Technical details of Lemma 6.3 and corresponding conclusions

In this section, we discuss the omitted details of Section 6 including the proofs of the advanced joint
concavity (Lemma 6.3).

E.1 Proof of Lemma 6.2, Lemma 6.3, and corresponding results

In this section, we establish the proof of Lemma 6.2 and Lemma 6.3. Before delving into the proof,
we revisit Proposition 6.4 that directly stem from the application of Lemma 6.2 and Lemma 6.3. The
proof of Proposition 6.4 is included as part of the proof of Theorem 4.2 in Section E.1.1. Similar to
the proof of Proposition 6.4, for P = (1− w)P0 + wP1 and Q = (1− w)P0 + wQ1 that appear in
the analysis sub-sampling [4], we have the following proposition.

Proposition E.1. For P = (1− w)P0 + wP1 and Q = (1− w)P0 + wQ1, we have

T (P,Q) ≥ C ((1− w)Id + wT (P1, Q1)) .

Proof of Lemma 6.2. We first invoke an important equality from [4].

Hα(P∥Q) := sup
E

{P (E)− αQ(E)} =

∫
[p(z)− αq(z)]+ dz. (8)

According to [5], we have A is (ϵ, δ)-differentially private if and only if Heϵ(A(D0)∥A(D1)) ≤ δ
for every neighboring D0 and D1. We now recall the following two equations which are constraints
on ϵ0, ϵ1, γ, and η:

eϵ
′
= (1− w)eϵ0 + weϵ1 (9)

and

weϵ
′
= (1− w)γeϵ0 + wηeϵ1 . (10)

It is evident from Equations (9) and (10) that

exp(ϵ0)(1− w)γ + exp(ϵ1)wη = exp(ϵ′)w,

and

exp(ϵ0)(1− w)(1− γ) + exp(ϵ1)w(1− η) = exp(ϵ′)(1− w).

Thus, we have

(1− w)P1 + wP2 − eϵ
′
((1− w)Q1 + wQ2)

= (1− w) (P1 − eϵ0(1− γ)Q1 − eϵ0γQ2) + w (P2 − eϵ1(1− η)Q1 − eϵ1ηQ2) .

This completes the proof of proposition by equation (8).
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Proof of Lemma 6.3. According to Lemma 6.2 and Proposition 2.12 in [14], we aim to find a trade-off
function F such that

F ∗(−eϵ
′
) = (1− w)(1− γ)f∗

0,0(−eϵ0) + w(1− η)f∗
1,0 (−eϵ1)

+ (1− w)γf∗
0,1(−eϵ0) + wηf∗

1,1 (−eϵ1) ,
(11)

where ϵ0, ϵ1, γ, η satisfy equations (9) and (10). Let y = −eϵ
′
< −1 and, for fixed γ < w < η,

Equations (9) and (10) imply that

−eϵ0 =
y(η − w)

(1− w)(η − γ)
, and − eϵ1 =

(w − γ)y

w(η − γ)
.

Therefore, F (x) is given by the double conjugate:
F (x) = sup

y
xy − F ∗(y)

= sup
y

xy − (1− w)(1− γ)f∗
0,0

(
y(η − w)

(1− w)(η − γ)

)
− w(1− η)f∗

1,0

(
(w − γ)y

w(η − γ)

)
− (1− w)γf∗

0,1

(
y(η − w)

(1− w)(η − γ)

)
− wηf∗

1,1

(
(w − γ)y

w(η − γ)

)
.

For i = 0, 1, define

F0,i(x) = f0,i

(
x(1− w)(η − γ)

(η − w)

)
, and F1,i(x) := f1,i

(
xw(η − γ)

(w − γ)

)
.

Thus, we have

F ∗
0,i(y) = f∗

0,i

(
y(η − w)

(1− w)(η − γ)

)
, and F ∗

1,i(y) = f∗
1,i

(
(w − γ)y

w(η − γ)

)
.

Therefore, it holds
F (x) = sup

y

{
xy − (1− w)(1− γ)F ∗

0,0 (y)− w(1− η)F ∗
1,0 (y)− (1− w)γF ∗

0,1 (y)− wηF ∗
1,1 (y)

}
=

(
(1− w)(1− γ)F ∗

0,0 + w(1− η)F ∗
1,0 + (1− w)γF ∗

0,1 + wηF ∗
1,1

)∗

(x),

for all possible γ < w < η. Similar results for η < w < γ can be obtained by symmetry.

When η = γ = w, we would like to show
T ((1− w)P0 + wP1, (1− w)Q0 + wQ1)

≥(1− w)T (P0∥(1− w)Q0 + wQ1) + wT (P1∥(1− w)Q0 + wQ1) .

Rewrite F1 = T (P0∥(1− w)Q0 + wQ1) and F2 = T (P1∥(1− w)Q0 + wQ1). Lemma 6.2 im-
plies that

F ∗(−eϵ
′
) = inf

eϵ0 ,eϵ1

{
(1− w)F ∗

1 (−eϵ0) + wF ∗
2 (−eϵ1)|(1− w)eϵ0 + weϵ1 = eϵ

′
}
,

where the constraint (1 − w)eϵ0 + weϵ1 = eϵ
′

comes from equation (9) and (10). Thus, for any
x ∈ [0, 1], we have

F (x) = sup
−eϵ′ ,ϵ′>0

−xeϵ
′
− F ∗(−eϵ

′
)

= sup
eϵ′ ,ϵ′>0

−xeϵ
′
− inf

eϵ0 ,eϵ1

{
(1− w)F ∗

1 (−eϵ0) + wF ∗
2 (−eϵ1)|(1− w)eϵ0 + weϵ1 = eϵ

′
}

= sup
eϵ′

sup
eϵ0 ,eϵ1 :(1−w)eϵ0+weϵ1=eϵ′

−xeϵ
′
− {(1− w)F ∗

1 (−eϵ0) + wF ∗
2 (−eϵ1)} .

According to the properties of infimal convolution in convex analysis (cf., Exercise 12 of Chapter 3.3
in Page 57 of [8]), we get

F (x) = sup
eϵ0 ,eϵ1

−(1− w)xeϵ0 − wxeϵ1 − (1− w)F ∗
1 (−eϵ0)− wF ∗

2 (−eϵ1)

= sup
eϵ0

−(1− w)xeϵ0 − (1− w)F ∗
1 (−eϵ0) + sup

eϵ1
−wxeϵ1 − wF ∗

2 (−eϵ1)

= (1− w)F1(x)
∗∗ + wF2(x)

∗∗ = (1− w)F1(x) + wF2(x).

This completes the proof of this corollary.
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E.1.1 Proof of Proposition 6.4

Let f0 = C(T (P0, Q0)) be the symmetrization of T (P0, Q0) and rewrite fP,Q = T (P,Q).

Proof of Proposition 6.4. Since P = (1− w)P0 + wQ0 and Q = (1− w)Q0 + wP0, according to
Theorem 2 in [4], we have

Heϵ′ (P∥Q) = Heϵ′ ((1− w)P0 + wQ0∥(1− w)Q0 + wP0)

= Heϵ′

(
2w · P0 +Q0

2
+ (1− 2w)P0

∥∥∥∥2w · P0 +Q0

2
+ (1− 2w)Q0

)
≤ (1− 2w)Heϵ

(
P0

∥∥∥∥(1− η) · P0 +Q0

2
+ ηQ0

)
≤ (1− 2w)

(
1

2
+

η

2

)
Heϵ (P0∥Q0)

with eϵ
′
= (1− 2w)eϵ + 2w and η = eϵ

′
/eϵ. It is clear from the definition that η ≤ 1. Therefore,

Heϵ′ (P∥Q) ≤ (1− 2w)Heϵ (P0∥Q0) .

Let y = −eϵ
′
. Proposition 2.12 in [14] implies that

1 + f∗
P,Q(y) ≤ (1− 2w)

(
1 + f∗

0

(
y + 2w

1− 2w

))
Therefore,

fP,Q(x) = sup
y

xy − f∗
P,Q(y)

≥
(
− 2w0 + (1− 2w0)f

∗
0

(
y + 2w

1− 2w

))∗

By properties of convex conjugate, we have

fP,Q(x) ≥ 2w(1− x) + (1− 2w)f∗∗
0 (x)

= 2w(1− x) + (1− 2w)f0(x)

According to Proposition F.2 in [14], the shuffling model is C(fP,Q)-DP.

F Tightness of Lemma 3.1

As we see from Proposition 4.1, Lemma 3.1 holds with equality. However, in general, Lemma
3.1 is not tight (cf., Figure 3b). From the technical proof of Proposition 4.1, we obtain that pw

qw
=∑m

i=1 wipi/qi, which motivates us to derive Proposition 6.1.

F.1 Proof of Proposition 6.1

By Theorem 2.10 in [14], we know that for distributions Pw, Qw and PI , QI , it holds

T (Pw, Qw) ≥ T (PI , QI) iff (Pw, Qw) ⪰Blackwell (PI , QI).

We define the Blackwell order as in, for example, [7, 14, 34]. Precisely, if there are probability
distributions P and Q on Y , as well as probability distributions P ′ and Q′ on Z, and a randomized
algorithm Proc : Y 7→ Z such that Proc(P ) = P ′,Proc(Q) = Q′, then we write (P,Q) ⪰Blackwell

(P ′, Q′).

Let F0 be the cumulative distribution function of the log-likelihood ratio log dPw

dQw
(X) for X ∼ Pw.

G0 is defined analogously by replacing Pw and Qw with PI and QI , respectively. Furthermore, we
define the perfect log-likelihood function F̃1(x) and G̃1(x) to satisfy the following:

F̃1(x) = Qw

(
log

(
dQw

dPw

)
− E ≤ x

)
,
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and

G̃1(x) = QI

(
log

(
dQI

dPI

)
− E ≤ x

)
,

where E is a random variable such that, under Qw, E is independent of log dQw

dPw
and is distributed

according to an exponential distribution with support R+ and cumulative distribution function 1−e−x

for all x ≥ 0. By Theorem 3 in [32], we know

F̃1(x) ≥ G̃1(x), for all x ∈ R,

if and only if

(Pw, Qw) ⪰Blackwell (PI , QI).

Therefore, equality in Lemma 3.1 holds if and only if F̃1(x) = G̃1(x) for all x ∈ R. The following
equations (12) and (13) is appear in the proof of Lemma 1 in [32]. For the sake of thoroughness, we
will include a summary of the proof later in this section for reference. We have

F̃1(x) =

∫ ∞

−x

F0(v)e
−vdv, (12)

and

G̃1(x) =

∫ ∞

−x

G0(v)e
−vdv. (13)

Since F0 and G0 are continuous, equality holds for all x if and only if F0(v)e
−v = G0(v)e

−v by
fundamental theorem of calculus. We conclude that equality in Lemma 3.1 holds if and only if

w1p1 + w2p2
w1q1 + w2q2

P
= w1

p1
q1

+ w2
p2
q2

with respect to Pw.

Proof of Equation (12) and (13). We define

F1(v) = Qw

(
log

dQw

dPw
≤ v

)
and F̃1 to be the convolution of the distribution F1 with the distribution of −E, and thus can be
written as

F̃1(x) =

∫
R
Qw(−E ≤ x− u)dF1(u)

= F1(x) + ex
∫ ∞

x

e−udF1(u)

=

∫ x

−∞
dF1(u) + ex

∫ ∞

x

e−udF1(u).

Moreover, we substitute that dF1(u) = −eudF0(−u) into equations above. Then, it holds

F̃1(x) =

∫ x

−∞
−eudF0(−u) + ex

∫ ∞

x

−dF0(−u)

=

∫ ∞

−x

e−udF0(u) + ex
∫ −x

−∞
dF0(u)

=

∫ ∞

−x

−eudF0(u) + exF0(−x).

We conclude equation (12) via integral by part. Equation (13) can be proved similarly.
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Figure 4: Example F.3 with µ = 1 and w = 1/3.

F.2 Other examples where Lemma 3.1 holds with equality

According to Proposition 6.1, we may find other examples in which Lemma 3.1 holds with equality.
Straightforward examples are that the support of w1P1 + w2P2 and the support of w1Q1 + w2Q2

are disjoint sets.
Example F.1. Consider P1 = Unif([0, 1]), Q1 = Unif([2, 3]), P2 = Unif([−1, 0]), and Q2 =
Unif([3, 4]). It is easy to verify that the condition in Proposition 6.1 holds. In fact, we have

Pw

Qw
(X) =

P1

Q1
(X) =

P2

Q2
(X) = ∞

as the support of Q1 and Q2 are disjoint with [−1, 1].
Example F.2. Another example where the equality holds in Lemma 3.1 is that P1 and Q1 are two
probability distributions supported on the x-axis, and P2 and Q2 are two probability distributions
supported on the y-axis. If the point mass at 0 are all 0, then one can show that Pi and Qi for
i ≤ 2 satisfy the equality condition in Lemma 3.1. To see this, let X = (X1, X2) ∈ R2 be a random
variable with distribution w1P1 + w2P2. Therefore, X is supported on the axes. For any t ≥ 0, the
right hand side of Proposition 6.1 becomes

P
(
w1p1 + w2p2
w1q1 + w2q2

(X) ≤ t

)
= w1P

(
w1p1 + w2p2
w1q1 + w2q2

(X) ≤ t

∣∣∣∣X ∼ P1

)
+ w2P

(
w1p1 + w2p2
w1q1 + w2q2

(X) ≤ t

∣∣∣∣X ∼ P2

)
= w1P

(
p1
q1

(X) ≤ t

∣∣∣∣X ∼ P1

)
+ w2P

(
p2
q2

(X) ≤ t

∣∣∣∣X ∼ P2

)
,

which is exactly the right-hand side of Proposition 6.1.

F.3 Comparisons between Lemma 3.1 and Lemma 6.3

In this section, we compare Lemma 3.1 with Lemma 6.3 using other examples besides that given by
Figure 3. The first example is a simple case appears in sub-sampled Gaussian mechanisms.
Example F.3. Let P0 = N (0, 1) and Q0 = N (µ, 1). Then, using Lemma 6.3, we have T (P0, wP0 +
(1− w)Q0) ≥ C(w · Id + (1− w)T (P0, Q0)). Lemma 3.1 leads to the following lower bound

T (P0, wP0 + (1− w)Q0)(α) ≥


(1− w)Φ(Φ−1

(
1−α
1−w

)
− µ), α > 1− (1− w)Φ(µ2 ),

w + (1− w)Φ
(
Φ−1

(
1− α

1−w

)
− µ

)
, α < (1− w)(1− Φ(µ2 )),

linear, otherwise.
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As we see from Figure 4, Lemma 6.3 leads to a slightly tighter bound.

Another example is an extreme case where the mixture distributions are not distinguishable at all.
Example F.4. Consider the case ( 12P + 1

2Q)v.s.( 12Q+ 1
2P ) where two distributions are not distin-

guishable at all. We have T
(
( 12P + 1

2Q), ( 12Q+ 1
2P )

)
= Id which is a special case of Proposition

6.4. The advanced joint concavity Proposition 6.4 leads to a sharp lower bound Id. However, it is
obvious that Lemma 3.1 implies a loose bound when P ̸= Q.
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