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Abstract

We study offline reinforcement learning (RL) which seeks to learn a good policy
based on a fixed, pre-collected dataset. A fundamental challenge behind this task
is the distributional shift due to the dataset lacking sufficient exploration, espe-
cially under function approximation. To tackle this issue, we propose a bi-level
structured policy optimization algorithm that models a hierarchical interaction
between the policy (upper-level) and the value function (lower-level). The lower
level focuses on constructing a confidence set of value estimates that maintain
sufficiently small weighted average Bellman errors, while controlling uncertainty
arising from distribution mismatch. Subsequently, at the upper level, the policy
aims to maximize a conservative value estimate from the confidence set formed
at the lower level. This novel formulation preserves the maximum flexibility of
the implicitly induced exploratory data distribution, enabling the power of model
extrapolation. In practice, it can be solved through a computationally efficient,
penalized adversarial estimation procedure. Our theoretical regret guarantees do
not rely on any data-coverage and completeness-type assumptions, only requiring
realizability. These guarantees also demonstrate that the learned policy represents
the “best effort” among all policies, as no other policies can outperform it. We eval-
uate our model using a blend of synthetic, benchmark, and real-world datasets for
offline RL, showing that it performs competitively with state-of-the-art methods.

1 Introduction

Offline reinforcement learning (RL) is a task to learn a good policy using only a pre-collected, fixed
dataset, without further exploration with the environment. This distinctive characteristic positions
offline RL as a promising approach for solving real-world sequential decision-making problems in
healthcare [35, 61], financial marketing [46], robotics [47] and education [32], as acquiring diverse
or expert-quality data in these fields can be costly or practically unattainable.

Arguably, two of the biggest challenges in offline RL are the distributional shift between the data-
generating distribution and those induced by candidate policies, and the stringent requirements on the
properties of function approximation [28]. It has been observed that, in practice, the distributional
mismatch often results in unsatisfactory performance of many existing algorithms, and even amplify-
ing with function approximation [18, 27]. Many prior works [39, 13, 2, 14] crucially rely on a global
data-coverage assumption and completeness-type function approximation condition in a technical
sense. The former necessitates that the dataset to contain any state-action pair with a lower bounded
probability so that the distributional shift can be well calibrated. The latter requires the function class
to be closed under Bellman updates. Both assumptions are particularly strong and are likely to be
violated in practice [58]. Consequently, algorithms that depend on these assumptions may experience
performance degradation and instability [52]. Therefore, it is crucial to develop novel algorithms that
relax these assumptions, offering robust and widely applicable solutions for real-world scenarios.
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To address the aforementioned challenges in offline settings, one fundamental principle is the concept
of pessimism, which aims to maximize rewards in the worst possible MDP consistent with the offline
dataset [18, 53]. In practice, these methods have generally been shown to be more robust when
coverage assumptions are violated [27].

Although many such pessimistic algorithms have been developed, very few works can tackle data-
coverage and function approximation issues simultaneously, while establishing strong regret guaran-
tees. For instance, deep offline RL algorithms [18, 25, 23] exhibit impressive empirical performance,
but their theoretical consistency guarantees are limited to tabular Markov decision processes (MDPs).
The works of [30, 41, 22, 53, 56, 58, 10] relax the global coverage to a partial coverage condition,
wherein the offline data only covers a single comparator policy. However, all of these methods
require Bellman completeness for the function class. The most recent works [9, 59] take a significant
step towards relaxing Bellman completeness to realizability, that the function class can capture the
target ground-truth function. Nonetheless, these algorithms are unable to provide a meaningful regret
guarantee without any data-coverage assumption (when both global and partial coverage fails), and
also empirical evaluations are absent. Even without additional conditions, the learned policies of
these algorithms can only compete with the (Bellman flow) optimal policy, resulting in a lack of
robustness when the optimal policy is not covered by data, a situation that frequently occurs. Due to
page limit, we have only discussed the closest related work here, and the rest is deferred to Appendix.

Our contribution. In this paper, we develop a provably sample-efficient offline RL framework.
Our information-theoretic algorithm is designed based on the concept of bi-level (upper and lower
level) structured optimization, which leads to a hierarchical interpretation and naturally enjoys
learning stability and algorithmic convergence from a game-theoretic perspective. In particular,
at the lower level, one component is to construct a confidence set with consistent value estimates
regarding the appropriately small weighted average Bellman error, effectively preventing overly
pessimistic evaluation. Meanwhile, the second component, which deals with uncertainty control,
implicitly enhances the power of model extrapolation. In addition to the information-theoretic
algorithm, we also develop a computationally efficient counterpart that is solved by a penalized
adversarial estimation algorithm with proximal-mapping updating, allowing both non-linear and
linear function approximation. From a theoretical standpoint, we establish a strong regret guarantee
for both information-theoretical and practical algorithms under only realizability without requiring
any data-coverage (neither global nor partial coverage) and completeness-type assumptions. As
a special case study, we further refine our developed mixture density ratio-based concentrability
coefficient to a relative condition number in linear MDP settings. The sample complexity of our
regret bound improves or at least matches the prior results in the fully exploratory or partial coverage
settings where the Bellman-completeness holds. Notably, compared with existing works, either
focusing on theoretical or empirical development, we provide a comprehensive theoretical analysis
of the proposed framework and also conduct synthetic, benchmark, and real data experiments for
empirical evaluation.

2 Preliminaries and Notations
Markov decision process. We consider an infinite-horizon discounted MDP M = {S,A,P, γ, r, s0}
[40], where S is the state space, A is the action space, P : S ×A → ∆(S) is the Markov transition
kernel for some probabilistic simplex ∆, r : S × A → [0, R̄] is the reward function for R̄ ≥ 0,
γ ∈ [0, 1) is the discounted factor and s0 is the initial state. A policy π : S → ∆(A) induces a
distribution of the trajectory s0, a0, r0, s1, . . ., where at ∼ π(·|st), rt = r(st, at), st+1 ∼ P(·|st, at)
for any t ≥ 0. The expected discounted return of a policy is defined as J(π) = E[

∑∞
t=0 γ

trt|π]. The
discounted return when the trajectory starts with (s, a) and all remaining actions are taken according
to π is called q-function qπ : S×A → [0, V̄ ]. The qπ is the unique fixed point of the Bellman operator
Bπ , satisfying the Bellman equation [45]: Bπq(s, a) := r(s, a)+γEs′∼P(·|s,a)[q(s′, π)].Here q(s′, π)
is denoted as shorthand for Ea′∼π(·|s′) [q (s′, a′)], and we define Pπq(s, a) := Es′∼P(·|s,a) [q (s′, π)].
Additionally, it is helpful to remember that J(π) = qπ(s0, π). Another important notion is the
normalized discounted visitation of π, defined as dπ(s, a) := (1− γ)

∑∞
t=0 γ

tdπ,t(s, a), where dπ,t
is the marginal state-action distribution at the time-step t.

Offline RL under function approximation. In the offline RL setting, there exists an unknown offline
data-generating distribution µ induced by behavior policies. Despite the unknowns of µ, we can
observe a set of transition pairs, as offline dataset D1:n := {si, ai, ri, s′i}ni=1 sampling from µ. For a
given policy π, the density-ratio (importance-weight), τdπ/µ(s, a) = dπ(s, a)/µ(s, a), measures how
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effectively µ covers the visitation induced by π. The primary objective of offline policy optimization
is to learn an optimal policy that maximizes the return, J(π), using the offline dataset. Under the
function approximation setting, we assume access to two function classes Q : S × A → R and
Ω : S ×A → R, which are utilized to capture qπ and τdπ/µ, respectively.

Exploration and coverage. In general, when saying an offline dataset is well-explored, it means that
a well-designed behavior policy has been executed, allowing for comprehensive exploration of the
MDP environment. As a result, the dataset is likely to contain possibly all state-action pairs. This
implicitly requires µ has the global coverage [18, 49]. In this context, the global coverage means that
the density ratio-based concentrability coefficient, sups,a{dπ(s, a)/µ(s, a)}, is upper-bounded by a
constant c ∈ R+ for all policies π ∈ Π, where Π is some policy class. This condition is frequently
employed in offline RL [2, 8, 12]. However, in practice, this assumption may not hold true, as
devising an exploratory policy is a challenging task for large-scale RL problems. Instead, our goal
is to learn a good policy with strong theoretical guarantees that can compete against any arbitrarily
covered comparator policy under much weaker conditions than the global coverage.

3 Bi-Level Offline Policy Optimization Algorithm

In this section, we introduce our bi-level offline policy optimization framework. The development of
the framework consists of three major steps.

Step 1: robust interval learning. In this step, we aim to provide a robust off-policy interval evalua-
tion. The major advantage of this interval formulation is its robustness to the model-misspecification
of the importance-weight class Ω, and the encoding of distributional-shift information in the policy
evaluation process. First, we define a detection function D(·), which is used to measure the degree of
the distributional-shift in terms of density ratio.
Definition 3.1. For x, c1, c2, C ∈ R+ and C ≥ 1, the detection function D(·) satisfies the following
conditions: (1) 1-minimum: D(1) = 0. (2) Non-negativity: D(x) ≥ 0. (3) Boundedness on first-order
derivative: |D′(x)| ≤ c2 if x ∈ [0, C]. (4) Boundedness on value: |D(x)| ≤ c1 for x ∈ [0, C]. (5)
Strong convexity: D(x) is M -strongly convex with respect to x.

The family of Rényi entropy [42], Bhattacharyya distance [11], and simple quadratic form functions
[60]all satisfy the conditions outlined in Definition 3.1. Under this definition, it can easily observe
that D has a convex conjugate function [6], D∗ with D∗ (x∗) = supx {x · x∗ − D(x)}, that satisfies
D∗(0) = 0. It follows from Bellman equation Bπqπ(s, a) = qπ(s, a) for any s, a, then J(π) =
qπ(s0, π) + Eµ[λD∗((Bπqπ(s, a)− qπ(s, a)/λ))/(1− γ)] for λ ≥ 0. Applying Fenchel-Legendre
transformation [36, 21], and model x in a restricted importance weight class Ω for any s, a, we obtain

J(π) =qπ(s0, π) + Eµ[sup
x
x · (Bπqπ(s, a)− qπ(s, a))− λD(x)]/(1− γ) (1)

≥qπ(s0, π) + Eµ[τ(s, a)(r(s, a) + γqπ(s′, π)− qπ(s, a))− λD(τ(s, a))]/(1− γ). (2)

Suppose qπ is well-sepcified, i.e., qπ ∈ Q, we can find a lower bound of (2), which is valid for any
τ ∈ Ω, via replacing qπ with infq∈Q as follows:

J(π) ≥ inf
q∈Q

{(
Eµ [τ(s, a)(r(s, a) + γq (s′, π)− q(s, a))] + q(s0, π)

)
/(1− γ)︸ ︷︷ ︸

:=H(τ,q,π)

− λ/(1− γ)Eµ[D(τ(s, a))]︸ ︷︷ ︸
:=λξ(D,τ)

}
.

After following a similar derivation, we can establish an upper bound for J(π) as well, and thus
construct a value interval for J(π). This interval holds for any τ and is therefore robust against
model-misspecification of Ω. In order to obtain a tighter interval, we can shrink the interval width by
maximizing the lower bound and minimizing the upper bound, both with respect to τ . This procedure
can be interpreted as searching for some good τ ∈ Ω to minimize the function approximation error.

J(π) ∈
[
sup
τ∈Ω

inf
q∈Q

H(τ, q, π)− λξ(D, τ), inf
τ∈Ω

sup
q∈Q

H(τ, q, π) + λξ(D, τ)
]
, (3)

While the interval offers a robust method for dealing with the bias introduced by function approxima-
tion when estimating J(π), it lacks a crucial and non-trivial step for handling statistical uncertainty.
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Step 2: uncertainty quantification. In this step, we quantify the uncertainty of the interval (3), and
establish a non-asymptotic confidence interval (CI) for J(π) which integrates bias and uncertainty
quantifications in a single interval inspired by [60]. Given offline data D1:n, our formal result for
quantifying sampling uncertainty in order to establish the CI for J(π).
Theorem 3.1 (Non-asymptotic confidence interval). For a target policy π, the return J(π) is within
a CI for any τ ∈ Ω with probability at least 1− δ, i.e., J(π) ∈ [Ĵ−

n (π; τ), Ĵ+
n (π; τ)] for

Ĵ−
n (π; τ) :=

1

n

n∑
i=1

riτ(si, ai)

1− γ
− sup
q∈Q

M̂n(−q, τ)− λξn(D, τ)− σn,

Ĵ+
n (π; τ) :=

1

n

n∑
i=1

riτ(si, ai)

1− γ
+ sup
q∈Q

M̂n(q, τ) + λξn(D, τ) + σn, (4)

if the uncertainty deviation σn satisfies

P

(
sup
τ∈Ω

∣∣∣ 1

n(1− γ)

n∑
i=1

τ(si, ai) (ri + γqπ(s′i, π)− qπ(si, ai))− λξn(D, τ)
∣∣∣ ≤ σn

)
≥ 1− δ,

where M̂n(q, τ) :=
∑n
i=1 τ(si, ai)(γq(s

′
i, π)− q(si, ai))/(1− γ)n+ q(s0, π).

Similar to the value interval, the CI [Ĵ−
n (π; τ), Ĵ+

n (π; τ)] also holds for any τ ∈ Ω. Therefore, we
can optimize the confidence lower and upper bounds in (4) over τ ∈ Ω to tighten the CI, and obtain:

P
(
J(π) ∈ [sup

τ∈Ω
Ĵ−
n (π; τ), inf

τ∈Ω
Ĵ+
n (π; τ)] ⊆ [Ĵ−

n (π; τ), Ĵ+
n (π; τ)

)
≥ 1− δ.

Step 3: bridge policy evaluation to policy optimization. In this step, we aim to formulate a policy
optimization based on the derived high-confidence policy evaluation from the previous steps. Given
the consistent CI estimation of J(π), we can naturally incorporate the pessimism principle, i.e., using
the CI lower bounds of J(π) as the value estimate of the policy evaluation of π [22]. With such a
procedure, our objective is to maximize these lower bounds over some family Π of policies:

max
π∈Π

{
sup
τ∈Ω

Ĵ−
n (π; τ)

}
. (5)

Although (5) is algorithmically feasible for obtaining a policy solver π̂, it lacks direct interpretation
without taking advantage of the bi-level optimization structure in hindsight. Therefore, we propose to
reformulate (5) via a dual-to-prime conversion (shown in Theorem 3.2), which naturally lends itself
to lower-upper optimization with guaranteed convergence. Specifically, we formulate (5) as a bi-level
framework problem:
(Upper Level) min

π∈Π
−qπ(s0, π), (6)

(Lower Level) s.t. qπ ∈ argmin
q∈Qεn

q(s0, π), (7)

Consistency : Qεn =
{
q ∈ Q : sup

τ∈Ω̃σ̃n

∣∣n−1
n∑
i=1

τ(si, ai)(ri + γq(s′i, π)− q(si, ai))
∣∣ ≤ εn

}
,

Uncertainty Control : Ω̃σ̃n
=

{
τ◦/ sup

τ◦∈Ω
∥τ◦∥Ω for τ◦ ∈ Ω : ξn(D, τ◦)) ≤ σ̃n

}
.

At the upper level, the learned policy π̂ attempts to maximize the value estimate of qπ over some
policy class Π, while at the lower level, qπ is to seek the q-function with the pessimistic policy
evaluation value from the confidence set Qεn with consistency guarantee and uncertainty control.
For consistency, whenever qπ or its good approximator is included in Q (realizability for Q class
is satisfied), the set Qεn ensures the estimation consistency of qπ in terms of “sufficently small”
weighted average Bellman error. For uncertainty control, the constrained set Ω̃σ̃n

attempts to control
the uncertainty arising from distributional shift via a user-specific thresholding hyperparameter σ̃n.
The feasible (uncertainty controllable) candidates τ ∈ σ̃n are used as weights for the average Bellman
error, helping to construct the consistent set Qεn . Risk-averse users can specify a lower value for the
thresholding hyperparameter or consider a higher σ̃n to tolerate a larger distribution shift. In other
words, the chosen value of σ̃n depends on the degree of pessimism users want to incorporate in the
policy optimization.
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Theorem 3.2. There must exist some threshold values εn and σ̃n, the return policy of (5) π̂ satisfies
the minimization problem in (6), indicating the solution of the optimization (5) and (6) is equivalent.

Interestingly, the new form in (6) characterizes our policy optimization framework as a two-player
general-sum game [16], which is a sequential game involving two players. Each player aims to
maximize their own payoffs while considering the decisions of other players. Our bi-level optimization
framework has been demonstrated to improve learning stability and ensure algorithmic convergence,
benefiting from the existence of a local equilibrium [51].

To close this section, we remark that the establishment of consistency with respect to the weighted
average Bellman error is the key point for us to relax the completeness-type assumptions. In the
famous API/AVI-type algorithms [13, 14, 8], they target to minimize a squared or minimax Bellman
error for finding q ∈ Q so that ∥q − Bπq∥2L2(µ)

≈ 0 to obtain q ≈ qπ. Unfortunately, even with the
infinite amount of data, the empirical estimate of ∥q − Bπq∥2L2(µ)

, i.e., squared empirical Bellman
error) is biased due to the appearance of unwanted conditional variance, i.e., the double sampling issue
[3]. The API/AVI-type algorithms need a separate helper function class Q̃ for modeling Bπq, and [8]
has shown that when the class Q̃ realizes the Bayes optimal regressor Bq (Bellman-completeness
condition), the estimation is consistent and unbiased. In contrast, thanks to not using the squared loss,
our weighted average Bellman error can be estimated from an unbiased estimate without concern
about the double sampling issue, and thus no need for any completeness-type conditions.

4 Information-Theoretic Results

In this section, we provide theoretical analyses of our algorithm, which reveals the advantages of the
proposed policy optimization method from a technical standpoint.

Notably, to the best of our knowledge, Theorem 4.1 is the first result of regret guarantee under only
realizability without requiring any data coverage or completeness-type assumptions. Additionally, in
contrast to most existing works that assume finite function classes, we carefully quantify the space
complexities for infinite function classes (e.g., a class of real-valued functions generated by neural
networks) using Pollard’s pseudo-dimension [38]. The formal definition is provided in Appendix.
It notices that the pseudo-dimension is a generalization of the well-known VC dimension [50]. In
the following, we first introduce the necessary assumptions before presenting the guarantees for our
algorithm.
Assumption 1 (Realizability for q-function class). For any policy π ∈ Π, we have qπ ∈ Q. When this
assumption holds approximately, we measure violation by infq∈Q supρ Eρ[(q(s, a)− Bπq(s, a))2] ≤
εQ, where εQ ≥ 0 and ρ is some data distribution such that ρ ∈ {dπ̃ : π̃ ∈ Π}.

We would like to emphasize that we do not require Bellman-completeness condition [53, 58], which
is much stronger than the realizability condition. In addition, we do not impose realizability on the
importance-weight class Ω, thereby allowing model misspecification on Ω. Having stated the major
assumptions, we now turn to the routine ones on boundedness before presenting the main results.
Assumption 2 (Boundedness on Q). There exists a non-negative constant V̄ < ∞, the function
q(s, a) ∈ [0, V̄ ], ∀q ∈ Q, s ∈ S, a ∈ A.
Assumption 3 (Boundedness on Ω). There exists a non-negative constant 1 ≤ Uτ∞ <∞, the function
τ(s, a) ∈ [0,Uτ∞], ∀τ ∈ Ω, s ∈ S, a ∈ A.
Theorem 4.1. Under Assumptions 1-3 and denote supremum of µ-weighted L2 norm of Ω,
i.e., supτ∈Ω ∥τ(s, a)∥L2(µ), as Uτ2 . Let π̂ be the output of solving (6) when we set εn =

Õ(n−1/2Uτ2 (
√

ln{Vol(Θ)/δ}+Uτ∞
√
εQ) and σ̃n = Õ(n−1/2Uτ2L

√
ln{Vol(Θ)/δ}+M(Uτ2 −1)2),

then for any policy π ∈ Π and some constant U⋆2 ∈ [1,Uτ2 ), w.p. ≥ 1− δ,

J(π)− J(π̂) ≤ 1

1− γ
Õ

(
U⋆2CV̄ ,L

√
ln{Vol(Θ)/δ}

nM︸ ︷︷ ︸
ϵσ

+

√
CUτ

∞

M
max{(εQ)1/2, (εQ)3/4}︸ ︷︷ ︸

ϵmis

+ min{
ρ:∥ ρ

µ∥L2(µ)
≤U⋆

2

}
{
E(dπ−ρ)+

[
1µ=0(I− γPπ)∆qπ−qπ (s, a)︸ ︷︷ ︸

ϵoff

+1µ>0CV̄ ,γ

√
ln{Vol(Θ)/δ}

n︸ ︷︷ ︸
ϵb

]})
.
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Here ∆qπ−qπ (s, a) = qπ(s, a) − qπ(s, a) for qπ := argmaxq∈Qεn
q(s0, π) and

qπ := argminq∈Qεn
q(s0, π). For Pollard’s pseudo-dimensions DΩ, DQ, DΠ, Vol(Θ) =

(eDmax{DΩ, DQ, DΠ} + 1)3({1 ∨ L}Uτ2 )2D with the effective pseudo dimension D = DΩ +

DQ +DΠ, where L is Lipschitz constant of M -strongly convex function D(·). Moreover, Cx and Õ
denote constant terms depending on x, and big-Oh notation ignoring high-order terms, respectively.

In the upper bound of Theorem 4.1, we split the regret into four different parts: the on-support
intrinsic uncertainty ϵσ , the on-support bias ϵb, the violation of realizability ϵmis, and the off-support
extrapolation error ϵoff. Recall that we require qπ ∈ Q as in Assumption 1, in fact, we can further
relax the condition to requiring qπ to be in the linear hull of Q [48], which is more robust to the
realizability error ϵmis. In the following, we focus on investigating the roles of the on-support and
off-support error terms in the regret bound.

On-support errors: bias and uncertainty tradeoff. The on-support error consists of two terms: ϵb
and ϵσ. The on-support uncertainty deviation, ϵσ, is scaled by a weighted L2-based concentrability
coefficient U⋆2 := ∥ρ/µ∥L2(µ), which measures the distribution mismatch between the implicit
exploratory data distribution and the baseline data distribution µ. Meanwhile, ϵb depends on the
probability mass of (dπ − ρ)+1µ>0, and represents the bias weighted by the probability mass
difference between dπ and ρ in the support region of µ. In general, a small value of U⋆2 necessitates
choice of the distribution ρ to be closer to µ which reduces ϵσ , reducing ϵσ but potentially increasing
the on-support bias ϵb due to the possible mismatch between dπ and ρ. Consequently, within the
on-support region, there is a trade-off between ϵσ and ϵb, which is adjusted through U⋆2 .

Off-support error: enhanced model extrapolation. One of our main algorithmic contributions is
that the off-support extrapolation error ϵoff can be minimized by selecting the best possible ρ without
worrying about balancing the error trade-off, unlike the on-support scenario. This desirable property
is essential for allowing the model to harness its extrapolation capabilities to minimize ϵoff, while
simultaneously achieving a good on-support estimation error. As a result, the model attains a small
regret. Recall the bi-level formulation; at the lower level, (7) addresses uncertainty arising from
the distributional shift using L2(µ) control rather than L∞ control. This plays an important role in
enhancing the power of the model extrapolation. In particular, Specifically, there exists an implicit
exploratory data distribution ρ with on-support behavior (ρ1µ>0) close to µ, such that ∥ρ/µ∥L2(µ) is
small. On the other hand, its off-support behavior (ρ1µ=0) can be arbitrarily flexible, ensuring that
dπ1µ=0 is close to ρ1µ=0. Consequently, (dπ − ρ)+1µ=0 is small, as is ϵoff.

When a dataset with partial coverage, as indicated in [49], it is necessary to provide a guarantee:
learn the policy with “best efforts” which is competitive to any policy as long as it is covered. Before
we state the near-optimal regret guarantee of our algorithm, we formally define a notion of covered
policies according to a newly-defined concentrability coefficient.
Definition 4.1 (Uτ2 -covered policy class). Let Π(Uτ2 ) denote the Uτ2 -covered policy class of µ for
Uτ2 ≥ 1, defined as

Π(Uτ2 ) :=

{
π ∈ Π :

∥∥∥∥dπ(s, a)1µ(s,a)>0

µ(s, a)

∥∥∥∥
L2(µ)

≤ Uτ2 and sup
s,a

dπ(s, a)1µ(s,a)=0

µ(s, a)
< +∞

}
.

Note that this mixture density ratio concentrability coefficient is always bounded by the L∞-based
concentrability coefficient. Thus such single-policy concentrability assumption in terms of the
mixture density ratio is weaker than the standard L∞ density ratio-based assumption.
Corollary 4.1 (Near-optimal regret). Under Assumptions 1-3 with εQ ∈ [0, 1), and we set εn, σ̃n as
in Theorem 4.1, then for any good comparator policy π⋄ ∈ Π(Uτ2 ) (not necessary the optimal policy
π∗), w.p. ≥ 1− δ, the output policy π̂ of (6) satisfies

J(π⋄)− J(π̂) ≤ 1

1− γ
Õ

(
U⋆2 (V̄ + L)

√
ln{Vol(Θ)/δ}

nM
+
√
(1 + Uτ∞ + Uτ∞/M) εQ

)
.

A close prior result to Corollary 4.1 is that of [9], which develops a pessimistic algorithm based on a
nontrivial performance gap condition. Their regret guarantees only hold if the data covers the optimal
policy π∗, in particular, requiring a bounded L∞ single-policy concentrability with respect to π∗. In
comparison, our guarantee can still provide a meaningful guarantee even when π∗ is not covered by
data. In the following, we include the sample complexity of our algorithm when εQ = 0.
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Corollary 4.2 (Polynomial sample complexity). Under the conditions in Corollary 4.1, the output
policy π̂ of solving (6) satisfies J(π⋄)− J(π̂) ≤ ε w.p. ≥ 1− δ, if

n = O

(( (U⋆2 (V̄ + L)/
√
M)2

ε2(1− γ)2
+

(Uτ2 V̄ 2(V̄ + L)/M)0.67

ε1.33(1− γ)1.33
+

Uτ∞(V̄ + L)

ε(1− γ)

)
ln

Vol(Θ)

δ

)
.

The sample complexity consists of three terms corresponding to the slow rate O(n−1/2) and the two
faster rate O(n−1) and O(n−3/4) terms in Corollary 4.1. When Uτ2 and Uτ∞ are not too much larger
than U⋆2 , the fast rate terms are dominated, and the sample complexity is of order O(1/ε2), which
is much faster than O(1/ε6) in the close work of [59]. It is worth noting that even in exploratory
settings where the global coverage assumption holds, our sample complexity rate matches the fast
rate in popular offline RL frameworks with general function approximation [8, 54, 12].

In addition to the near-optimal regret guarantee, in safety-critical applications, an offline RL algorithm
should consistently improve upon the baseline (behavior) policies that collected the data [19, 26].
Our algorithm also achieves this improvement guarantee with respect to the baseline policy.
Theorem 4.2 (Baseline policy improvement). Under Assumptions 1-3 with εQ = 0 and set εn, σ̃n as
in Theorem 4.1. Suppose 1 ∈ Ω and the baseline policy πb ∈ Π such that dπb

= µ, then the regret
(1− γ)(J(πb)− J(π̂)) for the output policy π̂ of solving (6), w.p. ≥ 1− δ, is upper bounded by

O
(√

(V̄ + L)2 ln{Vol(Θ)/δ}
nM

+

√
(V̄ 3 + V̄ 2L)

M

(
ln{Vol(Θ)/δ}

n

) 3
4

+
(V̄ + L) ln{Vol(Θ)/δ}

n

)
.

The aforementioned information-theoretic results enhance the understanding of the developed algo-
rithm, in terms of the function approximation and coverage conditions, sample complexity, horizon
dependency, and bound tightness. In practice, although the information-theoretic algorithm offers a
feasible solution to the problem, it is not yet tractable and computationally efficient due to the need
to solve constrained optimization. In the following section, we develop a practical algorithm as a
computationally efficient counterpart for the information-theoretic algorithm.

5 Penalized Adversarial Estimation Algorithm

Although the information-theoretic algorithm offers a feasible solution to the problem, it is not
yet tractable and computationally efficient due to the need to solve constrained optimization. In
this section, we develop an adversarial estimation proximal-mapping algorithm that still adheres to
the pessimism principle, but through penalization. Specifically, the adversarial estimation loss is
constructed as follows: max

τ
min
q

L(q, τ, π, c∗, λ) for solving

q(s0, π) +
1

(1− γ)n

{
c∗
∣∣∣ n∑
i=1

τ(si, ai) (q(si, ai)− ri − γq(s′i, π))
∣∣∣− λ

n∑
i=1

D(τ(si, ai))

}
.

We observe that the inner minimization for solving q is relatively straightforward, as we can obtain
a closed-form global solver using the maximum mean discrepancy principle [20, 44]. In contrast,
optimizing τψ is more involved, often requiring a sufficiently expressive non-linear function ap-
proximation class, e.g., neural networks. However, concavity typically does not hold for such a
class of functions [21]. From this perspective, our problem can be viewed as solving a non-concave
maximization problem, conditional on the solved global optimizer q̄ := argminq L(q, τ, π, c∗, λ).
At each iteration, we propose to update τ by solving the proximal mapping [37] using the Euclidean
distance to reduce the computational burden. As a result, the pre-iteration computation is quite low.

Algorithm 1 Adversarial proximal-mapping algorithm
1: Input observed data D1:n = {(si, ai, ri, s′i)}ni=1 and parameters q0, τ0, π0, c∗, λ and ζ.
2: For k = 1 to K̄:
3: Update τk and qk by solving max

τ
min
q

L(q, τ, πk−1, c∗, λ)

4: Update πk by solving πk(·|s) = argmax
π∈Π

ζ
〈
qk(·, s), π(·|s)

〉
−DNegEntropy

(
π(·|s), πk(·|s)

)
.

5: Return the policy π̂, which randomly selects a policy from the set {πk}K̄k=1.
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Once q and τ are solved, we apply mirror descent in terms of the negative entropy DNegEntropy [5].
That is, given a stochastic gradient direction of π we solve the prox-mapping in each iteration as
outlined in step 4 of Algorithm 1. A detailed version of Algorithm 1 with extended discussions
on convergence and complexity is provided in Appendix. In the following, we establish the regret
guarantee for the policy output by Algorithm 1.
Theorem 5.1. Under Assumptions 1-3 with εQ = 0, we properly choose λ = λ(Uτ2 ), i.e., λ well
depends on Uτ2 , and c∗ = Õ

(√
nV̄ /(λLUτ2 ln{Vol(Θ†)/δ})

)
. After running K̄ ≥ log |A| rounds of

Algorithm 1 with the stepsize ζ =
√
log |A|/(2V̄ K̄), for any policy π ∈ Π, the output policy π̂ of

the algorithm, w.p ≥ 1− δ, satisfies,

J(π)− J(π̂) ≤ 1

1− γ
Õ

(
4

√
(U⋆2 )2C1

V̄ ,λ,L
ln{Vol(Θ†)/δ}
n

+

√
V̄ log |A|

K̄

+
1

K̄

K̄∑
k=1

min
ρk∈∆U⋆

2

E(dπ−ρk)+

[
1µ=0

(
Bπ

k

qk(s, a)− qk(s, a)
)
+ 1µ>0

√
C2
V̄ ,λ,L

ln{Vol(Θ†)/δ}
n

])
,

where ∆U⋆
2
:= {ρk : ∥ρkµ ∥L2(µ) < U⋆2 }, C1

V̄ ,λ,L
,C2
V̄ ,λ,L

are some constant terms, and the function
class complexity Vol(Θ†) = (eDmax{DΩ, DQ, DΠ}+1)3({1∨L}Uτ2 )2D forD = DΩ+DQ+DΠ.

Trajectory-adaptive exploratory data distribution. Similar to Theorem 4.1, the penalized al-
gorithm also exhibits a desirable extrapolation property for minimizing extrapolation error while
simultaneously preserving small on-support estimation errors. This is achieved through adaptations
of the implicit exploratory data distributions, ρk for k ∈ [K̄]. In contrast to the information-theoretic
algorithm, the automatic splitting by ρk now depends on the optimization trajectory. At each iteration
k, the penalized algorithm allows each implicit exploratory data distribution ρk to adapt to the com-
parator policy π. This results in a more flexible adaptation than the one in the information-theoretic
algorithm, either for balancing the trade-off between on-support bias and uncertainty incurred by the
distributional mismatch between dπ and ρk, or for selecting the best implicit exploratory to minimize
model extrapolation error.

Opimization error. Blessed by the reparametrization in the proximal-mapping policy update, which
projects the mixture policies into the parametric space Πω, the complexity of the restricted policy
class is independent of the class of Q and the horizon optimization trajectory K̄. As a result, the
optimization error O(

√
V̄ log |A|/K̄) can be reduced arbitrarily by increasing the maximum number

of iterations, K̄, without sacrificing overall regret to balance statistical error and optimization error.
This allows for the construction of tight regret bounds. This distinguishes our algorithm from
API-style algorithms, which do not possess a policy class that is independent of Q [2, 43, 53].

5.1 An Application to Linear MDPs with Refined Concentrability Coefficient
In this section, we conduct a case study in linear MDPs with insufficient data coverage. The concept of
the linear MDP is initially developed in the fully exploratory setting [55]. Let ϕ : S×A → Rd be a d-
dimensional feature mapping. We assume throughout that these feature mappings are normalized, such
that ∥ϕ(s, a)∥L2

≤ 1 uniformly for all (s, a) ∈ S ×A. We focus on action-value functions that are
linear in ϕ and consider families of the following form: Qθ := {(s, a) 7→ ⟨ϕ(s, a), θ⟩ | ∥θ∥L2

≤ cθ},
where cθ ∈ [0, V̄ ]. For stochastic policies, we consider the soft-max policy class Πω := {πω(a|s) ∝
e⟨ϕ(s,a),ω⟩ | ∥ω∥L2

≤ cω}, where cω ∈ (0,∞). Note that the softmax policy class is consistent with
the implicit policy class produced by the mirror descent updates with negative entropy in Algorithm 1,
where the exponentiated gradient update rule is applied in each iteration. For the importance-weight
class, we also consider the following form: Ωψ := {(s, a) 7→ ⟨ϕ(s, a), ψ⟩ | ∥ψ∥L2

≤ cψ} where
cψ ∈ (0,∞). To simplify the analysis, we assume the realizability condition for Qθ is exactly
met. In this linear MDP setting, we further refine the density ratio to a relative condition number to
characterize partial coverage. This concept is recently introduced in the policy gradient literature [1]
and is consistently upper-bounded by the L∞-based density ratio concentrability coefficient.
Definition 5.1 (Relative condition number). For any policy π ∈ Πω and behavior policy πb such that

dπb
= µ, the relative condition number is defined as ι(dπ, µ) = supx∈Rd

xTEdπ [ϕ(s,a)ϕ(s,a)
⊤]x

x⊤Eµ[ϕ(s,a)ϕ(s,a)⊤]x
.

Assumption 4 (Bounded relative condition number). For any π ∈ Πω , ι(dπ, µ) <∞.
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Intuitively, this implies that as long as a high-quality comparator policy exists, which only visits
the subspace defined by the feature mapping ϕ and is covered by the offline data, our algorithm
can effectively compete against it [49]. This partial coverage assumption, in terms of the relative
condition number, is considerably weaker than density ratio-based assumptions. In the following,
we present our main near-optimal guarantee in linear MDPs. In addition, we design and conduct
numerical experiments to empirically validate Theorem 5.2 in terms of the regret rate of convergence.
Theorem 5.2. Under Assumption 4, if we set propertly choose λ = λ(cψ) and c∗ =

Õ
(

4
√
n/d ln{(1 + e

√
n(1 ∨ L)V̄ cψcω)/δ}

)
, and suppose π̂lr is returned by Algorithm 1 with linear

function approxiamiton after running K̄ ≫ log |A| rounds, then for any policy in π ∈ Πω(U lr
2 ) for

U lr
2 ≥ 1, w.p. ≥ 1− δ, J(π)− J(π̂lr) is bounded by

Õ
(√min{κ2c2ψ{U lr

2 }d2, ι(dπ, µ)d}

1− γ

4

√
CV̄ ,λ,Ld ln{(1 + e

√
n(1 ∨ L)V̄ cψcω)/δ}
n

)
,

where κ = trace(Eµ[ϕ(s, a)ϕ(s, a)⊤]) and cψ{U lr
2 } = sup{ψ:∥ϕ(s,a)⊤ψ∥L2(µ)=U lr

2} ∥ψ∥L∞ .

To the best of our knowledge, this is the first result PAC guarantees for an offline model-free RL
algorithm in linear MDPs, requiring only realizability and single-policy concentrability. The regret
bound we obtain is at least linear and, at best, sub-linear with respect to the feature dimension
d. Our approach demonstrates a sample complexity improvement in terms of feature dimension
compared to prior work by [22], with a complexity of O(d1/2) versus O(d). It is worth noting that
[22] only establishes results that compete with the optimal policy, and when specialized to linear
MDPs, assumes the offline data has global coverage. Another previous study by [53] achieves a
similar sub-linear rate in d as our approach; however, their algorithm is computationally intractable,
relying on a much stronger Bellman-completeness assumption and requiring a small action space.

6 Experiments

In this section, we evaluate the performance of our practical algorithm by comparing to the model-free
offline RL baselines including CQL [25], BEAR [24], BCQ [18], OptiDICE [27], ATAC [10], IQL
[23], and TD3+BC [17]. We also compete with a popular model-based approach COMBO [57].

Synthetic data. We consider two synthetic environments: a synthetic CartPole environment
from the OpenAI Gym [7] and a simulated environment. Detailed discussions on the ex-
perimental designs are deferred to the Appendix. In both settings, following [48], we first
learn a sub-optimal policy using DQN [34] and then apply softmax to its q-function, divided
by a temperature parameter α to set the action probabilities to define a behavior policy πb.

Figure 1: The boxplot of the discounted return over 50
repeated experiments.

A smaller α implies πb is less explored,
and thus the support of µ = dπb

is rel-
atively small. We vary different val-
ues of α for evaluating the algorithm
performance in “low”, “medium” and
“relatively high” offline data exploration
scenarios. We use γ = 0.95 with the
sample-size n = 1500 in all experi-
ments. Tuning parameter selection is
an open problem in offline policy opti-
mization. Fortunately, Theorem 5.2 sug-
gests an offline selection rule for hyper-
parameters λ and c∗. In the following
experiments, we set the hyper-parameters satisfying the condition O( n1/4

d log(V̄
√
n)
). Figure 1 shows

that our algorithm almost consistently outperforms competing methods in different settings. This
performance mainly benefits from the advantages exposed in our theoretical analysis, such as model
extrapolation enhancement, relaxation of completeness-type assumptions on function approximation,
etc. The only exception is the slightly poorer performance compared to COMBO in a high exploration
setting, where COMBO may learn a good dynamic model with relatively sufficient exploration. We
provide the experiment details in Appendix due to page limit.

Benchmark data. We evaluate our proposed approach on the D4RL benchmark of OpenAI Gym
locomotion (walker2d, hopper, halfcheetah) and Maze2D tasks [15], which encompasses a variety
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of dataset settings and domains and positions our algorithm within the existing baselines. We take
the results of COMBO, OptiDICE and ATAC from their original papers for Gym locomotion, and
run COMBO and ATAC using author-provided implementations for Maze2D. The results of BCQ,
BEAR methods from the D4RL original paper. In addition, CQL, IQL and TD3+BC are re-run
to ensure a fair evaluation process for all tasks. As shown in Table 1, the proposed algorithm
achieves the best performance in 7 tasks and is comparable to the baselines in the remaining tasks.
In addition to the evaluation of the policy performance, we also conduct sensitivity analyses on the
hyperparameter-tuning and study the regret rate of convergence.

Table 1: The normalized score of the policy at the last iteration of training, averaged over 5 random
seeds. The highest performing scores are highlighted. The med, med-rep, and med-exp is shorthand
for medium, medium-replay, and medium-expert, respectively.

Tasks Proposed COMBO BCQ BEAR OptiDICE ATAC CQL IQL TD3+BC
walker2d-med 80.8 ± 5.1 81.9 ± 2.8 53.1 59.1 21.8 ± 7.1 89.6 77.2 ± 4.2 78.3 ± 4.3 81.7 ± 2.3
hopper-med 94.9 ± 4.3 97.2 ± 2.2 54.5 52.1 94.1 ± 3.7 85.6 74.3 ± 5.8 66.3 ± 6.4 98.4 ± 1.6

halfcheetah-med 58.1 ± 1.4 54.2 ± 1.5 40.7 41.7 38.2 ± 0.1 53.3 37.2 ± 0.3 47.4 ± 1.1 27.8 ± 0.7

walker2d-med-rep 99.6 ± 2.9 56.0 ± 8.6 15.0 19.2 21.6 ± 2.1 92.5 20.8 ± 1.6 73.9 ± 2.8 34.4 ± 4.2
hopper-med-rep 113.0 ± 2.1 89.5 ± 1.8 33.1 33.7 36.4 ± 1.1 102.5 32.6 ± 1.9 94.7 ± 1.5 44.4 ± 3.7

halfcheetah-med-rep 49.3 ± 2.1 55.1 ± 1.0 38.2 38.6 39.8 ± 0.3 48.0 41.9 ± 1.1 44.2 ± 2.5 48.3 ± 0.7

walker2d-med-exp 108.2 ± 7.4 103.3 ± 5.6 57.5 40.1 74.8 ± 9.2 114.2 103.8 ± 6.9109.6 ± 7.0100.5 ± 8.9
hopper-med-exp 117.8 ± 1.9 111.1 ± 2.9 110.9 96.3 111.5 ± 0.6 119.2 111.4 ± 1.2 91.5 ± 2.2 112.4 ± 0.3

halfcheetah-med-exp 98.5 ± 3.8 90.0 ± 5.6 64.7 53.4 91.1 ± 3.7 94.8 66.7 ± 8.9 86.7 ± 3.6 95.9 ± 3.9

walker2d-random 11.2 ± 3.8 7.0 ± 3.6 4.9 7.3 9.9 ± 4.3 6.8 4.7 ± 1.5 5.8 ± 2.8 3.4 ± 1.7
hopper-random 18.7 ± 1.5 17.9 ± 1.4 10.6 11.4 11.2 ± 1.1 17.5 10.7 ± 0.1 10.8 ± 0.6 11.1 ± 0.2

halfcheetah-random 37.6 ± 2.4 38.8 ± 3.7 2.2 25.1 11.6 ± 1.2 3.9 26.7 ± 1.4 22.4 ± 1.8 26.1 ± 1.8

maze2d-umaze 96.5 ± 27.8 34.2 ± 8.6 12.8 3.4 111.0 ± 8.3 84.4 ± 24.8 50.5 ± 7.9 41.5 ± 4.7 13.8 ± 22.8
maze2d-med 137.5 ± 18.9 49.9 ± 13.9 8.3 29.0 145.2 ± 17.5152.3 ± 34.6 28.6 ± 9.2 38.5 ± 4.2 59.1 ± 44.7
maze2d-large 187.8 ± 15.2128.2 ± 17.3 6.2 4.6 155.7 ± 33.4 142.1 ± 33.8 46.2 ± 16.254.2 ± 18.187.6 ± 15.4

Real-world application. The Ohio Type 1 Diabetes (OhioT1DM) dataset [33] comprises a cohort
of patients with Type-1 diabetes, where each patient exhibits different dynamics and 8 weeks of
life-event data, including health status measurements and insulin injection dosages. Clinicians aim
to adjust insulin injection dose levels [33, 4] based on a patient’s health status in order to maintain
glucose levels within a specific range for safe dose recommendations. The state variables consist
of health status measurements, and the action space is a bounded insulin dose range. The glycemic
index serves as a reward function to assess the quality of dose suggestions. Since the data-generating
process is unknown, we follow [31, 29] to utilize the Monte Carlo approximation of the estimated
value function on the initial state of each trajectory to evaluate the performance of each method.
The mean and standard deviation of the improvements on the Monto Carlo discounted returns
are presented in Table 2. As a result, our algorithm achieves the best performance for almost all
patients, except for Patient 552. The main reason for the desired performance in real data is from the
enhanced model extrapolation and relaxed function approximation requirements and outperforms the
competing methods. This finding is consistent with the results in the synthetic and benchmark datasets,
demonstrating the potential applicability of the proposed algorithm in real-world environments.

Table 2: The baseline policy improvements over 50 repeated experiments in the OhioT1DM dataset.
Patient ID Proposed COMBO BCQ BEAR OptiDICE ATAC CQL IQL TD3+BC

596 6.5 ± 1.1 4.1 ± 0.8 3.8 ± 0.9 2.7 ± 1.1 4.7 ± 1.1 5.1 ± 2.0 4.6 ± 0.6 3.4 ± 0.7 4.8 ± 1.3
584 33.1 ± 1.8 27.0 ± 1.3 20.3 ± 1.2 22.9 ± 1.6 27.7 ± 1.9 26.9 ± 2.6 21.6 ± 1.2 22.7 ± 1.3 22.4 ± 1.7
567 36.9 ± 1.3 30.6 ± 2.0 24.3 ± 1.4 25.6 ± 1.4 28.8 ± 2.2 29.7 ± 2.8 26.5 ± 1.4 25.8 ± 1.4 27.8 ± 1.5
552 7.9 ± 0.9 6.8 ± 0.7 5.7 ± 0.5 5.0 ± 0.8 8.1 ± 0.9 7.2 ± 1.5 6.7 ± 0.4 6.1 ± 0.5 7.4 ± 0.8
544 13.2 ± 1.9 9.8 ± 1.5 7.5 ± 2.5 5.9 ± 0.8 10.3 ± 1.8 10.1 ± 2.1 8.7 ± 1.0 7.8 ± 0.9 9.7 ± 0.8
540 20.4 ± 0.5 17.5 ± 0.9 14.3 ± 0.6 12.7 ± 0.5 17.9 ± 0.9 18.2 ± 1.4 16.5 ± 0.5 14.0 ± 0.6 17.1 ± 0.8

7 Conclusion

We study offline RL with limited exploration in function approximation settings. We propose a bi-level
policy optimization framework, which can be further solved by a computationally practical penalized
adversarial estimation algorithm, offering strong theoretical and empirical guarantees. Regarding
limitations and future work, while the penalized adversarial estimation is more computationally
efficient than the previously constrained problem, it may still be more challenging to solve than single-
stage optimization problems. Another future direction is to explore environments with unobservable
confounders. It will be interesting to address these limitations in future works.
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