
A benchmark of categorical encoders
for binary classification

Federico Matteucci1, Vadim Arzamasov1, and Klemens Böhm1

1Karlsruhe Institute of Technology
{federico.matteucci, vadim.arzamasov, klemens.boehm}@kit.edu

Abstract

Categorical encoders transform categorical features into numerical representa-
tions that are indispensable for a wide range of machine learning models. Ex-
isting encoder benchmark studies lack generalizability because of their limited
choice of 1. encoders, 2. experimental factors, and 3. datasets. Addition-
ally, inconsistencies arise from the adoption of varying aggregation strategies.
This paper is the most comprehensive benchmark of categorical encoders to
date, including an extensive evaluation of 32 configurations of encoders from
diverse families, with 48 combinations of experimental factors, and on 50
datasets. The study shows the profound influence of dataset selection, exper-
imental factors, and aggregation strategies on the benchmark’s conclusions —
aspects disregarded in previous encoder benchmarks. Our code is available at
https://github.com/DrCohomology/EncoderBenchmarking.

1 Introduction

Learning from categorical data poses additional challenges compared to numerical data, due to
a lack of inherent structure such as order, distance, or kernel. The conventional solution is to
transform categorical attributes into a numerical form, i.e., encode them, before feeding them to a
downstream Machine Learning (ML) model. Various encoders have been proposed, followed by
several benchmark studies. However, their combined results remain inconclusive, as we now describe.

Many factors impact the generalizability [26] of a benchmark of encoders, including: 1. the compared
encoders, 2. the number of datasets, 3. the quality metrics, 4. the ML models used, and 5. the tuning
strategy. We also hypothesize that 6. the aggregation strategy used to summarize the results of
multiple experiments may affect the conclusions of a study. Existing encoder benchmarks, reviewed
in Section 2, only partially control for these factors. First, none of these studies uses more than
15 datasets of a given type (regression or classification). Second, despite these studies collectively
covering a substantial number of encoders, they often focus on specific encoder families, resulting in
comparison gaps between the best encoders. For instance, the best-performing encoders from [28]
(Cross-Validated GLMM) and [44] (Mean-Target) have not been studied together yet. Third, the
results of existing studies are often not comparable due to variations in the selected quality metrics.
For instance, [28] measures quality with ROC AUC, [4] with average precision, and [41] with accuracy.
Fourth, existing studies tune ML models in different ways, yielding incompatible evaluations. For
instance, [28, 41] do not tune, while [4, 5, 8, 44] tune but do not specify if they tune the ML model on
encoded data or if they tune the entire ML pipeline. Last, no benchmark study of categorical encoders
explores the impact of aggregation strategies, which is substantial according to our experiments. For
instance, [5] ranks the encoders by average ranking across all datasets, while [28] computes the
median ranking with Kemeny-Young aggregation [46].

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/DrCohomology/EncoderBenchmarking

This study offers a taxonomy and a comprehensive experimental comparison of encoders for binary
classification, taking into account the factors just mentioned. In particular, we consider: 1. 32 encoder
configurations, including all of the best-performing ones from the literature and three novel encoders;
2. 50 datasets for binary classification; 3. four quality metrics; 4. five widely used ML models; 5. three
tuning strategies; 6. 10 aggregation strategies gathered from existing categorical encoder benchmarks
and from benchmarking methodology studies [27, 9]. This allows us to provide novel insights into
the sensitivity of experimental results to experimental factors. In particular, we demonstrate how
replicability [26] may not be ensured even for studies conducted on up to 25 datasets. For those
combinations of experimental factors that show reproducible results, we isolate and recommended
the best encoders.

Paper outline: Section 2 reviews existing works, Section 3 presents a taxonomy of encoder families,
Section 4 describes the experimental setup, and Section 5 features the results.

Table 1: Related work on categorical encoders for binary classification.
Ours [28] [4] [8] [5] [44] [41]

Binary classification datasets 50 10 5 3 2 2 6

ML models 5 5 1 4 2 1 5

Encoder family

Identifier ✓ ✓ ✓ ✓ ✓ ✓ ✓
Frequency-based ✓ ✓
Contrast ✓ ✓
Similarity ✓ ✓ ✓
Simple target ✓ ✓ ✓ ✓
Binning ✓ ✓
Smoothing ✓ ✓ ✓ ✓
Data-constraining ✓ ✓ ✓

Quality metric
Precision-recall based ✓ ✓ ✓ ✓
Balanced accuracy ✓ ✓ ✓
Accuracy ✓ ✓ ✓ ✓

Tuning strategy
Full pipeline tuning ✓ ? ✓*
Model tuning ✓ ✓ ✓
No tuning ✓ ✓ ✓

Aggregation strategy
Heuristic ✓ ✓
Friedman-Nemenyi ✓ ✓ ✓
Kemeny-Young ✓ ✓

2 Related work

Benchmarks of encoders. We focus on binary classification tasks, as they offer a wider range of
compatible encoders; indeed, we could conduct a deeper replicability analysis while maintaining the
computation feasible. Table 1 summarizes the related work. The other benchmarks often consider
few datasets and either do not tune the ML model or do not describe the tuning procedure. This
limits their applicability and generalizability. Additionally, there are substantial differences in the
experimental settings across articles, including the encoders considered, quality metrics employed,
and aggregation strategies used to interpret results. Hence, the comparability of these findings is
limited. For instance, [28] recommends a data-constraining encoder, [41] both data-constraining
and contrast encoders, [5, 4] similarity encoders, [8] an identifier encoder, and [44] a simple target
encoder. Other benchmarks of encoders are [36], which focuses on regression tasks and faces similar
issues, and [30, 14, 20], that use only a single dataset.

Analysis of benchmarks. When designing our benchmark, we adhered to the best practices discussed
in the literature on benchmark design and analysis. In particular, [27] studies how choices of
experimental factors impact the experimental results and advocates for benchmarks that consider
a large variety of factors. Similarly, [9] suggests guidelines to mitigate the inconsistencies in the
choices of data and evaluation metric. Finally, [2] proposes a methodology to account for variance in
the design choices (randomization of sources of variation) and post-processing of the experimental
results (significant and meaningful improvements).

2

3 Taxonomy of encoders

This section presents the essential terminology and discusses the considered encoders and their
corresponding families. Appendix 7.1 provides formal and detailed descriptions of the encoders.

3.1 Notation and terminology

Consider a tabular dataset with target y taking values in {0, 1}, and let A be one of its attributes
(columns). A is categorical if it represents qualitative properties and takes values in a finite domain
ΩA. Each ω ∈ ΩA is a level of A. Categorical attributes do not support arithmetic operations like
addition or multiplication, and their comparison is not based on arithmetic relations. An encoder
E replaces a categorical attribute A with a set of numerical attributes, E(A). We write E(ΩA) to
indicate the domain of E(A). Encoders may encode different levels in A in the same way, or encode
in different ways different occurrences in the dataset of the same level. Encoders are either supervised
or unsupervised: Supervised encoders require a target column, while unsupervised encoders solely
rely on A. In what follows, A always denotes the categorical attribute to be encoded.

3.2 Unsupervised encoders

Identifier encoders assign a unique vector identifier to each level. The most recognized encoder is
One-Hot (OH), the default encoder in most machine learning pipelines [11, 15]. One-Hot is both
space-inefficient and ineffective [28, 4, 5]. Alternatives include Ordinal (Ord), which assigns a
unique consecutive identifier to each level, and Binary (Bin), which splits the base-2 representation
of Ord(A) into its digits.

Frequency-based encoders replace levels with some function of their frequency in the dataset. We
use Count, which relies on absolute frequencies [28].

Contrast encoders encode levels into (L− 1)-dimensional vectors so that the encodings of all levels
sum up to (0, . . . , 0) [41]. A constant intercept term, 1, is usually appended to the encoding of
each level. Contrast encoders encode levels such that their coefficients represent the level’s effect
contrasted against a reference value. A common example is Sum, which contrasts against the target’s
average value.

Similarity encoders treat ω ∈ ΩA as strings and map them into a numeric space taking their similarity
into account [5, 4]. These encoders are particularly useful for handling “dirty” categorical datasets
that may contain typos and redundancies. One example is Min-Hash (MH), which decomposes each
level into a set of n-grams, sequences of n consecutive letters, and encodes to preserve the Jaccard
similarity of the decompositions.

3.3 Supervised encoders

Simple target encoders encode levels with a function of the target. Prime examples are Mean-Target
(MT) [7], which encodes with the conditional average y given A, and Weight of Evidence (WoE) [39],
which encodes with the logit of MT(A). As Mean-Target can lead to severe overfitting [28, 31], it may
benefit from regularization. The following families of encoders are regularization for Mean-Target.

We propose Binning encoders, that regularize MT by partitioning either ΩA or MT(ΩA) into bins.
Pre-Binned MT (PBMT) partitions ΩA to maximize the number of bins such that each bin’s relative
frequency exceeds a specified threshold, then encodes the binned attribute with MT. Discretized
MT (DMT) partitions MT(ΩA) into intervals of equal length, then encodes each level with the lower
bound of the interval in which its MT encoding falls.

Smoothing encoders blend MT(ΩA) with the overall average target. Notable examples are Mean-
Estimate (ME) [22], which uses a weighted average of the two, and Generalized Linear Mixed Model
encoder (GLMM) [28], which encodes with the coefficients of a generalized linear mixed model
fitted on the data.

Data-constraining encoders regularize MT(A) by restricting the amount of data used to encode
each occurrence of a level in the dataset. CatBoost (CB) [31] first randomly permutes the dataset’s
rows, then maps each occurrence of a level ω to the average target of its previous occurrences. Cross-
Validated MT (CVMT) [28] splits the dataset into folds of equal size, then encodes each fold with an

3

MT trained on the other folds. We propose the BlowUp variant of CVMT, BUMT, which trains an
MT on each fold and uses them to encode the whole dataset. Related variants are Cross-Validated
GLMM (CVGLMM) [28] and its BlowUp version (BUGLMM).

4 Experimental design

As there is no intrinsic measure of an encoder’s quality, we proxy the latter with the quality of
an ML model trained on encoded data. This procedure is in line with the current literature on the
topic, discussed in Section 2. Each experiment thus consists of the following steps. First, we fix a
combination of factors: a dataset, an ML model, a quality metric, and a tuning strategy. Then, we
partition the dataset using a 5-fold stratified cross-validation and pre-process the training folds by:

• imputing missing values with median for numerical and mode for categorical attributes;
• scaling the numerical attributes;
• encoding the categorical attributes.

If tuning is to be applied, we fine-tune the pipeline with nested cross-validation and output the average
performance over the outer test folds. We used standard scikit-learn [29] procedures for scaling and
missing values imputation.

We conducted experiments using Python 3.8 on an AMD EPYX 7551 machine with 32 cores and 128
GB RAM. We limit each evaluation to 100 minutes to handle the extensive workload. As described
in Appendix 7.3.1, out of the 64000 cross-validated evaluations, 61812 finished on time without
throwing errors. For the sensitivity, replicability, and encoder comparison analysis, we ignored the
missing evaluations. We did so 1. since there is no clearly superior imputation method, and 2. to
avoid introducing unnecessary variability in the analysis. Our preliminary experiments confirm that
imputing the small number of missing evaluations does not significantly impact our analysis.

In what follows, we describe the datasets, ML models, quality metrics, and tuning strategies we use
in our experiments. Then, we outline the different aggregation strategies. Appendix 7.2 provides
further details about datasets and aggregation strategies.

4.1 Encoders

We used the category_encoders1 implementations of Bin, CB, Count, Ord, OH, Sum, and WoE.
We sourced MH from the authors’ implementation [4, 5].2 We implemented DMT, GLMM, ME,
MT, PBMT, CVMT, BUMT, CVGLMM, and BUGLMM. We also added a baseline encoder, Drop,
which encodes every level with 1. For DMT, we experimented with the number of bins: {2, 5, 10},
for ME, with the regularization strength: {0.1, 1, 10}, for PBMT, with the minimum frequency:
{0.001, 0.01, 0.1}, and for cross-validated encoders, such as CVMT, with the number of folds:
{2, 5, 10}. We display hyperparameter values with subscripts, e.g., CV2MT.

4.2 Datasets

We used binary classification datasets. This allows us to conduct in-depth analysis using the same
ML models and quality metrics. Additionally, certain supervised encoders, e.g., WoE, are specifically
designed for binary classification tasks. We chose 50 datasets with categorical attributes from
OpenML [42], including the suitable ones from the related work.

4.3 ML models

We experimented with diverse ML models that process data in different ways: decision trees (DT)
and boosted trees (LGBM) exploit orderings, support vector machines (SVM) use kernels, k-nearest
neighbors (k-NN) relies on distances, and logistic regression (LogReg) is a "pseudo-linear" model.
The LGBM implementation we used is from the LightGBM module,3 while the other models’
implementations are from scikit-learn. Table 2 compares our model choices with related work. We

1https://contrib.scikit-learn.org/category_encoders/
2https://dirty-cat.github.io/stable/
3https://lightgbm.readthedocs.io/en/v3.3.5/

4

https://contrib.scikit-learn.org/category_encoders/
https://dirty-cat.github.io/stable/
https://lightgbm.readthedocs.io/en/v3.3.5/

Table 2: ML models used in related studies.
Ours [28] [4] [8] [5] [44] [41]

Model family

Tree ensembles ✓ ✓ ✓ ✓ ✓ ✓
Linear ✓ ✓ ✓ ✓
SVM ✓ ✓ ✓ ✓
k-NN ✓ ✓
DT ✓ ✓ ✓ ✓
Neural ✓ ✓
Naïve Bayes ✓

excluded neural models due to their inferior performance on tabular data [15] and the absence of a
recommended architecture. We also did not use Naïve Bayes due to its lack of popularity.

4.4 Quality metrics and tuning strategies

We assessed an encoder’s quality by evaluating an ML model trained on the encoded data. We use
four quality metrics: balanced accuracy (BAcc), F1-score (F1), accuracy (Acc), and Area Under the
ROC Curve (AUC). We compared three tuning strategies:

• no tuning;
• model tuning: the entire training set is pre-processed before tuning the model;
• full tuning: the entire pipeline is tuned on the training set, with each training fold of the

nested cross-validation pre-processed independently.

We used Bayesian search from scikit-optimize4 for full tuning, and for model tuning grid search
from scikit-learn. Table 4 summarizes the tuning search space for different ML models. To mitigate
excessive runtime, we chose not to tune certain ML models and limited the dataset selection to the
smallest 30 for full tuning, as Table 3 illustrates.

Table 3: Factors for different tuning strategies.
Models # Datasets

No tuning DT, k-NN, LogReg, SVM, LGBM 50
Model tuning DT, k-NN, LogRreg 50
Full tuning DT, k-NN, LogReg, SVM 30

Table 4: Tuning search space.
Hyperparameter Interval Grid

DT max_depth [2, . . . , 5] {2, 5, None}
k-NN n_neighbors [2, . . . , 10] {2, 5, 10}
LogReg C [0.2, 5] {0, 1, 10}
SVM C [0.1, 2]

gamma [0.1, 100]

4.5 Aggregating into a consensus ranking

A common practice for summarizing and interpreting the results of benchmark experiments is to
aggregate them into a consensus ranking of alternatives (encoders in our case) [10, 27, 15]. To
obtain a dataset-independent ranking of encoders, we aggregate the results across different datasets
while keeping all other factors fixed. We now present well-known aggregation strategies used in
benchmarks.

Heuristics rank alternatives based on an aggregate score. Common aggregation heuristics include
mean rank (R-M) [5], median rank (R-Md), mean quality (Q-M), median quality (Q-Md), rescaled

4https://scikit-optimize.github.io/stable/

5

https://scikit-optimize.github.io/stable/

mean quality [36, 15] (Q-RM), the number of times the alternative was ranked the best (R-B) or
the worst (R-W) [41], the number of times the alternative’s quality is better than the best quality
multiplied by a threshold θ ≤ 1 (Q-Thθ).

Friedman-Nemenyi tests [10] (R-Nemp-value). First, one ranks alternatives separately for each dataset
and then applies a Friedman test to reject the hypothesis that all encoders have the same average
rank. If the hypothesis is rejected, pairwise Nemenyi post-hoc tests are conducted to compare pairs
of alternatives. Finally, one uses the results of these post-hoc tests to construct the consensus ranking.
This aggregation strategy requires the user to choose a p-value.

Kemeny-Young aggregation [21, 47] (R-Kem) first ranks alternatives separately for each dataset.
Then, it determines the consensus ranking that minimizes the sum of distances to the datasets’
rankings. We adopt the approach described in [45], with a distance measure that accomodates ties and
missing values in the rankings. We then formulate the optimization problem as a mixed integer linear
problem and solve it using a GUROBI solver with academic license.5 Kemeny-Young aggregation is
much slower than the other aggregation strategies, taking minutes for each aggregation.

5 Results

This section summarizes the main results of our study. Appendix 7.3 further discusses the missing
evaluations, run time, replicability, the ranks of the encoders and studies the effect of tuning on
pipeline quality.

5.1 Sensitivity analysis

The relative performance of encoders, i.e., the ranking, can depend on the pick of ML model, quality
metric, and tuning strategy. More, the choice of an aggregation strategy impacts the consensus ranking.
To quantify the influence of these choices, we calculate the similarity between rankings using the
Jaccard index J for the sets of best encoders and the Spearman correlation coefficient ρ. Intuitively,
J measures if two experiments with different factor combinations agree on the best encoders, while ρ
takes the entire ranking into account. For both measures, values close to 1 indicate high agreement
and low sensitivity. Conversely, values near 0 (or, for ρ, negative) suggest low consistency and high
sensitivity.

5.1.1 Sensitivity to experimental factors

We evaluate the sensitivity of encoder rankings on individual datasets with respect to an experimental
factor (ML model, quality metric, or tuning strategy) by varying the factor of interest and keeping
the other factors fixed, then calculating the similarity between pairs of rankings. After that, we
average the result across all combinations of the other factors. Figures 1a, 1b, and 1c show the
resulting values, with Spearman’s ρ in the upper triangle and Jaccard index J in the lower triangle.
For example, Spearman’s ρ between encoder rankings for DT and SVM, averaged across all datasets,
tuning strategies, and quality metrics, is 0.3.

Our findings highlight the high sensitivity of results to experimental factors, for both the full rankings
and the best encoders. They also explain why results from other studies are so inconsistent, as
choosing different values for any factor will lead to different results.

5.1.2 Sensitivity to aggregation strategy

To evaluate the impact of the aggregation strategy on the consensus ranking, we apply the same
procedure as above to consensus rankings instead of rankings on individual datasets. Figure 1a
presents the results with the notation from Section 4.5. For example, Spearman’s ρ between consensus
rankings obtained with Q-M and Q-Md averaged across all ML models, tuning strategies, and quality
metrics is 0.8.

While some aggregation strategies show strong similarities, different strategies yield very different
consensus rankings in general. This is particularly evident for Jaccard index J , indicating the high
sensitivity of the best encoders to the rank aggregation strategy.

5https://www.gurobi.com/solutions/gurobi-optimizer/

6

https://www.gurobi.com/solutions/gurobi-optimizer/

(a)

(b)

(c)

(d)

Figure 1: Sensitivity as the average similarity between rankings, measured with ρ (upper triangle)
and J (lower triangle), computed between individual rankings for varying: (a) ML model, (b) quality
metric, (c) tuning strategy, and between consensus rankings for varying (d) aggregation strategy.

5.2 Replicability

Replicability is defined as the property of a benchmark to produce consistent results from different
data [26]. This definition does not, however, provide a quantifiable notion of replicability. To
overcome this, we made the following modeling decisions. First, we fix a factor combination: ML
model, quality metric, tuning strategy, and aggregation strategy. We excluded the R-Nem and R-Kem
aggregation strategies due to their slower run time. Second, we model the result of a benchmark on a
dataset sample S with the consensus ranking aggregated across S. Third, we quantify replicability as
the similarity between consensus rankings averaged over all factor combinations and 100 pairs of
equal-sized disjoint sets of datasets. As discussed in Section 5.1, we measure the similarity with ρ
and J to capture the similarity between both the rankings and the best encoders. We refer to them as
ρ-replicability and J-replicability, respectively.

Figure 2 shows the outcome for different tuning strategies, conditional on the ML model and the
size of the dataset samples. We have studied additional factors in Appendix 7.3.3. The shaded
areas represent a bootstrapped 95% confidence interval. Our findings show an upward trend of
ρ-replicability as the size of the dataset samples increases. This observation confirms that, in general,
considering a larger number of datasets yields more reliable experimental outcomes. It is, however,
important to note that this pattern does not always hold for J-replicability. This suggests that, for
some models, the best encoders might vary significantly even with a relatively large number of
datasets. To conclude, the replicability of our results strongly depends on the ML model, with logistic
regression exhibiting the highest replicability and decision trees the lowest.

7

0.0

0.2

0.4

0.6

ρ

no tuning model tuning full tuning

5 10 15 20 25
sample size

0.0
0.1

0.3

0.5

J

5 10 15 20 25
sample size

5 10 15
sample size

DT k-NN LGBM LogReg SVMDT k-NN LGBM LogReg SVM

Figure 2: Replicability as the average similarity of consensus rankings from disjoint subsets of
datasets.

5.3 Comparing encoders

Based on the outcome of Section 5.2, we now examine the ranks of encoders limited to decision trees,
logistic regression, and all ML models.

Figure 3a shows the rank of encoders from the experiments with decision trees across all datasets,
quality metrics, and tuning strategies. One-Hot is the best-performing encoder; however, Nemenyi
tests at a significance level of 0.05 fail to reject that the average rank of One-Hot is the same as that
of the other encoders.

Figure 3b features the encoder ranks for logistic regression, where four encoders, namely One-Hot,
Sum, Binary, and Weight of Evidence, consistently achieve higher ranks compared to the others.
Nemenyi tests confirm that this difference in ranks is significant. These results are in line with the
ones from Section 5.2, which indicate low replicability of the results for decision trees and higher
replicability for logistic regression.

Figure 3c presents the ranks of encoders across all datasets, ML models, quality metrics, and tuning
strategies. Similarly to logistic regression, One-Hot, Sum, Binary, and Weight of Evidence consis-
tently achieve significantly higher average ranks compared to the other encoders, again confirmed by
Nemenyi tests. We recommend these four encoders as the preferred choices in practical applications.
This conclusion contradicts other studies reporting a suboptimal performance of One-Hot [5, 28].

Our findings also reveal that Drop performs significantly worse than all other encoders, i.e., encoding
categorical attributes generally yields better results than dropping them.

5.4 Comparing to related work

In this section, we compare our results with the findings of other studies. To do so, we select subsets
of our results that mimic the experimental settings in related work. In [28], CV5GLMM outperformed
every competitor for boosted trees and k-NN, while GLMM was recommended for SVMs. However,
in our experiments, Sum outperformed GLMM for SVMs, One-Hot did better than CV5GLMM for
boosted trees, and CV10GLMM was better than CV5GLMM for k-NN. Next, while in [5] similarity
encoders are better than One-Hot for boosted trees, subsequent research reported no significant
difference between Min-hash and One-Hot on medium-sized tabular datasets [4]. Our findings are in
line with this latter result, as we could not find a performance difference between the two encoders
with a t-test with a significance level of 0.05. In [41], Sum is reported as the best encoder on the Adult
dataset for boosted trees, while a Data-constraining encoder is reported as the worst. With the same
setting, we did not find a significant performance difference for any encoder except for Drop, which

8

0 10 20 30
rank

WoE
OH
Bin
MH

PB0.01MT
PB0.1MT
CV2MT

CV10MT
PB0.001MT

CV5MT
Count

Sum
GLMM

BU10MT
D5MT
ME10

D2MT
MT

ME1
D10MT

BU2MT
Ord

ME0.1
CV2GLMM

BU10GLMM
CV10GLMM

BU5MT
CV5GLMM
BU5GLMM
BU2GLMM

CB
Drop

DT

(a) Decision tree

0 10 20 30
rank

Sum
OH

WoE
Bin

BU5MT
BU2MT

BU10MT
CV2MT

BU5GLMM
CV5MT

PB0.01MT
PB0.001MT

D10MT
BU10GLMM

D5MT
MT

CV10MT
ME0.1

BU2GLMM
ME1

ME10
D2MT

Ord
CV2GLMM

CB
GLMM

CV5GLMM
CV10GLMM

MH
PB0.1MT

Count
Drop

LogReg

(b) Logistic regression

0 10 20 30
rank

WoE
OH
Bin

Sum
BU10MT

PB0.01MT
BU2MT
BU5MT
CV5MT

PB0.001MT
CV10MT

BU10GLMM
CV2MT

D5MT
D10MT

ME10
MT

BU5GLMM
ME1

D2MT
GLMM

ME0.1
BU2GLMM

PB0.1MT
CV5GLMM

MH
CV2GLMM

CV10GLMM
CB
Ord

Count
Drop

all models

(c) All models

Figure 3: Ranks of encoders.

performed the worst. On the Bank marketing dataset, [8] showed that One-Hot and Mean-Target
outperformed Binary with logistic regression. In our experiments, Binary was slightly worse than
One-Hot and Mean-Target. In [44], Dummy, an identifier encoder similar to One-Hot, was better
than Mean-Target on the Tic-tac-toe dataset with boosted trees. We, instead, did not observe any
significant difference between One-Hot and Mean-Target for these factors.

6 Limitations and conclusions

Limitations. First, we treated encoders as part of the pre-processing, but certain encoders can be an
integral component of specific ML models. For instance, CatBoost is derived from the homonymous
boosted trees algorithm, which re-encodes the data multiple times during training. Second, we applied
a single encoder to all categorical attributes. Using different encoders based on the cardinality of
the attribute may sometimes yield favorable results [28, 4]. However, the selection of the optimal
encoder for each attribute requires either domain knowledge of the attribute or purpose-built tools,
which falls outside the scope of our benchmark and is therefore left as future work. We also did not
include neural networks, due to the absence of a recommended architecture and reported interior
performance to tree-based models on tabular data [15].

Conclusions.

In this study, we conducted an extensive evaluation of encoder performance across various experimen-
tal factors, including ML models, quality metrics, and tuning strategies. Our results demonstrate a
high sensitivity of encoder rankings to these factors, both for the full rankings and the best-performing
encoders. This sensitivity explains the inconsistent results among related studies, as different choices
in any of these factors can lead to different outcomes. We also assessed the impact of aggregation
strategies on consensus rankings, revealing significant variations in rankings depending on the chosen
strategy. This emphasizes the importance of carefully considering the aggregation method when
post-processing and interpreting results. Regarding replicability, we defined and quantified it using
ρ-replicability and J-replicability. Our findings indicate that replicability is influenced by factors
such as the ML model, with logistic regression exhibiting the highest replicability and decision trees

9

the lowest. Additionally, larger dataset samples tend to yield more reliable experimental outcomes,
although this trend does not always hold for J-replicability. Based on our results, we recommend
specific encoders for practical applications. For decision trees, Weight of Evidence performed the
best, although statistical tests did not show a significant difference from other encoders. For logistic
regression, Sum, One-Hot, Binary, and Weight of Evidence consistently achieved higher ranks,
with statistically significant differences from other encoders. These findings contradict previous
studies, highlighting the importance of considering a broad range of experimental factors. Finally, our
comparative analysis with related work revealed discrepancies in encoder performance, suggesting
that the breadth of our study may contribute to these differences. This emphasizes the need for
caution when interpreting results from studies with more limited experimental settings. Overall, our
study provides valuable insights into the sensitivity of encoder performance to experimental factors,
as well as recommendations for practical encoder selection across different scenarios.

Acknowledgments

We thank Dmitriy Simakov for valuable discussions and Natalia Arzamasova for her algorithm
and implementation of the PreBinnedEncoder. This work was supported in part by the German
Research Foundation (Deutsche Forschungsgemeinschaft), project Charakterisierung, Modellierung
und Homogenisierung von Vernetzungswerken mit Hilfe interpretierbarer Datenanalysemethoden,
and by the State of Baden-Württemberg, project Algorithm Engineering für die Scalability Challenge.

References
[1] David Aha. Tic-Tac-Toe Endgame. UCI Machine Learning Repository. 1991.
[2] Xavier Bouthillier et al. “Accounting for Variance in Machine Learning Benchmarks”. In:

MLSys. mlsys.org, 2021.
[3] Laurent Candillier and Vincent Lemaire. Nomao. UCI Machine Learning Repository. 2012.
[4] Patricio Cerda and Gaël Varoquaux. “Encoding High-Cardinality String Categorical Variables”.

In: IEEE Trans. Knowl. Data Eng. 34.3 (2022), pp. 1164–1176.
[5] Patricio Cerda, Gaël Varoquaux, and Balázs Kégl. “Similarity encoding for learning with dirty

categorical variables”. In: CoRR abs/1806.00979 (2018).
[6] Congressional Voting Records. UCI Machine Learning Repository. 1987.
[7] Don Coppersmith, Se June Hong, and Jonathan R. M. Hosking. “Partitioning Nominal At-

tributes in Decision Trees”. In: Data Min. Knowl. Discov. 3.2 (1999), pp. 197–217.
[8] Mwamba Kasongo Dahouda and Inwhee Joe. “A Deep-Learned Embedding Technique for

Categorical Features Encoding”. In: IEEE Access 9 (2021), pp. 114381–114391.
[9] Mostafa Dehghani et al. “The Benchmark Lottery”. In: CoRR abs/2107.07002 (2021).

[10] Janez Demsar. “Statistical Comparisons of Classifiers over Multiple Data Sets”. In: J. Mach.
Learn. Res. 7 (2006), pp. 1–30.

[11] Keyu Duan et al. “A Comprehensive Study on Large-Scale Graph Training: Benchmarking
and Rethinking”. In: NeurIPS. 2022.

[12] Bob Evans. Cylinder Bands. UCI Machine Learning Repository. 1995.
[13] Farhad Soleimanian Gharehchopogh and Seyyed Reza Khaze. “Data mining application for

cyber space users tendency in blog writing: a case study”. In: CoRR abs/1307.7432 (2013).
[14] Sebastian Gnat. “Impact of Categorical Variables Encoding on Property Mass Valuation”. In:

KES. Vol. 192. Procedia Computer Science. Elsevier, 2021, pp. 3542–3550.
[15] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. “Why do tree-based models still

outperform deep learning on typical tabular data?” In: NeurIPS. 2022.
[16] C. Harleya, R. Reynolds, and M. Noordewier. Molecular Biology (Promoter Gene Sequences).

UCI Machine Learning Repository. 1990.
[17] Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository. 1994.
[18] Ronald Iman and James Davenport. “Approximations of the critical region of the Friedman

statistic”. In: Communications in Statistics-Theory and Methods 9 (Jan. 1980), pp. 571–595.
[19] Andras Janosi et al. Heart Disease. UCI Machine Learning Repository. 1988.

10

[20] Justin M. Johnson and Taghi M. Khoshgoftaar. “Encoding Techniques for High-Cardinality
Features and Ensemble Learners”. In: IRI. IEEE, 2021, pp. 355–361.

[21] John G Kemeny. “Mathematics without numbers”. In: Daedalus 88.4 (1959), pp. 577–591.
[22] Daniele Micci-Barreca. “A Preprocessing Scheme for High-Cardinality Categorical Attributes

in Classification and Prediction Problems”. In: SIGKDD Explor. 3.1 (2001), pp. 27–32.
[23] Erick Moreno-Centeno and Adolfo R Escobedo. “Axiomatic aggregation of incomplete rank-

ings”. In: IIE Transactions 48.6 (2016), pp. 475–488.
[24] S Moro, P Rita, and P Cortez. Bank Marketing. UCI Machine Learning Repository. 2012.
[25] Mushroom. UCI Machine Learning Repository. 1987.
[26] Engineering National Academies of Sciences, Medicine, et al. Reproducibility and replicability

in science. National Academies Press, 2019.
[27] Christina Nießl et al. “Over-optimism in benchmark studies and the multiplicity of design and

analysis options when interpreting their results”. In: WIREs Data Mining Knowl. Discov. 12.2
(2022).

[28] Florian Pargent et al. “Regularized target encoding outperforms traditional methods in su-
pervised machine learning with high cardinality features”. In: Comput. Stat. 37.5 (2022),
pp. 2671–2692.

[29] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[30] Kedar Potdar, Taher S Pardawala, and Chinmay D Pai. “A comparative study of categorical
variable encoding techniques for neural network classifiers”. In: International journal of
computer applications 175.4 (2017), pp. 7–9.

[31] Liudmila Ostroumova Prokhorenkova et al. “CatBoost: unbiased boosting with categorical
features”. In: NeurIPS. 2018, pp. 6639–6649.

[32] Quinlan and Quinlan. Credit Approval. UCI Machine Learning Repository.
[33] Ross Quinlan. Statlog (Australian Credit Approval). UCI Machine Learning Repository.
[34] Ross Quinlan. Thyroid Disease. UCI Machine Learning Repository. 1987.
[35] Jan N van Rijn and Jonathan K Vis. “Endgame Analysis of Dou Shou Qi”. In: ICGA Journal

37.2 (2014), pp. 120–124.
[36] Diogo Seca and João Mendes-Moreira. “Benchmark of Encoders of Nominal Features for

Regression”. In: WorldCIST (1). Vol. 1365. Advances in Intelligent Systems and Computing.
Springer, 2021, pp. 146–155.

[37] Alen Shapiro. Chess (King-Rook vs. King-Pawn). UCI Machine Learning Repository. 1989.
[38] Peter Sprent and Nigel C Smeeton. Applied nonparametric statistical methods. CRC press,

2016.
[39] Gero Szepannek. “On the practical relevance of modern machine learning algorithms for credit

scoring applications”. In: WIAS Report Series 29 (2017), pp. 88–96.
[40] Muhammad Usman and Adeel Ahmed. Dresses_Attribute_Sales. UCI Machine Learning

Repository. 2014.
[41] Eric Valdez-Valenzuela, Angel Kuri-Morales, and Helena Gómez-Adorno. “Measuring the

Effect of Categorical Encoders in Machine Learning Tasks Using Synthetic Data”. In: MICAI
(1). Vol. 13067. Lecture Notes in Computer Science. Springer, 2021, pp. 92–107.

[42] Joaquin Vanschoren et al. “OpenML: networked science in machine learning”. In: SIGKDD
Explor. 15.2 (2013), pp. 49–60.

[43] J. Wnek. MONK’s Problems. UCI Machine Learning Repository. 1992.
[44] Marvin N Wright and Inke R König. “Splitting on categorical predictors in random forests”.

In: PeerJ 7 (2019), e6339.
[45] Yeawon Yoo and Adolfo R. Escobedo. “A New Binary Programming Formulation and Social

Choice Property for Kemeny Rank Aggregation”. In: Decis. Anal. 18.4 (2021), pp. 296–320.
[46] H Peyton Young. “Condorcet’s theory of voting”. In: American Political science review 82.4

(1988), pp. 1231–1244.
[47] H Peyton Young and Arthur Levenglick. “A consistent extension of Condorcet’s election

principle”. In: SIAM Journal on applied Mathematics 35.2 (1978), pp. 285–300.

11

[48] Maciej Zieba et al. “Boosted SVM for extracting rules from imbalanced data in application
to prediction of the post-operative life expectancy in the lung cancer patients”. In: Appl. Soft
Comput. 14 (2014), pp. 99–108.

12

7 Appendix

7.1 Encoders

This section presents a reproducible description of the encoders discussed in Section 3, following
the structure outlined below. We discuss identifier, frequency-based, contrast, and simple target
encoders together in Appendix 7.1.4, as all of these encoders can be explicitly represented as functions.
Similarity, binning, smoothing, and data-constraining encoders have dedicated sections. Table 5
contains the notation used in this section.

Table 5: Notation for section 7.1.
Symbol Meaning
N0 natural numbers including 0
(x)2 base-2 representation of x ∈ N0

Xn×d set of matrices with entries in X , n rows and d columns
1 indicator function
D binary classification dataset
n number of rows of D
y ∈ {0, 1}n target attribute of D
ΩA = {ωl}Ll=1 categorical domain (strings)
A ∈ Ωn

A categorical attribute of D to be encoded
li ∈ {1, . . . , L} such that Ai = ωli

E : A 7→ M ∈ Rn×d encoder
M ∈ Rn×d encoding of A, compact notation
E(A) ∈ Rn×d encoding of A with explicit encoder
E(ΩA) unique values of rows of E(A)
d = d(E,A) number of columns of M
Mi i-th row of M if d > 1, i-th component of M if d = 1
l ∈ {1, . . . , L} index of levels
i, h ∈ {1, . . . , n} row indices of M, A, or y
j ∈ {1, . . . , d} column index of M

7.1.1 Similarity encoders [5, 4]

Min-Hash treats ω ∈ ΩA as a string, splits it into its set of character-level n-grams (substrings of
n-consecutive characters), uses a hash function to encode each n-gram into an integer, and finally
encodes ω with the minimum value of the hash function on the set of n-grams. The process is repeated
for d hash functions, yielding M ∈ Rn×d. The default value of d is 30, the authors report good
performance with 300 6.

7.1.2 Binning encoders

Pre-Binned Mean-Target partitions ΩA into B buckets {Pb}Bb=1 to solve the optimization problem

Maximize B

subject to
1

n

∑
ω∈Pb

n∑
i=1

1 (Ai = ω) ≥ ϑ ∀b ≤ B

where ϑ ∈ [0, 1] is a user-defined threshold. Each bucket is then treated as a new level and encoded
with Mean-Target, yielding an encoding M ∈ Rn.

Discretized Mean-Target partitions MT (ΩA) into intervals {I1, . . . , IB} of equal length. Letting
I(l) be the interval that contains MT (ωl) (that is, the average target associated to ωl), the encoding
is M ∈ Rn : Mi = inf I(li). We experimented with B = 2, 5, 10.

6https://dirty-cat.github.io/stable/generated/dirty_cat.MinHashEncoder.html

13

https://dirty-cat.github.io/stable/generated/dirty_cat.MinHashEncoder.html

Table 6: Identifier encoders
E(ΩA) E(A)

Binary [8] {0, 1}[log2(L)]+1 Mi = (li)2

Dummy [28, 44] {0, 1}L−1 Mij =

{
1(Ai = ωj) j ̸= L

0 j = L
One-Hot [28, 4, 8, 44, 41] {0, 1}L Mij = 1(Ai = ωj)
Ordinal [28, 44, 41] N0 Mi = li

Table 7: Frequency-based encoders
Count [36] N0 Mi =

∑
j 1 (Aj = ωli)

Frequency [28] R Mi =
1
n

∑
j 1 (Aj = ωli)

Table 8: Contrast encoders — without intercept

Sum [41] RL−1 Mij =

{
1(Ai = j) j ̸= L

−1 j = L

Backward difference [41] RL−1 Mij =

{−L−i
L i ≤ j

1
L i > j

Helmert [41] RL−1 Mij =

− 1

j+1 i ≤ j
j

j+1 i = j + 1

0 i ≥ j + 2

Table 9: Simple target encoders

Mean-Target [28, 8] R Mi =
n∑

h=1

yh1(Ah = ωli)

Weight of Evidence [39] [28] N0 Mi = log
(

MT (A)
1−MT (A)

)

7.1.3 Smoothing target encoders

Mean-Estimate [41]. Let nl =
∑n

i=1 1 (Ai = ωl) be the number of occurrences of ωl in A.

Mi =

nliMT (ωli) +
w
n

n∑
i=1

yi

w + nli

where w is a user-defined weight. Common choices are 1, 10.

GLMM [28] fits, for every ωl ∈ ΩA, a random intercept model

yi = βli + uli + εi

where ul ∼ N(0, τ2) and εi ∼ N(0, σ2). The encoding is M ∈ Rn : Mi = βli .

7.1.4 Identifier, frequency-based, contrast, simple target encoders

The descriptions are divided as follows: Table 6 is for identifier encoders, Table 7 is for frequency-
based encoders, Table 8 is for contrast encoders, and Table 9 is for simple target encoders.

7.1.5 Data-constraining encoders

CatBoost [41] uses a permutation π of {1, . . . , n} and encodes with M ∈ Rn such that

Mπ(i) =
∑

h≤π(i)

yh1
(
Ah = ωlπ(i)

)

14

Table 10: Notation for section 7.2.2.
Symbol Meaning
⊥ missing evaluation or rank
1 indicator function
Ei encoder as in table 5
Φj : Ei 7→ R ∪ {⊥} average cross-validated quality on the j-th

dataset, all other factors fixed
Φmax

j = maxi=1,...,n {Φj (Ei)} best quality on the j-th dataset, all other fac-
tors fixed

Φmin
j = mini=1,...,n {Φj (Ei)} worst quality on the j-th dataset, all other

factors fixed
rj : E 7→ N0 ∪ {⊥} ranking obtained from Φj

Rj = (1 (rj(Ei) ≤ rj(Eh)))
n
i,h=1 ∈ {0, 1}n×n adjacency matrix of rj

c : E 7→ N0 ∪ {⊥} consensus ranking
C ∈ {0, 1}n×n adjacency matrix of c
i, h, k ∈ {1, . . . , n} index of encoders
j ∈ {1, . . . ,m} index of objects to be aggregated

Cross-Validated MT [28] randomly partitions {1, . . . , n} in k folds of equal size. Let Dai
be the

fold that contains i. Then, every fold is encoded with Mean-Target trained on the other k − 1 folds:

Mi =

n∑
h=1

1 (h /∈ Dai)1 (Ah = ωli) yh

Common values for k are 2, 5, 10.

Cross-Validated GLMM [28] works in a similar fashion as CVMT: it encodes each fold with GLMM
trained on the other k − 1 folds.

BlowUp Cross-Validated MT randomly partitions {1, . . . , n} in k folds D1, . . . , Dk of roughly
equal size. Then, it encodes with M ∈ Rn×k so that the j-th column is A encoded with Mean-Target
trained on the j-th fold, yielding

Mij =

n∑
h=1

1 (h ∈ Dj)1 (Ah = ωli) yh

We experimented with k = 2, 5, 10.

Blowup Cross-Validated GLMM is analogous to BUMT, but the j-th column of its encoding M is
encode with M ∈ Rn×k so that the j-th column of M is A encoded with GLMM trained on the j-th
fold.

7.2 Experimental design

This section provides additional details about the datasets and aggregation strategies we discussed in
Section 4. The notation we use in this section is summarized in Table 10.

7.2.1 Datasets

Table 11 lists the datasets used in our experiments. The columns are as follows: ID is the OpenML
identifier; n is the number of rows; d is the number of attributes; dcat is the number of categorical
attributes; max|ΩA| is the maximum categorical attribute cardinality; the “ft” flag denotes datasets
used for full-tuning (cf. Section 4.4)

15

Table 11: Datasets used in the study.
Name Ref. ID n d dcat max|ΩA| ft
ada_prior 1037 4562 14 7 40 ✓
adult 1590 48842 14 7 42 ✓
airlines 1169 539383 7 4 293
amazon_employee_access 4135 32769 9 9 7518
Agrawal1 1235 1000000 9 3 20
Australian [33] 40981 690 14 4 14 ✓
bank-marketing [24] 1461 45211 16 6 12
blogger [13] 1463 100 5 3 5 ✓
Census-Income-KDD 42750 199523 41 27 51
credit-approval [32] 29 690 15 6 15 ✓
credit-g [17] 31 1000 20 11 10 ✓
cylinder-bands [12] 6332 540 37 17 71 ✓
dresses-sales [40] 23381 500 12 11 25 ✓
heart-h [19] 51 294 13 6 4
ibm-employee-attrition 43896 1470 34 5 9 ✓
ibm-employee-performance 43897 1470 33 5 9 ✓
irish 451 500 5 2 11 ✓
jungle_chess_2pcs. . . _elephant [35] 40999 2351 46 2 3 ✓
jungle_chess_2pcs. . . _lion [35] 41007 2352 46 2 3 ✓
jungle_chess_2pcs. . . _rat [35] 41005 3660 46 2 3 ✓
kdd_internet_usage 981 10108 68 20 129 ✓
KDDCup09_appetency 1111 50000 230 33 15416
KDDCup09_churn 1112 50000 230 33 15416
KDDCup09_upselling 1114 50000 230 33 15416
KDD98 42343 82318 477 107 18543
kr-vs-kp [37] 3 3196 36 1 3 ✓
kick 41162 72983 32 17 1063
law-school-admission-bianry 43890 20800 11 1 6
molecular-biology_promoters [16] 956 106 57 56 4 ✓
monks-problems-1 [43] 333 556 6 4 4 ✓
monks-problems-2 [43] 334 601 6 4 4 ✓
mv 881 40768 10 1 3 ✓
mushroom [25] 43922 8124 22 16 12 ✓
national-longitudinal-survey-binary [6] 43892 4908 16 4 29 ✓
nomao [3] 1486 34465 118 27 3
nursery 959 12960 8 7 5
open_payments 42738 73558 5 4 4374
porto-seguro 41224 595212 57 13 104
profb 470 672 9 3 28 ✓
sick [34] 38 3772 29 2 5 ✓
sf-police-incidents 42344 538638 6 5 21838
SpeedDating 40536 8378 120 58 260 ✓
students_scores 43098 1000 7 2 6 ✓
telco-customer-churn 42178 7043 19 11 6531
thoracic-surgery [48] 1506 470 16 3 7 ✓
tic-tac-toe [1] 50 958 9 9 3 ✓
Titanic 40945 1309 13 6 1307
vote [6] 56 435 16 16 3 ✓
wholesale-customers 1511 440 8 1 3 ✓
WMO-Hurricane-Survival-Dataset 43607 5021 22 21 4173

16

7.2.2 Aggregation strategies

This section presents the mathematical formulations of the aggregation strategies. As Section 4.5
explains, the results are aggregated across datasets, while keeping the other factors — ML model,
tuning strategy, and quality metric — fixed.

Heuristics. Heuristics aggregate by ranking encoders according to some score. Increasing heuristics
assign the best rank to the encoder with the highest score, while the non-increasing ones assign the
best rank to the encoders with the lowest score. Table 12 contains the respective formulas. Any
missing evaluations (⊥) are ignored during the computation.

Friedman-Nemenyi tests. The Friedman test is used to rule out the null hypothesis that all encoders
have, on average, the same rank. The Friedman statistic adjusted for ties [38, 18] is

T =
(m− 1) (St − C)

Sr − C

where Sr =
∑n

i=1

∑m
j=1 rj(Ei)

2, St =
1
m

∑n
i=1

(∑m
j=1 rj(Ei)

)2

, and C = 1
4mn(n+ 1)2.

Under the null hypothesis that all encoders have the same rank, T is approximately distributed as an
F -distribution with n− 1 and (m− 1)(n− 1) degrees of freedom.

If the Friedman hypothesis is rejected, one can compare all pairs of encoders with n(n − 1)/2
Nemenyi post-hoc tests [10]. Nemenyi tests apply a correction to control the error from testing
multiple hypotheses. Two encoders E1 and E2 are significatively different if

1

m

m∑
j=1

(rj(E1)− rj(E2)) ≥ qα

√
n(n+ 1)

6m

where 1√
2
qα is the critical value based on a Studentized range statistic [10].

Kemeny-Young aggregation. [21, 47, 45, 23]

The consensus’s adjacency matrix C is a solution to the mixed-integer linear problem

Maximize
∑
i,h

Sih(2Cih − 1)

subject to Cih −Ckh −Cik ≥ −1 ∀i ̸= h ̸= k ̸= i

Cih +Chi ≥ 1 ∀i < h

Cih ∈ {0, 1} ∀i, h

where S =
(∑

j
Rj

ih

nj(nj−1)

)n

i,h=1
is a cost matrix and nj =

∑
i 1 (rj(Ei) ̸= ⊥) is the number of

encoders with evaluation on dataset j. This formulation accounts for ties and missing ranks.

7.3 Results

This section complements Section 5.

7.3.1 Missing evaluations

We successfully completed 61812 runs out of 64000, one per combination of encoder, dataset, ML
model, tuning strategy, and quality metric. The 2188 failed evaluations are equally distributed among
the encoders, while tuning was the greatest influencing factor. Indeed, there were 4303 missing runs
with no tuning, 1152 with model tuning, and 32 with full tuning. This is likely due to the bigger
datasets used in no tuning and model tuning, cf. Section 4.4 and Table 11. The total runtime for
successful evaluations was 108 days.

17

Table 12: Scores of heuristics.
Score of E Increasing

Mean rank 1
m

∑
j rj(E)

Median rank median
(
{rj (E)}mj=1

)
Rank best

m∑
j=1

1 (rj (E) = 1) ✓

Rank worst
m∑
j=1

1

(
rj (E) ̸= max

i=1,...,m
r (Ej)

)
Mean quality 1

m

∑
j Φj(E) ✓

Median quality median
(
{Φj (E)}mj=1

)
✓

Rescaled mean quality 1
m

m∑
j=1

Φj(E)−Φmin
j

Φmax
j −Φmin

j
✓

ϑ-best quality
m∑
j=1

1
(
Φj (E) ≥ ϑ · Φmax

j

)
✓

7.3.2 Run time

We computed two scores for the runtimes of encoders. First is the time necessary to encode the
dataset. The outcome, displayed in figure 4a, is that GLMM-based encoders are the slowest. This
happens because the bottleneck of these encoders is the fitting of the random intercept model, a
problem that we could only partially alleviate with our custom implementation. As expected, the
model has no influence on the runtime.

Second, the time necessary to tune the model-encoder pipeline, each tuning step requiring encoding
the dataset and then fitting a model. Figure 4b tells a similar story as for encoding, with GLMM-based
encoders being the slowest. The other encoders, apart from Drop and Mean-Target, all show a similar
runtime.

D
ro

p
M

T
O

rd
M

H
PB

0.
00

1M
T

D
2M

T
D

5M
T

D
10

M
T

Su
m

PB
0.

1M
T

PB
0.

01
M

T
B

U
2M

T
C

V
2M

T
B

in
O

H
W

oE
C

ou
nt C
B

C
V

5M
T

B
U

5M
T

C
V

10
M

T
B

U
10

M
T

M
E

1
M

E
0.

1
M

E
10

G
L

M
M

B
U

2G
L

M
M

C
V

2G
L

M
M

B
U

5G
L

M
M

C
V

5G
L

M
M

B
U

10
G

L
M

M
C

V
10

G
L

M
M

10−2

10−1

100

101

102

se
co

nd
s

(a) Encoding

D
ro

p
M

T
D

2M
T

D
10

M
T

B
U

2M
T

D
5M

T
O

rd
PB

0.
01

M
T

M
H

PB
0.

1M
T

C
V

2M
T

PB
0.

00
1M

T
C

ou
nt

C
V

5M
T

B
in

O
H

W
oE

B
U

5M
T

Su
m C
B

C
V

10
M

T
M

E
0.

1
M

E
10

M
E

1
B

U
10

M
T

G
L

M
M

C
V

2G
L

M
M

B
U

2G
L

M
M

C
V

5G
L

M
M

B
U

5G
L

M
M

C
V

10
G

L
M

M
B

U
10

G
L

M
M

100

101

102

103

se
co

nd
s

(b) Tuning

Figure 4: Runtime of encoders (a) and full tuning pipelines (b).

18

7.3.3 Replicability

This section extends the replicability analysis of Section 5.2, showing the behavior of different quality
metrics in Figure 5a and aggregation strategies in Figure 5b.

The quality metrics behave similarly for ρ-replicability. The notable exception is the AUC in model
tuning, which is significantly better than the other metrics. Regarding J-replicability, instead,
accuracy is clearly the poorer choice. This hints that accuracy cannot discern the best encoder as well
as the other metrics do and that it is more sensitive to the choice of dataset.

Among the aggregation strategies, rank best (R-B) shows higher replicability. A possible explanation
is that R-B produces consensus rankings with many encoders tied as the best ones and few tiers in
general,

0.0

0.2

0.4

0.6

0.8

ρ

no tuning model tuning full tuning

5 10 15 20 25
sample size

0.0
0.1

0.3

0.5

J

5 10 15 20 25
sample size

5 10 15
sample size

Acc AUC BAcc F1Acc AUC BAcc F1

(a) Quality metric

0.00

0.25

0.50

0.75

ρ

no tuning model tuning full tuning

5 10 15 20 25
sample size

0.0

0.3

0.6

0.9

J

5 10 15 20 25
sample size

5 10 15
sample size

Q-M
Q-Md

Q-RM
Q-Th0.95

R-M
R-Md

R-B
R-W

Q-M
Q-Md

Q-RM
Q-Th0.95

R-M
R-Md

R-B
R-W

(b) Aggregation strategy

Figure 5: Average similarity of consensus rankings from disjoint subsets of datasets, conditional on
(a) quality metric and (b) aggregation strategy.

19

7.3.4 Comparing encoders

This section expands on Section 5.3 and portrays in Figure 6 the distribution of ranks of encoders.
The best encoders are evident for LogReg (Sum, OH, WoE, Bin) and k-NN (WoE), confirmed by
Nemenyi tests at 0.05 significance.

0 10 20 30
rank

WoE
OH
Bin
MH

PB0.01MT
PB0.1MT
CV2MT

CV10MT
PB0.001MT

CV5MT
Count

Sum
GLMM

BU10MT
D5MT
ME10

D2MT
MT

ME1
D10MT

BU2MT
Ord

ME0.1
CV2GLMM

BU10GLMM
CV10GLMM

BU5MT
CV5GLMM
BU5GLMM
BU2GLMM

CB
Drop

DT

(a) DT

0 10 20 30
rank

OH
PB0.01MT

Count
Bin
MH

BU10MT
CV5MT
BU5MT

PB0.001MT
CV5GLMM

MT
BU2MT
D10MT
D5MT

BU10GLMM
PB0.1MT

BU2GLMM
CV2GLMM

CV10MT
CV2MT

BU5GLMM
D2MT

CV10GLMM
GLMM

Sum
CB

WoE
Ord

ME10
ME1

ME0.1
Drop

LGBM

(b) LGBM

0 10 20 30
rank

OH
WoE

Bin
BU10MT

Sum
BU5MT
BU2MT

BU10GLMM
PB0.01MT

ME1
ME10

PB0.001MT
D10MT

ME0.1
BU5GLMM

CV5MT
D5MT

MT
CV10MT

GLMM
BU2GLMM

CV2MT
D2MT

CV5GLMM
CV10GLMM

CB
PB0.1MT

CV2GLMM
Ord
MH

Drop
Count

SVM

(c) SVM

0 10 20 30
rank

WoE
OH
Bin

Sum
BU10MT
BU5MT

BU10GLMM
CV5MT

PB0.01MT
ME10

BU2MT
BU5GLMM
PB0.001MT

ME1
CV10MT

D10MT
CV2MT

D5MT
ME0.1

MT
GLMM

PB0.1MT
D2MT

BU2GLMM
CB

CV5GLMM
CV10GLMM
CV2GLMM

MH
Ord

Count
Drop

k-NN

(d) k-NN

0 10 20 30
rank

Sum
OH

WoE
Bin

BU5MT
BU2MT

BU10MT
CV2MT

BU5GLMM
CV5MT

PB0.01MT
PB0.001MT

D10MT
BU10GLMM

D5MT
MT

CV10MT
ME0.1

BU2GLMM
ME1

ME10
D2MT

Ord
CV2GLMM

CB
GLMM

CV5GLMM
CV10GLMM

MH
PB0.1MT

Count
Drop

LogReg

(e) LogReg

0 10 20 30
rank

WoE
OH
Bin

Sum
BU10MT

PB0.01MT
BU2MT
BU5MT
CV5MT

PB0.001MT
CV10MT

BU10GLMM
CV2MT

D5MT
D10MT

ME10
MT

BU5GLMM
ME1

D2MT
GLMM

ME0.1
BU2GLMM

PB0.1MT
CV5GLMM

MH
CV2GLMM

CV10GLMM
CB
Ord

Count
Drop

all models

(f) All models

Figure 6: Ranks of encoders.

20

7.3.5 Effect of tuning

This section investigates whether tuning leads to improvements in pipeline performance. The tuning
strategies are described in Section 4.4 For a pair of tuning strategies, we consider the factors they
share and subtract the performance of the pipelines. Figure 7 shows that full tuning is, in general,
advantageous over no tuning and slightly better than model tuning.

D
T

k-
N

N

L
og

R
eg

SV
M

−0.05

0.00

0.05

0.10

full VS no

D
T

k-
N

N

L
og

R
eg

full VS model

(a) Model

A
cc

A
U

C

B
A

cc F 1

−0.02

0.00

0.02

0.04
full VS no

A
cc

A
U

C

B
A

cc F 1

full VS model

(b) Scoring

D
ro

p
M

H
Su

m
O

rd
B

in
M

E
10

M
E

1
PB

0.
01

M
T

C
V

10
M

T
C

ou
nt

M
E

0.
1

W
oE

PB
0.

1M
T

PB
0.

00
1M

T
O

H
B

U
5M

T
M

T
C

V
2M

T
B

U
2M

T
D

2M
T

B
U

5G
L

M
M

G
L

M
M

C
V

10
G

L
M

M
C

V
5M

T
D

10
M

T
D

5M
T

B
U

10
G

L
M

M
B

U
2G

L
M

M
B

U
10

M
T

C
V

2G
L

M
M

C
V

5G
L

M
M C
B

−0.02

0.00

0.02

0.04

(c) Encoder — full tuning VS no tuning

D
ro

p
M

H
Su

m
M

E
10

W
oE B
in

B
U

5M
T

B
U

10
M

T
M

E
1

O
rd

D
10

M
T

M
E

0.
1

O
H

B
U

2M
T

PB
0.

01
M

T
PB

0.
1M

T
PB

0.
00

1M
T

M
T

D
5M

T
C

ou
nt

D
2M

T
C

V
10

M
T

C
V

5M
T

C
V

2M
T

C
B

B
U

2G
L

M
M

C
V

5G
L

M
M

C
V

2G
L

M
M

B
U

5G
L

M
M

B
U

10
G

L
M

M
G

L
M

M
C

V
10

G
L

M
M

−0.02

0.00

0.02

0.04

(d) Encoder — full tuning VS model tuning

Figure 7: Performance gain of full tuning over no tuning and model tuning.

21

	Introduction
	Related work
	Taxonomy of encoders
	Notation and terminology
	Unsupervised encoders
	Supervised encoders

	Experimental design
	Encoders
	Datasets
	ML models
	Quality metrics and tuning strategies
	Aggregating into a consensus ranking

	Results
	Sensitivity analysis
	Sensitivity to experimental factors
	Sensitivity to aggregation strategy

	Replicability
	Comparing encoders
	Comparing to related work

	Limitations and conclusions
	Appendix
	Encoders
	Similarity encoders cerdasimilarity2018, cerdaencoding2022
	Binning encoders
	Smoothing target encoders
	Identifier, frequency-based, contrast, simple target encoders
	Data-constraining encoders

	Experimental design
	Datasets
	Aggregation strategies

	Results
	Missing evaluations
	Run time
	Replicability
	Comparing encoders
	Effect of tuning

