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A Pseudocode of SLDG

Algorithm 1: Training and Inference for SLDG.
1: // Training

Require: Source training data from Ptr

2: Pre-train patient encoder E(·) on the same task with binary cross-entropy loss for 40 epochs
3: for iteration ranging from 1 to 3 do
4: Perform decoupled domain discovery with the encoder E(·) by Eq. (2), (3)
5: Initialize gating and classifier weights wt,k, w+

t,k, w−
t,k by Eq. (10), (8)

6: for epoch ranging from 1 to 20 do
7: for each patient (x, y) ∼ Ptr do
8: Obtain decoupled patient representations {ht}t∈T by Eq. (4), (5)
9: Compute domain-specific predictions Ct,k(ht) by Eq. (7)

10: Compute gating weights Gt(ht) by Eq. (9)
11: Obtain final prediction o by Eq. (6)
12: Update model parameters with binary cross-entropy loss
13: end for
14: end for
15: end for
16: // Inference
Require: Target testing data from Pte

17: for each patient (x, y) ∼ PtE do
18: Obtain decoupled patient representations {ht}t∈T by Eq. (4), (5)
19: Compute domain-specific predictions Ct,k(ht) by Eq. (7)
20: Compute gating weights Gt(ht) by Eq. (9)
21: Obtain final prediction o by Eq. (6)
22: end for

B Additional Experimental Setup

B.1 Datasets

For both datasets, we select our cohorts by filtering out visits of patients younger than 18 or older
than 89 years old, visits that last longer than 10 days, and visits with data from less than 3 or more
than 256 timestamps. In the case of the eICU dataset, we additionally exclude visits lasting shorter
than 12 hours, as the predictions are made 12 hours after admission. Similarly, for the MIMIC-IV
dataset, we exclude visits where the patient ultimately passed away, as the predictions are made upon
discharge. Tab. 4 provides detailed statistics of the two datasets.

B.2 Clinical Predictive Tasks

We focus on two common clinical predictive tasks: readmission prediction and mortality prediction.

In the case of the eICU dataset, the predictions are made 12 hours after admission. Readmission
prediction aims to determine whether a patient will be readmitted within the next 15 days following
discharge. Mortality prediction, on the other hand, aims to predict whether a patient will pass away
upon discharge. The overall prevalence for these tasks is 15% for readmission and 4% for mortality.

For the MIMIC-IV dataset, the predictions are made at the time of discharge. Similar to the eICU
dataset, the readmission prediction task is defined as predicting whether a patient will be readmitted
within 15 days after discharge. To prevent information leakage, the mortality prediction task for
MIMIC-IV is defined as predicting whether a patient will pass away within 90 days after discharge.
The overall prevalence for these tasks is 14% for readmission and 4% for mortality.
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Table 4: Dataset statistics.

Item eICU MIMIC-IV
#Patients 116075 156549

#Admissions 149227 353238
Readmission Rate 0.15 0.14

Mortality Rate 0.04 0.04

Region: Midwest Year: 2008-2010
#Patients 29767 37328

#Admissions 35989 56433
Readmission Rate 0.10 0.14

Mortality Rate 0.03 0.04
Age 62 56

Gender F: 0.46, M: 0.54 F: 0.53, M: 0.47
Race African American: 0.09, Asian: 0.01, Caucasian: 0.83,

Hispanic: 0.01, Native American: 0.01, Other: 0.04
African American: 0.15, Asian: 0.03, Caucasian: 0.71,
Hispanic: 0.06, Native American: 0.00, Other: 0.04

Average #Events 90.01 31.87

Region: Northeast Year: 2011-2013
#Patients 5886 39125

#Admissions 6958 62586
Readmission Rate 0.17 0.15

Mortality Rate 0.06 0.04
Age 62 57

Gender F: 0.44, M: 0.56 F: 0.53, M: 0.47
Race African American: 0.03, Asian: 0.01, Caucasian: 0.92,

Hispanic: 0.01, Native American: 0.00, Other: 0.03
African American: 0.17, Asian: 0.03, Caucasian: 0.66,
Hispanic: 0.07, Native American: 0.00, Other: 0.07

Average #Events 104.54 35.19

Region: South Year: 2014-2016
#Patients 27584 41737

#Admissions 33033 64592
Readmission Rate 0.11 0.14

Mortality Rate 0.04 0.04
Age 62 57

Gender F: 0.46, M: 0.54 F: 0.52, M: 0.48
Race African American: 0.21, Asian: 0.01, Caucasian: 0.68,

Hispanic: 0.05, Native American: 0.00, Other: 0.03
African American: 0.17, Asian: 0.04, Caucasian: 0.66,
Hispanic: 0.06, Native American: 0.00, Other: 0.07

Average #Events 84.28 36.53

Region: West Year: 2017-2019
#Patients 17670 40496

#Admissions 19803 63654
Readmission Rate 0.29 0.14

Mortality Rate 0.04 0.04
Age 63 58

Gender F: 0.45, M: 0.55 F: 0.52, M: 0.48
Race African American: 0.05, Asian: 0.03, Caucasian: 0.77,

Hispanic: 0.05, Native American: 0.02, Other: 0.08
African American: 0.17, Asian: 0.04, Caucasian: 0.65,
Hispanic: 0.06, Native American: 0.00, Other: 0.07

Average #Events 85.29 36.95

B.3 Data Split

The eICU dataset comprises data collected from hospitals across the United States, while the MIMIC-
IV dataset spans a period of ten years. Therefore, we utilize the eICU dataset to evaluate the model’s
performance across spatial gaps, and the MIMIC-IV dataset to assess its performance across temporal
gaps.

For the eICU dataset, we divide it into four spatial groups based on regions: Midwest, Northeast,
West, and South. Each group is then split into 70% for training, 10% for validation, and 20% for
testing. We evaluate the gap between groups by comparing the performance of the backbone model
trained on data from within the same group and data from outside the group. The target testing data
is selected as the group (Midwest) that exhibits the largest performance gap, while the remaining
groups (Northeast, West, and South) are used as the source training data.

Regarding the MIMIC-IV dataset, we divide it into four temporal groups: 2008-2010, 2011-2013,
2014-2016, and 2017-2019. Each group is further split into training, validation, and testing sets with
a ratio of 70%, 10%, and 20% respectively. We consider patients admitted after 2014 as the target
testing data, while all preceding patients are included in the source training data.
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B.4 Baselines

We first compare SLDG to two naive baselines.

• Oracle: We directly train a backbone model on the training set of the target domain, select the best
model on the target validation set, and evaluate its performance on the target testing set. This model
is trained with in-domain data and can be seen as a upper bound for all domain generalization
method.

• Base: We train a backbone model on the training set of the source domain, select the best model
on the source validation set, and evaluate its performance on the target testing set. This model is
trained with out-domain data and should act as a performance lower bound.

We then compare SLDG to both classic and recent domain generalization methods. For a fair compar-
isons, all the methods below are trained on the source training set, selected on the source validation
set, and tested on the target testing set.

• DANN [16]: Domain-Adversarial Neural Networks leverage a domain classifier and a gradient
reversal layer to extract domain-invariant representations. This method uses the coarse regional
and temporal groups as the domain definition.

• MLDG [22]: Meta-Learning for Domain Generalization adopts the Model-Agnostic Meta-Learning
(MAML) [15] framework and simulates the new domain scenario during training. This method
also uses the coarse regional and temporal groups as the domain definition.

• ManyDG [56]: Many-Domain Generalization disentangles domain-variant and invariant features
through mutual reconstruction and orthogonal projection. This method treats each patient as a
unique domain.

• IRM [4]: Invariant Risk Minimization learns domain-invariant representations by minimizing a
bound on the expected generalization error under domain shifts. It acts as a regularizer and does
not require domain IDs.

• MMLD [29]: Domain Generalization using a Mixture of Multiple Latent Domains iteratively
assigns pseudo domain labels via clustering and trains the domain-invariant feature extractor
through adversarial learning. This method does not rely on domain IDs.

• DRA [14]: Latent Domain Learning with Dynamic Residual Adapters uses layer-wise multi-head
correction networks with a gating mechanism and residual connection to enhance model learning.
This method does not rely on domain IDs.

B.5 Implementation Details

For all baselines, we use the Transformer as the backbone encoder. The number of layers is 3, the
embedding dimension is 128, the number of attention heads is 2. The event embedding look-up
table is initialized with ClinicalBERT [3] embeddings of the event name and then project it down
to 128 dimension with a linear layer. Patient demographics features (age, gender, and ethnicity)
are separately embeded with another embedding look-up table. We also embed the timestamps
with sinusoidal positional encoding. The medical, patient demographics, and temporal embeddings
are added together to form the overall sequence embedding. For SLDG, UMAP [30] from UMAP-
learn [41] is used with 2 components, 10 neighbors, and 0 minimum distance; and k-Means from
Scikit-learn [35] is used with the default hyper-parameter. We apply a dropout of rate 0.2. We use
Adam as the optimizer with a learning rate of 1e-4 and a weight decay of 1e-5. All models are
trained for 100 epochs. The batch size is 256. We select the best model by monitoring the AUPRC
score on the source validation set (except for the Oracle baseline, where we directly use the target
validation set). We implement SLDG using PyTorch [34] 1.11 and Python 3.8. The model is trained
on a CentOS Linux 7 machine with 128 AMD EPYC 7513 32-Core Processors, 512 GB memory,
and eight NVIDIA RTX A6000 GPUs.

C Limitations and Broader Impacts

In terms of limitations, it is important to acknowledge that our work operates under the assumption
that the target testing data still exhibit some similarities with the source training data. If there is
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a significant distribution shift, the knowledge acquired from the source training data may become
irrelevant. In such cases, neither the DG baselines nor our proposed method can effectively address
the problem. It would be more appropriate to explore transfer learning or train a new model to obtain
a better solution. Further, we propose SLDG to tackle two main challenges: (1) unknown domain IDs
and (2) distinct characteristics across domains. In the scenario when the domain IDs are given and
clearly separable (e.g., photo, art painting, cartoon, and sketch in the PACS [21] dataset), SLDG ’s
domain discovery approach might be unnecessary. Existing DG methods directly utilizing the domain
IDs could be a better solution.

In terms of broader impacts, our work tackles a practical and prevalent issue in healthcare known as
the domain shift problem. We aim to inspire future research in this area: both by investigating the
existence of domain shift under various scenarios, and by contributing to the development of effective
solutions for this real-world challenge.

D Notations

Notation Meaning
x a patient’s hospital visit

[e1, . . . , em] sequence of m events
t type of an event

T (·) mapping function from event to its type
E set of all events
T set of all event types

y ∈ {+,−} label, i.e., the occurrence of a certain future event
fϕ(·) overall clinical predictive model
ϕ model parameter
l(·) loss function

Ptr, Pte training and testing data distribution
Et(·) feature-specific patient encoder for event type t
ht patient representation in latent space of type t
h hidden dimension

{h(i)
t }Ntr

i=1 all patient representations in latent space of type t
Ntr total number of training samples
Kt number of discovered domains in the latent space of type t
Mt domain assignment matrix

[e1, . . . , em] contextualized representation for event sequence [e1, . . . , em]
E(·) embedding function

{ht}t∈T multi-vector representations for a single patient
Ct,k(·) customized classifier for the discovered domain k in the latent space of type t
Gt,k(·) the gating weight for the customized classifier Ct,k(·)

o model output
w+

t,k,w
−
t,k learnable prototype weight vectors of the positive and negative classes for the k-th

discovered domain in the latent space of type t
d(·, ·) Euclidean distance
wt,k learnable prototypical weight vector for the discovered domain k in the latent space

of type t

E Additional Illustrations
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Figure 6: An illustration of the patient visit as input.
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Figure 7: An illustration of the task definitions in the eICU and the MIMIC-IV datasets.
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Figure 8: The architecture of the feature-specific patient encoder.
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