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Abstract

Deep learning models have been widely used to assist doctors with clinical decision-
making. However, these models often encounter a significant performance drop
when applied to data that differs from the distribution they were trained on. This
challenge is known as the domain shift problem. Existing domain generalization
algorithms attempt to address this problem by assuming the availability of domain
IDs and training a single model to handle all domains. However, in healthcare
settings, patients can be classified into numerous latent domains, where the actual
domain categorizations are unknown. Furthermore, each patient domain exhibits
distinct clinical characteristics, making it sub-optimal to train a single model for
all domains. To overcome these limitations, we propose SLDG, a self-learning
framework that iteratively discovers decoupled domains and trains personalized
classifiers for each decoupled domain. We evaluate the generalizability of SLDG
across spatial and temporal data distribution shifts on two real-world public EHR
datasets: eICU and MIMIC-IV. Our results show that SLDG achieves up to 11%
improvement in the AUPRC score over the best baseline.

1 Introduction

Deep learning techniques have been increasingly popular in clinical predictive modeling with elec-
tronic health records (EHRs) [12, 11, 47, 58, 2]. However, these models typically assume that
the training (source) data and testing (target) data share the same underlying data distribution (i.e.,
domain). This assumption can become problematic when models are applied to new domains, such as
data from different hospitals or future time points [17, 59, 20, 37]. In these situations, domain shifts
caused by variations in patient cohorts, clinical standards, and terminology adoption can significantly
degrade the model’s performance.

This paper aims to develop a clinical predictive model on the source data that effectively handles
potential domain shifts when applied to the target data. Domain generalization (DG) [7] methods
have been widely utilized to address such problems, including techniques like domain alignment [32,
24, 25, 45, 31, 51, 62], meta-learning [23, 27, 26, 5, 22, 29], and ensemble learning [9, 42, 43, 61].
However, when applied in healthcare settings, these methods encounter the following limitations:

• Reliance on domain IDs. Most DG methods depend on the presence of domain IDs, which indicate
the domain to which each sample belongs, to guide the model training [24, 16, 4, 9, 42]. However,
as shown in Fig. 1, patients can be divided into numerous latent domains based on features such as
age, medical history, treatment, and symptoms. The actual categorization of these latent domains
can be difficult to obtain and vary across different tasks [1, 49]. Consequently, existing DG methods
often resort to broad domain categorizations, such as hospital or timestamp, which provide limited
information [59, 17].
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Figure 1: Conventional domain generalization methods typically rely on domain IDs and shared
characteristics across domains to train a single generalized model. However, in the medical field,
patients can be classified into numerous latent domains that are not directly observable. Additionally,
each patient domain exhibits unique clinical characteristics, making it sub-optimal to train a single
model for all domains.

• Attempt to train a single model. While some recent DG methods have attempted to alleviate
the reliance on domain labels [62, 29], they try to train a single model that generalizes across all
domains. However, patients from different domains possess distinct characteristics and require
different treatment approaches [2, 58]. For example, as shown in Fig. 1, fever is considered a normal
symptom for patients with viral infections as it helps stimulate the immune system. On the other
hand, it can be a bad signal for patients with cardiovascular disease, leading to complications. Thus,
training a single model for all domains is challenging and can lead to sub-optimal performance.

To overcome these limitations, we propose SLDG, a self-learning framework for domain generalization
that iteratively discovers decoupled domains and trains customized classifiers for each discovered
domain. Specifically, SLDG consists of the following iterative steps:

• Decoupled domain discovery. While domain labels are not initially available, we posit that they
can be recovered by clustering the learned latent representations. However, identifying all fine-
grained domains across various clinical features (e.g., demographics, diagnosis, and treatments)
can be challenging. Instead, we propose to decouple these clinical features and discover the clusters
separately for each type of feature. To achieve this, we maintain a distinct latent space for each
type of features using a feature-specific patient encoder. Within each latent space, we perform
hierarchical clustering independently to discover the domain categorizations. By adopting this
approach, we effectively reduce the number of domains from exponential to linear to the number of
feature types.

• Domain-specific model customization. To account for the unique characteristics of patients in
different domains, our approach involves training customized classifiers for each domain. To ensure
parameter efficiency, we extract domain representations from the learned clusters and utilize them to
parameterize the domain-specific classifiers. For a given patient, we determine the closest domain
by comparing the patient’s representations with the domain representations, and subsequently select
the corresponding classifier for accurate inference.

To assess the generalizability of SLDG across spatial and temporal shifts, we conduct experiments
on two publicly available EHR datasets: eICU [38] and MIMIC-IV [18]. Our results demonstrate
that SLDG outperforms the best baseline by up to 11% in terms of AUPRC score. We also conduct
detailed analyses and ablation studies to investigate the factors contributing to the performance gain
achieved by SLDG.
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Figure 2: An illustration of the SLDG framework. The feature-specific patient encoder maps each
patient into multiple latent spaces, with each space capturing patient characteristics from a specific
perspective. Next, SLDG iteratively performs decoupled clustering to identify latent domains and
learns domain-specific classifiers customized for each domain.

2 Preliminaries

In EHR data, a patient’s hospital visit is represented by a sequence of events, denoted as x =
[e1, e2, . . . , em], where m is the total number of events in the visit. Each event e characterizes
features of a certain type t, such as diagnosis, prescription, and lab tests. This mapping is denoted by
a function T (e) : E → T , where E and T denote the sets of all events and types, respectively. For
example, a patient visit can be [Acute embolism (I82. 40), Atrial fibrillation (I48.91), Ultrasound
(76700), CT scan (G0296), ECG (93042), Heparin IV (5224)]. And each event corresponds to a
specific type (e.g., diagnosis, procedure, medication). The main objective of clinical predictive
modeling is to predict the occurrence of future events, such as 15-day hospital readmission and
90-day mortality, denoted as y ∈ {+,−}, based on the patient’s current visit x.

Existing clinical prediction works typically train a model fϕ(·) with parameter ϕ by minimizing a
loss function l(·) on source training data sampled from distribution Ptr, as in Eq. (1),

argmin
ϕ

E(x,y)∼Ptr
[l(fϕ(x), y)], (1)

with the hope that the trained model can perform well on the target test data distributed according to
Pte. However, in real-world settings, the source and target distributions can differ due to spatial and
temporal shifts, i.e., Ptr ̸= Pte. Consequently, the model trained on source data may experience a
drop in performance when applied to the target data.

3 The SLDG Approach

In this paper, our goal is to train a model fϕ(·) on source data Ptr that can generalize to target data
Pte despite potential domain shifts. Existing DG algorithms face limitations due to their reliance
on domain IDs and attempts to train a single model for all domains. To overcome these limitations,
we propose to iteratively discover latent domains and train customized classifiers for each domain.
However, we face the challenge of dealing with a large number of latent domains, which not only
makes domain discovery difficult but also results in an exponential increase in the number of model
parameters with respect to the number of feature types. In the following sections, we will describe
how our method SLDG addresses this challenge through decoupled domain discovery and domain-
specific model customization. Additionally, we will introduce the training and inference strategy.
Fig. 2 illustrates the SLDG framework.

3.1 Decoupled Domain Discovery

Although domain labels are not initially available, we hypothesize that the domain information is
encoded in the learned latent representations and can be recovered with the clustering technique. How-
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ever, patients can be categorized into thousands of latent domains, determined by various features such
as age, medical history, treatment, and symptoms. For instance, a patient can fall into the fine-grained
domain of older male patients with a history of smoking and a diagnosis of type 2 diabetes. Identi-
fying all such fine-grained domains can be challenging, as clustering methods may either overlook
smaller domains or result in an excessive number of domains that would inflate the number of param-
eters in subsequent steps. To address this, we propose decoupling these clinical features and indepen-
dently discovering clusters for each feature type. For example, the patient above can simultaneously
belong to the decoupled domains of older, male, history of smoking, and diagnosis of type 2 diabetes.
This approach effectively reduces the number of domains from exponential to linear with respect to
the number of feature types.

Concretely, we maintain a distinct latent space for each type of feature. When given an input
patient visit x, SLDG maps it to the latent space corresponding to the feature type t ∈ T using a
feature-specific patient encoder Et(·), as in Eq. (2),

ht := Et(x), ht ∈ Rh, (2)

where h denotes the hidden dimension. Next, within each latent space of type t, SLDG gathers all
patient representations {h(i)

t }Ntr
i=1, where Ntr is the number of source training data, and performs

clustering to discover the domain categorizations, as in Eq. (3),

Mt := Cluster({h(i)
t }Ntr

i=1), Mt ∈ {0, 1}Ntr×Kt , (3)

where Kt represents the number of discovered domains in the latent space of type t. Mt denotes the
learned domain assignment, where Mt[i, k] is equal to one if and only if (i.f.f.) the patient x(i) is
assigned to the k-th domain. We will describe this procedure in detail in the following.

Feature-Specific Patient Encoding. This module is responsible for mapping each patient into
multiple latent spaces, each capturing the patient’s health status of a specific feature type. This
enables subsequent modules to decouple the representations of different feature types. For a patient’s
hospital visit x with a list of events [e1, . . . , em], SLDG computes the contextualized representation
for each event by applying the embedding function E(·), as in Eq. (4),

[e1, . . . , em] = E([e1, . . . , em]), ej ∈ Rh, (4)

where ej is the contextualized representation for event ej with dimension h. We model E(·) using
a three-layer Transformer [48] framework. To ensure that there are no unseen events in the target
data, we initialize the event embedding look-up table with ClinicalBERT [3] embeddings of the event
name and then project it down to our hidden dimension of size h. The embedding look-up table is
fixed during training.

Next, SLDG aggregates the contextualized event representations [e1, . . . , em] based on their types,
such as family history, diagnosis, and treatments. For each type t ∈ T , the type-specific representation
ht is computed by averaging the representations of all events of that type, as in Eq. (5),

ht = Average({ej | T (ej) = t}mj=1), ht ∈ Rh, (5)

where T (ei) indicates the type of event ei. If no events belong to a certain type, the pooled sequence
representation is used as a substitute. Consequently, each patient’s hospital visit is represented by a
set of vectors {ht}t∈T , with each vector capturing the patient’s health status from a specific type of
events. These decoupled patient representations are then utilized to perform per-feature-type domain
clustering, described next.

Hierarchical Domain Clustering. This module is responsible for clustering patient representations
in each latent space to discover latent domains, enabling subsequent modules to customize the
classifier for each domain. In the previous step, we obtain a set of patient representations {h(i)

t }Ntr
i=1

for each latent space of type t. To perform clustering, standard clustering techniques such as k-Means
and Gaussian Mixture Model (GMM) require specifying the number of clusters, which is less ideal
as the number of clusters can be difficult to choose and may vary across latent spaces. Inspired
by GEORGE [46], we adopt a fully automated hierarchical clustering technique by monitoring the
Silouette score [40].
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Specifically, in each latent space, SLDG first applies UMAP [30] for dimensionality reduction. Then,
it runs k-Means with k ∈ {2, . . . , 10} to identify the optimal number of clusters based on the highest
Silhouette score. Subsequently, SLDG further split each cluster into five sub-clusters. However, only
sub-clusters surpassing the Silhouette score of the original cluster and containing at least 500 patients
are retained. The final number of clusters in the latent space of type t is denoted as Kt. The cluster
assignment is represented by a binary matrix Mt of size Ntr × Kt, where Mt[i, k] is set to one
i.f.f. the patient x(i) is assigned to the k-th cluster. This automated approach allows us to effectively
select the number of clusters in each latent space, balancing between discovering overly coarse or
fine-grained clusters.

3.2 Domain-Specific Model Customization

To accommodate the unique characteristics of patients in different domains, we propose to train
customized classifiers for each decoupled domain. Given an input patient visit x and its multi-vector
representations {ht}t∈T , SLDG computes the predicted probability o of a specific event occurring by
employing a weighted combination of domain-specific classifiers in each latent space t ∈ T , as in
Eq. (6),

o :=
1

|T |
∑

t∈T

∑Kt

k=1
Gt,k(ht)︸ ︷︷ ︸

gate

·Ct,k(ht)︸ ︷︷ ︸
classifier

, o ∈ R, (6)

where Ct,k(·) refers to the customized classifier for the discovered domain k in the latent space of
type t, while Gt,k(·) corresponds to the gating function. In the following, we will elaborate on how
SLDG leverages the clustering results to efficiently parameterize the domain-specific classifier and
effectively determine the gating weights.

To efficiently parameterize the domain-specific classifier Ct,k(·) for the k-th discovered domain
in the latent space of type t, we define two learnable weight vectors of size h: w+

t,k and w−
t,k,

which represent the prototypes of the positive and negative classes, respectively. The predicted
probability of a specific event occurring is computed based on the relative distance between the
patient representation ht and the positive and negative prototypical weights, as in Eq. (7),

Ct,k(ht) =
exp(−d(w+

t,k,ht))∑
∗∈{+,−} exp(−d(w∗

t,k,ht))
, Ct,k(ht) ∈ R, (7)

where d(·, ·) is the Euclidean distance. To facilitate efficient learning, we initialize the two prototypical
weight vectors w+

t,k and w−
t,k, with the average representations of patients from the corresponding

classes, as in Eq. (8),

Init(w∗
t,k) = Average({h(i)

t | (Mt[i, k] = 1) ∧ (y(i) = ∗)}Ntr
i=1), ∗ ∈ {+,−}, (8)

where Mt[i, k] = 1 includes only patients assigned to the k-th domain in the latent space of type t.

We adopt a similar approach to the gating function Gt(·). For each discovered domain k in the latent
space of type t, we introduce a learnable prototypical weight vector wt,k ∈ Rh. The gating weights
are determined based on the distance between the patient representation ht and the corresponding
prototypical weights, as in Eq. (9),

Gt(ht) = Softmax({−d(wt,k,ht)}Kt

k=1), Gt(ht) ∈ RKt , (9)

where the prototypical weight vectors {wt,k}Kt

k=1 are initialized as the average representations of
patients in that domain, as in Eq. (10),

Init(wt,k) = Average({h(i)
t | Mt[i, k] = 1}Ntr

i=1), k = 1, . . . ,Kt. (10)

3.3 Training and Inference

To train SLDG, we begin by utilizing a pre-trained patient encoder 1 for decoupled domain discovery.
Then, we iteratively update the model weights and re-generate the clusters every 20 epochs. In each

1In practice, we pre-train the patient encoder on the same clinical predictive task for 40 epochs. This means
that SLDG undergoes a total of 100 epochs of training, which is consistent with other baselines.
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iteration, we re-initialize the classifier and gating parameters. This iterative process is repeated three
times to enhance the model’s performance. During training, we minimize the binary cross-entropy
loss. For inferencing, given a target patient visit, SLDG first maps it to multiple decoupled latent
spaces with the feature-specific patient encoders Et(·). Subsequently, in each latent space of type
t, the gating function Gt(·) determines the weight combinations used to aggregate the predictions
from domain-specific classifiers {Ct,k(·)}Kt

k=1. The final prediction is obtained by averaging the
predictions from all latent domains. The pseudocode of SLDG can be found in Appx. A.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate SLDG on two publicly available real-world EHR datasets: eICU [38] and
MIMIC-IV [18], which are described as follows:

• eICU [38] covers over 200K visits for 139K patients admitted to the intensive care unit (ICU) in
one of the 208 hospitals across the United States. The data was collected between 2014 and 2015.
The 208 hospitals can be further categorized into four groups based on their location (Midwest,
Northeast, West, and South). We use age, gender, and ethnicity as patient demographic information,
and leverage the diagnosis, treatment, medication, and lab tables to gather patient visit information.

• MIMIC-IV [18] covers over 431K visits for 180K patients admitted to the ICU in the Beth Israel
Deaconess Medical Center. The data was collected between 2008 to 2019. The approximate
actual year of each admission is revealed as one of the four-year groups (2008-2010, 2011-2013,
2014-2016, and 2017-2019). We use age, gender, and ethnicity as patient demographic information,
and leverage diagnoses, procedures, and prescriptions to gather patient admission information.

We elaborate on the cohort selection process and provide comprehensive dataset statistics in
Appx. B.1. In the end, we extract 149227 visits from 116075 patients in the eICU dataset, and
353238 visits from 156549 patients in the MIMIC-IV dataset.

Clinical Predictive Tasks. We focus on two common clinical predictive tasks: (1) Readmission
prediction, which aims to determine whether a patient will be readmitted within the next 15 days
following discharge. (2) Mortality prediction, which aims to predict whether a patient will pass away
upon discharge in the eICU setting, or within 90 days after discharge in the MIMIC-IV setting. A
detailed explanation of this setting can be found in Appx. B.2.

Data Split. We evaluate the performance of our model across spatial gaps using the eICU dataset.
For this purpose, we select the target testing data as the group (Midwest) that demonstrated the
largest performance gap in a pilot study. The remaining groups (Northeast, West, and South) are
used as the source training data. To assess the model’s performance across temporal gaps, we utilize
the MIMIC-IV dataset. Patients admitted after 2014 are used as the target testing data, while all
preceding patients are included in the source training data. We elaborate more on the data split in
Appx. B.3.

Baselines. We compare SLDG against three categories of baselines. (1) The first category consists of
naive baselines, including Oracle, trained directly on the target data, and Base, trained solely on
the source data. (2) The second category comprises DG methods that require domain IDs. These
include DANN [16] and MLDG [22], which use coarse regional and temporal groups as the domain
definition, and ManyDG [56], which treats each patient as a unique domain. (3) The last category
consists of DG methods that do not rely on domain IDs, including IRM [4], MMLD [29], and
DRA [14]. A detailed explanation of all the baselines can be found in Appx. B.4.

Evaluation Metrics. Both readmission prediction and mortality prediction are binary classification
tasks. To evaluate the performance of the models, we calculate the Area Under the Precision-Recall
Curve (AUPRC) and the Area Under the Receiver Operating Characteristic Curve (AUROC) scores.
For each metric, we report the average scores and standard deviation by performing bootstrapping
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Table 1: Results of domain generalization on the eICU and MIMIC-IV datasets. An asterisk (*)
indicates that SLDG achieves a significant improvement over the best baseline method, with a p-value
smaller than 0.05. The experimental results demonstrate that SLDG exhibits robustness against spatial
(eICU) and temporal (MIMIC-IV) domain shifts.

Method
eICU MIMIC-IV

Readmission Mortality Readmission Mortality
AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

Oracle 0.219 (0.01) 0.677 (0.01) 0.271 (0.01) 0.839 (0.01) 0.282 (0.01) 0.693 (0.00) 0.428 (0.00) 0.898 (0.01)

Base 0.104 (0.02) 0.510 (0.01) 0.230 (0.01) 0.803 (0.01) 0.237 (0.01) 0.665 (0.01) 0.374 (0.01) 0.861 (0.00)
DANN 0.135 (0.01) 0.538 (0.01) 0.245 (0.01) 0.808 (0.01) 0.247 (0.01) 0.673 (0.01) 0.380 (0.02) 0.873 (0.02)
MLDG 0.104 (0.01) 0.525 (0.01) 0.224 (0.01) 0.797 (0.01) 0.205 (0.01) 0.637 (0.02) 0.360 (0.01) 0.857 (0.01)
ManyDG 0.150 (0.01) 0.549 (0.01) 0.259 (0.01) 0.814 (0.01) 0.249 (0.01) 0.676 (0.01) 0.388 (0.01) 0.880 (0.01)
IRM 0.136 (0.01) 0.538 (0.01) 0.252 (0.02) 0.811 (0.01) 0.242 (0.00) 0.668 (0.01) 0.387 (0.01) 0.876 (0.01)
MMLD 0.167 (0.01) 0.578 (0.00) 0.256 (0.01) 0.818 (0.01) 0.250 (0.02) 0.679 (0.01) 0.393 (0.01) 0.887 (0.01)
DRA 0.148 (0.01) 0.551 (0.01) 0.249 (0.01) 0.810 (0.01) 0.246 (0.01) 0.670 (0.01) 0.387 (0.01) 0.875 (0.01)

SLDG 0.186 (0.01)* 0.623 (0.01)* 0.268 (0.01)* 0.824 (0.01)* 0.274 (0.01)* 0.690 (0.01)* 0.416 (0.00)* 0.899 (0.01)*

1000 times. Additionally, we conduct independent two-sample t-tests to assess whether SLDG
achieves a significant improvement over the baseline methods.

Implementation Details. For all baselines, we use the same Transformer [48] architecture as the
backbone encoder. Patient demographics features (age, gender, and ethnicity) are embedded with
an embedding look-up table. We also embed the timestamps with sinusoidal positional encoding.
The medical, patient demographics, and temporal embeddings are added together to form the overall
sequence embedding. All models are trained for 100 epochs, and the best model is selected based
on the AUPRC score monitored on the source validation set. For SLDG, UMAP [30] from UMAP-
learn [41] is used with 2 components, 10 neighbors, and 0 minimum distance; and k-Means from
Scikit-learn [35] is used with the default hyper-parameter. Further information regarding the detailed
implementations can be found in Appx. B.5.

4.2 Main Results

Table 1 presents the domain generalization results on the eICU [38] and MIMIC-IV [18] datasets.
Firstly, we observe a significant performance gap between the Oracle and Base methods, indicating
the presence of substantial spatial and temporal domain gaps. This supports the use of the DG setting.
Notably, the readmission tasks exhibit larger domain gaps, which is reasonable since hospitals across
different locations and timestamps may have varying criteria for patient readmission. Secondly, we
note that the two DG methods, DANN [16] and MLDG [22], utilizing coarse domain partitions
such as region and timestamp, achieve minimal or no improvements. This outcome is expected
because the domain partitions are too coarse, making it challenging to identify consistent domain
features. In comparison, ManyDG [56] achieves better performance by considering each individual
patient as a unique domain. Among the remaining three baseline methods that do not rely on domain
IDs, IRM [4] demonstrates the slightest improvement. DRA [14] performs better due to the usage
of multi-head networks, which share a similar intuition as SLDG. MMLD [29] attains the highest
performance among all baselines, showcasing the advantages of explicit domain discovery. Lastly,
SLDG outperforms baselines for all tasks. Specifically, in terms of the AUPRC score, SLDG achieves
an 11% relative improvement in eICU readmission prediction, 3% in eICU mortality prediction, 10%
in MIMIC-IV readmission prediction, and 6% in MIMIC-IV mortality prediction.

4.3 Quantitative Analysis

This section provides quantitative analyses to elucidate the performance enhancements achieved by
SLDG. The analyses encompass the evaluation of clustering results, ablation studies on the clustering
algorithm, the impact of the number of clusters and iterations, and a runtime comparison.
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Figure 3: Performance of latent domain cluster-
ing. A higher Silhouette score indicates improved
cluster separability.

Evaluation of clustering results. First, we
evaluate the domain recovery ability of DG
methods that do not rely on domain IDs, namely
MMLD [29], DRA [14], and the proposed SLDG.
Since the actual latent domain categorizations
are unavailable, we assess the separability of
the learned clustering results with the Silhouette
score [40]. Note that the reported Silhouette
score is calculated on the testing set, while
the hyper-parameters are chosen based on the
Silhouette score on the training set. As depicted
in Fig. 3, DRA achieves the lowest score, which
aligns with expectations as it solely learns latent
domain categorizations through multi-head
networks without explicit clustering. In contrast,
MMLD generates more distinct clusters due
to its iterative clustering and training setup.
However, it still necessitates manual specification of the number of clusters. In comparison, SLDG
obtains the highest score using an automated hierarchical clustering technique.

Influence of the clustering algorithm. Next, we assess the influence of different clustering
algorithms. Naive k-Means and GMM require manual specification of the number of clusters, which
we set to the same value as SLDG’s. The results can be found in Tab. 2. We observe that naive
k-Means and GMM achieve similar perform similarly to the best baseline methods in Tab. 1. This
outcome is reasonable since the success of SLDG relies on both the accurate discovery of latent
domains and customized models for each domain. Naive clustering techniques often fail to identify
subtle yet important latent domains. In contrast, SLDG, utilizing the automatic hierarchical clustering
technique, achieves the highest score.

Table 2: Ablation study on the influence of the clustering algorithm.

Method
eICU MIMIC-IV

Readmission Mortality Readmission Mortality
AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

SLDG + k-Means 0.148 (0.01) 0.553 (0.01) 0.249 (0.01) 0.814 (0.00) 0.250 (0.01) 0.670 (0.01) 0.388 (0.01) 0.886 (0.01)
SLDG + GMM 0.143 (0.01) 0.549 (0.01) 0.240 (0.01) 0.808 (0.01) 0.250 (0.01) 0.688 (0.01) 0.390 (0.00) 0.888 (0.00)

SLDG 0.186 (0.01)* 0.623 (0.01)* 0.268 (0.01)* 0.824 (0.01)* 0.274 (0.01)* 0.690 (0.01)* 0.416 (0.01)* 0.899 (0.01)*
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Figure 4: Results on the influence of the num-
ber of clusters and iterations.

Influence of the number of clusters and iterations.
Next, we analyze the impact of the number of
clusters and iterations on the eICU readmission
prediction task. We also compare our results with
the best-performing baseline, MMLD [29]. The
results can be found in Fig. 4. The upper panel of the
figure shows that the model’s performance initially
improves with an increasing number of clusters. This
improvement can be attributed to the finer granularity
of clustering, which enables better identification of
domains and customization of experts. However,
as the number of clusters continues to increase, the
model’s performance starts to decline. This decline is
caused by the growing number of model parameters,
making training more challenging and leading to
overfitting on suspicious samples. Similarly, the
trend observed in the lower panel of the figure for
the number of iterations aligns with the number
of clusters. The performance initially improves as
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the number of iterations increases, allowing the model to learn more from the data. However,
after a certain point, the model starts overfitting on specific clusters, leading to decreased performance.

Table 3: Runtime comparison.

Method eICU MIMIC-IV
Base 67 min 93 min
SLDG 79 min 112 min

Runtime comparison. Lastly, we compare the training time of SLDG
with the naive Base baseline. All runtimes are measured on a single
NVIDIA A6000 GPU. The results can be found in Tab. 3. The use of
the UMAP [30] dimensionality reduction technique enables SLDG to
perform clustering quickly. As a result, the training time overhead of
SLDG is reasonably low overall (18% on eICU and 20% on MIMIC-
IV) compared to the significant performance improvement achieved
(up to 79% relative improvement on AUPRC score on eICU and up
to 15% on MIMIC-IV).

4.4 Case Study

6dl4health.org

Latent Space Frequent Clinical Events from the Top-2 Clusters

Diagnosis Sepsis, Infection, Kidney failure

Cardiac Arrest, Congestive Heart Failure

Treatment Heart valve procedures, Cardiovascular 
monitoring

Ventilation, Respiratory intubation

Medication Propofol, Lorazepam, Fentanyl

Amiodarone, Noradrenaline

Figure 5: Left: Common clinical events observed in two largest domains identified from each latent
space. Right: Learned similarity among the identified domains within the diagnostic latent space.

For the case study, we first examine the recovered domains within each latent space. The results
are presented in the left panel of Fig. 5. It is evident that the common events identified within the
same domains are consistent. For instance, propofol, lorazepam, and fentanyl is frequently used
together, serving the purpose of anesthesia (pre-surgery), sedation (in-surgery), and pain management
(post-surgery). Furthermore, the right panel of Figure 5 illustrates a visualization of the learned
domain similarity, i.e., the distances between the domain prototypical weights {wt,k}Kt

k=1. Notably,
our method (SLDG) successfully captures meaningful relationships among the latent domains. For
instance, a strong relationship is learned between pneumonia and sepsis. In clinical practice, when
pneumonia is severe or if the infection spreads beyond the lungs, it can enter the bloodstream and
trigger a systemic response, leading to sepsis [8]. Another example is the observed strong association
between cardiac arrest and infarction. In practice, if a significant portion of the heart muscle is
damaged, it can disrupt the heart’s electrical system, potentially leading to cardiac arrest [19].

5 Related Work

Domain Generalization The goal of DG is to learn a model using data from multiple source
domains in order to achieve effective generalization to a distinct target domain [7]. To achieve this,
domain alignment approaches try to match the feature distributions among multiple source domains
with techniques such as moments minimization [32, 25], contrastive learning [31], adversarial
learning [25, 45], regularizers [4, 24], and augmentation [62, 50, 44, 60]. Meta-learning frameworks
have also been utilized to simulate new domain scenarios during training [23, 27, 26, 5, 22, 29].
Additionally, domain-specific model ensemble techniques have been employed [9, 42, 43, 61].
However, these conventional DG methods assume the availability of domain IDs, which may not be
feasible in healthcare settings where patients can belong to numerous unobserved domains.

Recent advancements in DG have attempted to alleviate the reliance on domain IDs [29, 62, 14, 10, 33].
MMLD [29] is the most relevant prior work to ours. It simultaneously discovers latent domains and
learns domain-invariant features through adversarial learning. However, it focuses on training a
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single model that generalizes across all domains. Given that patients from different domains exhibit
distinct characteristics and require different treatment approaches [2, 58], training a single model for
all domains poses challenges and can result in sub-optimal performance.

Clinical Predictive Modeling. The main objective of clinical predictive modeling is to predict the
occurrence of future events, such as 15-day hospital readmission and 90-day mortality, based on
existing patient information. Deep learning models have been widely used in clinical predictive
modeling with EHR data [55, 57]. These models are designed to capture temporal patterns in patient
data [11, 36, 6, 28], model structural information in medical codes [13, 52], augment the model using
pre-training [39], or leverage patient similarities for better decision making [58, 2]. However, these
models typically assume an unchanged test domain and may suffer from degraded performance with
domain shift. To address this issue, AutoMap [53] solves the feature space shift issue by learning
an auto-mapping function without considering any distribution shift. MedLink [54] aggregates
de-identified patient data from different sites to enable joint training. ManyDG [56] tackles patient
covariate shift by treating each patient as a unique domain and disentangling domain variant and
invariant features. However, maintaining a large number of domains is unnecessary, as similar patients
often exhibit similar clinical behavior and can share a common domain.

6 Conclusion

Clinical predictive models often exhibit degraded performance when applied to data from new
regions or future periods due to distribution shifts. To address this, we propose SLDG, a self-learning
framework that iteratively identifies decoupled domains and trains customized classifiers for each
domain. We evaluate SLDG on two medical datasets, and our results show that it outperforms all
baseline methods. In addition, we provide detailed qualitative analyses and case studies to support
our findings.
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A Pseudocode of SLDG

Algorithm 1: Training and Inference for SLDG.
1: // Training

Require: Source training data from Ptr

2: Pre-train patient encoder E(·) on the same task with binary cross-entropy loss for 40 epochs
3: for iteration ranging from 1 to 3 do
4: Perform decoupled domain discovery with the encoder E(·) by Eq. (2), (3)
5: Initialize gating and classifier weights wt,k, w+

t,k, w−
t,k by Eq. (10), (8)

6: for epoch ranging from 1 to 20 do
7: for each patient (x, y) ∼ Ptr do
8: Obtain decoupled patient representations {ht}t∈T by Eq. (4), (5)
9: Compute domain-specific predictions Ct,k(ht) by Eq. (7)

10: Compute gating weights Gt(ht) by Eq. (9)
11: Obtain final prediction o by Eq. (6)
12: Update model parameters with binary cross-entropy loss
13: end for
14: end for
15: end for
16: // Inference
Require: Target testing data from Pte

17: for each patient (x, y) ∼ PtE do
18: Obtain decoupled patient representations {ht}t∈T by Eq. (4), (5)
19: Compute domain-specific predictions Ct,k(ht) by Eq. (7)
20: Compute gating weights Gt(ht) by Eq. (9)
21: Obtain final prediction o by Eq. (6)
22: end for

B Additional Experimental Setup

B.1 Datasets

For both datasets, we select our cohorts by filtering out visits of patients younger than 18 or older
than 89 years old, visits that last longer than 10 days, and visits with data from less than 3 or more
than 256 timestamps. In the case of the eICU dataset, we additionally exclude visits lasting shorter
than 12 hours, as the predictions are made 12 hours after admission. Similarly, for the MIMIC-IV
dataset, we exclude visits where the patient ultimately passed away, as the predictions are made upon
discharge. Tab. 4 provides detailed statistics of the two datasets.

B.2 Clinical Predictive Tasks

We focus on two common clinical predictive tasks: readmission prediction and mortality prediction.

In the case of the eICU dataset, the predictions are made 12 hours after admission. Readmission
prediction aims to determine whether a patient will be readmitted within the next 15 days following
discharge. Mortality prediction, on the other hand, aims to predict whether a patient will pass away
upon discharge. The overall prevalence for these tasks is 15% for readmission and 4% for mortality.

For the MIMIC-IV dataset, the predictions are made at the time of discharge. Similar to the eICU
dataset, the readmission prediction task is defined as predicting whether a patient will be readmitted
within 15 days after discharge. To prevent information leakage, the mortality prediction task for
MIMIC-IV is defined as predicting whether a patient will pass away within 90 days after discharge.
The overall prevalence for these tasks is 14% for readmission and 4% for mortality.

18



Table 4: Dataset statistics.

Item eICU MIMIC-IV
#Patients 116075 156549

#Admissions 149227 353238
Readmission Rate 0.15 0.14

Mortality Rate 0.04 0.04

Region: Midwest Year: 2008-2010
#Patients 29767 37328

#Admissions 35989 56433
Readmission Rate 0.10 0.14

Mortality Rate 0.03 0.04
Age 62 56

Gender F: 0.46, M: 0.54 F: 0.53, M: 0.47
Race African American: 0.09, Asian: 0.01, Caucasian: 0.83,

Hispanic: 0.01, Native American: 0.01, Other: 0.04
African American: 0.15, Asian: 0.03, Caucasian: 0.71,
Hispanic: 0.06, Native American: 0.00, Other: 0.04

Average #Events 90.01 31.87

Region: Northeast Year: 2011-2013
#Patients 5886 39125

#Admissions 6958 62586
Readmission Rate 0.17 0.15

Mortality Rate 0.06 0.04
Age 62 57

Gender F: 0.44, M: 0.56 F: 0.53, M: 0.47
Race African American: 0.03, Asian: 0.01, Caucasian: 0.92,

Hispanic: 0.01, Native American: 0.00, Other: 0.03
African American: 0.17, Asian: 0.03, Caucasian: 0.66,
Hispanic: 0.07, Native American: 0.00, Other: 0.07

Average #Events 104.54 35.19

Region: South Year: 2014-2016
#Patients 27584 41737

#Admissions 33033 64592
Readmission Rate 0.11 0.14

Mortality Rate 0.04 0.04
Age 62 57

Gender F: 0.46, M: 0.54 F: 0.52, M: 0.48
Race African American: 0.21, Asian: 0.01, Caucasian: 0.68,

Hispanic: 0.05, Native American: 0.00, Other: 0.03
African American: 0.17, Asian: 0.04, Caucasian: 0.66,
Hispanic: 0.06, Native American: 0.00, Other: 0.07

Average #Events 84.28 36.53

Region: West Year: 2017-2019
#Patients 17670 40496

#Admissions 19803 63654
Readmission Rate 0.29 0.14

Mortality Rate 0.04 0.04
Age 63 58

Gender F: 0.45, M: 0.55 F: 0.52, M: 0.48
Race African American: 0.05, Asian: 0.03, Caucasian: 0.77,

Hispanic: 0.05, Native American: 0.02, Other: 0.08
African American: 0.17, Asian: 0.04, Caucasian: 0.65,
Hispanic: 0.06, Native American: 0.00, Other: 0.07

Average #Events 85.29 36.95

B.3 Data Split

The eICU dataset comprises data collected from hospitals across the United States, while the MIMIC-
IV dataset spans a period of ten years. Therefore, we utilize the eICU dataset to evaluate the model’s
performance across spatial gaps, and the MIMIC-IV dataset to assess its performance across temporal
gaps.

For the eICU dataset, we divide it into four spatial groups based on regions: Midwest, Northeast,
West, and South. Each group is then split into 70% for training, 10% for validation, and 20% for
testing. We evaluate the gap between groups by comparing the performance of the backbone model
trained on data from within the same group and data from outside the group. The target testing data
is selected as the group (Midwest) that exhibits the largest performance gap, while the remaining
groups (Northeast, West, and South) are used as the source training data.

Regarding the MIMIC-IV dataset, we divide it into four temporal groups: 2008-2010, 2011-2013,
2014-2016, and 2017-2019. Each group is further split into training, validation, and testing sets with
a ratio of 70%, 10%, and 20% respectively. We consider patients admitted after 2014 as the target
testing data, while all preceding patients are included in the source training data.
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B.4 Baselines

We first compare SLDG to two naive baselines.

• Oracle: We directly train a backbone model on the training set of the target domain, select the best
model on the target validation set, and evaluate its performance on the target testing set. This model
is trained with in-domain data and can be seen as a upper bound for all domain generalization
method.

• Base: We train a backbone model on the training set of the source domain, select the best model
on the source validation set, and evaluate its performance on the target testing set. This model is
trained with out-domain data and should act as a performance lower bound.

We then compare SLDG to both classic and recent domain generalization methods. For a fair compar-
isons, all the methods below are trained on the source training set, selected on the source validation
set, and tested on the target testing set.

• DANN [16]: Domain-Adversarial Neural Networks leverage a domain classifier and a gradient
reversal layer to extract domain-invariant representations. This method uses the coarse regional
and temporal groups as the domain definition.

• MLDG [22]: Meta-Learning for Domain Generalization adopts the Model-Agnostic Meta-Learning
(MAML) [15] framework and simulates the new domain scenario during training. This method
also uses the coarse regional and temporal groups as the domain definition.

• ManyDG [56]: Many-Domain Generalization disentangles domain-variant and invariant features
through mutual reconstruction and orthogonal projection. This method treats each patient as a
unique domain.

• IRM [4]: Invariant Risk Minimization learns domain-invariant representations by minimizing a
bound on the expected generalization error under domain shifts. It acts as a regularizer and does
not require domain IDs.

• MMLD [29]: Domain Generalization using a Mixture of Multiple Latent Domains iteratively
assigns pseudo domain labels via clustering and trains the domain-invariant feature extractor
through adversarial learning. This method does not rely on domain IDs.

• DRA [14]: Latent Domain Learning with Dynamic Residual Adapters uses layer-wise multi-head
correction networks with a gating mechanism and residual connection to enhance model learning.
This method does not rely on domain IDs.

B.5 Implementation Details

For all baselines, we use the Transformer as the backbone encoder. The number of layers is 3, the
embedding dimension is 128, the number of attention heads is 2. The event embedding look-up
table is initialized with ClinicalBERT [3] embeddings of the event name and then project it down
to 128 dimension with a linear layer. Patient demographics features (age, gender, and ethnicity)
are separately embeded with another embedding look-up table. We also embed the timestamps
with sinusoidal positional encoding. The medical, patient demographics, and temporal embeddings
are added together to form the overall sequence embedding. For SLDG, UMAP [30] from UMAP-
learn [41] is used with 2 components, 10 neighbors, and 0 minimum distance; and k-Means from
Scikit-learn [35] is used with the default hyper-parameter. We apply a dropout of rate 0.2. We use
Adam as the optimizer with a learning rate of 1e-4 and a weight decay of 1e-5. All models are
trained for 100 epochs. The batch size is 256. We select the best model by monitoring the AUPRC
score on the source validation set (except for the Oracle baseline, where we directly use the target
validation set). We implement SLDG using PyTorch [34] 1.11 and Python 3.8. The model is trained
on a CentOS Linux 7 machine with 128 AMD EPYC 7513 32-Core Processors, 512 GB memory,
and eight NVIDIA RTX A6000 GPUs.

C Limitations and Broader Impacts

In terms of limitations, it is important to acknowledge that our work operates under the assumption
that the target testing data still exhibit some similarities with the source training data. If there is
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a significant distribution shift, the knowledge acquired from the source training data may become
irrelevant. In such cases, neither the DG baselines nor our proposed method can effectively address
the problem. It would be more appropriate to explore transfer learning or train a new model to obtain
a better solution. Further, we propose SLDG to tackle two main challenges: (1) unknown domain IDs
and (2) distinct characteristics across domains. In the scenario when the domain IDs are given and
clearly separable (e.g., photo, art painting, cartoon, and sketch in the PACS [21] dataset), SLDG ’s
domain discovery approach might be unnecessary. Existing DG methods directly utilizing the domain
IDs could be a better solution.

In terms of broader impacts, our work tackles a practical and prevalent issue in healthcare known as
the domain shift problem. We aim to inspire future research in this area: both by investigating the
existence of domain shift under various scenarios, and by contributing to the development of effective
solutions for this real-world challenge.

D Notations

Notation Meaning
x a patient’s hospital visit

[e1, . . . , em] sequence of m events
t type of an event

T (·) mapping function from event to its type
E set of all events
T set of all event types

y ∈ {+,−} label, i.e., the occurrence of a certain future event
fϕ(·) overall clinical predictive model
ϕ model parameter
l(·) loss function

Ptr, Pte training and testing data distribution
Et(·) feature-specific patient encoder for event type t
ht patient representation in latent space of type t
h hidden dimension

{h(i)
t }Ntr

i=1 all patient representations in latent space of type t
Ntr total number of training samples
Kt number of discovered domains in the latent space of type t
Mt domain assignment matrix

[e1, . . . , em] contextualized representation for event sequence [e1, . . . , em]
E(·) embedding function

{ht}t∈T multi-vector representations for a single patient
Ct,k(·) customized classifier for the discovered domain k in the latent space of type t
Gt,k(·) the gating weight for the customized classifier Ct,k(·)

o model output
w+

t,k,w
−
t,k learnable prototype weight vectors of the positive and negative classes for the k-th

discovered domain in the latent space of type t
d(·, ·) Euclidean distance
wt,k learnable prototypical weight vector for the discovered domain k in the latent space

of type t

E Additional Illustrations
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Figure 6: An illustration of the patient visit as input.

eICU Dataset

ICU Admission ICU DischargePrediction Time

12 Hours 

1. Whether the patient will decease at the end of current ICU stay?
2. Whether the patient will be readmitted to ICU within 14 days?
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& Prediction Time

1. Whether the patient will decease within 90 days?
2. Whether the patient will be readmitted to hospital within 14 days?

Figure 7: An illustration of the task definitions in the eICU and the MIMIC-IV datasets.
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Figure 8: The architecture of the feature-specific patient encoder.
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