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1 Dataset Retrieval

The download link for the data as well as all code (including preprocessing scripts and benchmark
code) and trained models can be retrieved from our GitHub repository: https://github.com/
multimodallearning/Lung250M-4B

Additionally, the point cloud data is available via the following link: https://zenodo.org/
records/10046885

The dataset can be set up using the following procedure

1. Download dataset provided by us with 204 scans or 102 patients (including TCIA-NLST,
TCIA-Ventilation, L2R-LungCT and TCIA-NSCLC)

2. Consent to usage policy and download DIR-LAB COPDgene dataset (20 scans of 10 patients)
from their website https://med.emory.edu/departments/radiation-oncology/

2.1. Preprocess the COPDgene dataset using our preprocessing script from GitHub

3. Consent to usage policy and download EMPIRE10 dataset from grand-challenge https:
//empire10.grand-challenge.org

3.1. Preprocess EMPIRE10 dataset (24 scans of 12 patients) with our provided script

2 Dataset Curation Details

The goal of the Lung250M-4B dataset is to provide a basis for effective research on deformable lung
registration using CT scans and point clouds, especially with a focus on learning-based methods.
Therefore, for curation, we evaluated potential datasets mainly with 3 criteria: 1) Sufficient motion
between scans, 2) variability with respect to subjects, pathologies, and acquisition modalities, and
3) size. Other constraints include free availability of data and sufficient image quality in terms of
field of view, resolution, and artefacts. The presented dataset is the result of a trade-off between these
aspects. We proceeded as follows: First, we searched for potential datasets and relevant publications
in medical databases (TCIA, Pubmed), dataset hosts (Zenodo), and machine-learning challenge
platforms (Grand Challenge, Kaggle). We screened potential datasets and discarded all candidates
that had low image quality (e.g., cone beam CTs) or insufficient lung motion (e.g., RIDER Lung
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dataset [27]). For datasets where there is no external information on motion, we automatically
generated lung masks (see Section 4.1 in the main paper) and calculated the volume change between
scans of a pair.

The final choice included 6 datasets (COPDgene, EMPIRE10, L2R-LungCT, TCIA-NSCLC, TCIA-
Ventialation, TCIA-NLST) with 3 different acquisition modalities (inhale/exhale breath-hold CTs,
4DCTs, respiratory phase-unspecified breath-hold CTs). For our purposes, inhale/exhale breath-hold
CTs are most suitable, but these datasets are rare. 4DCTs typically provide images of 10 different
respiratory phases but are often artefact-prone. The longitudinal breath-hold images used in the
National Lung Trial are numerous, but have little motion between baseline and follow-up scans.
While COPDgene, EMPIRE10, and NLST consist at least in part of data derived from lung screenings
and may include healthy subjects, TCIA-Ventilation and TCIA-NSLCS patients are diagnosed with
lung diseases. Due to the initial anonymisation, it is not possible to provide accurate statistics on
the composition of the curated dataset in terms of demographic features. However, due to the high
variability of subjects compared to previous datasets, we hope to achieve greater generalisability for
potential lung registration methods.

In the following, the source datasets are described in more detail, while an overview can be found in
Tab. 1 and Fig. 1.

2.1 DIR-LAB COPDgene

The COPDgene dataset consists of data from the COPDGene study, which investigates the influence
of genetic factors on the development of COPD in smokers. The trial has been approved by the
Institutional Review Boards (IRB) of the individual screening sites. To determine the severity of
the disease, CT scans of under normal exhalation and maximum effort inspiration breath hold were
acquired in addition to lung function testing. From the pool, 10 scan pairs were randomly selected
and manually annotated with corresponding landmarks (n>= 447) at vessel and bronchial bifurcations,
from which a final subset of n=300 landmarks has been sampled uniformly. The exact procedure is
described in detail in [4]. Due to the large number of landmarks and the extent and complexity of the
deformations, the COPDgene dataset is very suitable for evaluation of deformable lung registration.
The dataset is not published under a standard licence, but can be downloaded from the project website
after filling out a request1. Publications using these data must reference [3]. All CT scans have an
axial resolution of 512×512 pixels with a uniform spacing of at least 0.59 and at most 0.742 mm.
Each volume consists of 112 to 135 slices with a respective slice thickness of 2.5 mm. We include all
scans and annotations in our dataset. While this subset is in principle also applicable for training, we
use it as a test set due to the small number of scans and its excellent suitability for evaluation.

2.2 Grand Challenge EMPIRE10

The EMPIRE10 dataset [18] was created as part of MICCAI 2010 to evaluate lung registration
solutions and is available on the Grand Challenge competition platform. It aims to test registration
accuracy regarding a versatile set of clinical tasks. The 30 cases included in this dataset, therefore,
come from a variety of exams, subjects and image processing, namely breath-hold inspiration, breath-
hold inspiration and expiration, 4D data, ovine data, contrast-noncontrast and artificially warped
scan pairs. For our purposes, we use only the breath-hold inspiration and expiration and 4DCT
scans (#1,#7,#8,#13,#14,#16,#17,#18,#20,#21,#23,#28) and discard the rest. The former obtains its
scans from the Dutch-Belgian randomized lung cancer screening trial (NELSON [26]), which was
conducted in a total of 4 medical centres. Subjects of the study were current and former, mostly
male heavy smokers aged 50-75 years [28]. The trial was approved by the ethics board of each
site and the relevant minister of health [24]. Images were obtained using a low-dose (inhale) and
ultra-low-dose (exhale) protocol in a Philips Brilliance 16P and have a pixel spacing of 0.63-0.70 mm
and a slice thickness of 1 mm. We include all 8 cases in our dataset. The 4DCT data were obtained
using a GE Discovery ST multi-slice PET/CT and Philips Brilliance CT 16 and [18] retrospectively
retrieved from the hospital information system. Pixel spacing was 0.98 mm for these scans, while
slice spacing varied between 1.25 and 2.50 mm. We included all 4 pairs of data in the Lung250M-4B
dataset. EMPIRE10 is not published under any standard license. However, the dataset can be freely

1https://med.emory.edu/departments/radiation-oncology/research-laboratories/
deformable-image-registration/downloads-and-reference-data/copdgene.html
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downloaded without registration from the challenge website and has to be cited with the original
publication2. We are providing our pipeline for reprocessing into the Lung250M-4B format.

2.3 Grand Challenge Learn2Reg LungCT

Another dataset that exists to benchmark lung registrations on Grand Challenge is L2R-LungCT,
which is a subset of the larger continuous Learn2Reg Challenge that addresses other medical image
registration tasks, such as registration of multimodal abdominal CT&MR or MRI brain scans [12].
The LungCT dataset includes 30 scan pairs (20 training and 10 test), all of which can be freely
obtained under the CC-BY-4.0 licence3. In addition, manual landmarks are available for 3 validation
cases. All images were acquired between 2016 and 2017 at Radboud University Medical Center,
Nijmegen, NL, and were retrospectively retrieved from the hospital information system. Scan pairs
were selected according to three criteria: Only (I) breathhold scans that (II) had sufficient lung
coverage in both images and (III) had at least 300 slices were included. All images have an axial
resolution of 512 by 512 pixels and a uniform spacing between 0.56 and 0.81 mm and between 321
and 705 slices with a slice thickness of 0.5 mm. Use of data from Radboud University Medical Center
was approved by the institutional review board under an umbrella protocol for "Retrospective research
reusing care data within the Department of Radiology and Nuclear Medicine". This approved
document grants access to retrospective and anonymised imaging data for research purposes in
Radboud UMC. We chose to include the whole 30 scan-pairs in Lung250M-4B.

2.4 TCIA Ventilation

The TCIA-Ventialtion data collection[7, 5] includes image data from a study evaluating the accuracy
of pulmonary ventilation measurements in breath-hold CT, 4DCT, and Galligas PET examinations
conducted at the Royal North Shore Hospital, Sydney between 2013 and 2015 [6]. The trial is
approved by the local health district ethics committee and registered with the Australian New Zealand
Clinical Trials Registry (ACTRN12612000775819) and the collection is available through TCIA with
licence CC-BY-4.04. We include all (20) breath hold scan pairs in our dataset. All acquisitions were
performed with a Siemens Biograph mCT.S/64 PET/CT scanner in combination with audiovisual
feedback for ten-second breath hold control at approximately 80% maximal inspiration and expiration,
respectively. A large proportion of patients (at least 16) possessed pathological impairments with
COPD and lung tumours. All scans have a resolution of 512 by 512 voxels and between 153-193
slices and a uniform spacing of 0.97×0.97×2 mm.

2.5 TCIA NSCLC

Furthermore, we include 20 scan pairs from the TCIA-NSLCS data collection[13, 14, 2, 21, 5]. The
dataset includes scans performed between 2008 and 2012 at VCU Massey Cancer Center in the
Department of Radiation Oncology, VA, USA on a total of 20 patients with non-small cell lung cancer
undergoing image-guided radiotherapy. Patients consented to participate in the prospective study,
which was approved by the institutional review board. In total, the collection includes 82 4DCTs and
507 4D Cone Beam CTs images acquired before and during radiotherapy. Audiovisual feedback was
used for all scans to minimise respiratory irregularities. Tumours were located at various locations in
the lung and occupied a mean volume of 76 cm2. Limitations of these collections are 4DCT sorting
artefacts, as mentioned in the original dataset publication. The dataset was published under the
CC-BY-3.0license on TCIA5. From this collection, we select the scans with maximum inhalation and
exhalation from a total of 10 respiratory phases from the pre-therapeutic 4DCT images. All acquired
images share the same axial resolution and spacing of 512×512 pixels and 0.97 mm respectively.

2.6 TCIA NLST

The National Lung Screening Trial (NLST) was conducted in the United States between 2002 and
2004 to compare the efficacy of chest radiography and low-dose CT for the early detection of lung

2https://empire10.grand-challenge.org/Download/
3https://zenodo.org/record/4279348
4https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=125600096
5https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=21267414
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tumours in high-risk individuals (heavy smokers aged 55 to 74 years)[23]. These individuals were
offered 3 screenings at 1-year intervals in both arms of the study. Before randomisation, all subjects
completed an informed consent form developed and approved by the institutional review boards of
the screening centres and the National Cancer Institute.

Approximately 73,000 low-dose CT scans from the trial are available through TCIA6 under the
CC-BY-4.0 licence [20, 5]. From this large set, we randomly extracted 281 scan pairs, with baseline
and follow-up included in a span of one year. Because the NLST study protocol does not require
inhale/exhale breath-hold examinations, a large proportion of the scans do not have sufficient lung
motion for our purposes. We identified candidate pairs by predicting and comparing lung masks for
every pair of scans. We excluded all patients with a lung volume change of less than 380 ml, resulting
in a total of 22 scan pairs. Because of anonymisation, individual scanners and screening sites can no
longer be attributed. But, it is likely that cases from different scanners are selected.

For validation within this sub-dataset, we used an additional 10 NLST scan pairs, for which landmark
annotations were published through the Learn2Reg challenge [12]. In baseline and follow-up scan, a
total of 100 corresponding landmark pairs were identified and made available under the CC-BY-4.0
licence. Since the selection of these scan pairs is not subject to the above criteria, they have a lower
lung volume change (mean 247ml) in comparison. The acquired 32 scan pairs have an inplane axial
resolution of 512 by 512 voxels with a spacing between 0.47 and 0.9 mm with a slice thickness
between 1 and 3.2 mm.

6https://wiki.cancerimagingarchive.net/display/NLST/National+Lung+Screening+Trial
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2.7 Additional Manual Landmarks

For some of the datasets (NLST, L2R-Lung, COPDgene) manual landmarks could be adopted for
validation and testing. For the EMPIRE10 (cases #8 and #20) and TCIA-Ventilation (cases #11
and #14) sub-datasets, additional landmark annotations were created as part of this work. The
readers (1 researcher and 2 research assistants with medical background) matched 100 corresponding
landmarks in each scan pair using the freely available semi-automatic annotation software isimatch7

[17], following the procedure in [18]. For each inhale scan, a lung mask was created using an nnUNet
[15]. Then, 100 points destined by the Distinctive Point Finder module were automatically selected
based on the image gradients of their surroundings within the lung mask, which are usually located at
visible vessels and bronchial bifurcations. Subsequently, the readers identified these corresponding
points in the exhale scans. Based on a thin-plate-spline interpolation, the software allows automatic
matching of the points after a sufficient number of manual identifications. All automatic landmarks
were manually reviewed and corrected if necessary. We further estimated the inter-observer error
of both annotators using isimatch in 4 registration pairs for a total of 400 landmarks and obtain a
mean error and standard deviation of 0.79 mm and 1.24 mm respectively, which compares well to the
isotropic image resolution of 1 mm.

3 Licence

We publish all data under CC-BY-4.0 licence.

For all image data that we may not redistribute due to their licencing (i.e. COPDgene and EMPIRE10),
we include detailed instructions on how to obtain the data and provide preprocessing scripts in our
GitHub repository.

This dataset is intended for research purposes only and not for clinical usage.

4 Dataset Structure

The dataset is divided into multiple types of instances with the following folder structure:

• imagesTr/imagesTs: Preprocessed CT scans as .nii.gz files

• masksTr/masksTs: Lung masks as .nii.gz files

• segTr/segTs: Vessel segmentations as .nii.gz files

• cloudsTr/cloudsTs: Point clouds and features, each in a list containing 1.) the point cloud
sampled to 8196 points, 2.) the point cloud of the vessel skeleton and 3.) the full point cloud

– coordinates: (x,y,z) coordinates of each point
– artery_vein: label of each point (1: vein, 2: artery)
– distance: distance from each point to the closest vessel edge

• corrfieldTr: CorrField keypoint correspondences

Folders ending in Tr contain files for training, folders ending in Ts contain files for validation and
test. All files have a 3-digit case identifier (000 to 123) in their name. Additionally whether the file
corresponds to the in- or expiratory phase is indicated by a 1 or 2 respectively at the end of the file
name.

5 Data Samples and Statistics

A visualisation of image and point cloud data from each data subset can be seen in Fig. 1. Statistics
on the volume of the segmentations and the sizes of the point clouds can be seen in Tab. 2 and Fig. 2.
Each skeleton cloud contains more than 8196 points and can thus be downsampled to obtain all three
types of point clouds.

7https://www.isi.uu.nl/research/software/isimatch/
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TCIA-Ventilation COPDgeneL2R-LungCT

EMPIRE10 TCIA-NSCLCTCIA-NLST

Figure 1: Visualisation of six sample cases from our dataset, including sample from each subset. For
each case, we show an overlay of fixed (blue) and moving (orange) CT slices (top) and skeletonised
3D lung vessel trees (bottom).

6 Benchmark Methods

For implementation details regarding the benchmark methods, we refer to our GitHub.

6.1 corrField

We apply corrField [11], which requires no training and is provided with GPU acceleration in our
repository, with default parameters as described on the algorithm page https://grand-challenge.
org/algorithms/corrfield. That means the fixed and moving CT scans alongside a lung mask
for the fixed image are provided as input. The number of Föerstner 3D keypoints, for which
correspondences are computed in the two-stage discrete optimisation, varies between 5’000 and
8’000.

6.2 deeds

Another optimisation-based baseline is deeds [10], which is also run without modifications to the code
provided at https://github.com/mattiaspaul/deedsBCV. However, to improve the alignment
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Table 2: Mean lung and vessel volumes (and their standard deviation) for each source dataset. Lung
volumes are stated in ml, point cloud sizes in number of points.

Source
Dataset

Lung Volume
(Insp. Phase)

Lung Volume
(Exp. Phase)

Size of
Point Cloud

Size of
Skeleton Cloud

DIR-LAB COPDgene 4960± 1139 3190± 798 967k ± 196k 25k ± 7k

Empire10 6214± 1940 4263± 1207 1249k ± 193k 31k ± 10k
L2R-LungCT 4841± 1095 2685± 544 1046k ± 330k 28k ± 12k
TCIA-NSCLC 3887± 1287 3460± 1218 805k ± 242k 18k ± 5k
TCIA-Ventilation 4666± 969 3528± 1021 1236k ± 343k 31k ± 9k
TCIA-NLST 6224± 1692 5361± 1419 1385k ± 337k 40k ± 12k
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Figure 2: Cumulative distribution of artery and vein volume (left) and number of points in the in- and
expiratory point clouds (right).

of inner-lung structures we mask out the background outside of the provided lung segmentations.
Since deeds has so far only been parallelised on CPU the run times are substantially higher (minutes
rather than seconds). We are sharing a custom script that converts the output displacements into
corresponding CSV-files.

6.3 VoxelMorph++

We use VoxelMorph++ [9] that substantially extends upon the popular baseline [1] and adapt the
implementation of https://github.com/mattiaspaul/VoxelMorphPlusPlus. The original
code had some shortcomings, namely the inability to work with differently shaped 3D volumes across
scan pairs. We implement appropriate padding and cropping operations to fulfil the requirements of
input dimensions divisible by 32 for the underlying U-Net. Two variants with a convolutional heatmap
regression head, supervised and unsupervised are trained for 400 and 800 epochs respectively with
an initial learning rate of η = 0.001 and a step reduction of 0.5 after 30 epochs and restarts after
every 200 epochs (mini-batch size is one). The loss for supervised uses the Euclidean distance
with respect to the corrField correspondences (i.e. the target registration error) as described above,
whereas unsupervised uses a combined image-metric (MIND-loss with MSE) and a Laplacian graph
regularisation with a weighting of λ = 0.25. Further details are provided in our repository and the
paper. Both methods use affine augmentation with a strength of the Gaussian random transform
of 0.035 (alternating for fixed and moving images). We evaluate the trained models either with
or without instance optimisation. The former optimises a combined MIND-metric and diffusion
regularisation (λ = .65) on a dense grid with control point spacing of 2 voxels for 50 iterations using
Adam optimiser (η = 1).

6.4 PointPWC-Net

We use the default architecture of PointPWC-Net from [25] without BatchNorm layers and the
multi-scale loss from [25] as the objective function. Network parameters are optimised with the
Adam optimiser for 1500 epochs (=36k iterations) with a batch size of 4. The initial learning is set to
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0.001 and decreased by a factor of 10 after 1200 and 1400 epochs. The network is trained with the
following two supervision strategies.

Supervised learning with corrField correspondences The corrField algorithm provides a set of
keypoint correspondences for each data pair. We interpolate the corresponding displacement vectors
of the moving keypoints to the moving points in the input cloud to our network and use the resulting
flow vectors for direct supervision. Given a pair of point clouds along with this flow vector, we
randomly perform one of the following two augmentation strategies at training. 1) We apply a random
rigid transformation (scaling, rotation, translation) to either the fixed or moving cloud while the other
one remains unaffected. 2) We augment both clouds with the same rigid transformation. In both
cases, the underlying flow field is transformed accordingly.

Learning on synthetic deformation The general idea of this strategy is to train the model on pairs
consisting of a real cloud and a synthetic deformation of it such that point-wise displacement vectors
are precisely known. Similar to [22], we generate deformations with a 2-scale random field through
the following steps.

1. For a given real pair of fixed and moving clouds with 16k points each, we randomly sample
either the fixed or the moving cloud as the initial cloud X to be deformed.

2. We randomly sample a set of 500 local control points xloc from X .

3. For each local control point, we sample a random displacement vector ∆(loc) ∈ R3, with
∆

(loc)
i uniformly drawn from [-3 mm,3 mm].

4. We interpolate the displacements from the local control points to the full cloud X with an
isotropic Gaussian kernel (σ = 15mm) and displace the points accordingly, yielding the
locally deformed cloud.

5. To the latter cloud, we apply voxel downsampling with a voxel size of 90 mm to obtain a set
of roughly 10-30 global control points xglob

6. For each global control point, we sample a random displacement vector ∆(glob) ∈ R3, with
∆

(glob)
i uniformly drawn from [-25 mm,25 mm]

7. We interpolate the displacements from the global control points to the full locally deformed
cloud with an isotropic Gaussian kernel (σ = 25mm) and displace the points accordingly,
yielding a locally and globally deformed cloud Xdef .

8. Since all the previous operations preserve point correspondences, displacement vector
fields for supervision are precisely known, leaving us with the pair (X , Xdef ) as input and
Xdef −X as the corresponding ground truth.

9. As is, X and Xdef exhibit precise point correspondences, which is not realistic and might
cause overfitting. Therefore, we sample two disjoint subsets of 8k points from X and Xdef

as the final input to our network and keep the displacement vectors corresponding to the
points in the moving cloud for supervision.

6.5 Coherent Point Drift

Finally, we explore Coherent Point Drift (CPD) a classical untrained deformable point cloud regis-
tration method [19]. Following [8] we set the hyperparameters to ω = 0.5, ϵ = 10−5, λ = 8 and
β = 1.25 and optimise for 50 iterations. CPD models both point clouds as multivariate Gaussian
mixture models and alternates between the fitting of a transformation and the point distributions in an
expectation-maximisation algorithm. We extend the method by leveraging the automatic anatomical
labels that assign either vein or artery to each point in the cloud. Consequently, we introduce another
weight α = 0.05 and set β = 1 to balance the influence of these new features. α was fine-tuned on a
single validation case. Our GPU implementation can be found in the GitHub repository.

6.6 Results

The performance of the above methods on the 10 test cases from the COPDgene dataset was already
reported in Tab. 2 of the main paper. Here, we evaluate the same methods on the 17 validation cases
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Table 3: Quantitative results on the 17 validation cases of image-based (left) and point-based (right)
methods, reported as mean TRE and 25/50/75% percentiles in mm. IO: Instance optimisation

Method TRE 25% 50% 75% Method TRE 25% 50% 75%

initial 14.02 8.18 12.21 18.07 initial 14.02 8.18 12.21 18.07

corrField 2.14 1.08 1.66 2.42 CPD 4.21 1.60 2.46 3.85
deeds 2.26 1.14 1.75 2.59 CPD w/ labels 3.90 1.49 2.30 3.52
VM+ w/o IO 5.50 2.76 4.40 7.14 PPWC sup. 3.12 1.58 2.45 3.74
VM+ w/ IO 3.69 1.23 2.05 3.91 PPWC syn. 3.29 1.67 2.54 3.94
VM++ w/o IO 4.20 2.33 3.52 5.29
VM++ w/ IO 2.67 1.15 1.85 2.89

Table 4: Quantitative results of Voxelmorph++ (with instance optimisation) on the validation cases
with different sub-sets of the dataset as training data, reported as mean TRE and 25/50/75% percentiles
in mm.

Setup TRE 25% 50% 75%

initial 14.02 8.18 12.21 18.07
full dataset 2.67 1.15 1.85 2.89

TCIA-NSCLC 4.07 1.23 2.05 4.28
TCIA-NLST 3.04 1.15 1.84 2.85
Empire10 3.69 1.21 1.94 3.25
TCIA-Ventilation 3.27 1.17 1.89 3.07
L2R-LungCT 3.32 1.22 1.95 3.26

for which we provide manually annotated landmark correspondences. Results are shown in Tab. 3 and
Tab. 4 and reveal the following findings. First, classical image-based methods perform worse than
on the test cases but still achieve the top performance among all methods. Second, learning-based
methods for image registration achieve slightly improved results (apart from VM++ w/ IO). Third, for
point-based registration, both versions of CPD deteriorate and are now, at least on average, inferior to
both versions of the learning-based PPWC, which we primarily attribute to a particularly challenging
case, where CPD completely failed. Fourth, as on the test set, PPWC achieves competitive scores
with image-based DL methods, being only inferior to VM++ with IO. Fifth, consistent with the test
results, training on the full dataset performs better than training on sub-datasets. While training on
only L2R-LungCT achieved the best results on the test dataset, TCIA-NLST here achieves the lowest
TRE, which is likely due to the larger number of TCIA-NLST validation cases compared to other
sub-datasets. Finally, we visualise qualitative results for image and point cloud registration in Figs. 3
and 4, demonstrating largely accurate and smooth alignments of the lungs.

7 Datasheet

7.1 Motivation

• For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description.
A: Lung250M-2B was created as a dataset to train and evaluate methods for deformable 3D
registration on images, point-clouds or both. Compared to other lung registration datasets,
we a) provide a large number of scan pairs with large deformations between scans and b)
provide 3D point clouds for each scan to evaluate point cloud-based methods on the same
instances in unison with image-based ones. Up to now, there was a scientific gap for a
dataset with large-scale deformable 3D motion and supervision for vision research. Kitti [16]
provides mainly part-wise rigid motion, whereas PVT1010 [22] contains similarly expressive
deformable point-clouds but without supervision. Our aim is to stimulate research that
bridges the methodological limitations of either image-based or point-based 3D registration
and e.g. uses features derived from on modality to inform the other.
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Figure 3: Qualitative results on three sample cases from the validation set. We display initial (top row)
and Voxelmorph++-registered (bottom row) overlays of fixed (blue) and warped moving (orange)
images.

• Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?
A: The dataset was created by the authors. (University of Lübeck, Germany).

• Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.
A: A small part of the work was funded by a German federal research grant (BMBF) under
the ID 01KD2212A for making available datasets with impact on knowledge gain and
research in oncological data science.

• Any other comments?
A: No.

7.2 Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.
A: For each case (corresponding to one patient) there is paired data corresponding to the in-
and expiratory phases. We provide the following type of data:

– images of CT scans
– vessel segmentations
– vessel point clouds
– point features
– keypoint correspondences
– landmarks

• How many instances are there in total (of each type, if appropriate)?
A: For each type except landmarks, there are 248 instances, 124 for inspiratory phases and
124 for expiratory phases respectively. We provide 54 instances of landmark annotations, 27
for each phase.
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Figure 4: Qualitative results on three sample cases from the validation set. We display overlays of
the skeletonised clouds of the fixed (blue) and warped moving (orange) clouds. We calculated the
flow on the skeletonised clouds by interpolating the predicted flow on the 8k clouds with an isotropic
Gaussian kernel. The first row shows the initial overlap and the second row the registration by the
supervised PointPWC-Net.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe
how this representativeness was validated/verified. If it is not representative of the larger set,
please describe why not (e.g., to cover a more diverse range of instances, because instances
were withheld or unavailable).
A: Lung250M-4B is based on image data from other datasets. We selected appropriate cases
based on criteria described in Section 2. Due to the variety of original datasets we sampled
from, we achieve a high diversity regarding e.g. scanner type, pathologies or examination.

• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.
A: We provide preprocessed images alongside extracted information (keypoints, landmarks,
segmentations) based on these images.

• Is there a label or target associated with each instance? If so, please provide a description.
A: For each instance (image pair), we provide weak labels for learning (point features,
keypoint correspondences). Additionally, for 27 cases, we provide manual landmarks
(usually 100-300 pairs) to evaluate registration accuracy.

• Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.
A: No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
A: All data are enumerated with a case number and a denominator on whether they relate to
the in- or expiratory phase.

• Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.
A: We suggest a training/validation/test split. Training data includes all data without
landmark annotations, test data are made up of all DIR-LAB COPDgene cases and validation
data are made up of all additional cases we provide landmarks for. This split is made clear
in the data structure.
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• Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.
A: Occurring noise in our image data is equivalent to the noise in the original image
data. Since we automatically predicted vessel segmentations using the nnUNet framework,
segmentations may naturally contain false positives or negatives.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees)
associated with any of the external resources that might apply to a dataset consumer? Please
provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.
A: The DIR-LAB COPDgene and EMPIRE 10 datasets have no CC licence, so we refer to
their official website to obtain the data and provide a preprocessing script to generate the
preprocessed images. The remaining dataset is self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.
A: No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.
A: No.

If the dataset does not relate to people, you may skip the remaining questions in this section.

• Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please
describe how these subpopulations are identified and provide a description of their respective
distributions within the dataset.
A: We do not publish explicit metadata on demographic features. However, when publishing
high-resolution medical image data, there is necessarily the possibility of deriving such
information from the images with a certain degree of probability. Nevertheless, we do not
see any additional risk with this publication, as the data is already freely available on the
Internet.

• It is possible to indirectly infer meta-information about the patient from the image data. We
however do not explicitly provide this information in our dataset.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe
how.
A: Clearly defined de-identifying measures exist for a portion of the dataset (those distributed
via TCIA). The other datasets are also anonymized, so reidentification is not possible from
our point of view. We take up this point in the main submission under Section 3 (Ethical
Discussion). We do not see any additional risk with this publication, as the data is already
freely available.

• Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals race or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.
A: The dataset contains health data. However, we do not see any additional risk with this
publication, as the data is already freely available.

• Any other comments?
A: No.

7.3 Collection Process
• How was the data associated with each instance acquired? Was the data directly ob-

servable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
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indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If the data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.
A: All data is indirectly inferred from the CT images of the original datasets. We trained
and validated several methods on the dataset. The results show that training on the data we
derived reduced the target regression error in an expected manner. In our view, this validates
the suitability of our dataset.

• What mechanisms or procedures were used to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation, software programs, software APIs)? How
were these mechanisms or procedures validated?
A: We attach great importance to reproducibility and the possibility of validation of our
methods. Our entire automated workflow is described and deposited in the linked GitHub
and can be validated by any expert. The elaborate annotation of landmarks in the lung was
performed with peer-reviewed, freely available software and described in detail.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
A: We sampled scan pairs based on total lung volume change and availability of landmark
annotations, which is further discussed in Section 2. Point clouds were downsampled based
on point cloud density. Details are described in the corresponding section.

• Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?
A: The manual annotations were performed by two research assistants (students) employed
at the University of Lübeck. They were compensated with a salary of 13C/h, which is the
standard salary for this position. We plan to integrate both assistants into further projects.

• Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created.
A: Scans of the original datasets were acquired between 2002 and 2017. Details are described
in Section 2.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as well
as a link or other access point to any supporting documentation.
A: Not on our end. However, ethical reviews were conducted regarding the data acquisition
of the original datasets.

• Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?
A: CT scans were sourced from the websites providing the original datasets.

• Were the individuals in question notified about the data collection? If so, please describe
(or show with screenshots or other information) how notice was provided, and provide a link
or other access point to, or otherwise reproduce, the exact language of the notification itself.
A: No.

• Did the individuals in question consent to the collection and use of their data? If so,
please describe (or show with screenshots or other information) how consent was requested
and provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.
A: We refer to the collection details of the original datasets. All images we use are publicly
available.

• If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses? If so, please provide a description,
as well as a link or other access point to the mechanism (if appropriate).
A: For this point we refer to the original publications of the data, since we ourselves have
not collected a consent.

• Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,
a data protection impact analysis) been conducted? If so, please provide a description of
this analysis, including the outcomes, as well as a link or other access point to any supporting
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documentation.
A: No.

• Any other comments?
A: No.

7.4 Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? If so, please provide a description. If not, you may skip the
remaining questions in this section.
A: Preprocessing of CT images includes resampling and cropping. Labeled segmentations
were obtained via a nnUNet.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to
the “raw” data.
A: All raw data are publicly available as part of the original datasets.

• Is the software that was used to preprocess/clean/label the data available? If so, please
provide a link or other access point.
A: Preprocessing is done in Python and using the public c3d toolbox. Scripts are available
on our GitHub.

• Any other comments?
A: No.

7.5 Uses

• Has the dataset been used for any tasks already? If so, please provide a description.
A: We used the dataset for selected benchmark methods we described in our paper. Apart
from that, the datasets, that Lung250M-4B builds upon, have been used in several image
registration tasks before. We anticipate widespread use by both machine learning researchers
in the field of 3D point cloud processing and medical image registration (cf. [12]).

• Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.
A: Not yet, but we plan to enable authors of upcoming methods that use our dataset as a
benchmark to link their system on GitHub or paperswithcode.

• What (other) tasks could the dataset be used for?
A: The dataset can be used to pre-train either 3D image-based or point-cloud deep learning
models in particular for other tasks related to motion and/or highly deformable 3D objects.
The derived algorithms can become important tools for medical diagnostics, treatment
planning, interactive image-guidance systems and many other things. Research papers on
3D method are number one category of CVPR 2023 https://public.tableau.com and
we envision a secondary use of our dataset for at least a subset of the methods presented in
these papers.

• Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a dataset consumer might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other risks
or harms (e.g., legal risks, financial harms)? If so, please provide a description. Is there
anything a dataset consumer could do to mitigate these risks or harms?
A: Patients and occurring pathologies are not representative of the general population.

• Are there tasks for which the dataset should not be used? If so, please provide a
description.
A: This dataset is to be used for research purposes only. It is not intended for clinical usage.

• Any other comments?
A: No.
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7.6 Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.
A: The dataset will be released to the general public but not to any specific third party.

• How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?
A: The image data is currently available through the cloud of the University of Lübeck. The
point cloud data is available via Zenodo with a DOI. All code is available on GitHub.

• When will the dataset be distributed?
A: The dataset is available immediately.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.
A: The dataset is distributed under CC-BY-4.0 licence. This excludes CT scans from the
DIR-LAB COPDgene dataset and EMPIRE10.

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.
A: No IP-based restrictions apart from abiding to e.g. referencing original data creators
according to CC-BY-4.0 licence guidelines are imposed.

• Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.
A: No.

• Any other comments?
A: No.

7.7 Maintenance

• Who will be supporting/hosting/maintaining the dataset?
A: Our research group at the University of Lübeck will continue to host and maintain the
dataset.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
A: Mattias Heinrich can be contacted to communicate queries regarding the dataset
heinrich (at) imi (dot) uni (dash) luebeck (dot) de

• Is there an erratum? If so, please provide a link or other access point.
A: We plan to document possible corrections to the dataset via GitHub.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be communi-
cated to dataset consumers (e.g., mailing list, GitHub)?
A: We do not plan to regularly update the dataset. However, if it should be necessary, we
will communicate this via GitHub.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.
A: No.

• Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
dataset consumers.
A: We do not plan to change the general structure of the dataset even with a possible update,
so there should be no need for user customization in this case. In case we do change the
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general structure of the dataset, we will provide tools to migrate from the outdated version
to the current version. We will document all updates and changes on GitHub.

• If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to dataset consumers? If so, please provide
a description.
A: Interested third parties are welcome to contact us directly to discuss extensions of the
dataset. In principle, adding new cases from TCIA to the dataset is as simple as preparing a
.csv meta-data file that contains the respective DICOM series IDs. We also plan to implement
a mechanism to comprehensibly validate new technical contributions that are applied to
the dataset and would implement a leaderboard. If an extension/augmentation/contribution
occurs, we will document it via GitHub.

• Any other comments?
A: We include a comparison of benchmark results in our GitHub repository. Researchers
are welcome to submit their own results on Lung250M-4B. We will verify the correctness
of these results before making them publicly available.

8 Author statement

As authors, we confirm that we bear all responsibility in case of any violation of rights during the
collection of the data or other work, and will take appropriate action when needed, e.g. to remove
data with such issues.
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