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Abstract

A private learner is trained on a sample of labeled points and generates1

a hypothesis that can be used for predicting the labels of newly sampled2

points while protecting the privacy of the training set [Kasiviswannathan3

et al., FOCS 2008]. Research uncovered that private learners may need to4

exhibit significantly higher sample complexity than non-private learners5

as is the case with, e.g., learning of one-dimensional threshold functions6

[Bun et al., FOCS 2015, Alon et al., STOC 2019].7

We explore prediction as an alternative to learning. Instead of putting8

forward a hypothesis, a predictor answers a stream of classification queries.9

Earlier work has considered a private prediction model with just a single10

classification query [Dwork and Feldman, COLT 2018]. We observe that11

when answering a stream of queries, a predictor must modify the hypothesis12

it uses over time, and, furthermore, that it must use the queries for this13

modification, hence introducing potential privacy risks with respect to the14

queries themselves.15

We introduce private everlasting prediction taking into account the privacy16

of both the training set and the (adaptively chosen) queries made to the17

predictor. We then present a generic construction of private everlasting18

predictors in the PAC model. The sample complexity of the initial training19

sample in our construction is quadratic (up to polylog factors) in the VC20

dimension of the concept class. Our construction allows prediction for21

all concept classes with finite VC dimension, and in particular threshold22

functions with constant size initial training sample, even when considered23

over infinite domains, whereas it is known that the sample complexity24

of privately learning threshold functions must grow as a function of the25

domain size and hence is impossible for infinite domains.26

1 Introduction27

A PAC learner is given labeled examples S = {(xi , yi)}i∈[n] drawn i.i.d. from an unknown28

underlying probability distribution D over a data domain X and outputs a hypothesis h29

that can be used for predicting the label of fresh points xn+1,xn+2, . . . sampled from the same30

underlying probability distribution D [Valiant, 1984]. It is well known that when points31

are labeled by a concept selected from a concept class C = {c : X→ {0,1}} then learning is32

possible with sample complexity proportional to the VC dimension of the concept class.33

Learning often happens in settings where the underlying training data is related to indi-34

viduals and privacy-sensitive and where a learner is required, for legal, ethical, or other35

reasons, to protect personal information from being leaked in the learned hypothesis h.36

Private learning was introduced by Kasiviswanathan et al. [2011], as a theoretical model for37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not
distribute.



studying such tasks. A private learner is a PAC learner that preserves differential privacy38

with respect to its training set S. That is, the learner’s distribution on outcome hypotheses39

must not depend too strongly on any single example in S. Kasiviswanathan et al. showed40

via a generic construction that any finite concept class can be learned privately and with41

sample complexity n = O(log |C|). This value (O(log |C|)) can be significantly higher than the42

VC dimension of the concept class C (see below).43

It is now understood that the gap between the sample complexity of private and non-private44

learners is essential – an important example is private learning of threshold functions45

(defined over an ordered domain X as Cthresh = {ct}t∈X where ct(x) = 1x≥t), which requires46

sample complexity that is asymptotically higher than the (constant) VC dimension of Cthresh.47

In more detail, with pure differential privacy, the sample complexity of private learning is48

characterized by the representation dimension of the concept class [Beimel et al., 2013a].49

The representation dimension of Cthresh (hence, the sample complexity of private learning50

thresholds) is Θ(log |X |) [Feldman and Xiao, 2015]. With approximate differential privacy,51

the sample complexity of learning threshold functions is Θ(log∗ |X |) [Beimel et al., 2013b,52

Bun et al., 2015, Alon et al., 2019, Kaplan et al., 2020, Cohen et al., 2022]. Hence, in53

both the pure and approximate differential privacy cases, the sample complexity grows54

with the cardinality of the domain |X | and no private learner exists for threshold functions55

over infinite domains, such as the integers and the reals, whereas low sample complexity56

non-private learners exist for these tasks.57

Privacy preserving (black-box) prediction. Dwork and Feldman [2018] proposed privacy-58

preserving prediction as an alternative for private learning. Noting that “[i]t is now known59

that for some basic learning problems [. . .] producing an accurate private model requires60

much more data than learning without privacy,” they considered a setting where “users61

may be allowed to query the prediction model on their inputs only through an appropriate62

interface”. That is, a setting where the learned hypothesis is not made public. Instead, it may63

be accessed in a “black-box” manner via a privacy-preserving query-answering prediction64

interface. The prediction interface is required to preserve the privacy of its training set S:65

Definition 1.1 (private prediction interface [Dwork and Feldman, 2018] (rephrased)). A66

prediction interface M is (ϵ,δ)-differentially private if for every interactive query generating67

algorithm Q, the output of the interaction between Q and M(S) is (ϵ,δ)-differentially private68

with respect to S.69

Dwork and Feldman focused on the setting where the entire interaction between Q and70

M(S) consists of issuing a single prediction query and answering it:71

Definition 1.2 (Single query prediction [Dwork and Feldman, 2018]). Let M be an algorithm72

that given a set of labeled examples S and an unlabeled point x produces a label y. M73

is an (ϵ,δ)-differentially private prediction algorithm if for every x, the output M(S,x) is74

(ϵ,δ)-differentially private with respect to S.75

W.r.t. answering a single prediction query, Dwork and Feldman showed that the sample76

complexity of such predictors is proportional to the VC dimension of the concept class.77

1.1 Our contributions78

In this work, we extend private prediction beyond a single query to answering any sequence79

– unlimited in length – of prediction queries. We refer to this as private everlasting prediction.80

Our goal is to present a generic private everlasting predictor with low training sample81

complexity |S |.82

Private prediction interfaces when applied to a large number of queries. We begin by83

examining private everlasting prediction under the framework of Definition 1.1. We prove:84

Theorem 1.3 (informal version of Theorem 3.3). Let A be a private everlasting prediction85

interface for concept class C and assume A bases its predictions solely on the initial training set S,86

then there exists a private learner for concept class C with sample complexity |S |.87

This means that everlasting predictors that base their prediction solely on the initial training88

set S are subject to the same complexity lowerbounds as private learners. Hence, to avoid89
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private learning lowerbounds, private everlasting predictors need to rely on more than90

the initial training sample S as a source of information about the underlying probability91

distribution and the labeling concept.92

In this work, we choose to allow the everlasting predictor to rely on the queries made -93

which are unlabeled points from the domain X, assuming the queries are drawn from the94

same distribution the initial training S is sampled from. This requires changing the privacy95

definition, as Definition 1.1 does not protect the queries made, yet the classification given to96

a query can now depend on and hence reveal information provided in queries made earlier.97

A definition of private everlasting predictors. Our definition of private everlasting98

predictors is motivated by the observations above. Consider an algorithm A that is first99

fed with a training set S of labeled points and then executes for an unlimited number of100

rounds, where in round i algorithm A receives as input a query point xi and produces101

a label ŷi . We say that A is an everlasting predictor if, when the (labeled) training set S102

and the (unlabeled) query points are coming from the same underlying distribution, A103

answers each query points xi with a good hypothesis hi , and hence the label ŷi produced104

by A is correct with high probability. We say that A is a private everlasting predictor if its105

sequence of predictions ŷ1, ŷ2, ŷ3, . . . protects both the privacy of the training set S and the106

query points x1,x2,x3, . . . in face of any adversary that adaptively chooses the query points.107

We emphasize that while private everlasting predictors need to exhibit average-case utility108

– as good prediction is required only for the case where S and x1,x2,x3, . . . are selected109

i.i.d. from the same underlying distribution – our privacy requirement is worst-case, and110

holds in face of an adaptive adversary that chooses each query point xi after receiving the111

prediction provided for (x1, . . . ,xi−1), and not necessarily in accordance with any probability112

distribution.113

A generic construction of private everlasting predictors. Our construction, called114

GenericBBL, executes in rounds. The input to the first round is the initial labeled training115

set S, where the number of samples in S is quadratic in the VC dimension of the concept116

class. Each other round begins with a collection Si of labeled examples and ends with newly117

generated collection of labeled examples Si+1. The set S is assumed to be consistent with118

some concept c ∈ C and our construction ensures that this is the case also for the sets Si for119

all i. We briefly describe the main computations performed in each round of GenericBBL.1120

• Round initialization: At the outset of a round, the labeled set Si is partitioned into121

sub-sets, each with number of samples which is proportional to the VC dimension122

(so we have ≈ |Si |
VC(C) sub-sets). Each of the sub-sets is used for training a classifier123

non-privately, hence creating a collection of classifiers Fi = {f : X→ {0,1}} that are used124

throughout the round.125

• Query answering: Queries are issued to the predictor in an online manner. Each query126

is first labeled by each of the classifiers in Fi . Then the predicted label is computed by127

applying a privacy-preserving majority vote on these intermediate labels. (By standard128

composition theorems for differential privacy, we could answer roughly |Fi |2 ≈
( |Si |

VC(C)

)2
129

queries without exhausting our privacy budget.) To save on the privacy budget, the130

majority vote is based on the BetweenThresholds mechanism of Bun et al. [2016]131

(which in turn is based on the sparse vector technique). The algorithm fails when the132

privacy budget is exhausted. However, when queries are sampled from the underlying133

distribution then with a high enough probability the labels produced by the classifiers134

in Fi would exhibit a clear majority.135

• Generating a labeled set for the following round: The predictions provided in the136

duration of a round are not guaranteed to be consistent with any concept in C and137

hence cannot be used to set the following round. Instead, at the end of the round these138

points are relabeled consistently with C using a technique developed by Beimel et al.139

1Important details, such as privacy amplification via sampling and management of the learning
accuracy and error parameters are omitted from the description provided in this section.
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[2021] in the context of private semi-supervised learning. Let Si+1 denote the query140

points obtained during the ith round, after (re)labeling them. This is a collection of141

size |Si+1| ≈
( |Si |

VC(C)

)2
. Hence, provided that |Si | ≳ (VC(C))2 we get that |Si+1| > |Si | which142

allows us to continue to the next round with more data than we had in the previous143

round.144

Theorem 1.4 (informal version of Theorem 5.1). For every concept class C, Algorithm145

GenericBBL is a private everlasting predictor requiring an initial set of labeled examples which is146

(upto polylogarithmic factors) quadratic in the VC dimension of C.147

1.2 Related work148

Beyond the work of Dwork and Feldman [2018] on private prediction mentioned above, our149

work is related to private semi-supervised learning and joint differential privacy.150

Semi-supervised private learning. As in the model of private semi-supervised learning of151

Beimel et al. [2021], our predictors depend on both labeled and unlabeled sample. Beyond152

the obvious difference between the models (outputting a hypothesis vs. providing black-box153

prediction), a major difference between the settings is that in the work of Beimel et al. [2021]154

all samples – labeled and unlabeled - are given at once at the outset of the learning process155

whereas in the setting of everlasting predictors the unlabeled samples are supplied in an156

online manner. Our construction of private everlasting predictors uses tools developed for157

the semi-supervised setting, and in particular Algorithm LabelBoost of of Beimel et al.158

Joint differential privacy. Kearns et al. [2015] introduced joint differential privacy (JDP)159

as a relaxation of differential privacy applicable for mechanism design and games. For160

every user u, JDP requires that the outputs jointly seen by all other users would preserve161

differential privacy w.r.t. the input of u. Crucially, in JDP users select their inputs ahead of162

the computation. In our settings, the inputs to a private everlasting predictor are prediction163

queries which are chosen in an online manner, and hence a query can depend on previous164

queries and their answers. Yet, similarly to JDP, the outputs provided to queries not165

performed by a user u should jointly preserve differential privacy w.r.t. the query made by166

u. Our privacy requirement hence extends JDP to an adaptive online setting.167

Additional works on private prediction. Bassily et al. [2018] studied a variant of the168

private prediction problem where the algorithm takes a labeled sample S and is then169

required to answer m prediction queries (i.e., label a sequence of m unlabeled points170

sampled from the same underlying distribution). They presented algorithms for this task171

with sample complexity |S | ≳
√
m. This should be contrasted with our model and results,172

where the sample complexity is independent of m. The bounds presented by Dwork and173

Feldman [2018] and Bassily et al. [2018] were improved by Dagan and Feldman [2020] and174

by Nandi and Bassily [2020] who presented algorithms with improved dependency on the175

accuracy parameter in the agnostic setting.176

1.3 Discussion and open problems177

We show how to transform any (non-private) learner for the class C (with sample complexity178

proportional to the VC dimension of C) to a private everlasting predictor for C. Our179

construction is not polynomial time due to the use of Algorithm LabelBoost, and requires180

an initial set S of labeled examples which is quadratic in the VC dimension. We leave open181

the question whether |S | can be reduced to be linear in the VC dimension and whether the182

construction can be made polynomial time. A few remarks are in order:183

1. Even though our generic construction is not computationally efficient, it does re-184

sult in efficient learners for several interesting special cases. Specifically, algorithm185

LabelBoost can be implemented efficiently whenever given an input sample S we186

could efficiently enumerate all possible dichotomies from the target class C over the187

points in S. In particular, this is the case for the class of 1-dim threshold functions188

Cthresh, as well as additional classes with constant VC dimension. Another notable189
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example is the class Cenc
thresh which intuitively is an “encrypted” version of Cthresh. Bun190

and Zhandry [2016] showed that (under plausible cryptographic assumptions) the191

class Cenc
thresh cannot be learned privately and efficiently, while non-private learning is192

possible efficiently. Our construction can be implemented efficiently for this class. This193

provides an example where private everlasting prediction can be done efficiently, while194

(standard) private learning is possible but inefficient.195

2. It is now known that some learning tasks require the produced model to memorize196

parts of the training set in order to achieve good learning rates, which in particular197

disallows the learning algorithm from satisfying (standard) differential privacy [Brown198

et al., 2021]. Our notion of private everlasting prediction circumvents this issue, since199

the model is never publicly released and hence the fact that it must memorize parts200

of the sample is not of a direct privacy threat. In other words, our work puts forward201

a private learning model which, in principle, allows memorization. This could have202

additional applications in broader settings.203

3. As we mentioned, in general, private everlasting predictors cannot base their predic-204

tions solely on the initial training set, and in this work we choose to rely on the queries205

presented to the algorithm (in addition to the training set). Our construction can be206

easily adapted to a setting where the content of the blackbox is updated based on fresh207

unlabeled samples (whose privacy would be preserved), instead of relying on the query208

points themselves. This might be beneficial to avoid poisoning attacks via the queries.209

2 Preliminaries210

2.1 Preliminaries from differential privacy211

Definition 2.1 ((ϵ,δ)-indistinguishability). Let R0,R1 be two random variables over the
same support. We say that R0,R1 are (ϵ,δ)-indistinguishable if for every event E defined
over the support of R0,R1,

Pr[R0 ∈ E] ≤ eϵ ·Pr[R1 ∈ E] + δ and Pr[R1 ∈ E] ≤ eϵ ·Pr[R0 ∈ E] + δ.

Definition 2.2. Let X be a data domain. Two datasets x,x′ ∈ Xn are called neighboring if212

|{i : xi , x′}| = 1.213

Definition 2.3 (differential privacy [Dwork et al., 2006]). A mechanism M : Xn → Y is214

(ϵ,δ)-differentially private if M(x) and M(x′) are (ϵ,δ)-indistinguishable for all neighboring215

x,x′ ∈ Xn.216

In our analysis, we use the post-processing and composition properties of differential217

privacy, that we cite in their simplest form.218

Proposition 2.4 (post-processing). Let M1 : Xn→ Y be an (ϵ,δ)-differentially private algorithm219

and M2 : Y → Z be any algorithm. Then the algorithm that on input x ∈ Xn outputs M2(M1(x))220

is (ϵ,δ)-differentially private.221

Proposition 2.5 (composition). Let M1 be a (ϵ1,δ1)-differentially private algorithm and let222

M2 be (ϵ2,δ2)-differentially private algorithm. Then the algorithm that on input x ∈ Xn outputs223

(M1(x),M2(x) is (ϵ1 + ϵ2,δ1 + δ2)-differentially private.224

Definition 2.6 (Exponential mechanism [McSherry and Talwar, 2007]). Let q : Xn ×Y → R225

be a score function defined over data domain X and output domain Y . Define ∆ =226

max(|q(x,r)− q(x′ , y)|) where the maximum is taken over all y ∈ Y and neighbouring227

databases x,x′ ∈ Xn. The exponential mechanism is the ϵ-differentially private mecha-228

nism which selects an output y ∈ Y with probability proportional to e
ϵq(x,y)

2∆ .229

Claim 2.7 (Privacy amplification by sub-sampling [Kasiviswanathan et al., 2011]). Let A230

be an (ε′ ,δ′)-differentially private algorithm operating on a database of size n. Let ε ≤ 1 and231

let t = n
ε (3 + exp(ε′)). Construct an algorithm B operating the database D = (zi)

t
i=1. Algorithm232

B randomly selects a subset J ⊆ {1,2, . . . , t} of size n, and executes A on DJ = (zi)i∈J . Then B is233 (
ε, 4ε

3+exp(ε′)δ
′
)
-differentially private.234
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2.2 Preliminaries from PAC learning235

A concept class C over data domain X is a set of predicates c : X→ {0,1} (called concepts)236

which label points of the domain X by either 0 or 1. A learner A for concept class C is237

given n examples sampled i.i.d. from an unknown probability distribution D over the data238

domain X and labeled according to an unknown target concept c ∈ C. The learner should239

output a hypothesis h : X→ [0,1] that approximates c for the distribution D. More formally,240

Definition 2.8 (generalization error). The generalization error of a hypothesis h : X→ [0,1]241

with respect to concept c and distribution D is defined as errorD(c,h) = Expx∼D[|h(x)− c(x)|].242

Definition 2.9 (PAC learning [Valiant, 1984]). Let C be a concept class over a domain X.
Algorithm A is an (α,β,n)-PAC learner for C if for all c ∈ C and all distributions D on X,

Pr[(x1, . . . ,xn) ∼ Dn ; h ∼ A((x1, c(x1)), . . . , (xn, c(xn)) ; errorD(c,h) ≤ α] ≥ 1− β,
where the probability is over the sampling of (x1, . . . ,xn) from D and the coin tosses of A.243

The parameter n is the sample complexity of A.244

See Appendix A for additional preliminaries on PAC learning.245

2.3 Preliminaties from private learning246

Definition 2.10 (private PAC learning [Kasiviswanathan et al., 2011]). Algorithm A is247

a (α,β,ϵ,δ,n)-private PAC learner if (i) A is an (α,β,n)-PAC learner and (ii) A is (ϵ,δ)248

differentially private.249

Kasiviswanathan et al. [2011] provided a generic private learner with O(VC(C) log(|X |))250

labeled samples. Beimel et al. [2013a] introduced the representation dimension and showed251

that any concept class C can be privately learned with Θ(RepDim(C)) samples.2 For the252

sample complexity of (ϵ,δ)-differentially private learning of threshold functions over do-253

main X, Bun et al. [2015] give a lower bound of Ω(log∗ |X |). Recently, Cohen et al. [2022]254

give a (nearly) matching upper bound of Õ(log∗ |X |).255

3 Towards private everlasting prediction256

In this work, we extend private prediction beyond a single query to answering any sequence257

– unlimited in length – of prediction queries. Our goal is to present a generic private258

everlasting predictor with low training sample complexity |S |.259

Definition 3.1 (everlasting prediction). LetA be an algorithm with the following properties:260

1. Algorithm A receives as input n labeled examples S = {(xi , yi)}ni=1 ∈ (X × {0,1})n and261

selects a hypothesis h0 : X→ {0,1}.262

2. For round r ∈ N, algorithm A gets a query, which is an unlabeled element xn+r ∈ X,263

outputs hr−1(xn+r ) and selects a hypothesis hr : X→ {0,1}.264

We say that A is an (α,β,n)-everlasting predictor for a concept class C over a domain X if the265

following holds for every concept c ∈ C and for every distribution D over X. If x1,x2, . . . are266

sampled i.i.d. from D, and the labels of the n initial samples S are correct, i.e., yi = c(xi) for267

i ∈ [n], then Pr[∃r ≥ 0 s.t. errorD(c,hr ) > α] ≤ β, where the probability is over the sampling268

of x1,x2, . . . from D and the randomness of A.269

Definition 3.2. An algorithm A is an (α,β,ϵ,δ,n)-everlasting differentially private predic-270

tion interface if (i) A is a (ϵ,δ)-differentially private prediction interface M (as in Defini-271

tion 1.1), and (ii) A is an (α,β,n)-everlasting predictor.272

As a warmup, consider an (α,β,ϵ,δ,n)- everlasting differentially private prediction interface273

A for concept class C over (finite) domain X (as in Definition 3.2 above). Assume thatA does274

not vary its hypotheses, i.e. (in the language of Definition 3.1) hr = h0 for all r > 0.3 Note275

2We omit the dependency on ϵ,δ,α,β in this brief review.
3Formally, A can be thought of as two mechanisms (M0,M1) where M0 is (ϵ,δ)-differentially

private. (i) On input a labeled training sample S mechanism M0 computes a hypothesis h0. (ii) On a
query x ∈ X mechanism M1 replies h0(x).
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that a computationally unlimited adversarial querying algorithm can recover the hypothesis276

h0 by issuing all queries x ∈ X. Hence, in using A indefinitely we lose any potential benefits277

to sample complexity of restricting access to h0 to being black-box and getting to the point278

where the lower-bounds on n from private learning apply. A consequence of this simple279

observation is that a private everlasting predictor cannot answer all prediction queries with280

a single hypothesis – it must modify its hypothesis over time as it processes new queries.281

We now take this observation a step further, showing that a private everlasting predictor282

that answers prediction queries solely based on its training sample S is subject to the same283

sample complexity lowerbounds as private learners.284

Consider an (α,β < 1/8,ϵ,δ,n)-everlasting differentially private prediction interface A for285

concept class C over (finite) domain X that upon receiving the training set S ∈ (X × {0,1})n286

selects an infinite sequence of hypotheses {hr }r≥0 where hr : X → {0,1}. Formally, we287

can think of A as composed of three mechanisms A = (M0,M1,M2) where M0 is (ϵ,δ)-288

differentially private:289

• On input a labeled training sample S ∈ (X × {0,1})n mechanism M0 computes an290

initial state and an initial hypothesis (σ0,h0) = M0(S).291

• On a query xn+r mechanism M1 produces an answer M1(xn+r ) = hi(xn+r ) and mech-292

anism M2 updates the hypothesis-state pair (hr+1,σr+1) = M2(σr ).293

Note that as M0 and M2 do not receive the sequence {xn+r }r≥0 as input, the sequence {hr }r≥0294

depends solely on S. Furthermore as M1 and M2 post-process the outcome of M0, i.e., the295

sequence of queries and predictions {(xr ,hr (xr ))}r≥0 preserves (ϵ,δ)-differential privacy with296

respect to the training set S. In Appendix B we prove:297

Theorem 3.3. A can be transformed into a (O(α),O(β),ϵ,δ,O(n log(1/β))-private PAC learner298

for C.299

3.1 A definition of private everlasting prediction300

Theorem 3.3 requires us to seek private predictors whose prediction relies on more infor-301

mation than what is provided by the initial labeled sample. Possibilities include requiring302

the input of additional labeled or unlabeled examples during the lifetime of the predictor,303

while protecting the privacy of these examples. In this work we choose to rely on the queries304

for updating the predictor’s internal state. This introduces a potential privacy risk for these305

queries as sensitive information about a query may be leaked in the predictions following it.306

Furthermore, we need take into account that a privacy attacker may choose their queries307

adversarially and adaptively.308

Definition 3.4 (private everlasting black-box prediction). An algorithm A is an (α,β,ε,δ,n)-309

private everlasting black-box predictor for a concept class C if310

1. Prediction: A is an (α,β,n)-everlasting predictor for C (as in Definition 3.1).311

2. Privacy: For every adversary B and every t ≥ 1, the random variables View0
B,t and312

View1
B,t (defined in Figure 1) are (ε,δ)-indistinguishable.313

4 Tools from prior works314

We briefly describe tools from prior works that we use in our construction. See Appendix C315

for a more detailed account.316

Algorithm LabelBoost [Beimel et al., 2021]: Algorithm LabelBoost takes as input a317

partially labeled database S ◦ T ∈ (X × {0,1,⊥})∗ (where the first portion of the database,318

S, contains labeled examples) and outputs a similar database where both S and T are319

(re)labeled. We use the following lemmata from Beimel et al. [2021]:320

Lemma 4.1 (privacy of Algorithm LabelBoost). Let A be an (ϵ,δ)-differentially private al-321

gorithm operating on labeled databases. Construct an algorithm B that on input a partially322
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Parameters: b ∈ {0,1}, t ∈ N.

Training Phase:

1. The adversary B chooses two sets of n labeled elements (x0
1, y

0
1 ), . . . , (x0

n, y
0
n) and

(x1
1, y

1
1 ), . . . , (x1

n, y
1
n), subject to the restriction

∣∣∣∣{i ∈ [n] : (x0
i , y

0
i ) , (x1

i , y
1
i )

}∣∣∣∣ ∈ {0,1}.
2. If ∃i s.t. (x0

i , y
0
i ) , (x1

i , y
1
i ) then set Flag = 1. Otherwise set Flag = 0.

3. Algorithm A gets (xb1, y
b
1), . . . , (xbn, y

b
n) and selects a hypothesis h0 : X→ {0,1}.

\* the adversary B does not get to see the hypothesis h0 *\
Prediction phase:

4. For round r = 1,2, . . . , t:

(a) If Flag = 1 then the adversary B chooses two elements x0
n+r = x1

n+r ∈ X.
Otherwise, the adversary B chooses two elements x0

n+r ,x
1
n+r ∈ X.

(b) If x0
n+r , x

1
n+r then Flag is set to 1.

(c) If x0
n+r = x1

n+r then the adversary B gets hr−1(xbn+r ).
\* the adversary B does not get to see the label if x0

n+r , x
1
n+r *\

(d) Algorithm A gets xbn+r and selects a hypothesis hr : X→ {0,1}.
\* the adversary B does not get to see the hypothesis hr *\

Let Viewb
B,t be B’s entire view of the execution, i.e., the adversary’s randomness

and the sequence of predictions in Step 4c.

Figure 1: Definition of View0
B,t and View1

B,t .

labeled database S◦T ∈ (X × {0,1,⊥})∗ applies A on the outcome of LabelBoost(S◦T ). Then, B323

is (ϵ+ 3,4eδ)-differentially private.324

Lemma 4.2 (Utility of Algorithm LabelBoost). Fix α and β, and let S◦T be s.t. S is labeled325

by some target concept c ∈ C, and s.t. |T | ≤ β
e VC(C)exp( α|S |

2VC(C) ) − |S |. Consider the execution326

of LabelBoost on S◦T , and let h denote the hypothesis chosen by LabelBoost to relabel S◦T .327

With probability at least (1− β) we have that errorS (h) ≤ α.328

Algorithm BetweenThresholds [Bun et al., 2016]: Algorithm BetweenThresholds takes329

as input a database S ∈ Xn and thredholds tℓ , tu . It applies the sparse vector technique to330

answer noisy threshold queries with L (below threshold) R (above threshold) and ⊤ (halt).331

We use the following lemmata by Bun et al. [2016] and observe that, using standard privacy332

amplification theorems, Algorithm BetweenThresholds can be modified to allow for c times333

of outputting ⊤ before halting, with a (roughly)
√
c growth in its privacy parameter.334

Lemma 4.3 (Privacy for BetweenThresholds). Let ε,δ ∈ (0,1) and n ∈ N. Then algorithm335

BetweenThresholds is (ε,δ)-differentially private for any adaptively-chosen sequence of queries336

as long as the gap between the thresholds tℓ , tu satisfies tu − tℓ ≥ 12
εn (log(10/ε) + log(1/δ) + 1) .337

Lemma 4.4 (Accuracy of BetweenThresholds). Let α,β,ε, tℓ , tu ∈ (0,1) and n,k ∈ N satisfy338

n ≥ 8
αε (log(k + 1) + log(1/β)) . Then, for any input x ∈ Xn and any adaptively-chosen sequence339

of queries q1,q2, · · · ,qk , the answers a1, a2, · · ·a≤k produced by BetweenThresholds on input x340

satisfy the following with probability at least 1− β. For any j ∈ [k] such that aj is returned before341

BetweenThresholds halts, (i) aj = L =⇒ qj (x) ≤ tℓ +α, (ii) aj = R =⇒ qj (x) ≥ tu −α, and (iii)342

aj =⊤ =⇒ tℓ −α ≤ qj (x) ≤ tu +α.343

Observation 1. Using standard composition theorems for differential privacy (see, e.g., Dwork344

et al. [2010]), we can assume that algorithm BetweenThresholds takes another parameter c,345

and halts after c times of outputting ⊤. In this case, the algorithm satisfies (ε′ ,2cδ)-differential346

privacy, for ε′ =
√

2c ln( 1
cδ )ε+ cε(eε − 1).347

8



5 A Generic Construction348

Our generic construction Algorithm GenericBBL transforms a (non-private) learner for349

a concept class C into a private everlasting predictor for C. The proof of the following350

theorem follows from Theorem 5.2 and Claim 5.3 which are proved in Appendix E.351

Theorem 5.1. Given α,β,δ < 1/16,ϵ < 1, Algorithm GenericBBL is a (6α,4β,ϵ,δ,n)-private352

everlasting predictor, where n is set as in Algorithm GenericBBL.353

Algorithm GenericBBL

Initial input: A labeled database S ∈ (X × {0,1})n where n = 8τ
α3ε2 ·(

8VC(C) log( 26
α ) + 4log( 4

β )
)2
· log( 1

δ ) · log2
(

64VC(C) log( 26
α )+32log( 4

β )

εα2βδ

)
· (3 + exp(ε+ 4)) .

1. Let τ > 1.1 ∗ 1010. Set α1 = α/2, β1 = β/2. Define λi =
8VC(C) log( 13

αi
)+4log( 2

βi
)

αi
.

/* by Theorem A.2 λi samples suffice for PAC learning C with parameters αi ,βi */

2. Let S1 ⊆ S be a random subset of size n · ε
3+exp(ε+4) =

τ ·λ2
i ·log( 1

δ )·log2( λi
εαiβi δ

)

αiε
.

3. Repeat for i = 1,2,3, . . .

(a) Divide Si into Ti =
τ ·λi ·log( 1

δ )·log2( λi
εαiβi δ

)

αiε
disjoint databases Si,1, . . . ,Si,Ti of size λi .

(b) For t ∈ [Ti] let ft ∈ C be a hypothesis minimizing errorSi,t (·). Define Fi = (f1, . . . , fTi ).

(c) Set Ri = 25600|Si |
ε . Set tu = 1/2 + αi , tℓ = 1/2 − αi . Set the privacy param-

eters ε′i = 1

3
√
ci ln( 2

δ )
and δ′i = δ

2ci
, where ci = 64αiRi . Instantiate algorithm

BetweenThresholds on the database of hypotheses Fi allowing for ci = 64αiRi
rounds of ⊤ while satisfying (1,δ)-differential privacy (as in Observation 2).

(d) For ℓ = 1 to Ri :
i. Receive as input a prediction query xi,ℓ ∈ X.

ii. Give BetweenThresholds the query qxi,ℓ where qxi,ℓ (Fi) =
∑

t∈[Ti ] ft(xi,ℓ), and
obtain an outcome yi,ℓ ∈ {L,⊤,R}.

iii. Respond with the label 0 if yi,ℓ = L and 1 if yi,ℓ ∈ {R,⊤}.
iv. If BetweenThresholds halts, then halt and fail (recall that BetweenThresholds

only halts if ci copies of ⊤ were encountered during the current iteration).
(e) Denote Di = (xi,1, . . . ,xi,Ri

).

(f) Let Ŝi ⊆ Si and D̂i ⊆Di be random subsets of size ε|Si |
3+exp(ε+4) and ε|Di |

3+exp(ε+4) respec-

tively, and let Ŝ ′i◦D̂
′
i ← LabelBoost(Ŝi◦D̂i). Let Si+1 ⊆ D̂ ′i be a random subset of

size λi+1Ti+1.
(g) Set αi+1← αi /2 and βi+1← βi /2.

Theorem 5.2 (accuracy of algorithm GenericBBL). Given α,β,δ < 1/16, ε < 1, for any con-354

cept c and any round r, algorithm GenericBBL can predict the label of xr as hr(xr ), such that355

Pr[errorD(c(xr ) , hr (xr )) ≤ 6α] ≥ 1− 4β.356

Claim 5.3. GenericBBL is (ε,δ)-differentially private.357

Remark 5.4. For simplicity, we analyzed GenericBBL in the realizable setting, i.e., under the358

assumption that the training set S is consistent with the target class C. Our construction carries359

over to the agnostic setting via standard arguments (ignoring computational efficiency). We360

refer the reader to [Beimel et al., 2021] and [Alon et al., 2020] for generic agnostic-to-realizable361

reductions in the context of private learning.362
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A Additional Preliminaries from PAC Learning428

It is well know that that a sample of size Θ(VC(C)) is necessary and sufficient for the PAC429

learning of a concept class C, where the Vapnik-Chervonenkis (VC) dimension of a class C430

is defined as follows:431

Definition A.1 (VC-Dimension [Vapnik and Chervonenkis, 1971]). Let C be a concept class432

over a domain X. For a set B = {b1, . . . , bℓ} ⊆ X of ℓ points, let ΠC(B) = {(c(b1), . . . , c(bℓ)) : c ∈ C}433

be the set of all dichotomies that are realized by C on B. We say that the set B ⊆ X is shattered434

by C if C realizes all possible dichotomies over B, in which case we have |ΠC(B)| = 2|B|.435

The VC dimension of the class C, denoted VC(C), is the cardinality of the largest set B ⊆ X436

shattered by C.437

Theorem A.2 (VC bound ). Let C be a concept class over a domain X. For α,β < 1/2, there438

exists an (α,β,n)-PAC learner for C, where n =
8VC(C) log( 13

α )+4log( 2
β )

α .439

B Proof of Theorem 3.3440

The proof of Theorem 3.3 follows from algorithms HypothesisLearner, AccuracyBoost441

and claims B.1, B.2, all described below.442

In Algorithm HypothesisLearner we assume that the everlasting differentially private443

prediction interfaceAwas fed with n i.i.d. samples taken from some (unknown) distribution444

D and labeled by an unknown concept c ∈ C. Assumning the sequence of hypotheses {hr }r≥0445

produced by A satisfies446

∀r errorD(c,hr ) ≤ α (1)
we use it to construct – with constant probability – a hypothesis h with error bounded by447

O(α).448

Algorithm HypothesisLearner
Parameters: 0 < β ≤ 1/8, R = |X | log(|X |) log(1/β)
Input: hypothesis sequence {hr }r≥0

1. for all x ∈ X let Lx = ∅
2. for r = 0,1,2, . . . ,R

(a) select x uniformly at random from X and let Lx = Lx ∪ {hr (x)}
3. if Lx = ∅ for some x ∈ X then fail, output an arbitrary hypothesis, and halt

/* Pr[∃x such that Lx = ∅] ≤ |X |(1− 1
|X | )

R ≈ |X |e−R/ |X | = β */

4. for all x ∈ X let rx be sampled uniformly at random from Lx
5. construct the hypothesis h, where h(x) = rx

Claim B.1. If executed on a hypothesis sequence satisfying Equation 1 then with probability at449

least 3/4 Algorithm HypothesisLearner outputs a hypothesis h satisfying errorD(c,h) ≤ 8α.450

Proof. Having D, c ∈ C fixed, and given a hypothesis h, we define eh(x) to be 1 if h(x) , c(x)451

and 0 otherwise. Thus, we can write errorD(c,h) = Ex∼D[eh(x)].452

Observe that when Algorithm HypothesisLearner does not fail, rx (and hence h(x)) is cho-453

sen with equal probability among (h1(x),h2(x), . . . ,hR(x)) and hence Eθ[eh(x)] = Ei∈R[R][ehi (x)]454

where θ denotes the randomness of HypothesisLearner. We get:455

Eθ[errorD(c,h)] = EθEx∼D[eh(x)] = Ex∼DEθ[eh(x)]
= Ex∼DEi∈R[R][ehi (x)] = Ei∈R[R]Ex∼D[ehi (x)]

≤ Ei∼R[α] = α.

By Markov inequality, we have Prθ[errorD(c,h) ≥ 8α] ≤ 1/8. The claim follows noting that456

Algorithm HypothesisLearner fails with probability at most β ≤ 1/8.457
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The second part of the transformation is Algorithm AccuracyBoost that applies Algorithm458

HypothesisLearner O(log(1/β)) times to obtain with high probability a hypothesis with459

O(α) error.460

Algorithm AccuracyBoost

Parameters: β, R = 104ln 1
β

Input: R labeled samples with n examples each (S1, . . . ,SR) where Si ∈ (X × {0,1})n

1. for i = 1,2 . . .R
(a) execute A(Si) to obtain a hypothesis sequence {hir }r≥0

(b) execute Algorithm WeakHypothesisLearner on {hir }r≥0 to obtain hypothesis
hi

2. construct the hypothesis ĥ, where ĥ(x) = maj(h1(x), . . . ,hR(x)).

Claim B.2. With probability 1− β, Algorithm AccuracyBoost output a 24α-good hypothesis461

over distribution D.462

Proof. Define Bi to be the event where the sequence of hypotheses {hir }r≥0 produced in
Step 1a of AccuracyBoost does not satisfy Equation 1. We have,

Pr[errorD(c,hi) > 8α] ≤ Pr[B] + (1−Pr[B]) ·Pr[errorD(c,h) > 8α] ≤ β + 1/4 < 3/8.

Hence, by the Chernoff bound, when R ≥ 104ln 1
β , we have at least 7R/8 hypotheses are463

8α-good over distribution D. Consider the worst case, in which R/8 hypotheses always464

output wrong labels. To output a wrong label of x, we require at least 3R/8 hypotheses to465

output wrong labels. Thus h is 24α-good over distribution D.466

C Tools from Prior Works467

C.1 Algorithm LabelBoost [Beimel et al., 2021]468

Algorithm LabelBoost [Beimel et al., 2021]
Parameters: A concept class C.
Input: A partially labeled database S◦T ∈ (X × {0,1,⊥})∗.
% We assume that the first portion of the database (denoted S) contains labeled examples.

The algorithm outputs a similar database where both S and T are (re)labeled.
1. Initialize H = ∅.
2. Let P = {p1, . . . ,pℓ} be the set of all points p ∈ X appearing at least once in S◦T .

Let ΠC(P ) = {(c(p1), . . . , c(pℓ)) : c ∈ C} be the set of all dichotomies generated by C
on P .

3. For every (z1, . . . , zℓ) ∈ΠC(P ), add to H an arbitrary concept c ∈ C s.t. c(pi) = zi for
every 1 ≤ i ≤ ℓ.

4. Choose h ∈ H using the exponential mechanism with privacy parameter ϵ=1,
solution set H , and the database S.

5. (Re)label S◦T using h, and denote the resulting database (S◦T )h, that is, if
S◦T = (xi , yi)

t
i=1 then (S◦T )h = (xi , y′i )

t
i=1 where y′i = h(xi).

6. Output (S◦T )h.

Lemma C.1 (privacy of Algorithm LabelBoost [Beimel et al., 2021]). Let A be an (ϵ,δ)-469

differentially private algorithm operating on partially labeled databases. Construct an algorithm470

B that on input a partially labeled database S◦T ∈ (X × {0,1,⊥})∗ applies A on the outcome of471

LabelBoos(S◦T ). Then, B is (ϵ+ 3,4eδ)-differentially private.472
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Consider an execution of LabelBoost on a database S◦T , and assume that the examples in473

S are labeled by some target concept c ∈ C. Recall that for every possible labeling z⃗ of the474

elements in S and in T , algorithm LabelBoost adds to H a hypothesis from C that agrees475

with z⃗. In particular, H contains a hypothesis that agrees with the target concept c on S476

(and on T ). That is, ∃f ∈H s.t. errorS (f ) = 0. Hence, the exponential mechanism (on Step 4)477

chooses (w.h.p.) a hypothesis h ∈H s.t. errorS (h) is small, provided that |S | is roughly log |H |,478

which is roughly VC(C) · log(|S |+ |T |) by Sauer’s lemma. So, algorithm LabelBoost takes an479

input database where only a small portion of it is labeled, and returns a similar database in480

which the labeled portion grows exponentially.481

Lemma C.2 (utility of Algorithm LabelBoost [Beimel et al., 2021]). Fix α and β, and let S◦T
be s.t. S is labeled by some target concept c ∈ C, and s.t.

|T | ≤
β

e
VC(C)exp(

α|S |
2VC(C)

)− |S |.

Consider the execution of LabelBoost on S◦T , and let h denote the hypothesis chosen on Step 4.482

With probability at least (1− β) we have that errorS (h) ≤ α.483

C.2 Algorithm BetweenThresholds [Bun et al., 2016]484

Algorithm BetweenThresholds [Bun et al., 2016]
Input: Database S ∈ Xn.
Parameters: ε, tℓ , tu ∈ (0,1) and n,k ∈ N.

1. Sample µ ∼ Lap(2/εn) and initialize noisy thresholds t̂ℓ = tℓ +µ and t̂u = tu −µ.
2. For j = 1,2, · · · , k:

(a) Receive query qj : Xn→ [0,1].
(b) Set cj = qj (S) + νj where νj ∼ Lap(6/εn).

(c) If cj < t̂ℓ, output L and continue.

(d) If cj > t̂u , output R and continue.

(e) If cj ∈ [t̂ℓ , t̂u], output ⊤ and halt.

Lemma C.3 (Privacy for BetweenThresholds [Bun et al., 2016]). Let ε,δ ∈ (0,1) and n ∈ N.485

Then algorithm BetweenThresholds is (ε,δ)-differentially private for any adaptively-chosen486

sequence of queries as long as the gap between the thresholds tℓ , tu satisfies487

tu − tℓ ≥
12
εn

(log(10/ε) + log(1/δ) + 1) .

Lemma C.4 (Accuracy for BetweenThresholds [Bun et al., 2016]). Let α,β,ε, tℓ , tu ∈ (0,1)488

and n,k ∈ N satisfy489

n ≥ 8
αε

(log(k + 1) + log(1/β)) .

Then, for any input x ∈ Xn and any adaptively-chosen sequence of queries q1,q2, · · · ,qk , the490

answers a1, a2, · · ·a≤k produced by BetweenThresholds on input x satisfy the following with491

probability at least 1 − β. For any j ∈ [k] such that aj is returned before BetweenThresholds492

halts,493

• aj = L =⇒ qj (x) ≤ tℓ +α,494

• aj = R =⇒ qj (x) ≥ tu −α, and495

• aj =⊤ =⇒ tℓ −α ≤ qj (x) ≤ tu +α.496

Observation 2. Using standard composition theorems for differential privacy (see, e.g., Dwork497

et al. [2010]), we can assume that algorithm BetweenThresholds takes another parameter c,498

and halts after c times of outputting ⊤. In this case, the algorithm satisfies (ε′ ,2cδ)-differential499

privacy, for ε′ =
√

2c ln( 1
cδ )ε+ cε(eε − 1).500
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D Some Technical Facts501

We refer to the execution of steps 3a-3g of algorithm GenericBBL as a phase of the algorithm,502

indexed by i = 1,2,3, . . . .503

The original BetweenThresholds needs to halt when it outputs ⊤. In GenericBBL, we toler-504

ance it to halt at most ci times in the phase i. We prove BetweenThresholds in GenericBBL505

is (1,δ)-differentially private.506

Claim D.1. For δ < 1, Mechanism BetweenThresholds used in step 3c in the i-th iteration, is507

(1,δ)-differentially private.508

Proof. Let ε′i ,δ
′
i be as in Step 3c. Since eε

′
i − 1 < 2ε′i for 0 < ε′i < 1, we have√

2ci ln(
1

ciδ
′
i
) · ε′i + ciε

′
i(e

ε′i − 1) ≤
√

2ci ln(
2
δ

) · ε′i + 2ciε
′
i
2 =

√
2

3
+

2

9ln( 2
δ )
≤ 1.

The proof is concluded by using observation 2.509

In Claim D.2- D.5, we prove that with high probability, BetweenThresholds in step 3d halts510

within 64αi times. We prove it by 4 steps:511

1.prove that with high probability, most hypothesis in step 3b have high accuracy512

(Claim D.2).513

2.prove that if most hypothesis in step 3b have high accuracy, then with high probability,514

the queries in BetweenThresholds are closed to 0 or 1 (Claim D.3).515

3.prove that if the queries in BetweenThresholds are closed to 0 or 1, then516

BetweenThresholds in step 3d will outputs L or R with high probability(Claim D.4).517

4.prove that if BetweenThresholds outputs L or R, then every single phase fails with low518

probability(Claim D.5).519

Claim D.2. If βi ≤ 1/32 and Ti ≥ 96ln 1
αi

, then with probability 1−αi ,
15Ti
16 hypotheses in step 3b520

are αi-good with respect to gi , where gi is the concept of Si .521

Proof. By the VC bound (Theorem A.2), for each t ∈ [Ti], we have

Pr[errorD(ft , gi) ≤ αi] ≥ 1− βi .

By Chernoff bound, if Ti ≥
16+256βi
(1−16βi )2 ln 1

αi
, then with probability 1−αi , we have 15Ti

16 hypothe-522

ses have errorD(ft , gi) ≤ αi . When βi ≤ 1/32, it is sufficient to set Ti ≥ 96ln 1
αi

.523

Claim D.3. If αi ≤ 1/16 and 15Ti
16 hypotheses in step 3b are αi-good with respect to gi , where gi524

is the concept of Si , then Prx∼D[|q(x)− 1
2 | ≤

3
8 ] ≤ 15αi .525

Proof. W.l.o.g. assume gi(x) = 1, where gi is the concept of Si , so it is sufficient to prove526

Prx∼D[q(x) ≤ 7
8 ] ≤ 8αi . Consider the worst case that Ti

16 ”bad” hypotheses output 0. In that527

case, q(x) ≤ 7
8 when Ti

16 of αi-good hypotheses output 0. So that with probability 15αi , we528

have q(x) ≤ 7
8 .(see Figure 2)529

530

Claim D.4. Let tu < 1/2 + 1/8 and tℓ > 1/2− 1/8. For a query q such that q(S) > 7/8 (similarly,531

for q(S) < 1/8), Algorithm BetweenThresholds outputs R (similarly, L) with probability at least532

1− exp

− Ti

144
√
ci ln( 2

δ )

.533

Proof. Wlog assume q(S) > 7/8, it is sufficient to show534
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Figure 2: The horizontal represents the input point. The vertical represents the hypothesis.
The red parts represent the incorrect prediction. We let Ti

16 hypothesis predict all labels as 0.
To let q(x) ≤ 7

8 , there must exist Ti
16 hypothesis output 0. In the worst case, at most 15αi of

points are labeled as 0.

Pr[BetweenThreshold outputsR] = Pr[q(S) + Lap(6/ε′Ti) > tu + Lap(2/ε′Ti)]
> Pr[Lap(6/ε′Ti) > −1/8] ·Pr[Lap(2/ε′Ti) < 1/8]

=

1− 1
2

exp

− Ti

144
√
ci ln( 2

δ )


 ·

1− 1
2

exp

− Ti

48
√
ci ln( 2

δ )




> 1− exp

− Ti

144
√
ci ln( 2

δ )

 .
535

Claim D.5. For any phase i, BetweenThresholds outputs ⊤ at most 64αiRi times with proba-536

bility at most βi .537

Proof. For a single query, if tu < 1/2 + 1/8 and q(S) > 7/8 (similarly, tℓ > 1/2 − 1/8538

and q(S) < 1/8), by Claim D.4, BetweenThresholds outputs ⊤ with probability at539

most exp

− Ti

144
√
ci ln( 2

δ )

 = exp

− Ti

144
√

64αiRi ln( 2
δ )

 < αi . Combine Claim D.2 and D.3,540

BetweenThresholds outputs ⊤ with probability at most 32αi . By the Chernoff bound541

and Ri ≥
3ln( 1

βi
)

αi
, BetweenThresholds outputs ⊤ more than 64αiRi times with probability542

at most βi .543

In step 3f, GenericBBL takes a random subset of size λi+1Tt+1 from D̂ ′i . We show that the544

size of D̂ ′i is at least λi+1Tt+1.545

Claim D.6. When ε ≤ 1, for any i ≥ 1, we always have |D̂ ′i | ≥ λi+1Ti+1.546

Proof. Let m = 3+exp(ε+4) < 200. By the step 3c, step 3e and step 3f, |D̂j | =
ε|Dj |
m =

25600|Sj |
m ≥547

128|Sj | = 128λjTj . Then it is sufficient to verify 128λjTj ≥ λj+1Tj+1548
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We can verify that

4λj = 4 ·
8VC(C) log( 13

αi
) + 4log( 2

βi
)

αi
= 4 ·

8VC(C)(log( 13
αj+1

)− 1) + 4(log( 2
βj+1

)− 1)

2αj+1
≥ λj+1

and

32Tj =
32τ ·λi · log( 1

δ ) · log2( λi
εαiβiδ

)

αiε
≥

32τ ·λi · log( 1
δ ) · log2( λi+1

16εαi+1βi+1δ
)

8αi+1ε
≥ λj+1Tj+1.

The last inequalitu holds because λj ≥ 4 and αj ,βj ≤ 1/2.549

To apply the privacy and accuracy of LabelBoost and BetweenT hresholds, the sizes of the550

databases need to satisfy the inequalities in lemma C.2, C.3 and C.4. We verify that in each551

phase, the sizes of the databases always satisfy the requirement.552

Claim D.7. Let α,β,δ < 1/16, ε ≤ 1, and VC(C) ≥ 1. Then for any i ≥ 1, we have

Ti ≥
8

αiε′
(log(|Di |+ 1) + log(1/βi)) .

Proof. By claim D.6 and step 3c, |Di | =
25600|Si |

ε = 25600λiTi
ε . Since553

8
αiε′

(log(|Di |+ 1) + log(1/βi)) =
24

√
64αi |Di | ln( 2

δ )
√

2αi

· (log(|Di |+ 1) + log(1/βi))

= O


√

λiTi log( 1
δ )

αiε

(
log(

λiTi
εβi

)
)

= O


√

λiTi log( 1
δ )

αiε
· log

λi log( 1
δ )

αiβiε


 ,

and Ti =
τ ·λi ·log( 1

δ )·log2( λi
εαiβi δ

)

αiε
, where τ ≥ 1.1 ∗ 1010, the inequality always holds.554

Claim D.8. When ε ≤ 1, for any i ≥ 1, we have |D̂i | ≤
βi
e VC(C)exp

(
αi |Ŝi |

2VC(C)

)
− |Ŝi |.555

Proof. By claim D.6, step 3c and step 3f,

|D̂i | =
ε|Di |
m

= O (λiTi) = O

(
VC(C) log2(VC(C)) ·poly

(
1
αi

, log(
1
βi

),
1
ε
, log(

1
δ

)
))

and556

|Ŝi | =
ε|Si |
m

= O (ελiTi) = O (λiTi)

= O

(
VC(C) log2(VC(C)) ·poly

(
1
αi

, log(
1
βi

),
1
ε
, log(

1
δ

)
))
.

(2)

Note that

βi
e

VC(C)exp
(

αi |Ŝi |
2VC(C)

)
= Ω

(
VC2(C) · exp

(
poly

(
1
αi

, log(
1
βi

),
1
ε
, log(

1
δ

)
)))

,

for Ti =
τ ·λi ·log( 1

δ )·log2( λi
εαiβi δ

)

αiε
, the inequality holds when τ ≥ 1.557
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Claim D.9. For every i ≥ 1, we have558

tu − tℓ ≥
12
ε′iTi

(
log(10/ε′i) + log(1/δ′i) + 1

)
.

Proof. By step 3c, tu − tℓ = 2αi . Then we have

6
αiε
′
iTi

(
log(10/ε′i) + log(1/δ′i) + 1

)
=

6
√

64αiRi ln( 2
δ )

αiTi

(
log(10/ε′i) + log(1/δ′i) + 1

)
= 6

√
1638400ln( 2

δ )λi
αiTi

(
log(10/ε′i) + log(1/δ′i) + 1

)
= 6

√
1638400ln( 2

δ )

τ log( 1
δ ) log2( λi

εαiβi δ
)

(
log(10/ε′i) + log(1/δ′i) + 1

)
= O(1),

the inequality holds when τ > 1010.559

E Accuracy of Algorithm GenericBBL – proof of Theorem 5.2560

We refer to the execution of steps 3a-3g of algorithm GenericBBL as a phase of the algorithm,561

indexed by i = 1,2,3, . . . .562

We give some technical facts in Appendix D. In Claim E.1, we show that in each phase,563

samples are labeled with high accuracy. In Claim E.2, we prove that algorithm GenericBBL564

fails with low probability. In Claim E.4, we prove that algorithm GenericBBL predict the565

labels with high accuracy.566

Claim E.1. When Algorithm GenericBBL does not fail on phases 1 to i, then for phase i + 1 we
have

Pr

∃gi+1 ∈ C s.t. errorSi+1
(gi+1) = 0 and errorD(gi+1, c) ≤

i+1∑
j=1

αj

 ≥ 1− 2
i+1∑
j=0

βj .

Proof. The proof is by induction on i. The base case for i = 1 is trivial, with g1 = c. Assume567

the claim holds for all j ≤ i. By the properties of LabelBoost (Lemma C.2) and Claim D.8,568

with probability at least 1 − βi+1 we have that Si+1 is labeled by a hypothesis gi+1 ∈ C s.t.569

errorSi (gi , gi+1) ≤ αi+1. Observe that the points in Si (without their labels) are chosen i.i.d.570

fromD, and hence, By Theorem A.2 (VC bounds) and |Si | ≥ 128λi ≥ λi+1, with probability at571

least 1− βi+1 we have that errorD(gi , gi+1) ≤ αi+1. Hence, with probability 1− 2βi+1, we have572

errorD(gi , gi+1) ≤ αi+1. Finally, by the triangle inequality, errorD(gi+1, c) ≤
∑i+1

j=1αj , except573

with probability 2
∑i+1

j=1βj574

Define the following good event.575

Event E1: Algorithm GenericBBL never fails on the execution of
BetweenThresholds in step 3(d)iv.576

Claim E.2. Event E1 occurs with probability at least 1− β.577

Proof. Using to union bound and Claim D.5,

Pr[Event E1 occurs] ≥ 1− β.
578

Combining claims E.1 and E.2, we get:579

Claim E.3. Let D be an underlying distribution and let c ∈ C be a target concept. Then
Pr[∀i ∃gi ∈ C s.t. errorSi (gi) = 0 and errorD(gi , c) ≤ α] ≥ 1− 3β.
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Notations. Consider the ith phase of Algorithm GenericBBL, and focus on the j-th iter-580

ation of Step 3. Fix all of the randomness in BetweenThresholds. Now observe that the581

output on step 3(d)iii is a deterministic function of the input xi,j . This defines a hypothesis582

which we denote as hi,j .583

Figure 3: Hypothesis hi,j

Claim E.4. For β < 1/16, with probability at least 1− 4β, all of the hypotheses defined above are584

6α-good w.r.t. D and c.585

Proof. In the phase i, by Claim E.3, with probability at least 1−3β we have that Si is labeled586

by a hypothesis gi ∈ C satisfying errorD(gi , c) ≤ α. We continue with the analysis assuming587

that this is the case.588

On step 3a of the ith phase we divide Si into Ti subsamples of size λi each, identify589

a consistent hypothesis ft ∈ C for every subsample Si,t , and denote Fi = (f1, . . . , fT ). By590

Theorem A.2 (VC bounds), every hypothesis in Fi satisfies errorD(ft , gi) ≤ α with probability591

3/4, in which case, by the triangle inequality we have that errorD(ft , c) ≤ 2α.592

Set Ti ≥
512(1−4βi ) ln( 1

βi
)

(1−64βi )2 , using Chernoff bound, it holds that for at least 15Ti /16 of the hy-593

potheses in Fi have error errorD(ft , gi) ≤ 2α with probability at least 1−βi . These hypotheses594

have errorD(ft , c) ≤ 3α.595

Let m : X→ {0,1} defined as m(x) = majft∈Fi (ft(x)). For m to err on a point x (w.r.t. the target596

concept c), it must be that at least 7/16-fraction of the 3α-good hypotheses in F̂i err on x.597

Consider the worst case in Figure 4 , we have errorD(m,c) ≤ 6α598

By Lemma C.4 and Claim D.7, with probability at least 1− βi , all of the hypotheses defined599

during the ith iteration satisfy this condition, and are hence 6α-good w.r.t. c and D. By the600

union bound, with probability 1− 4β, all the hypotheses are 6α-good.601

E.1 Privacy analysis – proof of Claim 5.3602

Fix t ∈ N and the adversary B. We need to show that View0
B,t and View1

B,t (defined in603

Figure 1) are (ε,δ) − indistinguishable. We will consider separately the case where the604

executions differ in the training phase (Claim E.5) and the case where the difference occurs605

during the prediction phase (Claim E.6).606
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Figure 4: The horizontal represents the input point. The vertical represents the hypothesis.
The red parts represent the incorrect prediction. We let Ti

16 hypothesis predict all labels
incorrectly. To output an incorrect label, there must exist 7Ti

16 hypothesis output the incorrect
label. In the worst case, at most 6α of points are incorrectly classified.

Privacy of the initial training set S. Let S0,S1 ∈ (X × {0,1})n be neighboring datasets of607

labeled examples and let View0
B,t and View1

B,t be as in Figure 1 where
(
(x0

1, y
0
1 ), . . . , (x0

n, y
0
n)

)
=608

S0 and
(
(x1

1, y
1
1 ), . . . , (x1

n, y
1
n)

)
= S1.609

Claim E.5. For all adversaries B, for all t > 0, and for any two neighbouring database S0 and S1
610

selected by B, View0
B,t and View1

B,t are (ε,δ)-indistinguishable.611

Figure 5: Privacy of the labeled sample S

Proof. Let R′1 = min(t,R1). Note that Viewb
B,R′1

is a prefix of Viewb
B,t which includes the612

labels Algorithm GenericBBL produces in Step 3(d)iii for the R′1 first unlabeled points613

selected by B. Let Sb
2 be the result of the first application of algorithm LabelBoost in Step 3f614

of GenericBBL (if t < R1 we set Sb
2 as ⊥). The creation of these random variables is depicted615

in Figure 5, where DL
1 denotes the labels Algorithm GenericBBL produces for the unlabeled616

points D1.617
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Observe that Viewb
B,t results from a post-processing (jointly by the adversary B and Algo-618

rithm GenericBBL) of the random variable
(
Viewb

B,R′1
,Sb

2

)
, and hence it suffices to show that619 (

View0
B,R′1

,S0
2

)
and

(
View1

B,R′1
,S1

2

)
are (ε,δ)-indistinguishable.620

We follow the processes creating Viewb
B,t and Sb

2 in Figure 5: (i) The mechanism M1 cor-621

responds to the loop in Step 3d of GenericBBL where labels are produced for the adver-622

sarially chosen points Db
1 . By application of Lemma C.3, M1 is (1,δ)-differentially private.623

(ii) The mechanism M2, corresponds to the subsampling of Ŝb
1 from Sb

1 and the applica-624

tion of procedure LabelBoost on the subsample in Step 3f of GenericBBL resulting in625

Sb
2 . By application of Claim 2.7 and Lemma C.1, M2 is (ε,0)-differentially private. Thus626

(M1,M2) is (ε + 1,δ)-differentially private. (iii) The mechanism M3 with input of Sb and627

output
(
Db,L

1 ,Sb
2

)
=

(
Viewb

B,R′1
,Sb

2

)
applies (M1,M2) on the sub-sample Sb

1 obtained from628

Sb in Step 2 of GenericBBL. By application of Claim 2.7 M3 is (ε, 4εδ
3+exp(ε+1) )-differentially629

private. Since 4εδ
3+exp(ε+1) ≤ δ for any ε, hence

(
View0

B,R′1
,S0

2

)
and

(
View1

B,R′1
,S1

2

)
are (ε,δ)-630

indistinguishable631

Privacy of the unlabeled points D. Let D0,D1 ∈ Xt be neighboring datasets of unla-632

beled examples and let View0
B,t and View1

B,t be as in Figure 1 where
(
x0

1, . . . ,x
0
t

)
= D0 and633 (

x1
1, . . . ,x

1
t

)
= D1.634

Claim E.6. For all adversaries B, for all t > 0, and for any two neighbouring databases D0 and635

D1 selected by B, View0
B,t and View1

B,t are (ε,δ)-indistinguishable.636

Figure 6: Privacy leakage of Di

Proof. Let D0
1 ,D

0
2 , . . . ,D

0
k and D1

1 ,D
1
2 , . . . ,D

1
k be the set of unlabeled databases in step 3e of637

GenericBBL. Without loss of generality, we assume D0
i and D1

i differ on one entry. When638

i = k, View0
B,t = View1

B,t because all selected hypothesis are the same. When i < k, let639

R′ = min
(∑i+1

j=1Rj , t
)
.640

Similar to the analysis if Claim E.5, Viewb
B,t results from a post-processing of the ran-641

dom variable (Viewb
B,R′ ,S

b
i+2) (if t <

∑i+1
j=1Rj we set Sb

i+2 as ⊥). Note that Viewb
B,R′1

=642

(Db,L
1 , . . . ,Db,L∗

i ,Db,L
i+1), and (Db,L

1 , . . . ,Db,L
i−1,D

b,L∗
i ) follow the same distribution for b ∈ {0,1},643

where Db,L∗
i is the labels of points in Db

i expect the different point. So that it suffices to show644

that
(
D0,L
i+1,S

0
2

)
and

(
D1,L
i+1,S

1
2

)
are (ε,δ)-indistinguishable.645
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We follow the processes creating Db,L
i+1 and Sb

i+2 in Figure 6: (i) The mechanism M1 corre-646

sponds to the loop in Step 3d of GenericBBL where labels are produced for the adversarially647

chosen points Db
i+1. By application of Lemma C.3, M1 is (1,δ)-differentially private. (ii)648

The mechanism M2, corresponds to the subsampling of Ŝb
i+1 from Sb

i+1 and the applica-649

tion of procedure LabelBoost on the subsample in Step 3f of GenericBBL resulting in650

Sb
i+2. By application of Claim 2.7 and Lemma C.1, M2 is (ε,0)-differentially private. Thus651

(M1,M2) is (ε + 1,δ)-differentially private. (iii) The mechanism M3 with input of D̂b
i and652

output
(
Db,L
i+1,S

b
i+2

)
applies (M2,M3) on Si+1, which is generated from D̂b

i and in Step 3f653

of GenericBBL. By application of Claim C.1, M3 is (ε + 4,4εδ)-differentially private. (iv)654

The mechanism M4, corresponds to the subsampling D̂b
i from Db

i and the application of655

M4 on D̂b
i . By application of Claim 2.7, M4 is (ε, 16eεδ

3+exp(ε+4) )-differentially private. Since656

16eε
3+exp(ε+4) ≤ 1 for any ε,

(
D0,L
i+1,S

0
2

)
and

(
D1,L
i+1,S

1
2

)
are (ε,δ)-indistinguishable.657

Remark E.7. The above proofs work on the adversarially selected D because: (i) Lemma C.3658

works on the adaptively selected queries. (We treat the hypothesis class Fi as the database, the659

unlabelled points xi,ℓ as the query parameters.) (ii) LabelBoost generates labels by applying one660

private hypothesis on points. The labels are differentially private by post-processing.661
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