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Abstract

Large language models (LLMs) excel at implementing code from functionality
descriptions but struggle with algorithmic problems that require not only implemen-
tation but also identification of the suitable algorithm. Moreover, LLM-generated
programs lack guaranteed correctness and require human verification. To address
these challenges, we propose ALGO, a framework that synthesizes Algorithmic
programs with LLM-Generated Oracles to guide the generation and verify their
correctness. ALGO first generates a reference oracle by prompting an LLM to
exhaustively enumerate all the combinations of relevant variables. This oracle is
then utilized to guide an arbitrary search strategy in exploring the algorithm space
and to verify the synthesized algorithms. Our study shows that the LLM-generated
oracles are correct for 88% of the cases. With the oracles as verifiers, ALGO can
be integrated with any existing code generation model in a model-agnostic manner
to enhance its performance. Experiments show that when equipped with ALGO,
we achieve an 8× better one-submission pass rate over the Codex model and a
2.6× better one-submission pass rate over CodeT, the current state-of-the-art model
on CodeContests. We can also get 1.3× better pass rate over the ChatGPT Code
Interpreter on unseen problems. The problem set we used for testing, the prompts
we used, the verifier and solution programs, and the test cases generated by ALGO
are available at https://github.com/zkx06111/ALGO.

1 Introduction

Large Language Models (LLMs) have demonstrated significant prowess in generating code from
natural language descriptions. Models such as Codex [5] and CodeGen [23] can easily achieve over
30% pass@1 accuracy on HumanEval, a docstring-to-code dataset. However, these models struggle
when faced with algorithmic problems akin to those encountered in CodeContests [17]. Even with
reasonable sample limits, achieving a 10% accuracy rate remains a considerable challenge [4]. More
recently, the GPT-4 model, despite being provided with problem descriptions and solution hints,
managed a pass@1 accuracy of only 10.6% [3] on LeetCode Hard problems.
The verifiability of LLM-based code generation presents another significant challenge. Without
verifiability, code generation systems can hardly earn trust for production use. Users of GitHub
Copilot [21], an AI assistant for programmers, reportedly spend over 20% of their time verifying
the suggested code snippets. Existing approaches toward verification and reranking LLM-generated
programs either rely on neural models to predict confidence scores [22, 32] or require LLM-generated
test cases to execute the programs [4, 15]. However, neural verifiers do not provide interpretable
feedbacks and LLM-generated test cases are often incorrect.
Traditional code synthesis techniques rely on oracles for the verification of the synthesized code.
These oracles are typically derived from formal specifications [20, 25, 28, 29]. They can also
be employed in program synthesis under the widely-used framework of oracle-guided inductive
synthesis (OGIS) [14]. Despite their widespread application in code verification and synthesis, the
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Figure 1: The ALGO pipeline. The verifier LLM generates the
probably correct but possibly slow reference oracle that solves the
problem with an exhaustive search. The coder generates a more
efficient candidate program and refines the candidate program by
comparing its output with the oracle’s output. The coder can be
any existing code generation model.

Figure 2: The reference oracle
generated by ALGO is correct
for 88.5% of the problems in
our benchmark. We consider
an oracle correct if it gets Ac-
cepted / Time Limit Exceeded
verdict on LeetCode website
and is checked by human ex-
perts as a reasonable solution.

use of oracles often demands heavy human involvement, and the automatic generation of oracles
is challenging. Existing strategies focus on generating oracles that can only detect crashes (safety
oracle) or bugs introduced by future changes (regression oracle), rather than semantic bugs crucial
for algorithmic programs [9, 18, 24].
Motivated by the potential benefits of oracles in traditional code synthesis, we introduce ALGO,
a framework that leverages oracles generated by large language models to address the challenges
in LLM-based code synthesis and verification. As illustrated in Figure 1, ALGO incorporates two
modules for algorithm synthesis. The verifier is instructed to generate an exhaustive search algorithm
regardless of time efficiency, thus acting as a reference oracle. Concurrently, the coder is asked to find
a more efficient solution with any prompts or search strategies. The candidate program’s correctness
is then evaluated by comparing its output with that of the oracle for a given set of test inputs. The
results of the verification, along with any test cases where the candidate program falls short, are
subsequently provided to the coder for code refinement.
We evaluated ALGO based on two key dimensions: the oracle’s verification capability and its potential
to enhance algorithm synthesis. Our experiments reveal that the reference oracles are correct for
88.5% of the problems (as shown in Figure 2). Moreover, the oracles’ verdicts are in agreement with
the golden verdicts of the online judge 75% of the time. To examine the enhancement in accuracy
offered by ALGO, we integrated it with several existing code generation models including Codex
[5], CodeT [4], PG-TD [31] and ChatGPT Code Interpreter 1. We observed that ALGO significantly
boosts their performance on CodeContests [17] and a collection of recent LeetCode problems. Our
experiments show that ALGO notably enhances the performance of these models: in terms of one-
submission pass rate, Codex’s performance improved by a factor of 8, CodeT’s by 2.6, PG-TD’s by
1.5, and ChatGPT Code Interpreter’s by 1.3.
Our contributions can be summarized as follows:

• We present ALGO, a novel framework for Algorithm synthesis that utilizes LLM-Generated
reference Oracles as verifiers. It is a model-agnostic framework that can be integrated with any
code generation model to verify candidate solutions with reliable test cases generated by reference
oracles.

• We conduct a comprehensive evaluation of synthesis accuracy and verifiability of ALGO, utilizing
several distinct code generation models in a versatile, model-agnostic manner. Our results indicate
that ALGO can generate high-quality oracles and test cases that lead to significant improvements in
code generation.

1ChatGPT Code Interpreter is a variant of GPT-3.5 with the code interpreter plugin. The version we evaluated,
released on March 24th, utilizes the underlying model text-davinci-002-code. It is now offline and replaced
with gpt-4-code-interpreter.
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Implement a function incr_list(l: list) that returns the input list with 
elements increased by 1.

You are given an integer array 
ranks representing the ranks of some 
mechanics. ranks[I] is the rank of the 
ith mechanic. A mechanic with a rank r 
can repair n cars in r * n^2 minutes.

You are also given an integer cars 
representing the total number of cars 
waiting in the garage to be repaired.

Return the minimum time taken to 
repair all the cars.

class Solution: 
    def repairCars(self, ranks: 
List[int], cars: int) -> int: 
        while left < right: 
            mid = (left + right) // 2 
            if canRepairInTime(mid): 
                right = mid 
            else: 
                left = mid + 1 
         
        return left 

Try using binary search on the answer.

Check whether for a fixed time all 
cars can be repaired.

This can be done by summing up the 
maximum number of cars each mechanic 
can repair in the given time.

def incr_list(l: list): 
    return [i + 1 for i in l] 

Input Code

Algorithm 
Synthesis

Functionality 
Synthesis

IdeaInput Code

Figure 3: Examples of algorithm synthesis (top) and functionality synthesis (bottom). The parts in
solid boxes are given by the problem, while the parts in dotted boxes should be inferred by the model.
Functionality synthesis does not require the model to infer the idea, while algorithm synthesis does.

2 Algorithm Synthesis

Large language models excel at generating simple programs. For example, ChatGPT can easily
achieve over 70% pass@1 accuracy on the docstring-to-code dataset HumanEval. However, it still
struggles with complex algorithmic problems such as CodeContests. We hypothesize that this is
because algorithmic problems need efficient solutions rather than straightforward and brute-force
ones. To test our hypothesis, we prompt ChatGPT in two different ways to see if they result in
different success rates. One prompt directly describes the problem and asks the model to generate a
solution that meets the time limits. The other asks the model to ignore the time limit and to solve
the problem in the most straightforward way. The prompts we used are listed in Appendix A.2. We
evaluate the correctness of the brute-forces and efficient solutions both manually and using official
test cases without time limits so that a correct yet inefficient program is also considered a success.

Table 1: The success rates when ChatGPT is prompted to generate efficient solutions and brute-
force solutions and their relative differences. Generating brute-force solutions for LeetCode and
CodeContests is much easier than generating efficient solutions.

LeetCode CodeContests HumanEval

Brute-force success rate 88.5% 72.0% 70.1%
Efficient solution success rate 41.2% 7.90% 72.5%

Relative difference 114% 822% -3%

The results in Table 1 validate our hypothesis. For LeetCode and CodeContests, it is much easier to
generate brute-forces than efficient solutions. But for HumanEval, the two success rates are similar.
This clearly indicates that problems in HumanEval and those in LeetCode and CodeContests are
of two different types. The latter is more difficult to solve because it requires the application of
algorithms. Based on that, we divide code synthesis into two categories: functionality synthesis and
algorithm synthesis. Typically, functionality synthesis problems, such as those seen in HumanEval [5]
and MBPP [1], provide a detailed description that can be readily translated into an implementation.
On the other hand, algorithm synthesis problems found in APPS [11] and CodeContests [17] are
more abstract and need efficient algorithms to solve. In this paper, we focus on addressing algorithm
synthesis rather than functionality synthesis. An algorithmic synthesizer, thus, has an additional task
to that of a functionality synthesizer—it needs to generate the solution idea, implicitly or explicitly,
before synthesizing the code. We further clarify the contrast between the two by providing typical
examples of each in Figure 3.
Formal definition of algorithm synthesis and functionality synthesis. A code generation task
can be defined as a tuple (Q, J) ∈ Q× J , where Q is the problem description and J : P → Bool
is the system judge. The system judge J evaluates if a program from the program space P solves
the problem represented by Q. The goal of the synthesizer is to produce a program P ∈ P that
J(P ) = True. The system judge J is further composed of two components: JS : P → Bool and

3



Reference Oracle Generation Prompt
Please solve this problem with a brute-force algorithm. After generating the code, 
please test it against the example cases given only, do not generate your own test 
cases.When comparing outputs, please do not consider the line breaks and spaces. 

You are given an integer array ranks representing the ranks of some mechanics. ranks[I] 
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2 
minutes. 

You are also given an integer cars representing the total number of cars waiting in the 
garage to be repaired. 

Return the minimum time taken to repair all the cars. 

### Examples 

{examples, omitted} 

Instead of defining your function in the Solution class, change your classname to 
BruteforceSolution. As I said before, please make sure you use the most straightforward 
and brute-force algorithm to solve the algorithm. Do not consider any efficiency issue, 
make the solution as brute-force as possible. It's okay for you to enumerate over a very 
large search space as long as the solution is correct. What do you think are some 
variables that may affect the answer and how do you think they can be enumerated? 

Reference Oracle Generated by LLM
class BruteforceSolution: 
  def repairCars(self, ranks: List[int], cars: int) -> int: 
    num_mechanics = len(ranks) 
    min_time = float('inf') 
    def generate_allocations(allocation, remaining_cars): 
      nonlocal min_time 
      if len(allocation) == num_mechanics: 
        if sum(allocation) == cars: 
          times = [ranks[i] * allocation[i] * allocation[i] 
for i in range(num_mechanics)] 
          max_time = max(times) 
          min_time = min(min_time, max_time) 
        return 
      for num_cars in range(remaining_cars + 1): 
        new_allocation = allocation + [num_cars] 
        new_remaining_cars = remaining_cars - num_cars 
        generate_allocations(new_allocation, 
new_remaining_cars) 
    generate_allocations([], cars) 
    return min_time 

Figure 4: The prompt we used for oracle generation and one oracle generated with it. The instructions
are in blue. The correct solution solves the problem with binary search in polynomial time, while the
generated oracle takes exponential time to enumerate all possible work allocations.

JT : P → Bool. JS checks the semantic correctness of the generated code, while JT ensures that the
efficiency of the generated code satisfies the requisite conditions. Intuitively, J(P ) = JT (P )∧JS(P ).

3 Algorithmic Synthesis with LLM-Generated Oracles (ALGO)

As discussed in Section 2, generating brute-force solutions to algorithm synthesis tasks is much easier
than generating efficient solutions; this huge gap in difficulty can be exploited. To solve algorithm
synthesis, we propose Algorithmic Synthesis with LLM-Generated Oracles (ALGO). As shown in
Figure 1, the ALGO framework utilizes two components - a coder and a verifier - to solve algorithmic
problems. The coder takes the problem description Q and optionally, the verification results from its
last generation and generates a program P that solves Q. The verifier generates a reference oracle
whose outputs are used to verify whether the candidate program generated by the coder is correct. For
each problem, ALGO creates the verifier once and uses it to guide arbitrary coders, allowing ALGO to
be model-agnostic.

3.1 Verification with Oracle

Oracle Generation The difference between a reference oracle PO and an actual solution PG is
that PO only needs to be semantically correct (i.e. JS(PO) = True) while PG needs to be correct
and efficient (i.e. J(PG) = JS(PG) ∧ JT (PG) = True). We utilize this difference to generate the
oracle. When there is no time limit, most algorithmic problems can be solved with an exhaustive
search [8]. As depicted in Figure 4, we put the process of an exhaustive search algorithm (which is
the same for every problem) in the prompt along with the problem description. LLMs, which excel at
implementing a program when provided with clear instructions, are then able to generate reference
oracles.

The Verification Process To handle a verification request, we must return a verdict of True/False
regarding P ’s correctness, and optionally, the inputs that cause P to fail. We utilize an input generator
program to create random test inputs in line with problem constraints. These test inputs are then
supplied to both the program under verification P , and the oracle PO. The test outputs of P are
compared against those of PO. If they match, a True verdict is returned. If they don’t, the failed test
cases are returned to the synthesizer along with a False verdict.

3.2 Code Synthesis Strategies

ALGO’s coder can use different strategies for code synthesis. The code synthesis process can either be
one-time or iterative, depending on the used coder. During a one-time synthesis, the coder generates
a batch of solutions to the problem, and these solutions are verified and ranked according to their
verification results. During an iterative synthesis, the code generates solutions, gets their verification
results (and optionally mistaken test cases), and then revises the solutions iteratively.
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Other than the coder model itself, its strategy to search for and identify the suitable algorithm for the
problem also affects the synthesis accuracy significantly. The coder’s search strategy can be defined
as a conditional distribution π(P |Q) of the program P conditioned on the problem description Q.
To generate code is to sample programs from this distribution. To compute this distribution, we can
define a space of latent variables I and marginalize over it, as denoted by

π(P |Q) =
∑
I∈I

π(P |I)π(I|Q).

ALGO is a versatile framework that can incorporate a variety of search strategies. A strategy
may be implicit, with the variable I not specified, or explicit, specifying I, the space of I , and
the methodology to traverse this space. Here, we give three examples: an implicit searcher, an
instruction enumerator, and an iterative searcher. However, it is crucial to note that these examples
are representative, and there are numerous alternative search strategies in ALGO.
Implicit Searcher: An implicit searcher samples a program directly from the distribution determined
by the underlying model, using the problem description. It solely relies on the ability of the code
generation model and depends on the oracle to filter the generated programs post hoc.
Instruction Enumerator: An instruction enumerator is an explicit searcher where I is a set of
pre-defined instructions. Since the performance of instruction-tuned LLMs varies significantly based
on the instructions they are given, it is natural to consider enumerating a space of instructions to get
the best result. An instruction enumerator first picks an instruction from a pre-defined instruction
set I, and then synthesizes the program by instructing the language model with I . In our example
of an instruction enumerator, we choose I to be a set of high-level ideas of algorithms such as
‘Binary Search’ and ‘Sorting’. We first sample possible solution algorithms and then instruct the large
language models to generate programs with the ideas given.
Iterative Searcher: A iterative searcher is an explicit searcher that takes the signal from the verifier
to refine its output. The searcher space I can be the token vocabulary of the model. It uses a search
algorithm to determine the next token during the decoding process by enumerating the vocabulary
tokens given the problem description and the partial program in each generation step. Since the
search space is exponentially large, it would be time-intensive. Usually, the searcher is guided by
some rewards from the verifier to prune the candidate space in each step.

4 Experiments

In this section, we implement ALGO with three code synthesis strategies, and evaluate it with two
challenging algorithmic benchmarks to validate its flexibility and effectiveness. Moreover, we
investigate the verifier’s performance by evaluating the quality of the generated reference oracle and
test cases.

4.1 Experiment Setup

Verifier We employ ChatGPT Code Interpreter to create the verifier. It is first prompted to generate
the reference oracle and then the input generator. As mentioned in Section 3.1, this is possible
because the reference solutions to most algorithmic problems involve exhaustively going through all
possible solutions to find a feasible or optimal one. We use a temperature of 1.0 and resample the
solution until it can pass all example cases. The prompt we used for generating the oracle is shown
in Figure 4. For the verifier, we simply use zero-shot prompts to generate the input generator with
an input validator since both of them are functionality syntheses and easy to generate. We set the
maximum length of each input variable to 10 and skip out cases that raise the timeout exception and
the recursion error when generating the output via the reference oracle. The prompts we used are
listed in Appendix A.2 with generation examples. Note that for each problem, we only need to create
the verifier once, and it can be used to create arbitrary test cases and guide arbitrary models.

Code Synthesis Strategies We integrate the following baselines as the coder with ALGO to evaluate
its verification capability and synthesis accuracy:

• Codex [5] and CodeT [4]: Codex and CodeT are used as coders that utilize implicit searchers.
Codex is a specialized language model, trained on publicly available code from GitHub. CodeT
uses Codex to generate both programs and test cases for a problem and uses their dual agreement to
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filter and rank the programs generated. To evaluate ALGO, we use the exact same set of programs
Codex generated, and rank them in three different ways: in a random manner, based on the dual
agreement heuristics from CodeT, and according to the verification results provided by ALGO.
We then compare the top-ranked programs from each of these three rankings. Note that due to
OpenAI’s policy, the Codex model is no longer available so we directly use the Codex-generated
programs provided by the CodeT paper2.

• ChatGPT Code Interpreter: ChatGPT Code Interpreter is used as a coder that utilizes instruction
enumerators. It is a variant of GPT-3.5 with the code interpreter plugin. The version we evaluated,
released on March 24th, utilizes the underlying model text-davinci-002-code. As the Code
Interpreter is instruction-tuned, it can follow directives to solve a problem using a specific class
of algorithms, such as ‘Binary Search’. This capability allows it to employ a search strategy that
iterates through a list of algorithm categories to identify a correct solution. Moreover, with the code
interpreter plugin, it is able to run Python code and interpret its results, and automatically refine its
output based on the program output. We use the default temperature of 1.0 and resample the code
solution until it can pass the example cases in the problem descriptions or reach the resample limit
(N=5).

• PG-TD [31]: PG-TD is used as a coder that utilizes iterative searchers. In contrast to CodeT, which
employs test cases post hoc, PG-TD incorporates them during the decoding process. It implements
a tree search-based planning algorithm for decoding, utilizing the reward from test cases to estimate
the value of the children nodes in the search tree. PG-TD uses GPT-2 [26] and GPT-NEO [2] as the
underlying model. We implement two versions: PG-TD* is only based on the public test cases to
generate programs, and PG-TD has access to both public test cases and the generated test cases by
Li et al. [17]. Both are based on the GPT-2 fine-tuned on the APPS training dataset, which was
released by Zhang et al. [31]. We integrate PG-TD into ALGO by substituting the generated test
cases with the reward from the verifier.

Benchmarks We utilize the following benchmarks to evaluate ALGO:

• CodeContests [17]: We evaluate ALGO with Codex, CodeT and PG-TM on all 165 problems from
CodeContests test set, which are collected from Codeforces, a competitive programming website.
All the three baselines we evaluate have been evaluated on CodeContests in their own paper, we
follow the exact same setting to ensure a fair comparison.

• LeetCode: We evaluate ALGO with ChatGPT Code Interpreter on 35 recently released LeetCode
problems. To avoid the influence of contamination and faithfully evaluate ALGO’s ability in
verification and guiding code synthesis, we made sure these problems are released concurrently or
after the release of GPT-4. We manually annotate the algorithm categories for the solutions to these
problems to evaluate the search strategy of enumerating algorithm categories. The list of problems
and their corresponding categories is listed in Appendix A.3.

Metric Following previous studies [31, 4], we use the n@k metric [16, 5, 17] to evaluate the
accuracy of code synthesis. To compute n@k for a problem, a code synthesizer needs to generate k
candidate programs and select the top-n candidates to submit according to some reranking mechanism,
which in our case is the LLM-generated oracles and test samples. n@k is the proportion of problems
that can be solved by any of the top-n submissions. Since some code synthesizers do not have
reranking mechanisms, we define their n@k as the proportion of problems solved with n submissions
randomly sampled from k candidates. To ensure a fair comparison, we use the same sampling budget
n under the same setting when evaluating the performance of ALGO and baselines.

4.2 Synthesis Accuracy

CodeContests We present ALGO’s n@k accuracy for CodeContests in Table 2. In the first part
of the table, Codex is used as an implicit searcher. Compared to Codex itself and CodeT which
also heuristically evaluates the program Codex generates, ALGO consistently outperforms them at
every value of n. The most significant performance enhancement by our method is observed at
1@k, yielding an 8× improvement over Codex, and a 2.6× improvement over CodeT. As the value
of k increases, the performance advantage diminishes. This trend is expected, as the chosen sample
number n approaches the total sample count k, causing the pass rate to converge towards the ratio of
correct programs within the total program set. The same phenomenon is also observed in the second

2https://github.com/microsoft/CodeT/
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Table 2: Performance on CodeContests. Gain is the performance improvement compared with the
baseline (the first line in each part). ALGO significantly outperforms other baselines, especially for
1@k. Note that k = 20 for ChatGPT-based settings, while k = 1000 for other settings.

Method 1@k Gain 2@k Gain 10@k Gain 100@k Gain

Codex-Based One-Time Synthesis (k = 1000)

Codex [5] 0.70 - 1.20 - 3.00 - 7.50 -
CodeT [4] 2.10 +1.40 2.30 +1.10 5.30 +2.30 9.90 +2.40
ALGO w/ Codex 5.60 +4.90 5.60 +4.40 7.70 +4.70 11.10 +3.60

GPT-2-Based Iterative Synthesis (k = 20)

PG-TD* 0.62 - 1.07 - 2.26 - 3.45 -
PG-TD [31] 0.67 +0.05 1.12 +0.05 2.53 +0.27 3.81 +0.36
ALGO w/ PG-TD 1.57 +0.95 2.44 +1.37 3.67 +1.41 4.06 +0.61

ChatGPT-Based One-Time Synthesis (k = 20)

ChatGPT 4.40 - 6.62 - 12.21 - - -
ALGO w/ ChatGPT 12.00 +7.60 12.00 5.38 14.00 +1.79 - -

and third part of Table 2, where PG-TD and ChatGPT are used as coders. ALGO is able to achieve a
2.5× improvement over PG-TD and a 2.8× improvement over ChatGPT at 1@k.

pass rate

ChatGPT

GPT-4

ALGO

0 10 20 30 40

Figure 5: Performance on LeetCode. Code inter-
preter integrated with ALGO can surpass GPT-4’s
pass rate.

LeetCode We list ALGO’s one-submission
pass rate on LeetCode problems in Figure 5. The
instruction set we enumerate for each problem is
a set with several algorithm categories, among
which there is one correct category. ALGO’s
superior performance compared to ChatGPT
and GPT-4 demonstrates the benefits of an in-
struction searcher that enumerates possible algo-
rithms. It also demonstrates ALGO’s ability to
filter and select the correct algorithm category.
Without the verifier, we would not have been
able to tell right from wrong.

4.3 Verification Analysis

The verifier is critical to ALGO as it guides the creation of an efficient and accurate solution. In this
section, we scrutinize the quality of the verifier from several perspectives.
LLM-generated oracles are usually correct. The correctness of LLM-generated oracles is crucial
to the correctness of ALGO’s test cases. We examine their correctness with both the system judge
and human experts. We submitted LLM-generated oracles to the online judges (Codeforces and
LeetCode) where the problems came from, to get the system verdicts. Oracles with verdicts other
than Accepted (AC), Time Limit Exceeded (TLE), and Runtime Error (RE) were directly considered
incorrect. For those with TLE and RE verdicts that could potentially be semantically correct despite
exceeding the time limit or stack size, we hired an experienced competitive programming contestant
to examine if they were semantically correct and not efficient enough. For LeetCode problems, as
displayed in Figure 2, 88.5% of the oracles are semantically correct, including all those with TLE
verdicts. For codecontests problems, 72% of the oracles are semantically correct.
Oracle-generated test cases have better quality. We evaluate the quality of ALGO’s test cases
generated by answering the following questions: (i) Do verification verdicts from generated cases
agree more with the system judge than verdicts from only the public tests? (ii) Do the generated
tests achieve higher statement coverage compared with public tests? In this context, we calculate
two metrics: Agreement and Coverage. Agreement is the consistency between the decision of the
system judge and the test case set. For instance, candidates that fail the system judge should also fail
on the generated test set, while those that can pass the judge should also succeed on all test cases.
Coverage is the percentage of statements in a code solution that are executed by test cases. Following
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Figure 6: The performance of different
sizes of test cases on CodeContests.

Table 3: The quality of test case. Compared to the ex-
ample cases given in the problem description, the test
cases generated by ALGO’s verifier detect more failures
in the programs, agree better with the system judge J ,
and covers more lines in the generated code.

Dataset Case Agreement Coverage

CodeContests Example 57.39% 85.78%
ALGO 94.78% 89.39%

LeetCode Example 68.57% 90.32%
ALGO 74.29% 93.00%

Chen et al. [4], we use a public coverage library3 to gather the coverage results. As demonstrated
in Table 3, our generated test cases substantially improve the agreement with the standard judge
(+37.39% on CodeContests and +5.72% on LeetCode), indicating they can enhance the verification
of candidates prior to submission. In addition, test cases of ALGO achieve higher coverage of the
statements, implying that these cases can more effectively validate the functionality of the solution.

Table 4: Given the same coder, ALGO test cases
lead to much better n@k performance, indicating
that better test cases do help in code synthesis.

1@20 3@20 7@20

Example Tests 4.4% 7.9% 12.2%
ChatGPT Tests 6.8% 8.2% 11.7%
ALGO Tests 12.0% 12.0% 14.0%

Better test cases lead to better results. The
test cases generated by ALGO have better agree-
ment and coverage. We check if they lead to
better synthesis by comparing them to the other
two sets of test cases - examples provided in the
problem statement and test cases directly gener-
ated by ChatGPT. We used the same coder with
the exact same sample budget k = 20. As re-
ported in Table 4, under the same setting, ALGO
tests led to much better performance.
More test cases lead to better results. We examine the impact of the size of test cases the verifier
generates on CodeContests for ALGO w/ Codex. Our verifier has the flexibility to create an arbitrary
number of cases and use test case sets of varying sizes to rank and guide the synthesis. As shown
in Figure 6, when the size is fewer than 30, the increase in the size of test cases can significantly
bolster performance for all n@k, indicating the effectiveness of our verifier in covering more corner
cases with additional test cases. Notably, having a sufficient number of test cases is more critical for
1@k, which relies on test cases to select the optimal solution for one-time submission. However, this
improvement diminishes when n is larger. This is because a robust verifier is not strongly required
when the chosen sample number n is large, as discussed in Section 4.2. Furthermore, there is very
little additional performance gain with more than 30 test cases. We hypothesize that this is due to the
quality of our oracle and the generation range we have set for the verifier.

4.4 Case Study

We demonstrate the workflow of ALGO with a problem from our LeetCode benchmark 4. This
problem asks for the optimal allocation of cars to mechanics with varying efficiency to mini-
mize the total repair time, when the mechanics would work simultaneously. As depicted in Fig-
ure 7, the code generated using a reference oracle prompt exhaustively enumerates all potential
assignments of cars and selects the optimal one according to the problem description. Assuming
n = len(ranks),m = cars, this program exhibits exponential time complexity TO(n,m) = O(2m),
making it an inefficient solution that is unable to pass the online judge. Nevertheless, despite
this program’s inefficient nature, this implementation remains valuable in terms of semantic
correctness (i.e., JT (PO) = False and JS(PO) = True, where we can conveniently define
JT (P ) = "time complexity of P is at most O((n+m) log (n+m)) " without loss). This exam-
ple demonstrates how ALGO can generate reference oracles for code synthesis.

3https://coverage.readthedocs.io/en/6.4.2/
4https://LeetCode.com/problems/minimum-time-to-repair-cars/
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Potential Greedy Solution
class Solution: 
  def repairCars(self, ranks: List[int], cars: int): 
    ranks.sort() 
    max_repair_time = 0 
    assigned_cars = 0 
    for rank in ranks: 
      num_cars = (cars + len(ranks) - assigned_cars - 
1) // (len(ranks) - assigned_cars) 
      num_cars = min(num_cars, cars - assigned_cars) 
      repair_time = rank * num_cars * num_cars 
      max_repair_time = max(max_repair_time, 
repair_time) 
      assigned_cars += num_cars 
    return max_repair_time 
      num_cars = min(num_cars, cars - assigned_cars) 
      repair_time = rank * num_cars * num_cars 
      max_repair_time = max(max_repair_time, 
repair_time) 
      assigned_cars += num_cars 
    return max_repair_time 

Reference Oracle Generated by LLM
class BruteforceSolution: 
  def repairCars(self, ranks: List[int], cars: int) -> 
int: 
    num_mechanics = len(ranks) 
    min_time = float('inf') 
    def generate_allocations(allocation, remaining_cars): 
      nonlocal min_time 
      if len(allocation) == num_mechanics: 
        if sum(allocation) == cars: 
          times = [ranks[i] * allocation[i] * \ 
             allocation[I] for i in range(num_mechanics)] 
          max_time = max(times) 
          min_time = min(min_time, max_time) 
          return 
      for num_cars in range(remaining_cars + 1): 
        new_allocation = allocation + [num_cars] 
        new_remaining_cars = remaining_cars - num_cars 
        generate_allocations(new_allocation,\ 
                             new_remaining_cars) 
    generate_allocations([], cars) 
   return min_time 

Potential Binary Search Solution
class Solution: 
  def repairCars(self, ranks: List[int], cars: int) -> 
int: 
    def countCarsRepaired(ranks, minutes): 
      total_cars = 0 
      for rank in ranks: 
        n = int((minutes / rank) ** 0.5) 
        total_cars += n 
      return total_cars 
    left = 1 
    right = max(ranks) * cars * cars 
    while left < right: 
      mid = (left + right) // 2 
      if countCarsRepaired(ranks, mid) < cars: 
        left = mid + 1 
      else: 
        right = mid 
    return left 

16

System Judge: 
Accepted

System Judge: 
Wrong 

Answer
Test Input : ranks=[4,2,3,1],cars=10I0

I1 I2 I3 . . .

Test Inputs Generated by ALGO

Figure 7: ALGO is capable of verifying two candidate programs, in different algorithm categories:
greedy and binary search. Using an input-output example provided by the reference oracle, ALGO is
able to deliver the verification result consistent with the system judgment.

In Figure 7, we present how the reference oracle can verify the correctness of candidate programs
generated by the coder LLM. We present two candidate programs generated with different algorithm
categories: greedy and binary search. Specifically, the binary search candidate PB is generated with
instructions on binary search and the greedy candidate PG is generated without explicit guidance. The
binary search algorithm is ideally suited for this problem, given that the indicator function, denoted as
f(t), which determines whether all cars can be repaired within t minutes, is monotonous. This makes
it possible to apply binary search on the time t and turn the optimization problem into a judgement
problem. The binary search candidate represents an implementation of such algorithmic approach,
which is an efficient and correct solution of time complexity TB(n,m) = O(n logm) and can pass
the system judge (i.e., J(PB) = True). On the other hand, greedy algorithm is not suitable for this
problem. Thus, even though the greedy candidate presented is of time complexity TG(n,m) = O(n),
the semantic of this candidate is wrong (i.e., JT (PG) = True and JS(PG) = False). This example
demonstrates that providing the correct instruction can lead to better code synthesis result.
In Figure 7, PG failed with our verifier since PG(I0) ̸= PO(I0). Similarly, PB(I0) = PO(I0)
indicates PB(I0) passed our verifier. This verification result is consistent with the system judge and
demonstrates that ALGO-generated oracles can help to verify the programs generated. Furthermore,
the verification results can help in finding the correct instruction (algorithm category).

5 Related Work

Reranking Techniques for LLM Code Generation. LLMs often need to sample many candidates
before finding a single correct solution. Therefore, reranking techniques for telling the correct
programs among many candidates are crucial for better LLM coders. One line of work in reranking
involves neural models that predict some form of confidence score for program candidates. This score
can be the likelihood of the program [5], the mutual information between the code and the problem
description [32], or outputs from verifier models that are purposely trained to predict the correctness
of programs [22, 13]. However, their scores are just scalars and not interpretable. Both the oracles
and test results from ALGO are much easier to check and interpret.
Another line of work utilizes test cases and the programs’ execution results to rerank them, which is
much more similar to ALGO’s approach. Shi et al. [27] and Li et al. [17] cluster different candidates
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according to their execution results on example cases, creating a mechanism similar to majority voting.
Chen et al. [4] and Key et al. [15] also cross-check programs and execution results, but they create
more test cases with the coder models to make the tests stronger. However, LLM-generated test cases
for a single problem can contain both correct and incorrect ones, providing harmful feedback to the
coder. ALGO has converted the task of checking AI-generated programs to checking AI-generated
brute-forces, which is much easier.

Oracles in Program Synthesis and Software Testing. In the traditional program synthesis domain,
automatic verification of a synthesized program is possible [29, 28] because formal specifications,
including input-output examples [25] or logical constraints [20], are explicitly provided. In contrast,
oracle generation using LLMs is challenging due to the ambiguous nature of text and lack of
formal specifications, making it difficult to do verification. Efforts have been made to create formal
specifications from text [6, 15, 10], but reliability remains an issue. Meanwhile, in the software
testing domain, test oracle generation [9, 18, 24] is a well-known and challenging task. However,
existing work mainly focuses on generating regression tests, which are not intended for new bug
detection. Moreover, many methods rely heavily on formatted documents or are designed for program
crashes or basic functional properties, making them unsuitable for complex algorithmic problems.

Self-Refining Language Models. Large language models (LLMs) have exhibited a remarkable
capability for self-analysis and self-improvement, as highlighted by numerous studies [19, 12, 30].
Such reflection is also used to improve the quality of the generated programs. For instance, Chen
et al. [7] trains Large Language Models (LLMs) to generate explanations for code and utilizes both
the explanation and the execution results as feedback to improve coding solutions. Self-Refine [19]
prompts the LLM to provide feedback on the efficiency of its own code solutions and refine these
solutions based on the feedback given. In this paper, we use the execution results of the reference
oracle as feedback and employ them to guide the generation of programs.

6 Conclusion and Discussion

We proposed ALGO, an algorithm synthesis framework that leverages LLM-generated oracles as
verifiers to synthesize algorithmic programs. ALGO consists of a coder and a verifier. The coder
generates code solutions to the problem and requests verification from the verifier to iteratively
refine its idea and its code. The verifier employs LLM-generated oracles to generate test cases for
verification. ALGO can employ different types of search strategies with different underlying code
generation models. We introduced a method to synthesize the reference oracle with LLMs based on
the ease to generate brute-force solutions for algorithmic problems.
We extensively evaluated ALGO’s performance on two different datasets with three baselines.
ALGO outperformed various baselines with different search strategies by a large margin. We also
did a detailed analysis of the reference oracles generated on their semantic correctness, and their
verdict agreement with the system judge. The oracles in ALGO have a high accuracy and make highly
consistent verification results with the system judge. The high quality of the oracles supports the
performance of ALGO.
While ALGO is evaluated with several searchers we proposed in the paper, there can be more
possibilities for applying different searchers in the ALGO framework. For example, the self-refinement
studies in large language models may be utilized for more complex interactions between the coder
and the verifier. On the other hand, oracle-guided synthesis [14] is a well-studied topic in the
programming language community with techniques that can be applied in different branches of code
synthesis. We believe that knowledge from both the natural language processing community and the
software engineering community can inspire more future work in the framework of ALGO.
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A Appendix

A.1 Examples of Algorithm Synthesis and Functionality Synthesis

We give examples of algorithm synthesis and functionality synthesis in Figure 8.
The upper part is an instance of algorithm synthesis, where input that describes the problem does not
indicate the solution idea ‘binary search’ in any way. To solve the algorithm synthesis program, the
model needs to come up with the idea related to ‘binary search’ first either implicitly or explicitly
before synthesizing the code.
The lower part is an instance of functionality synthesis, where the input is basically a pseudo-code
program described in natural language that can directly translate into Python code. The model does
not need to come up with the idea because the solution is already clearly stated in the input.

Implement a function incr_list(l: list) that returns the input list with 
elements increased by 1.

You are given an integer array 
ranks representing the ranks of some 
mechanics. ranks[I] is the rank of the 
ith mechanic. A mechanic with a rank r 
can repair n cars in r * n^2 minutes.

You are also given an integer cars 
representing the total number of cars 
waiting in the garage to be repaired.

Return the minimum time taken to 
repair all the cars.

class Solution: 
    def repairCars(self, ranks: 
List[int], cars: int) -> int: 
        while left < right: 
            mid = (left + right) // 2 
            if canRepairInTime(mid): 
                right = mid 
            else: 
                left = mid + 1 
         
        return left 

Try using binary search on the answer.

Check whether for a fixed time all 
cars can be repaired.

This can be done by summing up the 
maximum number of cars each mechanic 
can repair in the given time.

def incr_list(l: list): 
    return [i + 1 for i in l] 

Input Code

Algorithm 
Synthesis

Functionality 
Synthesis

IdeaInput Code

Figure 8: Examples of algorithm synthesis (top) and functionality synthesis (bottom). The parts in
solid boxes are given by the problem, while the parts in dotted boxes should be inferred by the model.
Functionality synthesis does not require the model to infer the idea, while algorithm synthesis does.

A.2 Prompts in ALGO and Examples of Generated Programs

A.2.1 LeetCode Examples

We list the prompts we used to generate the solution candidates and the verifier components for
LeetCode problems here.
Figure 9 lists the prompts and examples for generating the naive solution. Figure 10 lists the prompts
and examples for generating solutions guided by instructions that specify the algorithm category.
Figure 11 lists the prompts and examples for generating reference oracle. Figure 12 lists an input
validator example and its prompt. Figure 13 lists the prompt for the input generator that generates a
single test input. Figure 14 lists the prompt for the batch input generator.

Naive Candidiate Generation Prompt
Solve the following problem with python and test it against the example cases only. 

You are given an integer array ranks representing the ranks of some mechanics. 
ranks[I] is the rank of the ith mechanic. A mechanic with a rank r can repair n 
cars in r * n^2 minutes. Mechanics work in parallel. 
You are also given an integer cars representing the total number of cars waiting 
in the garage to be repaired. 
Return the minimum time taken to repair all the cars. 
Examples: (omitted) 
Constraints: (omitted) 

 
**Function definition** 

``` 
class Solution: 
    def repairCars(self, ranks: List[int], cars: int) -> int: 
 
``` 

Naive Candidate Generated by LLM
class Solution: 
  def repairCars(self, ranks: List[int], cars: int) -> int: 
    ranks.sort() 
    max_repair_time = 0 
    assigned_cars = 0 
    for rank in ranks: 
      num_cars = (cars + len(ranks) - assigned_cars - 1)\ 
        // (len(ranks) - assigned_cars) 
      num_cars = min(num_cars, cars - assigned_cars) 
      repair_time = rank * num_cars * num_cars 
      max_repair_time = max(max_repair_time, repair_time) 
      assigned_cars += num_cars 
    return max_repair_time 

      num_cars = min(num_cars, cars - assigned_cars) 
      repair_time = rank * num_cars * num_cars 
      max_repair_time = max(max_repair_time, repair_time) 
      assigned_cars += num_cars 
    return max_repair_time 

Figure 9: The naive prompt without instruction guidance and a candidate program generated with it.
The instructions are in blue. It is a greedy method in linear time but is not suitable for this task. Even
the naive candidate generated can pass the examples in the description, it fails both the system judge
and ALGO verifier.
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Instruction Guided Generation Prompt
Please solve this problem with the binary search method. 
After generating the code, please test it against the example cases given in the 
definition. Only use the example cases, don't use your own test cases. 

You are given an integer array ranks representing the ranks of some mechanics. 
ranks[I] is the rank of the ith mechanic. A mechanic with a rank r can repair n 
cars in r * n^2 minutes. Mechanics work in parallel. 
You are also given an integer cars representing the total number of cars waiting 
in the garage to be repaired. 
Return the minimum time taken to repair all the cars. 
Examples: (omitted) 
Constraints: (omitted) 
**Function definition** 
``` 

class Solution: 
    def repairCars(self, ranks: List[int], cars: int) -> int: 
 
``` 
As I said before, please make sure you use the binary search method. 
 

 

Binary Search Candidate Generated
class Solution: 
  def repairCars(self, ranks: List[int], cars: int) -> int: 
    def countCarsRepaired(ranks, minutes): 
      total_cars = 0 
      for rank in ranks: 
        n = int((minutes / rank) ** 0.5) 
        total_cars += n 
      return total_cars 
    left = 1 
    right = max(ranks) * cars * cars 
    while left < right: 
      mid = (left + right) // 2 
      if countCarsRepaired(ranks, mid) < cars: 
        left = mid + 1 
      else: 
        right = mid 
    return left 
 
 
 
 
 
 

Figure 10: The prompt with instructions about the specific algorithm category (binary search). Binary
search is the ideal algorithm used by human programmers for this task, with which the coder can
generate both correct and efficient solutions. In general, right algorithm category can efficiently
improve the quality of generated program.

Reference Oracle Generation Prompt
Please solve this problem with a brute-force algorithm. After generating the code, 
please test it against the example cases given only, do not generate your own test 
cases.When comparing outputs, please do not consider the line breaks and spaces. 

You are given an integer array ranks representing the ranks of some mechanics. ranks[I] 
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2 
minutes. 

You are also given an integer cars representing the total number of cars waiting in the 
garage to be repaired. 

Return the minimum time taken to repair all the cars. 

### Examples 

{examples, omitted} 

Instead of defining your function in the Solution class, change your classname to 
BruteforceSolution. As I said before, please make sure you use the most straightforward 
and brute-force algorithm to solve the algorithm. Do not consider any efficiency issue, 
make the solution as brute-force as possible. It's okay for you to enumerate over a very 
large search space as long as the solution is correct. What do you think are some 
variables that may affect the answer and how do you think they can be enumerated? 

Reference Oracle Generated by LLM
class BruteforceSolution: 
  def repairCars(self, ranks: List[int], cars: int) -> int: 
    num_mechanics = len(ranks) 
    min_time = float('inf') 
    def generate_allocations(allocation, remaining_cars): 
      nonlocal min_time 
      if len(allocation) == num_mechanics: 
        if sum(allocation) == cars: 
          times = [ranks[i] * allocation[i] * allocation[i] 
for i in range(num_mechanics)] 
          max_time = max(times) 
          min_time = min(min_time, max_time) 
        return 
      for num_cars in range(remaining_cars + 1): 
        new_allocation = allocation + [num_cars] 
        new_remaining_cars = remaining_cars - num_cars 
        generate_allocations(new_allocation, 
new_remaining_cars) 
    generate_allocations([], cars) 
    return min_time 

Figure 11: The prompt we used for oracle generation and one oracle generated with it. The instructions
are in blue. The language model is instructed to generate the most straightforward solution by
enumerating over a very large search space of all combinations of relevant variables. The generated
oracle enumerates all the possible ordered partitions of work allocations to find out the optimal one.

Input Validator Generation Prompt
You are given this leetcode problem. Please help me by generating a validator function 
`is_valid_input` that takes exactly the same inputs as the solution function and returns 
a boolean value indicating whether the input is valid and follows the constraints 
defined in the problem description. Please test your data validator by checking the 
validity of the example cases given in the problem description. 

You are given an integer array ranks representing the ranks of some mechanics. ranks[I] 
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2 
minutes. Mechanics work in parallel. 
You are also given an integer cars representing the total number of cars waiting in the 
garage to be repaired. 
Return the minimum time taken to repair all the cars. 
Examples: (omitted) 
Constraints: (omitted) 
**Function definition** (omitted) 
 

Input Validator Generated by LLM
 
 
def is_valid_input(ranks: List[int], cars: int) -> bool: 
  if not 1 <= len(ranks) <= 10 ** 5: 
    return False 
  for rank in ranks: 
    if not 1 <= rank <= 100: 
      return False 
  if not 1 <= cars <= 10 ** 6: 
    return False 
  return True 
 
 
 
 
 
 

Figure 12: The prompt is utilized to generate a input validator to verify the validity of the generated
test input, ensuring it aligns with the constraints specified in the description. In practice, this validation
task is a functionality synthesis task, which can be easily solved by LLM.

A.2.2 Codecontests Examples

We list the prompts we used to generate the solution candidates and the verifier components for
Codecontests problems here. Figure 15 lists the prompts and examples for generating the reference
oracle using an exhaustive search. Figure 16 lists the prompt for generating the batch input generator.
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Input Generator Generation Prompt
You are given this leetcode problem and its test input validator `is_valid_input`. 
Please help me by generating an input generator function `gen_input` that randomly 
generates test inputs which follow the constraints defined. Your `gen_input` function 
should make use of `is_valid_input` by validating the generated input with it. Your 
function should only generate test inputs and not test outputs. 

You are given an integer array ranks representing the ranks of some mechanics. ranks[I] 
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2 
minutes. Mechanics work in parallel. 
You are also given an integer cars representing the total number of cars waiting in the 
garage to be repaired. 
Return the minimum time taken to repair all the cars. 
Examples: (omitted) 
Constraints: (omitted) 
**Function definition** (omitted) 
 
def is_valid_input(ranks: List[int], cars: int) -> bool: (omitted) 
 
 

 

Input Generator Generated by LLM
 
def is_valid_input(ranks: List[int], cars: int) -> bool: 
  if not 1 <= len(ranks) <= 10 ** 5: 
    return False 
  for rank in ranks: 
    if not 1 <= rank <= 100: 
      return False 
  if not 1 <= cars <= 10 ** 6: 
    return False 
  return True 
 
def gen_input() -> tuple: 
  while True: 
    n = random.randint(1, 10 ** 5) 
    ranks = [random.randint(1, 100) for _ in range(n)] 
    cars = random.randint(1, 10 ** 6) 
    if is_valid_input(ranks, cars): 
      return (ranks, cars) 

Figure 13: The prompt is used to generate a data generator, to generate extra test cases when combined
with the reference oracle. In practice, this generator generation task is a functionality synthesis task,
which can be easily solved by LLM.

Batch Generator Generation Prompt
You are given this leetcode problem, its random input generator `gen_input`. Please help 
me by generating 5 random inputs with the random input generator `gen_input`. You should 
return a function named `random_test()` that takes several arguments to control the 
upper limit of the input and returns a list of 5 tuples. You do not need to generate 
test outputs, only generate inputs. 

You are given an integer array ranks representing the ranks of some mechanics. ranks[I] 
is the rank of the ith mechanic. A mechanic with a rank r can repair n cars in r * n^2 
minutes. Mechanics work in parallel. 
You are also given an integer cars representing the total number of cars waiting in the 
garage to be repaired. 
Return the minimum time taken to repair all the cars. 
Examples: (omitted) 
Constraints: (omitted) 
 
def gen_input() -> tuple: (omitted) 
 
 

Batch Generator Generated by LLM
 
def random_test(max_ranks_length: int=10 ** 5, 
max_rank_value: int=100, max_cars: int=10 ** 6) -> 
List[tuple]: 

  def gen_input() -> tuple: 
    while True: 
      n = random.randint(1, min(max_ranks_length, 10 ** 5)) 
      ranks = [random.randint(1, min(max_rank_value, 100)) 
for _ in range(n)] 
      cars = random.randint(1, min(max_cars, 10 ** 6)) 
      if is_valid_input(ranks, cars): 
        return (ranks, cars) 
  random_inputs = [] 
  for _ in range(5): 
    random_inputs.append(gen_input()) 
  return random_inputs 

Figure 14: The prompt is used to generate a batch generator that employs the already generated
gen_input to generate several input cases by calling it multiple times.

Since the test set problems in Codecontests are all from https://codeforces.com/, they originally
require standard input/output. However, we follow the setting in Codecontests by concatenating the
entire standard input as a single string and asking the model to generate reference oracles that map a
string to a string.

Reference Oracle Generation Prompt
Please solve this problem with a brute-force algorithm. After generating the code, 
please test it against the example cases given only, do not generate your own test 
cases.When comparing outputs, please do not consider the line breaks and spaces. 

Andi and Budi were given an assignment to tidy up their bookshelf of n books. 
Each book is represented by the book title — a string si numbered from 1 to n, 
each with length m. Andi really wants to sort the book lexicographically 
ascending, while Budi wants to sort it lexicographically descending. 
(https://codeforces.com/problemset/problem/1575/A, remaining part omitted) 

### Examples 

{examples, omitted} 

Please feed the example inputs to the function solution as an entire string. As I said 
before, please make sure you use the most straightforward and brute-force algorithm to 
solve the algorithm. Do not consider any efficiency issue, make the solution as brute-
force as possible. What do you think are some variables that may affect the answer and 
how do you think they can be enumerated? 

Reference Oracle Generated by LLM
from functools import cmp_to_key 
def asc_desc_ending_comparator(a, b): 
  for i in range(len(a)): 
    if (i + 1) % 2 != 0: 
      if a[i] < b[i]: 
        return -1 
      elif a[i] > b[i]: 
        return 1 
      elif a[i] > b[i]: 
        return -1 
      elif a[i] < b[i]: 
        return 1 
  return 0 
def solution(stdin: str) -> str: 
  lines = stdin.strip().split('\n') 
  (n, m) = map(int, lines[0].split()) 
  books = [(title, idx) for (idx, title) in 
enumerate(lines[1:], start=1)] 
  books.sort(key=cmp_to_key(lambda x, y: 
asc_desc_ending_comparator(x[0], y[0]))) 
  output = [str(book[1]) for book in books] 
  return ' '.join(output) 

Figure 15: The prompt we used for oracle generation and one oracle generated with it. The instructions
are in blue. The language model is instructed to generate the most straightforward solution by
enumerating over a very large search space of all combinations of relevant variables.

A.3 The List of Problems from LeetCode

We list the problems we collected from LeetCode as benchmarks to test ALGO in Table 5, among
them are 10 easy problems, 18 medium problems, and 7 hard problems.

15

https://codeforces.com/


Batch Generator Generation Prompt
You are given this problem. 
Andi and Budi were given an assignment to tidy up their bookshelf of n books. 
Each book is represented by the book title — a string si numbered from 1 to n, 
each with length m. Andi really wants to sort the book lexicographically 
ascending, while Budi wants to sort it lexicographically descending. 
(https://codeforces.com/problemset/problem/1575/A, remaining part omitted) 

You should first create an input generator function `gen_input`.`gen_input` should take 
a list of arguments to control the upper limit of the input and return a single string 
that represents the input.`gen_input` should only generate test inputs that follow the 
problem constraints. `gen_input` should only generate test inputs and not test outputs. 

You should then create an extra function `batch_gen_inputs` that takes one argument - 
`batch_size`. `batch_gen_inputs` should run `gen_input` for `batch_size` times with a 
small upper limit to make sure that it works. `batch_gen_inputs` should return a list of 
strings that represent the inputs.

Batch Generator Generated by LLM
 
def gen_input(n_max: int, m_max: int) -> str: 
  n = random.randint(1, n_max) 
  m = random.randint(1, min(m_max, 10 ** 6 // n)) 
  book_titles = set() 
  while len(book_titles) < n: 
    book_title = 
''.join((random.choice(string.ascii_uppercase) for _ in 
range(m))) 
    book_titles.add(book_title) 
  input_string = f'{n} {m}\n' + '\n'.join(book_titles) 
  return input_string 

def batch_gen_inputs(batch_size,) -> list: 
  inputs = [] 
  for _ in range(batch_size): 
    inputs.append(gen_input(5, 10)) 
  return inputs 

Figure 16: The prompt is used to first generate a function gen_input and then generate a batch
generator that employs the already generated gen_input to generate several input cases by calling it
multiple times.

Table 5: The Leetcode problems we use. We only pick problems that were released concurrently or
after GPT-4 to avoid contamination.

Problem ID Problem Name Level

2582 pass-the-pillow easy
2583 kth-largest-sum-in-a-binary-tree medium
2584 split-the-array-to-make-coprime-products hard
2585 number-of-ways-to-earn-points hard
2586 count-the-number-of-vowel-strings-in-range easy
2587 rearrange-array-to-maximize-prefix-score medium
2588 count-the-number-of-beautiful-subarrays medium
2589 minimum-time-to-complete-all-tasks hard
2591 distribute-money-to-maximum-children easy
2592 maximize-greatness-of-an-array medium
2593 find-score-of-an-array-after-marking-all-elements medium
2594 minimum-time-to-repair-cars medium
2595 number-of-even-and-odd-bits easy
2596 check-knight-tour-configuration medium
2597 the-number-of-beautiful-subsets medium
2598 smallest-missing-non-negative-integer-after-operations medium
2600 k-items-with-the-maximum-sum easy
2601 prime-subtraction-operation medium
2602 minimum-operations-to-make-all-array-elements-equal medium
2603 collect-coins-in-a-tree hard
2609 find-the-longest-balanced-substring-of-a-binary-string easy
2610 convert-an-array-into-a-2d-array-with-conditions medium
2611 mice-and-cheese medium
2612 minimum-reverse-operations hard
2614 prime-in-diagonal easy
2615 sum-of-distances medium
2616 minimize-the-maximum-difference-of-pairs medium
2617 minimum-number-of-visited-cells-in-a-grid hard
2639 find-the-width-of-columns-of-a-grid easy
2640 find-the-score-of-all-prefixes-of-an-array medium
2641 cousins-in-binary-tree-ii medium
2643 row-with-maximum-ones easy
2644 find-the-maximum-divisibility-score easy
2645 minimum-additions-to-make-valid-string medium
2646 minimize-the-total-price-of-the-trips hard

16


	Introduction
	Algorithm Synthesis
	Algorithmic Synthesis with LLM-Generated Oracles (Algo)
	Verification with Oracle
	Code Synthesis Strategies

	Experiments
	Experiment Setup
	Synthesis Accuracy
	Verification Analysis
	Case Study

	Related Work
	Conclusion and Discussion
	Appendix
	Examples of Algorithm Synthesis and Functionality Synthesis
	Prompts in Algo and Examples of Generated Programs
	LeetCode Examples
	Codecontests Examples

	The List of Problems from LeetCode


