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Abstract

We study the problem of exploration in Reinforcement Learning and present a
novel model-free solution. We adopt an information-theoretical viewpoint and
start from the instance-specific lower bound of the number of samples that have
to be collected to identify a nearly-optimal policy. Deriving this lower bound
along with the optimal exploration strategy entails solving an intricate optimization
problem and requires a model of the system. In turn, most existing sample optimal
exploration algorithms rely on estimating the model. We derive an approximation
of the instance-specific lower bound that only involves quantities that can be
inferred using model-free approaches. Leveraging this approximation, we devise
an ensemble-based model-free exploration strategy applicable to both tabular and
continuous Markov decision processes. Numerical results demonstrate that our
strategy is able to identify efficient policies faster than state-of-the-art exploration
approaches.

1 Introduction

Efficient exploration remains a major challenge for reinforcement learning (RL) algorithms. Over the
last two decades, several exploration strategies have been proposed in the literature, often designed
with the aim of minimizing regret. These include model-based approaches such as Posterior Sampling
for RL [47](PSRL) and Upper Confidence Bounds for RL [5, 34, 3](UCRL), along with model-free
UCB-like methods [28, 71]. Regret minimization is a relevant objective when one cares about the
rewards accumulated during the learning phase. Nevertheless, an often more important objective
is to devise strategies that explore the environment so as to learn efficient policies using the fewest
number of samples [22]. Such an objective, referred to as Best Policy Identification (BPI), has been
investigated in simplistic Multi-Armed Bandit problems [22, 30] and more recently in tabular MDPs
[37, 38]. For these problems, tight instance-specific sample complexity lower bounds are known, as
well as model-based algorithms approaching these limits. However, model-based approaches may be
computationally expensive or infeasible to obtain. In this paper, we investigate whether we can adapt
the design of these algorithms so that they become model-free and hence more practical.

Inspired by [37, 38], we adopt an information-theoretical approach, and design our algorithms starting
from an instance-specific lower bound on the sample complexity of learning a nearly-optimal policy
in a Markov decision process (MDP). This lower bound is the value of an optimization problem,
referred to as the lower bound problem, whose solution dictates the optimal exploration strategy in
an environment. Algorithms designed on this instance-specific lower bound, rather than minimax
bounds, result in truly adaptive methods, capable of tailoring their exploration strategy according
to the specific MDP’s learning difficulty. Our method estimates the solution to the lower bound
problem and employs it as our exploration strategy. However, we face two major challenges: (1) the
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lower bound problem is non-convex and often intractable; (2) this lower bound problem depends
on the initially unknown MDP. In [38], the authors propose MDP-NAS, a model-based algorithm
that explores according to the estimated MDP. They convexify the lower bound problem and explore
according to the solution of the resulting simplified problem. However, this latter problem still has a
complicated dependency on the MDP. Moreover, extending MDP-NAS to large MDPs is challenging
since it requires an estimate of the model, and the capability to perform policy iteration. Additionally,
MDP-NAS employs a forced exploration technique to ensure that the parametric uncertainty (the
uncertainty about the true underlying MDP) diminishes over time — a method, as we argue later, that
we believe not to be efficient in handling this uncertainty.

We propose an alternative way to approximate the lower bound problem, so that its solution can be
learnt via a model-free approach. This solution depends only on the Q-function and the variance
of the value function. Both quantities can advantageously be inferred using classical stochastic
approximation methods. To handle the parametric uncertainty, we propose an ensemble-based
method using a bootstrapping technique. This technique is inspired by posterior sampling and allows
us to quantify the uncertainty when estimating the Q-function and the variance of the value function.

Our contributions are as follows: (1) we shed light on the role of the instance-specific quantities
needed to drive exploration in uncertain MDPs; (2) we derive an alternate upper bound of the lower
bound problem that in turn can be approximated using quantities that can be learned in a model-free
manner. We then evaluate the quality of this approximation on various environments: (i) a random
MDP, (ii) the Riverswim environment [60], and (iii) the Forked Riverswim environment (a novel
environment with high sample complexity); (3) based on this approximation, we present Model Free
Best Policy Identification (MF-BPI), a model-free exploration algorithm for tabular and continuous
MDPs. For the tabular MDPs, we test the performance of MF-BPI on the Riverswim and the Forked
Riverswim environments, and compare it to that of Q-UCB [28, 71], PSRL[47], and MDP-NAS[38].
For continuous state-spaces, we compare our algorithm to IDS[44] and BSP [50] (Boostrapped DQN
with randomized prior value functions) and assess their performance on hard-exploration problems
from the DeepMind BSuite [52] (the DeepSea and the Cartpole swingup problems).

2 Related Work

The body of work related to exploration methods in RL problems is vast, and we mainly focus
on online discounted MDPs (for the generative setting, refer to the analysis presented in [23, 37]).
Exploration strategies in RL often draw inspiration from the approaches used in multi-armed bandit
problems [35, 62], including ϵ-greedy exploration, Boltzmann exploration [73, 62, 35, 2], or more
advanced procedures, such as Upper-Confidence Bounds (UCB) methods [3, 4, 35] or Bayesian
procedures [65, 74, 19, 56]. We first discuss tabular MDPs, and then extend the discussion to the case
of RL with function approximation.

Exploration in tabular MDPs. Numerous algorithms have been proposed with the aim of matching
the PAC sample complexity minimax lower bound Ω̃

(
|S||A|

ε2(1−γ)3

)
[34]. In the design of these

algorithms, model-free approaches typically rely on a UCB-like exploration [3, 35], whereas model-
based methods leverage estimates of the MDP to drive the exploration. Some well-known model-free
algorithms are MEDIAN-PAC [54], DELAYED Q-LEARNING [61] and Q-UCB [71, 28]. Some
notable model-based algorithms include: DEL [45], an algorithm that achieves asymptotically
optimal instance-dependent regret; UCRL [34], an algorithm that uses extended value-iteration to
compute an optimistic MDP; PSRL [47], that uses posterior sampling to sample an MDP. Other
algorithms include MBIE [60], E3 [31], R-MAX [14, 29], and MORMAX [63]. Most of existing
algorithms are designed towards regret minimization. Recently, however, there has been a growing
interest towards exploration strategies with minimal sample complexity, see e.g. [76, 37]. In [37, 38],
the authors showed that computing an exploration strategy with minimal sample complexity requires
to solve a non-convex problem. To overcome this challenge, they derived a tractable approximation of
the lower bound problem, whose solution provides an efficient exploration policy under the generative
model [37] and the forward model [38]. This policy necessitates an estimate of the model, and
includes a forced exploration phase (an ϵ-soft policy to guarantee that all state-action pairs are visited
infinitely often). In [64], the above procedure is extended to linear MDPs, but there again, computing
an optimal exploration strategy remains challenging. On a side note, in [70], the authors provide an
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alternative bound in the tabular case for episodic MDPs, and later extend it to linear MDPs [69]. The
episodic setting is further explored in [66] for deterministic MDPs.

Exploration in Deep Reinforcement Learning (DRL). Exploration methods in DRL environments
face several challenges, related to the fact that the state-action spaces are often continuous, and
other issues related to training deep neural architectures [58]. The main issue in these large MDPs
is that good exploration becomes extremely hard when either the reward is sparse/delayed or the
observations contain distracting features [15, 75]. Numerous heuristics have been proposed to tackle
these challenges, such as (1) adding an entropy term to the optimization problem to encourage
the policy to be more randomized [42, 24] or (2) injecting noise in the observations/parameters
[21, 55]. More generally, exploration techniques generally fall into two categories: uncertainty-based
and intrinsic-motivation-based [75, 33]. Uncertainty-based methods decouple the uncertainty into
parametric and aleatoric uncertainty. Parametric uncertainty [19, 43, 32, 75] quantifies the uncertainty
in the parameters of the state-action value. This uncertainty vanishes as the agent explores and learns.
The aleatoric uncertainty accounts for the inherent randomness of the environment and of the policy
[43, 32, 75]. Various methods have been proposed to address the parametric uncertainty, including
UCB-like mechanisms [16, 75], or TS-like (Thompson Sampling) techniques [49, 47, 6, 46, 48, 51].
However, computing a posterior of the Q-values is a difficult task. For instance, Bayesian DQN
[6] extends Randomized Least-Squares Value Iteration (RLSVI) [49] by considering the features
prior to the output layer of the deep-Q network as a fixed feature vector, in order to recast the
problem as a linear MDP. Non-parametric posterior sampling methods include Bootstrapped DQN
(and Bootstrapped DQN with prior functions) [48, 50, 51], which maintains several independent
Q-value functions and randomly samples one of them to explore the environment. Bootstrapped DQN
was extended in various ways by integrating other techniques [7, 36]. For the sake of brevity, we refer
the reader to the survey in [75] for an exhaustive list of algorithms. Most of these algorithms do not
directly account for aleatoric uncertainty in the value function. This uncertainty is usually estimated
using methods like Distributional RL [11, 18, 39]. Well-known exploration methods that account for
both aleatoric and epistemic uncertainties include Double Uncertain Value Network (DUVN) [43]
and Information Directed Sampling (IDS) [32, 44]. The former uses Bayesian dropout to measure
the epistemic uncertainty, and the latter uses distributional RL [11] to estimate the variance of the
returns. In addition, IDS uses bootstrapped DQN to estimate the parametric uncertainty in the form
of a bound on the estimate of the suboptimality gaps. These uncertainties are then combined to
compute an exploration strategy. Similarly, in [17], the authors propose UA-DQN, an approach that
uses QR-DQN [18] to learn the parametric and aleatoric uncertainties from the quantile networks.
Lastly, we refer the reader to [75, 57, 8] for the class of intrinsic-motivation-based methods.

3 Preliminaries

Markov Decision Process. We consider an infinite-horizon discounted Markov Decision Process
(MDP), defined by the tuple ϕ = (S,A, P, q, γ, p0). S is the state space, A is the action space,
P : S×A→ ∆(S) is the distribution over the next state given a state-action pair (s, a), q : S×A→
∆([0, 1]) is the distribution of the collected reward (with support in [0, 1]), γ ∈ [0, 1) is the discount
factor and p0 is the distribution over the initial state.

Let π : S → ∆(A) be a stationary Markovian policy that maps a state to a distribution over actions,
and denote by r(s, a) = Er∼q(·|s,a)[r] the average reward collected when an action a is chosen
in state s. We denote by V π(s) = Eπϕ[

∑
t≥0 γ

tr(st, at)|s0 = s] the discounted value of policy
π. We denote by π⋆ an optimal stationary policy: for any s ∈ S, π⋆(s) ∈ argmaxπ V

π(s) and
define V ⋆(s) = maxπ V

π(s). For the sake of simplicity, we assume that the MDP has a unique
optimal policy (we extend our results to more general MDPs in the appendix). We further define
Π⋆ε(ϕ) = {π : ∥V π − V π⋆∥∞ ≤ ε}, the set of ε-optimal policies in ϕ for ε ≥ 0. Finally, to avoid
technicalities, we assume (as in [38]) that the MDP ϕ is communicating (that is, for every pair of
states (s, s′), there exists a deterministic policy π such that state s′ is accessible from state s using π).

We denote by Qπ(s, a) := r(s, a) + γEs′∼P (·|s,a)[V
π(s′)] the Q-function of π in state (s, a). We

also define the sub-optimality gap of action a in state s to be ∆(s, a) := Q⋆(s, π⋆(s))−Q⋆(s, a),
where Q⋆ is the Q-function of π⋆, and let ∆min := mins,a̸=π⋆(s) ∆(s, a) be the minimum gap in ϕ.
For some policy π, we define Varsa[V

π] := Vars′∼P (·|s,a)[V
π(s′)] to be the variance of the value

function V π in the next state after taking action a in state s. More generally, we define Mk
sa[V

π] :=
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Es′∼P (·|s,a)

[(
V π(s′)− Es̄∼P (·|s,a)[V

π(s̄)]
)2k]

to be the 2k-th moment of the value function in the

next state after taking action a in state s. We also let MDsa[V
π] := ∥V π − Es′∼P (·|s,a)[V

π]∥∞ be
the span of ϕ under π, i.e., the maximum deviation from the mean of the next state value after taking
action a in state s.

Best policy identification and sample complexity lower bounds. The MDP ϕ is initially unknown,
and we are interested in the scenario where the agent interacts sequentially with ϕ. In each round
t ∈ N, the agent selects an action at and observes the next state and the reward (st+1, rt): st+1 ∼
P (·|st, at) and rt ∼ q(·|st, at). The objective of the agent is to learn a policy in Π⋆ε(ϕ) (possibly π⋆)
as fast as possible. This objective is often formalized in a PAC framework where the learner has to
stop interacting with the MDP when she can output an ε-optimal policy with probability at least 1− δ.
In this formalism, the learner strategy consists of (i) a sampling rule or exploration strategy; (ii) a
stopping time τ ; (iii) an estimated optimal policy π̂. The strategy is called (ε, δ)-PAC if it stops almost
surely, and Pϕ[π̂ ∈ Π⋆ε(ϕ)] ≥ 1− δ. Interestingly, one may derive instance-specific lower bounds
of the sample complexity Eϕ[τ ] of any (ε, δ)-PAC algorithm [37, 38], which involves computing an
optimal allocation vector ωopt ∈ ∆(S ×A) (where ∆(S ×A) is the set of distributions over S ×A)
that specifies the proportion of times an agent needs to sample each pair (s, a) to confidently identify
the optimal policy:

lim inf
δ→0

Eϕ[τ ]
kl(δ, 1− δ) ≥ Tε(ωopt) where Tε(ω)−1 := inf

ψ∈Altε(ϕ)
E(s,a)∼ω[KLϕ|ψ(s, a)], (1)

and ωopt = arg infω∈Ω(ϕ) Tε(ω)
−1. Here, Altε(ϕ) is the set of confusing MDPs ψ such that the

ε-optimal policies of ϕ are not ε-optimal in ψ, i.e., Altε(ϕ) := {ψ : ϕ≪ ψ,Π⋆ε(ϕ) ∩ Π⋆ε(ψ) = ∅}.
In this definition, if the next state and reward distributions under ψ are P ′(s, a) and q′(s, a), we write
ϕ≪ ψ if for all (s, a) the distributions of the next state and of the rewards satisfy P (s, a)≪ P ′(s, a)
and q(s, a)≪ q′(s, a).We further let KLϕ|ψ(s, a) := KL(P (s, a), P ′(s, a)) +KL(q(s, a), q′(s, a)).
Ω(ϕ) is the set of possible allocations; in the generative case it is ∆(S ×A), while with navigation
constraints we have Ω(ϕ) := {ω ∈ ∆(S ×A) : ω(s) =∑s′,a′ P (s|s′, a′)ω(s′, a′)},∀s ∈ S}, with
ω(s) :=

∑
a ω(s, a). Finally, kl(a, b) is the KL-divergence between two Bernoulli distributions of

means a and b.

4 Towards Efficient Exploration Allocations

We aim to extend previous studies on best policy identification to online model-free exploration. In
this section, we derive an approximation to the bound proposed in [37], involving quantities learnable
via stochastic approximation, thereby enabling the use of model-free approaches.

The optimization problem (1) leading to instance-specific sample complexity lower bounds has an
important interpretation [37, 38]. An allocation ωopt corresponds to an exploration strategy with
minimal sample complexity. To devise an efficient exploration strategy, one could then think of
estimating the MDP ϕ, and solving (1) for this estimated MDP to get an approximation of ωopt.
There are two important challenges towards applying this approach:

(i) Estimating the model can be difficult, especially for MDPs with large state and action spaces,
and arguably, a model-free method would be preferable.

(ii) The lower bound problem (1) is, in general, non-convex [37, 38].

A simple way to circumvent issue (ii) involves deriving an upper bound of the value of the sample
complexity lower bound problem (1). Specifically, one may derive an upper bound U(ω) of Tε(ω) by
convexifying the corresponding optimization problem. The exploration strategy can then be the ω⋆
that achieves the infimum of U(ω). This approach ensures that we identify an approximately optimal
policy, at the cost of over-exploring at a rate corresponding to the gap U(ω⋆)− Tε(ωopt). Note that
using a lower bound of Tε(ω) would not guarantee the identification of an optimal policy, since we
would explore "less" than required. The aforementioned approach was already used in [37] where the
authors derive an explicit upper bound U0(ω) of T0(ω). We also apply it, but derive an upper bound
such that implementing the corresponding allocation ω⋆ can be done in a model-free manner (hence
solving the first issue (i)).
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4.1 Upper bounds on Tε(ω)

The next theorem presents the upper bound derived in [37].
Theorem 4.1 ([37]). Consider a communicating MDP ϕ with a unique optimal policy π⋆. For all
vectors ω ∈ ∆(S ×A),

T0(ω) ≤ U0(ω) := max
(s,a):a̸=π⋆(s)

H0(s, a)

ω(s, a)
+ max

s

H⋆
0

ω(s, π⋆(s))
, (2)

with
H0(s, a) =

2
∆(s,a)2 +max

(
16Varsa[V

⋆]
∆(s,a)2 , 6MDsa[V

⋆]4/3

∆(s,a)
4
3

)
,

H⋆
0 = 2

∆2
min(1−γ)2

+min

(
27

∆2
min(1−γ)3

,max

(
16maxs Varsπ⋆(s)[V

⋆]

∆2
min(1−γ)2

,
6maxsMDsπ⋆(s)[V

⋆]4/3

∆
4/3
min(1−γ)4/3

))
.

In the upper bound presented in this theorem, the following quantities characterize the hardness of
learning the optimal policy: ∆(s, a) represents the difficulty of learning that in state s action a is
sub-optimal; the variance Varsa[V ⋆] measures the aleatoric uncertainty in future state values; and the
span MDsa[V

⋆] of the optimal value function can be seen as another measure of aleatoric uncertainty,
large whenever there is a significant variability in the value for the possible next states.

Estimating the span MDsa[V
⋆], in an online setting, is a challenging task for large MDPs. Our

objective is to derive an alternative upper bound that, in turn, can be approximated using quantities
that can be learned in a model-free manner. We observe that the variance of the value function, and
more generally its moments Mk

sa[V
⋆]2

−k
for k ≥ 1 (see Appendix C ), are smaller than the span. By

refining the proof techniques used in [37], we derive the following alternative upper bound.

Theorem 4.2. Let ε ≥ 0 and let k(s, a) := arg supk∈NM
k
sa[V

⋆]2
−k

(for brevity, we write k instead
of k(s, a)). Then, ∀ω ∈ ∆(S ×A), we have Tε(ω) ≤ U(ω), with

U(ω) := max
s,a̸=π⋆(s)

(
2 + 8φ2Mk

sa[V
⋆]2

1−k

ω(s, a)∆(s, a)2
+max

s′

C(s′)(1 + γ)2

ω(s′, π⋆(s′))∆(s, a)2(1− γ)2

)
, (3)

where C(s′) = max
(
4, 16γ2φ2Mk

s′,π⋆(s′)[V
⋆]2

1−k
)

and φ is the golden ratio.

We can observe that in the worst case, the upper bound U(ω⋆) of the sample complexity lower bound,

with ω⋆ = arg infω U(ω), scales as O(
|S||A|maxsMDs,π⋆(s)[V

⋆]2

∆2
min(1−γ)2

). Since MDsa[V
⋆] ≤ (1 − γ)−1,

then U(ω⋆) scales at most as O( |S||A|
∆2

min(1−γ)4
). However, the following questions arise: (1) Can we

select a single value of k that provides a good approximation across all states and actions? (2) How
much does this bound improve on that of Theorem 4.1? As we illustrate in the example presented
in the next subsection, we believe that actually selecting k = 1 for all states and actions leads to
sufficiently good results. With this choice, we obtain the following approximation:

U1(ω) := max
s,a̸=π⋆(s)

(
2 + 8φ2 Varsa[V

⋆]

ω(s, a)∆(s, a)2
+max

s′

C ′(s′)(1 + γ)2

ω(s′, π⋆(s′))∆(s, a)2(1− γ)2
)
, (4)

where C ′(s′) = max
(
4, 16γ2φ2 Vars′,π⋆(s′)[V

⋆]
)
. U1(ω) resembles the term in Theorem 4.1 (note

that we do not know whether U1 is a valid upper bound for Tε). For the second question, our
numerical experiments (presented below) suggest that U(ω) is a tighter upper bound than U0(ω).

4.2 Example on Tabular MDPs

In Figure 1, we compare the characteristic time upper bounds obtained in the previous subsection.
These upper bounds correspond to the allocations ω⋆, ω⋆0 , and ω⋆1 obtained by minimizing, over
∆(S × A)1, U(ω), U0(ω), and U1(ω), respectively. We evaluated these characteristic times on
various MDPs: (1) a random MDP (see Appendix A ); (2) the RiverSwim environment [60]; (3) the

1Results are similar when we account for the navigation constraints. We omit these results for simplicity.
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Figure 1: Comparison of the upper bounds (2) and (3) for different sizes of S and γ = 0.95. We
evaluated different allocations using U0(ω) and U(ω). The allocations are: ω⋆0 (the optimal allocation
in (2), ω⋆ (the optimal allocation in (3) and ω⋆1 (the optimal allocation in (4) by setting k = 1
uniformly across states and actions). For the random MDP we show the median value across 30 runs.

Forked RiverSwim, a novel environment where the agent needs to constantly explore two different
states to learn the optimal policy (compared to the RiverSwim environment, the sample complexity
is higher; refer to Appendix A for a complete description).

We note that across all plots, the optimal allocation ω⋆0 has a quite large characteristic time (black
cross). Instead, the optimal allocation ω⋆ (blue circle) computed using our new upper bound (3)
achieves a lower characteristic time. When we evaluate ω⋆0 on the new bound (3) (orange star), we
observe similar characteristic times.

Finally, to verify that we can indeed choose k = 1 uniformly across states and actions, we evaluated
the characteristic time ω⋆1 computed using (4) (green triangle). Our results indicate that the perfor-
mance is not different from those obtained with ω⋆, suggesting that the quantities of interest (gaps
and variances) are enough to learn an efficient exploration allocation. We investigate the choice of k
in more detail in Appendix A .

5 Model-Free Active Exploration Algorithms

In this section we present MF-BPI, a model-free exploration algorithm that leverages the optimal
allocations obtained through the previously derived upper bound of the sample complexity lower
bound. We first present an upper bound Ũ(ω) of U(ω), so that it is possible to derive a closed form
solution of the optimal allocation (an idea previously proposed in [37]).

Proposition 5.1. Assume that ϕ has a unique optimal policy π⋆. For all ω ∈ ∆(S ×A), we have:

U(ω) ≤ Ũ(ω) := max
s,a̸=π⋆(s)

H(s, a)

ω(s, a)
+

H

mins′ ω(s′, π⋆(s′))
,

withH(s, a) :=
2+8φ2Mk

sa[V
⋆]2

1−k

∆(s,a)2 andH := maxs′ C(s′)(1+γ)2

∆2
min(1−γ)2

. The minimizer ω̃⋆ := arg infω Ũ(ω)

satisfies ω̃⋆(s, a) ∝ H(s, a) for a ̸= π⋆(s) and ω̃⋆(s, π⋆(s)) ∝
√
H
∑
s,a̸=π⋆(s)H(s, a)/|S|

otherwise.

In the MF-BPI algorithm, we estimate the gaps ∆(s, a) and Mk
sa[V

⋆] for a fixed small value of k (we
later explain how to do this in a model-free manner.) and compute the corresponding allocation ω̃⋆.
This allocation drives the exploration under MF-BPI. Using this design approach, we face two issues:

(1) Uniform k and regularization. It is impractical to estimate Mk
sa[V

⋆] for multiple values of k.
Instead, we fix a small value of k (e.g., k = 1 or k = 2) for all state-action pairs (refer to the previous
section for a discussion on this choice). Then, to avoid excessively small values of the gaps in the
denominator, we regularize the allocation ω̃⋆ by replacing, in the expression of H(s, a) (resp. Hmin),
∆(s, a) (resp. ∆min) by (∆(s, a) + λ) (resp. (∆min + λ)) for some λ > 0.

(2) Handling parametric uncertainty via bootstrapping. The quantities ∆(s, a) and Mk
sa[V

⋆]
required to compute ω̃⋆ remain unknown during training, and we adopt the Certainty Equivalence
principle, substituting the current estimates of these quantities to compute the exploration strategy.

6



Algorithm 1 Boostrapped MF-BPI (Boostrapped Model Free Best Policy Identification)

Require: Parameters (λ, k, p); ensemble size B; learning rates {(αt, βt)}t.
1: Initialize Q1,b(s, a) ∼ U([0, 1/(1− γ)]) and M1,b(s, a) ∼ U([0, 1/(1− γ)2

k

]) for all (s, a) ∈
S ×A and b ∈ [B].

2: for t = 0, 1, 2, . . . , do
3: Bootstrap a sample (Q̂t, M̂t) from the ensemble, and compute the allocation ω(t) using

Proposition 5.1. Sample at ∼ ω(t)(st, ·); observe (rt, st+1) ∼ q(·|st, at)⊗ P (·|st, at).
4: for b = 1, . . . , B do
5: With probability p, using the experience (st, at, rt, st+1), update Qt,b and Mt,b using

Equations (5) and (6).
6: end for
7: end for

By doing so, we are inherently introducing parametric uncertainty into these terms that is not taken
into account by the allocation ω̃⋆. To deal with this uncertainty, the traditional method, as used e.g. in
[37, 38]), involves using ϵ-soft exploration policies to guarantee that all state-action pairs are visited
infinitely often. This ensures that the estimation errors vanish as time grows large. In practice, we
find this type of forced exploration inefficient. In MF-BPI, we opt for a bootstrapping approach to
manage parametric uncertainties, which can augment the traditional forced exploration step, leading
to more principled exploration.

5.1 Exploration in tabular MDPs.

The pseudo-code of MF-BPI for tabular MDPs is presented in Algorithm 1. In round t, MF-
BPI explores the MDP using the allocation ω(t) estimating ω̃⋆. To compute this allocation, we
use Proposition 5.1 and need (i) the sub-optimality gaps ∆(s, a), which can be easily derived
from the Q-function; (ii) the 2k-th moment Mk

sa[V
⋆], which can always be learnt by means of

stochastic approximation. In fact, for any Markovian policy π and pair (s, a) we have Mk
sa[V

π
ϕ ] =

1

γ2k
Es′∼P (·|s,a)[δ

π(s, a, s′)2
k

], where δπ(s, a, s′) = r(s, a)+γEa′∼π(·|s′)[Qπ(s′, a′)]−Qπ(s, a) is
a variant of the TD-error. MF-BPI then uses an asynchronous two-timescale stochastic approximation
algorithm to learn Q⋆ and Mk

sa[V
⋆],

Qt+1(st, at) = Qt(st, at) + αt(st, at)
(
rt + γmax

a
Qt(st+1, a)−Qt(st, at)

)
, (5)

Mt+1(st, at) =Mt(st, at) + βt(st, at)
(
(δ′t/γ)

2k −Mt(st, at)
)
, (6)

where δ′t = rt+γmaxaQt+1(st+1, a)−Qt+1(st, at), and {(αt, βt)}t≥0 are learning rates satisfying∑
t≥0 αt(s, a) =

∑
t≥0 βt(s, a) =∞,

∑
t≥0(αt(s, a)

2 + βt(s, a)
2) ≤ ∞, and αt(s,a)

βt(s,a)
→ 0.

MF-BPI uses bootstrapping to handle parametric uncertainty. We maintain an ensemble of
(Q,M)-values, with B members, from which we sample (Q̂t, M̂t) at time t. This sample
is generated by sampling a uniform random variable ξ ∼ U([0, 1]) and, for each (s, a) set
Q̂t(s, a) = Quantileξ(Qt,1(s, a), . . . , Qt,B(s, a)) (assuming a linear interpolation). This method
is akin to sampling from the parametric uncertainty distribution (we perform the same opera-
tion also to compute M̂t). This sample is used to compute the allocation ω(t) using Propo-
sition 5.1 by setting ∆t(s, a) = maxa′ Q̂t(s, a

′) − Q̂t(s, a), π⋆t (s) = argmaxa Q̂t(s, a) and
∆min,t = mins,a̸=π⋆t (s) ∆t(s, a). Note that, the allocation ω(t) can be mixed with a uniform policy, to
guarantee asymptotic convergence of the estimates. Upon observing an experience, with probability
p, MF-BPI updates a member of the ensemble using this new experience. p tunes the rate at which
the models are updated, similar to sampling with replacement, speeding up the learning process.
Selecting a high value for p compromises the estimation of the parametric uncertainty, whereas
choosing a low value may slow down the learning process.

Exploration without bootstrapping? To illustrate the need for our bootstrapping approach, we
tried to use the allocation ω(t) mixed with a uniform allocation. In Figure 2, we show the results on
Riverswim-like environments with 5 states. While forced exploration ensures infinite visits to all
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Figure 2: Forced exploration example with 5 states. We explore according to ω(t)(st, a) = (1 −
ϵt)

ω̃⋆t (st,a)∑
a′ ω̃

⋆
t (st,a

′) +ϵt
1
|A| , mixing the estimate of the allocation ω̃⋆ from Proposition 5.1 with a uniform

policy, with ϵt = max(10−3, 1/Nt(st)) where Nt(s) indicates the number of times the agent visited
state s up to time t. Shade indicates 95% confidence interval.

state-action pairs, this guarantee only holds asymptotically. As a result, the allocation mainly focuses
on the current MDP estimate, neglecting other plausible MDPs that could produce the same data.
This makes the forced exploration approach too sluggish for effective convergence, suggesting its
inadequacy for rapid policy learning. These results highlight the need to account for the uncertainty
in Q,M when computing the allocation.

5.2 Extension to Deep Reinforcement Learning

To extend bootstrapped MF-BPI to continuous MDPs, we propose DBMF-BPI (see Algorithm 2,
or Appendix B ). DBMF-BPI uses the mechanism of prior networks from BSP [50](bootstrapping
with additive prior) to account for uncertainty that does not originate from the observed data. As
before, we keep an ensemble {Qθ1 , . . . , QθB} of Q-values (with their target networks) and an en-
semble {Mτ1 , . . . ,MτB} of M -values, as well as their prior networks. We use the same procedure
as in the tabular case to compute (Q̂t, M̂t) at time t, except that we sample ξ ∼ U([0, 1]) every
Ts ∝ (1−γ)−1 training steps (or at the end of an episode) to make the training procedure more stable.
The quantity Q̂t is used to compute π⋆t (st) and ∆t(st, a). We estimate ∆min,t via stochastic approx-
imation, with the minimum gap from the last batch of transitions sampled from the replay buffer

serving as a target. To derive the exploration strategy, we compute Ht(st, a) =
2+8φ2M̂t(st,a)

21−k

(∆t(st,a)+λ)2

and Ht =
4(1+γ)2 max(1,4γ2φ2M̂t(st,π

⋆
t (st))

21−k )
(∆min,t+λ)2(1−γ)2 . Next, we set the allocation ω

(t)
o as follows:

ω
(t)
o (st, a) = Ht(st, a) if a ̸= π⋆t (st) and ω

(t)
o (st, a) =

√
Ht

∑
a ̸=π⋆t (st)

Ht(st, a) otherwise.

Finally, we obtain an ϵt-soft exploration policy ω(t)(st, ·) by mixing ω(t)
o (st, ·)/

∑
a ω

(t)
o (st, a) with

a uniform distribution (using an exploration parameter ϵt).

Algorithm 2 DBMF-BPI (Deep Bootstrapped Model Free BPI)

Require: Parameters (λ, k); ensemble size B; exploration rate {ϵt}t; estimate ∆min,0; mask probability p.
1: Initialize replay buffer D, networks Qθb ,Mτb and targets Qθ′

b
for all b ∈ [B].

2: for t = 0, 1, 2, . . . , do
3: Sampling step.
4: Compute allocation ω(t) ← ComputeAllocation(st, {Qθb ,Mτb}b∈[B],∆min,t, γ, λ, k, ϵt).
5: Sample at ∼ ω(t)(st, ·) and observe (rt, st+1) ∼ q(·|st, at)⊗ P (·|st, at).
6: Add transition zt = (st, at, rt, st+1) to the replay buffer D.
7: Training step.
8: Sample a batch B from D, and with probability p add the ith experience in B to a sub-batch

Bb, ∀b ∈ [B]. Update the (Q,M)-values of the bth member in the ensemble using Bb:
{Qθb , Qθ′

b
,Mτb}b∈[B] ← Training({Bb, Qθb , Qθ′

b
,Mτb}b∈[B]).

9: Update estimate ∆min,t+1 ← EstimateMinimumGap(∆min,t,B, {Qθb}b∈[B]).
10: end for
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6 Numerical Results

We evaluate the performance of MF-BPI on benchmark problems and compare it against state-of-the-
art methods (details can be found in Appendix A ).

Tabular MDPs. In the tabular case, we compared various algorithms on the Riverswim and Forked
Riverswim environments. We evaluate MF-BPI with (1) bootstrapping and with (2) the forced
exploration step using an ϵ-soft exploration policy, MDP-NAS [38], PSRL [47] and Q-UCB [28, 71].
For MDP-NAS, the model of the MDP was initialized in an optimistic way (with additive smoothing).

In both environments, we varied the size of the state space. In Figure 3, we show 1− ∥V ⋆−V π
⋆
T ∥∞

∥V ⋆∥∞
,

a performance measure for the estimated policy π⋆T after T = |S| × 104 steps with γ = 0.99.
Results (the higher the better) indicate that bootstrapped MF-BPI can compete with model-based and
model-free algorithms on hard-exploration problems, without resorting to expensive model-based
procedures. Details of the experiments, including the initialization of the algorithms, are provided in
Appendix A .
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Figure 3: Evaluation of the estimated optimal policy π⋆T after T steps for MF-BPI, Q-UCB, MDP-
NAS and PSRL. Results are averaged across 10 seeds and lines indicate 95% confidence intervals.

Deep RL. In environments with continuous state space, we compared DBMF-BPI with BSP [51, 50]
(Bootstrapped DQN with randomized priors) and IDS [44] (Information-Directed Sampling). We
also evaluated DBMF-BPI against BSP2, a variant of BSP that uses the same masking mechanism
as DBMF-BPI for updating the ensemble. These methods were tested on challenging exploration
problems from the DeepMind behavior suite [52] with varying levels of difficulty: (1) a stochastic
version of DeepSea and (2) the Cartpole swingup problem. The DeepSea problem includes a 5%
probability of the agent slipping, i.e., that an incorrect action is executed, which increases the aleatoric
variance.

The results for the Cartpole swingup problem are depicted in Figure 4 for various difficulty levels k
(see also Appendix A.5 for more details), demonstrating the ability of DBMF-BPI to quickly learn
an efficient policy. While BSP generally performs well, there is a notable difference in performance
when compared to DBMF-BPI. For a fair comparison, we used the same network initialization
across all methods, except for IDS. Untuned, IDS performed poorly; proper initialization improved
its performance, but results remained unsatisfactory. In Figure 5, we present two exploration metrics
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Figure 4: Cartpole swingup problem. On the left: total upright time at a difficulty level of k = 10. On
the right: total upright time after 200 episodes for different difficulties k. To observe a positive reward,
the pole’s angle must satisfy cos(θ) > k/20, and the cart’s position should satisfy |x| ≤ 1− k/20.
Bars and shaded areas indicate 95% confidence intervals.
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Figure 5: Exploration in Cartpole swingup for k = 5. On the left, we show the entropy of visitation
frequency for the state space (x, ẋ, θ, θ̇) during training. On the right, we show a measure of the
dispersion of the most recent visits; smaller values indicate that the agent is less explorative as t
increases.

for difficulty k = 5. The frequency of visits measures the uniformity and dispersion of visits across
the state space, while the second metric evaluates the recency of visits to different regions, capturing
how frequently the methods keep visiting previously visited states (a smaller value indicates that the
agent tends to concentrate on a specific region of the state space). For detailed analysis, please refer
to appendix A.
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Figure 6: Slipping DeepSea problem. On the left: total number of successful episodes (i.e., that the
agent managed to reach the final reward) for a grid with 302 input features. On the right: standard
deviation of tvisit at the last episode, depicting how much each agent explored (the lower the better).

For the slipping DeepSea problem, results are depicted in Fig. 6 (see also Appendix A.4 for more
details). Besides the number of successful episodes, we also display the standard deviation of
(tvisit)ij across all cells (i, j), where (tvisit)ij indicates the last timestep t that a cell (i, j) was visited
(normalized by NT , the product of the grid size, and the number of episodes). The right plot shows
std(tvisit) for different problem sizes, highlighting the good exploration properties of DBMF-BPI.
Additional details and exploration metrics can be found in Appendix A .

7 Conclusions

In this work, we studied the problem of exploration in Reinforcement Learning and presented MF-
BPI, a model-free solution for both tabular and continuous state-space MDPs. To derive this method,
we established a novel approximation of the instance-specific lower bound necessary for identifying
nearly-optimal policies. Importantly, this approximation depends only on quantities learnable via
stochastic approximation, paving the way towards model-free methods. Numerical results on hard-
exploration problems highlighted the effectiveness of our approach for learning efficient policies over
state-of-the-art methods.
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Appendix introduction

We start by examining the wider impact of our work and acknowledging its limitations. This provides
a balanced view of our contribution and points out areas for future research.

Next, we turn to the numerical results. Here, we give a more detailed account of our findings
and include additional results for further clarity. We also introduce and describe the new Forked
RiverSwim environment, an advanced version of the existing RiverSwim model, which has a larger
sample complexity.

In the subsequent section, we break down the algorithms used in our study. This gives a deeper
understanding of the methods underpinning our research.

We wrap up the appendix by providing all the proofs that support our conclusions.

Broader impact

This paper primarily focuses on foundational research in reinforcement learning, specifically the
exploration problem, and proposes a novel model-free exploration strategy. While our work does not
directly engage with societal impact considerations, we acknowledge the importance of considering
the broader implications of AI technologies. As our proposed method improves the efficiency of
reinforcement learning algorithms, it could potentially be applied in a wide range of contexts, some of
which could have societal impacts. For instance, reinforcement learning is used in decision-making
systems, which could include areas like healthcare, finance, and autonomous vehicles, where biases
or errors could have significant consequences. Hence, while the direct societal impact of our work
may not be immediately apparent, we strongly encourage future researchers and practitioners who
apply these techniques to carefully consider the ethical implications and potential negative impacts in
their specific use-cases. The responsible use of AI, including the mitigation of bias and the respect
for privacy, should always be a priority.

Limitations

While our work presents significant advancements in the area of reinforcement learning, it also has
its limitations that need to be acknowledged:

• Assumptions: Our approach relies on the assumption that the MDP is communicating. The
instance-specific lower bound we propose may not be as effective if this assumption does
not hold.

• Scalability: Our method, despite being model-free, still relies on stochastic approximations,
which may not scale well with the complexity and size of certain MDPs.

• Comparison with Model-Based Approaches: While we have shown that our approach per-
forms competitively with existing model-based exploration algorithms in hard-exploration
environments, a comprehensive comparison across a wider range of environments is needed.
It is possible that our method may not perform as well in some MDPs as the model-based
approaches.

• Bootstrapping: Although bootstrapping has proven to be an effective technique, its usage
is yet to be fully understood in RL applications. To achieve a more profound theoretical
comprehension, a comprehensive analysis is necessary.

These limitations present opportunities for future research and the continued evolution of efficient
exploration in reinforcement learning.
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A Numerical Results

The appendix begins with the numerical results. We first introduce the Forked RiverSwim environ-
ment, a more complex variant of the traditional RiverSwim model.

Our discussion continues with a detailed exposition of Section 4.2, providing further experimental
details. We conclude this section with additional findings related to both the tabular case and two
specific problems: the CartPole Swing-Up and the Slipping DeepSea.

A.1 The Forked Riverswim Environment

The Forked RiverSwim(N) is a novel environment (see also Figure 7) where the agent needs to
constantly explore two different states, (sg, s′g), to learn the optimal policy. The number of states is
2N − 1, and there are 3 actions.

The environment is similar to RiverSwim, but the initial state s1 forks into two rivers: the final state
in both branches of the rivers (sg and s′g) have a similar high reward. Furthermore, the agent can
deterministically switch between the two branches at any intermediate state. Intermediate states
do not give any reward. Moreover, a little subtlety is that the agent can exploit the deterministic
transition between s1 and s′2 to deterministically transition to s2 (although this has a small effect as
N grows large).

Lastly, the Bernoulli rewards in sg and s′g , which are the highly rewarding states, are quite similar (1
vs 0.95). Therefore, an optimal policy that starts in s1 should achieve a slightly better reward than the
optimal policy on the RiverSwim environment with N + 1 states (due to the fact that the transition
to s2 from s1 can be made in a deterministic way).

Due to these reasons, this variant introduces additional complexity into the decision-making process.
It is reasonable that a learning algorithm may learn an approximately good greedy policy in a short
time-span, but not exactly the optimal one. In fact, we may expect an algorithm to take longer
(compared to Riverswim) to learn the true optimal policy. Finally, always compared to RiverSwim,
the sample complexity is of orders of magnitude higher, as also depicted in Figure 1. For a Python
implementation, please refer to the GitHub repository of this manuscript.Forked Riverswim(N) LegendRightLeftSwitch

Figure 7: Forked Riverswim(N) with |S| = 2N − 1 states. When taking action left in s1 the
agent observes a Bernoulli reward r of parameter 0.05. When taking action right in sg (resp. s′g)
the agent observes a reward r drawn from a Bernoulli of parameter 1 (resp. 0.95). In all other states
the reward is 0. Action left and switch are deterministic, while the probability of action Right is
indicated in the figure. The square boxes indicate that the pattern of states is being repeated from s3
(or s′3) until sN−1 (or s′N−1). This variant introduces additional complexity into the decision-making
process, as the Bernoulli rewards in sg and s′g are quite similar (1 vs 0.95).

A.2 Details of Example 4.2

In the following we report the details of Section 4.2. In Section 4.2 we evaluated the characteristic
time of three different environments with same discount factor γ = 0.95:
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Figure 8: Comparison of (2) and (3) for discount γ = 0.99 and different sizes of the state space S. We
evaluated different allocations using U0(ω) and U(ω). The allocations are: ω⋆ (the optimal allocation
in Equation (3)), ω⋆0 (the optimal allocation in Equation (2)) and ω⋆1 (the optimal allocation that we
get from (3) by setting k = 1 uniformly across states and actions). Results for the RandomMDP
indicate the median and the bars 95% confidence intervals across 30 runs.

1. RandomMDP: an MDP with |S| states and 3 actions. The transition probability for each (s, a)
is drawn from a Dirichlet distribution Dir(α1, . . . , α|S|), with αi = αi−1 + (i− 1)/10 and
α1 = 1. The rewards also follow the same Dirichlet distribution, that is, for each (s, a) we
sample a |S|-dimensional vector q of rewards from Dir(α1, . . . , α|S|). This vector defines
the rewards in the next state r(s, a, s′) = qs′ , with q ∼ Dir(α1, . . . , α|S|). For this type of
environment see also the details of the instance-specific quantities in Table 1.

2. RiverSwim: this environment is specified in [60], but we refer to the version used in [38]
for a direct comparison. The reward is always 0 except in the initial state s1, and the final
state s|S|. In the initial state we have q(1|s1, left) = 0.05 (probability 0.05 of observing
a reward of 1, and 0.95 probability of observing a reward of 0), while in the final state
q(1|s|S|, right) = 1. All other rewards are set to 0. Transition probabilities are the same as
in [60]. For this type of environment see also the details of the instance-specific quantities
in Table 2.

3. Forked RiverSwim: we refer the reader to Appendix A.1 for a description of this environ-
ment. For this type of environment see also the details of the instance-specific quantities in
Table 3.

Interestingly, these environments have different properties that make them suitable for analysis: (1)
the RandomMDP environment has very small gaps and variances; (2) the Riverswim environment
has a relatively larger maximum span; (3) the Forked Riverswim environment, in contrast to the
Riverswim environment, has a very small minimum gap ∆min and similar values for the span.

|S| ∆min maxsa∆sa minsaMDsa[V
⋆] maxsaMDsa[V

⋆] minsaVarsa[V
⋆] maxsaVarsa[V

⋆] maxs,a,kM
k
sa[V

⋆]2
−k

5 1.1 · 10−2 1.6 · 10−1 6.4 · 10−2 1.0 · 10−1 8.3 · 10−4 3.4 · 10−3 1.0 · 10−1

10 2.3 · 10−3 6.3 · 10−2 2.7 · 10−2 3.6 · 10−2 1.4 · 10−4 3.7 · 10−4 3.6 · 10−2

25 1.2 · 10−4 1.0 · 10−2 4.6 · 10−3 5.1 · 10−3 3.3 · 10−6 4.9 · 10−6 5.1 · 10−3

50 9.5 · 10−6 1.9 · 10−3 9.1 · 10−4 9.5 · 10−4 1.2 · 10−7 1.4 · 10−7 9.5 · 10−4

100 1.1 · 10−6 3.7 · 10−4 1.8 · 10−4 1.8 · 10−4 0 0 1.8 · 10−4

Table 1: Details of the instance-specific quantities for the RandomMDP environment (we evaluated
up to k = 19). Results indicate an average over 300 different realizations. Confidence intervals are
omitted for brevity, and values are rounded up to the 1st decimal.
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|S| ∆min maxsa∆sa minsaMDsa[V
⋆] maxsaMDsa[V

⋆] minsaVarsa[V
⋆] maxsaVarsa[V

⋆] maxs,a,kM
k
sa[V

⋆]2
−k

5 7.6 · 10−2 1.3 · 100 1.7 · 100 3.0 · 100 0 3.6 · 10−1 1.1 · 100
10 3.4 · 10−2 1.3 · 100 2.5 · 100 4.5 · 100 0 3.7 · 10−1 1.1 · 100
25 1.9 · 10−2 1.3 · 100 2.5 · 100 5.0 · 100 0 3.7 · 10−1 1.1 · 100
50 8.4 · 10−3 1.3 · 100 2.7 · 100 5.4 · 100 0 3.7 · 10−1 1.1 · 100
100 2.1 · 10−4 1.3 · 100 2.9 · 100 5.5 · 100 0 3.7 · 10−1 1.1 · 100

Table 2: Details of the instance-specific quantities for the Riverswim environment (we evaluated up
to k = 19). Values are rounded up to the 1st decimal.

|S| ∆min maxsa∆sa minsaMDsa[V
⋆] maxsaMDsa[V

⋆] minsaVarsa[V
⋆] maxsaVarsa[V

⋆] maxs,a,kM
k
sa[V

⋆]2
−k

5 1.0 · 10−1 1.4 · 100 1.0 · 100 2.0 · 100 0 3.2 · 10−1 1.0 · 100
11 2.8 · 10−2 1.3 · 100 1.6 · 100 2.9 · 100 0 4.9 · 10−1 2.0 · 100
25 1.0 · 10−6 1.3 · 100 1.7 · 100 3.2 · 100 0 4.8 · 10−1 2.0 · 100
51 1.0 · 10−6 1.3 · 100 2.1 · 100 4.2 · 100 0 4.8 · 10−1 2.0 · 100
101 1.0 · 10−6 1.3 · 100 2.5 · 100 5.1 · 100 0 4.8 · 10−1 2.0 · 100

Table 3: Details of the instance-specific quantities for the Forked Riverswim environment (we
evaluated up to k = 19). Values are rounded up to the 1st decimal.
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Figure 10: Evaluation of ω⋆k for different values of k. For the RandomMDP we only show the median
value over 300 runs.

Finally, in Figure 9, we depict maxs,aM
k
sa[V

⋆]2
−k

for different values of k, up to k = 19. For the
RandomMDP environment we observe that maxs,aM

k
sa[V

⋆]2
−k

tends to the maximum of the span
maxsaMDsa[V

⋆], which depends on the size of the state space (as |S| grows larger the span dimin-
ishes). For the other two environments, Riverswim and Forked Riverswim, maxs,aM

k
sa[V

⋆]2
−k

does not seem to depend on the size of the state space. Furthermore, we also observe a sudden
convergence of this quantity for relatively small values of k, followed by a relatively very slow
increase.

In Figure 10 are shown the results when we evaluate the allocations ω⋆k for different values of k. In
general, we do not observe a striking difference between those allocations.
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A.3 Riverswim and Forked Riverswim - Description and Additional Results

In Figure 11 we present results from the Riverswim and ForkedRiverswim environments. These
results include data from two new algorithms: O-BPI (Online Best Policy Identification) and PS-
MDP-NAS (Posterior Sampling for MDP-NaS).

O-BPI is a novel algorithm that draws inspiration from MDP-NAS. However, a distinguishing
characteristic is its use of stochastic approximation to determine the Q-values and M -values. These
values, as for MF-BPI, are used to compute the allocation ω by solving the sample-complexity bound
infω∈Ω(ϕ) U(ω) with navigation constraints. On the other hand, PS-MDP-NAS is an adaptation of
MDP-NAS that uses posterior sampling over the MDP’s model to address the parametric uncertainty.
It’s worth noting that both these algorithms, O-BPI and PS-MDP-NAS, are model-based, and a
detailed description of these algorithms is available in the following section, see ?? and Algorithm 3.

The results in Figure 11 clearly show the superiority of these allocation computing methods compared
to other algorithms such as PSRL and Q-UCB.
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Figure 11: Evaluation of the estimated optimal policy π⋆T after T steps for MF-BPI, O-BPI, Q-UCB,
MDP-NAS, PS-MDP-NAS, and PSRL. Results are averaged across 10 seeds and lines indicate
95% confidence intervals. Note that for Forked Riverswim we have N = 2|S| − 1.

Figure 12 on the next page provides a visualization of the performance of each algorithm over the
entire horizon t = 0, . . . , T − 1. We exhibit the performance of the estimated greedy policy π⋆t at
each timestep t for each respective method. The results offer a clear demonstration of the efficiency
of those methods based on the instance-specific sample complexity lower bound.
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Figure 12: Evaluation of the estimated optimal policy π⋆t for MF-BPI, O-BPI, Q-UCB, MDP-NAS,
PS-MDP-NAS, and PSRL. Results are averaged across 10 seeds and lines indicate 95% confidence
intervals.
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A.4 Slipping DeepSea - Description and Additional Results

Description. The Slipping DeepSea problem is an hard-exploration reinforcement learning problem.
In the standard version, there’s an N ×N grid, and the agent starts in the top left corner (state 0, 0)
and needs to reach the bottom right corner (state N − 1, N − 1) for a large reward (the state vector is
an N2-dimensional vector, that one-hot encodes the agent’s position in the grid). The agent can move
diagonally, left or right (or down when close to the wall). The agent incurs in a cost when moving of
0.01/N , while obtaining a positive reward of 1 when reaching the bottom right corner. Furthermore,
we introduce the modification that there is a small probability of 0.05 that the incorrect action will
be executed. This is a challenging problem because the optimal policy requires the agent to move
(incurring a negative reward) many times before eventually reaching the high reward in the bottom
right corner. However, due to the stochastic nature of the problem (the chance of slipping), the agent
might be forced to take suboptimal actions, making it harder to learn the optimal policy.

Additional results. Figure 13 presents additional metrics encapsulating the exploration conducted
by each algorithm, offering a comprehensive summary of the exploration process after T episodes for
each size N (note that for a given size N the number of input features in the state is N2).

We focus on two key metrics: (a) (tvisit)ij and (b) (tavg)ij . Here, (a) (tvisit)ij represents the last
timestep t at which a cell (i, j) was visited (this value is normalized by NT , the multiplication of
the grid size and the number of episodes), while (b) (tavg)ij signifies the average frequency with
which a cell (i, j) was visited. In terms of arrangement, from the top downwards: (1) we present
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Figure 13: Slipping DeepSea problem - exploration metrics. From top to bottom: (1)standard
deviation of tvisit at the last episode, depicting how much each agent explored (the lower the better);
(2) median value of (tavg)ij , i.e., the median value of a cell’s visit frequency; (3) standard deviation
of (tavg)ij across all cells. Results are averaged over 24 runs and bars indicate 95% confidence
intervals.

the standard deviation of (tvisit)ij across all cells; (2) we show the median value of a cell’s visit
frequency; (3) we depict the standard deviation of (tavg)ij across all cells. From the central plot, we
notice that DBMF-BPI tends to visit all cells slightly more frequently. The first plot also highlights
that DBMF-BPI maintains a consistent visit rate to all cells. This pattern is a strong indication of
DBMF-BPI’s explorative behavior. Conversely, neither BSP nor BSP2 match this performance in
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Figure 14: Slipping DeepSea problem. Total number of successful episodes (i.e., that the agent
managed to reach the final reward) for a grid with 302 input features.

terms of successful episodes (shown in Figure 14), despite the median value of tavg being very similar
to that of DBMF-BPI. In order to provide a more comprehensive view, Figure 15 and Figure 16
present additional exploration metrics. Specifically, we display (tavg)ij and (tvisit)ij , respectively,
after T = 3000 episodes, given a DeepSea problem size of 30. The initial plot illustrates how
DBMF-BPI tends to concentrate on the grid’s diagonal. However, the bottom plot shows that, in
spite of this diagonal focus, DBMF-BPI also maintains a consistent exploration of other cells within
the grid. We also observe how BSP seems to uniformly explore all cells, while IDS does not manage
to explore the entire grid within the number of episodes. Last, but not least, on the right column in
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Figure 15: Slipping DeepSea problem. In this figure we depict the average frequency of visits, after
3000 episodes, when the size of the problem is k = 30.

0 4 8 12 16 20 24 28

0
3
6
9

12
15
18
21
24
27

DB-MFBPI

0 4 8 12 16 20 24 28

BSP

0 4 8 12 16 20 24 28

BSP2

0 4 8 12 16 20 24 28

IDS

20000

40000

60000

80000
Recent visit - size=30

Figure 16: Slipping DeepSea problem. In this figure we depict the last timestep a cell was visited,
after 3000 episodes, when the size of the problem is k = 30.

Figure 17, are shown the results for the learnt greedy policy π⋆t at time t. Clearly, DBMF-BPI is
able to learn an efficient policy more quickly than the other methods for different problem sizes.
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Figure 17: Slipping DeepSea problem - evaluation of the greedy policy. On the left we depict the
regret of the learning agent over the number of episodes T for each problem size k. On the right,
we display the average value of the learnt greedy policy π⋆t at time t (black dashed-line indicates
the average optimal value). Results are averaged over 24 runs, and the shaded area depicts 95%
confidence intervals.
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A.5 Cartpole Swingup - Description and Additional Results

Description. In this subsection we present additional results for the Cartpole swingup problem.
The cartpole swingup problem is a classic problem in control theory and reinforcement learning [9].
The task is to balance a pole that is attached by an un-actuated joint to a cart, which moves along
a frictionless track. The system is controlled by applying a force to the cart. Initially, the pole is
hanging down and the goal is to swing it up so it stays upright. In contrast to the classic cartpole
balance problem, the pole needs not only to be balanced when it’s upright but also to be swung up to
the upright position.

The state of the system at any point in time is described by four variables: the position of the cart x,
the velocity of the cart ẋ, the angle of the pole θ, and the angular velocity of the pole θ̇. There are 4
additional variables in the state, and for simplicity we refer the user to [52].

To make the problem more difficult, as in [52] we introduce a parameter k ∈ {1, . . . , 19} (to not be
confused with the parameter of Mk

sa[V
⋆]) that parameterizes the reward function. Specifically, the

agent observes a positive reward of 1 only if the pole’s angle satisfies cos(θ) > k/20, and the cart’s
position satisfies |x| ≤ 1− k/20. There is also a negative reward of −0.1 that the agent incurs for
moving, which aggravates the explore-exploit tradeoff (algorithms like DQN [41] simply remain
still).

Additional results. In Figures 18 to 20, we provide supplementary results for this problem. Fig-
ure 18 illustrates the total upright time achieved by each learner after 200 episodes, across various
difficulty levels, k. Here, the total upright time refers to the total count of steps where the pole
maintained an angle satisfying cos(θ) > k/20, concurrently with the cart maintaining a position that
satisfied |x| ≤ 1− k/20.

Subsequently, Figure 19 showcases the evolution of this metric throughout all 200 episodes.

Figure 20 demonstrates the performance of the learnt greedy policy π⋆t over the course of the training.
Every 10 episodes, we evaluated the greedy policy over 20 episodes and computed the cumulative
reward.
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Figure 18: Cartpole swingup problem. Total upright time after 200 episodes for different difficulties
k. To observe a positive reward, the pole’s angle must satisfy cos(θ) > k/20, and the cart’s position
should satisfy |x| ≤ 1− k/20. Bars indicate 95% confidence intervals.
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k. To observe a positive reward, the pole’s angle must satisfy cos(θ) > k/20, and the cart’s position
should satisfy |x| ≤ 1− k/20. Bars indicate 95% confidence intervals.

28



25 50 75 100 125 150 175 200

Episode

0

100

200

300

400

500

600

C
u

m
u

la
ti

ve
re

w
ar

d
π
? t

Difficulty k = 1

DBMF-BPI

BSP

BSP2

IDS

25 50 75 100 125 150 175 200

Episode

0

100

200

300

400

500

600

C
u

m
u

la
ti

ve
re

w
ar

d
π
? t

Difficulty k = 3

DBMF-BPI

BSP

BSP2

IDS

25 50 75 100 125 150 175 200

Episode

0

100

200

300

400

500

600

C
u

m
u

la
ti

ve
re

w
ar

d
π
? t

Difficulty k = 5

DBMF-BPI

BSP

BSP2

IDS

25 50 75 100 125 150 175 200

Episode

0

100

200

300

C
u

m
u

la
ti

ve
re

w
ar

d
π
? t

Difficulty k = 10

DBMF-BPI

BSP

BSP2

IDS

Cartpole swingup - greedy policy evaluation

Figure 20: Cartpole swingup problem. Performance of the learnt greedy policy π⋆t over the training
episodes (average cumulative reward collected by the greedy policy).
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Exploration results. In Figures 21 to 23, we show additional results that illustrate the exploration
of the various algorithms for difficulties k = 3, 5.

In Figure 21, we display two metrics at each training step t: the entropy of visit frequency and the
entropy of the most recent visit. The first metric quantifies how thoroughly the method has explored
the state space (x, ẋ, θ, θ̇) up to time t. To do this, we discretize the state space into bins and tally the
occurrences in each bin. We then normalize these counts by their sum and calculate the resulting
entropy, which is normalized to the range [0, 1].

While this measure of visit frequency provides some insight, it is insufficient for understanding
whether the algorithm continues to explore new states or revisits old ones. To address this, the second
metric measures the dispersion of the timing of the last visits to various regions of the state space.
A larger dispersion indicates that the algorithm is concentrating on a specific region, resulting in a
smaller entropy (and vice-versa). To calculate this, we again use normalized entropy.

Finally, in Figure 22 and Figure 23, we illustrate the visitation frequency after 20K training steps
for (x, ẋ) and (ẋ, θ̇) at difficulty levels k = 3 and k = 5. Darker regions signify higher visitation
frequencies. The pattern in (ẋ, θ̇) is characteristic of algorithms that have learned to stabilize the
policy. Notably, DBMF-BPI is also actively exploring various velocities. A similar trend is observed
for (x, ẋ): while most methods focus on an s-shaped trajectory, DBMF-BPI also explores other
regions of the state space.
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Figure 21: Exploration in Cartpole swingup: At the top, we present results for difficulty k = 3, and
at the bottom, for k = 5. In the left column, we depict the entropy of visitation frequency for the
state space (x, ẋ, θ, θ̇) during training. In the right column, we display a measure of the dispersion of
the most recent visits; smaller values indicate that the agent is less explorative as t increases.
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Figure 22: Cartpole Swingup [52] after 20K training steps for difficulty k = 3, comparing BSP
(Bootstrapped DQN with randomized priors) [50], IDS (Information-Directed Sampling) [44], and
MF-BPI (Model-Free Best Policy Identification). Darker areas indicate higher visitation frequency.
At the top we show this frequency for (x, ẋ), the cart’s position and linear’s velocity, and at the
bottom of (ẋ, θ̇), the cart’s linear and pole’s angular velocities.
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Figure 23: Cartpole Swingup [52] after 20K training steps for difficulty k = 5, comparing BSP
(Bootstrapped DQN with randomized priors) [50], IDS (Information-Directed Sampling) [44], and
MF-BPI (Model-Free Best Policy Identification). Darker areas indicate higher visitation frequency.
At the top we show this frequency for (x, ẋ), the cart’s position and linear’s velocity, and at the
bottom of (ẋ, θ̇), the cart’s linear and pole’s angular velocities.
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A.6 Parameters, Hardware, Code and Libraries

In this section, we outline the parameters used for the simulations, describe the hardware employed
to run the simulations, and list the libraries that we used.

A.6.1 Simulation parameters - Riverswim and Forked Riverswim

In both the Riverswim and Forked Riverswim environments we used a discount factor of γ = 0.99.
Depending on the size of the state space, the horizon length was different. We used T = 10000× |S|
for the Riverswim environment, and T = 20000×N for the Forked Riverswim environment (where
N is the length of the main river; see also the description of the environment in Appendix A.1).

We run simulations for 10 different seeds, and evaluated the estimated greedy policy π⋆t every 200
steps. All agents were optimistically initialized (i.e., the Q-values were initialized to 1/(1 − γ),
etc...), and model-based approaches used additive smoothing (with factor 1).

For the MDP-NAS and PS-MDP-NAS (see next section for a description) we computed the allocation
every T0 = min(Tmax,max(200, TmaxtT/2 )) steps, where Tmax = 2000T

50000 . For PSRL we computed a
new greedy policy every ⌈1/(1− γ)⌉ steps.

We used a learning rate of αt = H+1
H+kt

to learn the Q-values, where H = (1 − γ)−1 and kt =

Nt(st, at) is the number of visits to (st, at) at time t. Similarly, to learn the M -values we used a
learning rate of βt = α1.1

t (which was not optimized).

For bootstrapped MFBPI we used a parameter k = 1, and an ensemble size B = 50 with training
probability p = 0.7. Similarly, these values were not optimized.

All methods that employed an ϵ-soft policy, obtained a final policy ω by mixing mixed the original
policy π with a uniform policy as follows ω(a|s) = (1 − ϵt)π(a|s) + ϵt/|A|. The value of ϵt is
ϵt = min(1, 1/Nt(st)) where Nt(st) is the total number of visits to state st at time t.

A.6.2 Simulation parameters - Slipping DeepSea

For the DeepSea problem we used a discount factor of γ = 0.99, and different problem sizes
N ∈ {10, 20, 30, 40, 50}. The number of training episodes was T = 100N . Every 200 steps we
evaluated the performance of the estimated greedy policy π⋆t over 20 episodes. For all simulations
we used a slipping probability of 0.05. The number of features in the state is N2, and the number of
actions is 2.

Refer to Table 4 for the parameters of the agents.

Table 4: Parameters of the agents for the slipping DeepSea problem.
Property DBMF-BPI BSP BSP 2 IDS

Ensemble size Q 20 20 20 20 + (N−10)
2

Ensemble size M 20 N.A. N.A. N.A.
Hidden layers sizes [32] [32] [32] [50]
Num. of quantiles N.A. N.A. N.A. 50

Prior scale Q-values
(depends on N ) {3, 5, 10, 15, 20} {3, 5, 10, 15, 20} {3, 5, 10, 15, 20} N.A.

Prior scale M -values
(depends on N ) {3, 5, 10, 15, 20} {3, 5, 10, 15, 20} {3, 5, 10, 15, 20} N.A.

Replay buffer size 105 105 105 105

Training period 1 1 1 1
Target network update period 4 4 4 4

Batch size 128 128 128 128
Mask probability p 0.7 0.5 0.7 N.A.

Learning rate Q-values 5× 10−4 10−3 10−3 5× 10−4

Learning rate M -values 5× 10−4 N.A. N.A. N.A.
Learning rate quantile network N.A. N.A. N.A. 10−6

k 2 N.A. N.A. N.A.
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A.6.3 Simulation parameters - Cartpole Swingup

For the Cartpole swingup problem we used a discount factor of γ = 0.99, and different difficulties
k ∈ {1, 3, 5, 10}. The number of training episodes was T = 200, and we run simulations for 20
different seeds. Every 10 steps in the training we evaluated the performance of the estimated greedy
policy π⋆t over 20 episodes. The state is a vector in R8 and the number of actions is 3.

For every method, with the exception of IDS, we set up the parameters in the ith layer of each
network by sampling from a truncated Gaussian distribution with a 0 mean and a standard deviation
of 1/

√
fin, where fin represents the number of inputs to the ith layer. Values were cut off at twice

the standard deviation. For IDS, enhancing the standard deviation improved results. Specifically, we
employed a standard deviation of 1.5/

√
fin for the Q-networks ensemble, and a standard deviation

of 2/
√
fin for the quantile network. Generally, this initialization mirrors an optimistic initialization.

However, the results can vary significantly between runs, and our observation was that the IDS
method often exhibited greater variance compared to the other methods incorporated in our study. To
conclude, the bias for all layers was set to 0.

Refer to Table 5 for the parameters of the agents.

Table 5: Parameters of the agents for the Cartpole swingup problem.
Property DBMF-BPI BSP BSP 2 IDS

Ensemble size Q 20 20 20 20
Ensemble size M 20 N.A. N.A. N.A.

Hidden layers sizes [50] [50] [50] [50]
Num. of quantiles N.A. N.A. N.A. 50

Prior scale Q-values
(depends on N ) 3 3 3 N.A.

Prior scale M -values
(depends on N ) 3 3 3 N.A.

Replay buffer size 105 105 105 105

Training period 1 1 1 1
Target network update period 4 4 4 4

Batch size 128 128 128 128
Mask probability p 0.7 0.5 0.7 N.A.

Learning rate Q-values 5× 10−4 5× 10−4 5× 10−4 5× 10−4

Learning rate M -values 5× 10−4 N.A. N.A. N.A.
Learning rate quantile network N.A. N.A. N.A. 10−6

k 2 N.A. N.A. N.A.

A.6.4 Hardware and simulation time

To run the simulations, we used a local stationary computer with Ubuntu 20.10, an Intel® Xeon®
Silver 4110 Processor (8 cores) and 48GB of ram. On average, it takes approximately 14 days to
complete all the simulations contained in this manuscript. Ubuntu is an open-source Operating
System using the Linux kernel and based on Debian. For more information, please check https:
//ubuntu.com/.

A.6.5 Code and libraries

We set up our experiments using Python 3.10 [67] (For more information, please refer to the following
link http://www.python.org), and made use of the following libraries: Cython [10], NumPy [25],
SciPy [68], PyTorch [53], CVXPY [20], MOSEK [1], Seaborn [72], Pandas [40], Matplotlib [27].
In the code, we make use of some code from the Behavior suite [52], which is licensed with the
APACHE 2.0 license. Changes, and new code, are published under the MIT license. To run the code,
please, read the attached README file for instructions.

33

https://ubuntu.com/
https://ubuntu.com/
http://www.python.org


B Algorithms

In the following section we describe the algorithms that we discuss in this manuscript. For simplicity,
we provide a brief summary of them in form of table I.

Table 6: Description of the various algorithms
Name Description Key points

PS-MDP-NAS
An adaptation of MDP-NAS that uses posterior
sampling to sample an MDP ϕt, which is then used
to compute the optimal allocation (in Equation (3)).

Requires the user to:

• Keep an estimate of the MDP.

• Perform value/policy iteration.

• Compute the allocation (a con-
vex problem).

• Uses posterior sampling at each
time step to sample an MDP
and compute the allocation.

O-BPI
An adaptation of MDP-NAS that learns the Q-
values and M -values. These values are used to
compute the optimal allocation in Equation (3).

• Does not perform value itera-
tion.

• Requires to keep an estimate of
the transition function.

• Compute the allocation (a con-
vex problem).

• Uses forced exploration to sam-
ple all state-action pairs i.o.

Bootstrapped MF-
BPI

This algorithm is an extension of O-BPI that com-
putes the allocation using the closed form solution
in Proposition 5.1. The Q,M -values used to com-
pute the allocation are bootstrap samples.

• Does not perform value itera-
tion and does not require to
keep an estimate of the model.

• Closed form solution for the al-
location.

• Uses bootstrapping (forced ex-
ploration not necessary).

DBMF-BPI

An extension of BO-MFPI to the Deep-RL set-
ting. The baseline architecture is inspired from
BootstrappedDQN with prior networks. This ar-
chitecture is then adapted to compute a generative
allocation.

• Like boostrapped MF-BPI.

• Requires to keep an ensemble
of Q,M -networks.

• Can be applied to continuous
state spaces.

B.1 PS-MDP-NAS - Posterior Sampling for navigating MDPs

In this sub-section we present PS-MDP-NAS, an adaptation of MDP-NAS that uses posterior
sampling. An outline of the algorithm is given in Algorithm 3. For simplicity, we omit the use of any
stopping rule, since we focus more on the practical implementation of the algorithm.

At each timestep we sample an MDP ϕt from a posterior distribution, and use it to solve the optimal
allocation in Theorem 4.2 with navigation constraints. When computing the optimal allocation
arg infω∈Ω(ϕ) U(ω), we limit the maximum number of possible values of k for simplicity.

The algorithm considers a Dirichlet prior for the transition function, and a Gamma prior for the
reward distribution. Specifically, for each (s, a) we have a prior hyper-parameter ρsa ∈ R|S| that
characterizes the transition function, and two other hyper-parameters αsa, βsa ∈ R that characterize
the reward distribution for each (s, a).
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Algorithm 3 PS-MDP-NAS - Posterior Sampling for navigating MDPs

Require: Parameters (ρ, α, β).
1: Initialize counter N0(s, a, s

′)← 0 for all (s, a, s′) ∈ S ×A× S.
2: Observe s0 ∼ p0.
3: for t = 0, 1, 2, . . . , do
4: Computing the allocation.
5: Sample a transition function Pt(·|s, a) ∼ Dir(ρsa(t)) and reward distribution qt(·|s, a) ∼

Ber(αsa(t)/(αsa(t) + βsa(t))).
6: Perform policy iteration using ϕt = (Pt, qt) and compute π⋆t , the greedy policy at time t.

Use π⋆t to derive the various quantities needed to compute the allocation in Thm. 4.2
7: Compute allocation ω(t) by solving the optimization problem in Thm. 4.2 using (Pt, qt).
8: Sampling step.
9: Sample at ∼ ω(t)(st, ·) and observe (rt, st+1) ∼ q(·|st, at)⊗ P (·|st, at).

10: Posterior update.
11: Update number of visits Nt+1(st, at, st+1) ← Nt(st, at, st+1) + 1 and total cumulative

reward Rt+1(st, at)← Rt(st, at) + rt.
12: Update posterior parameters

ρsa(t+ 1)← ρsa +Nt+1(s, a, s
′),

αsa(t+ 1)← αsa +Rt+1(s, a),

βsa(t+ 1)← βsa +Nt+1(s, a)−Rt+1(s, a).

13: end for

After observing an experience at time t, the posterior parameters ρsa(t), αsa(t), βsa(t) at time t are
computed as follows

ρsa(t)← ρsa +Nt(s, a, s
′),

αsa(t)← αsa +Rt(s, a),

βsa(t)← βsa +Nt(s, a)−Rt(s, a).
where Nt(s, a, s′) is the number of times the agent experienced state s′ after choosing action a in
state s up to time t, Rt(s, a) =

∑t
n=0 rn1{sn = s∧an = a} is the total cumulative reward observed

up to time t after choosing action a in state s, and, lastly, Nt(s, a) =
∑
s′ Nt(s, a, s

′) is the total
number of times the agent chose action a in state s.

B.2 O-BPI - Online Best Policy Identification

In this part, we introduce O-BPI, or Online Best Policy Identification. This procedure bears
resemblance to MDP-NAS, but sidesteps the need for policy iteration at every timestep. Instead,
we employ stochastic approximation to learn the (Q,M)-values and use these calculated values to
compute the allocation. We describe a variation where the user exclusively learns the M -function
for a given k. It’s important to note, however, that the agent has the capability to learn multiple
M -functions, for varying k values, to better approximate the true solution.

We present a version of the algorithm that uses forced exploration, where we mix the allocation that
we obtain from Theorem 4.2 with a uniform distribution. It’s straightforward to derive an extension
using bootstrapping, as we show in subsequent subsections.

O-BPI. To compute the allocation ω we require to estimate the transition function (e.g., using
maximum likelihood), and we denote its estimate at time t by P̂t. To derive ω, as for MF-BPI, we
compute π⋆t ,∆t and ∆min,t using the estimate Q-function Qt. Then, we solve the following convex
problem

arg inf
ω∈Ct

max
s,a̸=π⋆t (s)

2 + 8φ2Mt(s, a)
21−k

ω(s, a)(∆t(s, a) + λ)2
+max

s′

Ct(s
′)(1 + γ)2

ω(s′, π⋆(s′))(∆t(s, a) + λ)2(1− γ)2 , (7)

where Ct(s′) = max
(
4, 16γ2φ2Mt(s

′, π⋆t (s
′))2

1−k
)

. The constraint set Ct is simply ∆(S ×A) in

the generative case, and Ct = {ω : ωs′ =
∑
s,a ω(s, a)P̂t(s

′|s, a),∀s′} in the case with navigation

35



constraints. In particular, for finite state-action MDPs we use Nt(s, a, s′) (the number of visits up
to time t of (s, a, s′)) to estimate P . As in MDP-NAS [38], to ensure that the various estimates
asymptotically converge to the true quantities, we force exploration using a D-tracking like procedure,
that is, with probability ϵt ∝ 1/Nt(st)

λ, λ ∈ (0, 1], we choose an action uniformly at random in state
st at time t (since this type of forced exploration is slightly different from the one proposed in [38].
We have the following guarantee.
Lemma B.1 (Forced exploration). Let ϵt(s) := 1/Nt(s)

α with α ∈ (0, 1]. Then, O-BPI satisfies
Pϕ(∀(s, a) ∈ S ×A, limt→∞Nt(s, a) =∞) = 1.

Proof. The lemma follows from Observation 1 in [59]. We use the fact that in communicating MDPs
every state gets visited infinitely often as long as each action is chosen infinitely often in each state.
Denote by P(at = a|st = s,Nt(s) = i) the probability that action a is executed at the ith visit
to state s. The forced exploration step in O-BPI ensures that P(at = a|st = s,Nt(s) = i) ≥
ϵt(s)/|A| = 1/(iα|A|). Consequently, for all (s, a) and 0 < α ≤ 1 we have that

∞∑
i=1

P(at = a|st = s,Nt(s) = i) ≥ 1

|A|
∞∑
i=1

1

iα
=∞.

By the Borel-Cantelli lemma it follows that asymptotically each action is chosen infinitely often in
each state, which yields the desired result.

B.3 Boostrapped MF-BPI - Model Free Best Policy Identification

In this section, we describe in more detail bootstrapped MF-BPI. MF-BPI is a model-free algorithm
that adapts exploration based on a sample-complexity bound, while using bootstrapping to characterize
the epistemic uncertainty. The algorithm also relies on a closed-form solution for computing the
allocation ω, which eliminates the need for solving an optimization problem.

Recall the closed form solution for the allocation ω from Corollary 5.1:

ω(s, a) ∝
{
H(s, a) if a ̸= π⋆(s)√
H
∑
s,a̸=π⋆(s)H(s, a)/|S| otherwise,

(8)

where H(s, a) and H are defined as follows:

H(s, a) =
2 + 8φ2Mk

sa[V
⋆]2

1−k

(∆(s, a) + λ)2
, (9)

H =
maxs′ C(s

′)(1 + γ)2

(∆min + λ)2(1− γ)2 , (10)

for some fixed value k that should be treated as a hyper-parameter, parameter λ ≥ 0 and C(s′) =
max

(
4, 16γ2φ2Mk

s′,π⋆(s′)[V
⋆]2

1−k
)

. Rather than resorting to policy iteration, our approach involves
learning the Q-values and M -values through stochastic approximation. The algorithm keeps track of
estimates Qt(s, a) and Mt(s, a) for all states and actions up to a given time t. The updates for the
stochastic approximation are carried out at every time step t and can be represented as:

Qt+1(st, at) = Qt(st, at) + αt(st, at)
(
rt + γmax

a
Qt(st+1, a)−Qt(st, at)

)
, (11)

Mt+1(st, at) =Mt(st, at) + βt(st, at)
(
(δ′t/γ)

2k −Mt(st, at)
)
. (12)

In this equation, δ′t = rt + γmaxaQt+1(st+1, a)−Qt+1(st, at), and (αt, βt)t≥0 are the learning
rates that meet the Robbins-Monroe conditions [13].

Bootstrap sample. Our method employs a bootstrap sampling strategy to estimate uncertainties in a
non-parametric way. This approach can augment a forced exploration step, ensuring the convergence
of the estimates asymptotically. We maintain a collection of (Q,M)-values and produce a new
bootstrap sample (Q̂t, M̂t) at every time step t. In particular, we start with an ensemble of Q-
functions Q1, . . . , QB (similarly for M1, . . . ,MB) initialized uniformly at random in [0, 1/(1− γ)]
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Algorithm 4 Bootstrapped MF-BPI

Require: Parameters (λ, k, p); ensemble size B; learning rates {(αt,b, βt,b)}t,b.
1: Initialize Q1,b(s, a) ∼ U([0, 1/(1− γ)]) and M1,b(s, a) ∼ U([0, 1/(1− γ)2

k

]) for all (s, a) ∈
S ×A and b ∈ [B].

2: Observe s0 ∼ p0.
3: for t = 0, 1, 2, . . . , do
4: Compute allocation.
5: Sample ξ ∼ U([0, 1]) and set, Q̂t(s, a) = Quantileξ({Qt,1(s, a), . . . , Qt,B(s, a)}) (sim.

M̂t) for all (s, a).
6: Compute generative solution ω(t)

o using Proposition 5.1. Let π⋆t (s) = argmaxa Q̂t(s, a),
∆t(s, a) = Q̂t(s, π

⋆
t (s))− Q̂t(s, a), ∆min,t = mins,a̸=π⋆t (s) ∆t(s, a) and

Ht(s, a) :=
2 + 8φ2M̂t(s, a)

21−k

(∆t(s, a) + λ)2
,

Ht :=
maxs′ 4(1 + γ)2 max(1, 4γ2φ2M̂t(s

′, π⋆t (s
′))2

1−k
)

(∆min,t + λ)2(1− γ)2

7: Set

ω(t)
o (st, a) =

{
Ht(st, a) if a ̸= π⋆t (st),√
Ht

∑
s,a̸=π⋆t (s)

Ht(s, a)/|S| otherwise .

8: Let ω(t)(st, a) =
ω(t)
o (st,a)∑

a′ ω
(t)
o (st,a′)

be the policy at time t in state st.

9: Sample at ∼ ω(t)(st, ·); observe (rt, st+1) ∼ q(·|st, at)⊗ P (·|st, at).
10: Training step.
11: for b = 1, . . . , B do
12: With probability p, using the experience (st, at, rt, st+1), update the values Qt,b,Mt,b

using Equations (5) and (6)

Qt+1,b(st, at) = Qt,b(st, at) + αt,b(st, at)
(
rt + γmax

a
Qt,b(st+1, a)−Qt,b(st, at)

)
,

Mt+1,b(st, at) =Mt,b(st, at) + βt,b(st, at)
((
δ′t,b/γ

)2k −Mt,b(st, at)
)
,

where δ′t,b = rt + γmaxaQt+1,b(st+1, a)−Qt+1,b(st, at).
13: end for
14: Compute greedy policy as

π̄⋆t (s)← Median({argmax
a

Qt+1,1(s, a), . . . , argmax
a

Qt+1,B(s, a)}).

15: end for

(similarly [0, 1/(1− γ)2k]). It’s important to highlight that initializing the ensemble members across
the full range of potential values is essential to account for uncertainties not arising from the collected
data.

At each timestep t, a bootstrap sample Q̂t(s, a) (and similarly M̂t) is generated by
sampling a uniform random variable ξ ∼ U([0, 1]), and, for each (s, a), Q̂t(s, a) =

Quantileξ(Qt,1(s, a), . . . , Qt,B(s, a)); in other words, Q̂t(s, a) is the ξ-quantile of
Qt,1(s, a), . . . , Qt,B(s, a) assuming a linear interpolation between the Q-values. This method is
akin to sampling from an empirical cumulative distribution function (CDF), where the CDF in
this case embodies the uncertainty over the Q-values. We also apply the same bootstrap sampling
procedure to M̂t(s, a). Empirically, we found the method to work for small values of the ensemble
size B for most problems, but we did not conduct extensive research on this topic. A promising
venue of research is to study how the parameter p and the ensemble size B can be tuned for the
problem at hand.
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Computing the allocation. This bootstrap sample (Q̂t, M̂t) is subsequently used to calculate the
allocation ω(t), where ∆t(s, a) = maxa′ Q̂t(s, a

′) − Q̂t(s, a), π⋆t (s) = argmaxa Q̂t(s, a), and
∆min,t = mins,a̸=π⋆t (s) ∆t(s, a). Then, we set

Ht(s, a) :=
2 + 8φ2M̂t(s, a)

21−k

(∆t(s, a) + λ)2
,

Ht :=
maxs′ 4(1 + γ)2 max(1, 4γ2φ2M̂t(s

′, π⋆t (s
′))2

1−k
)

(∆min,t + λ)2(1− γ)2
as well as

ω(t)
o (st, a) =

{
Ht(st, a) if a ̸= π⋆t (st),√
Ht

∑
s,a̸=π⋆t (s)

Ht(s, a)/|S| otherwise .

The final policy is then obtain by normalizing ω(t)
o : ω(t)(st, a) =

ω(t)
o (st,a)∑

a′ ω
(t)
o (st,a′)

.

Greedy policy. Lastly, an overall greedy policy π̄⋆t can be estimated by using the ensemble of
Q-functions. For example, by majority voting as

π̄⋆t (s)← Mode({argmax
a

Qt+1,1(s, a), . . . , argmax
a

Qt+1,B(s, a)}).

B.4 DBMF-BPI - Deep Boostrapped Model Free Best Policy Identification

To generalize bootstrapped MF-BPI to continuous Markov Decision Processes (MDPs), we propose
DBMF-BPI. DBMF-BPI leverages the concept of prior networks from BSP (Bootstrapping with
Additive Prior) [50], to account for uncertainty not arising from the observed data.

Ensemble. As in the previous method, we maintain an ensemble of Q-values Qθ1 , . . . , QθB (along
with their target networks) and an ensemble of M -values Mτ1 , . . . ,MτB . Specifically, Q-values are
computed as follows for a generic b-th member of the ensemble

Qθb(s, a) = Qθb,0(s, a) + βQQθb,p(s, a),

where βQ ≥ 0 is a hyper-parameter defining the scale of the prior, θb,0 is a learnable parameter, and
Qθb,p is a fixed, randomly-initialize, Q-network that serves as a randomized prior value function.
Similarly, we compute the M -values as

Mτb(s, a) =Mτb,0(s, a) + βMMτb,p(s, a),

where βM ≥ 0 is a hyper-parameter, τb,0 is a learnable parameter and Mτb,p is a fixed random prior
network for the M - function.

Note that the function of the prior network is to guarantee that the (Q,M)-values are capable of
covering the full spectrum of potential values. This is similar to the random initialization procedure
in MF-BPI. An alternate strategy might involve initializing the network in an optimistic way (i.e., by
sampling parameters from a Gaussian distribution with larger variance), but our observations indicate
that this may lead to worse performance.

Bootstrap sample. As before, at each timestep t a bootstrap sample Q̂t(s, a) (and similarly
M̂t) is generated by sampling a uniform random variable ξ ∼ U([0, 1]), and, for each (s, a), set
Q̂t(s, a) = Quantileξ(Qt,θ1(s, a), . . . , Qt,θB (s, a)). However, for numerical stability, we found it
was most effective to sample ξ at the end of an episode, or every n ∝ (1− γ)−1 steps.

Computing the allocation. Using the bootstrap sample (Q̂t, M̂t) we compute the allocation as
follows. We set

Ht(st, a) =
2 + 8φ2M̂t(st, a)

21−k

(∆t(st, a) + λ)2
, (13)

Ht =
4(1 + γ)2 max(1, 4γ2φ2M̂t(st, π

⋆
t (st))

21−k)

(∆min,t + λ)2(1− γ)2 , (14)
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where π⋆t (st) = argmaxa Q̂t(st, a). Note that Ht is an approximation of the true value (we
are not taking the maximum over all possible states). Subsequently, we establish the alloca-
tion ω

(t)
o : ω(t)

o (st, a) = Ht(st, a) if a ̸= π⋆t (st), and ω
(t)
o (st, a) =

√
Ht

∑
a̸=π⋆t (st)

Ht(st, a)

otherwise. In the final step, we construct an ϵt-soft exploration policy ω(t)(st, ·) by blending
ω
(t)
o (st, ·)/

∑
a ω

(t)
o (st, a) with a uniform distribution, utilizing an exploration parameter ϵt.

Training and minimum gap estimation. The training procedure follows that of the classical
DQN algorithm [41]. Each Q-network is trained by minimizing an MSE loss criterion. We use also
the MSE loss to train the M -networks over a batch sampled from the replay buffer (note that the
M -networks do not require a target network).

Next, ∆min,t is estimated through stochastic approximation, using the smallest gap from the most
recent batch of transitions retrieved from the replay buffer as a reference. In particular, the target is
given by the following expression

δt = min
b∈[B]

min
j∈B

max
a ̸=π⋆θb (sj)

Qθb(sj , π
⋆
θb
(sj))−Qθb(sj , a)

with πθb(s) = argmaxaQθb(s, a). The estimate is then updated as ∆min,t+1 ← (1−αt)∆min,t+αtδt
for some learning rate αt = O(1/t).

Greedy policy Lastly, an overall greedy policy π̄⋆t can be estimated by using the ensemble of
Q-functions. For example, by majority voting as

π̄⋆t (s)← Mode({argmax
a

Qt+1,θ1(s, a), . . . , argmax
a

Qt+1,θB (s, a)}).

The full pseudo-code of the algorithm can be found in the next page.
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Algorithm 5 DBMF-BPI (Deep Bootstrapped Model Free BPI) - Full Algorithm

Require: Parameters (λ, k); ensemble size B; exploration rate {ϵt}t; estimate ∆min,0; mask probability p.
1: function MainLoop
2: Initialize replay buffer D, networks Qθb ,Mτb and targets Qθ′

b
for all b ∈ [B].

3: for t = 0, 1, 2, . . . , do
4: Sampling step.
5: Compute allocation ω(t) ← ComputeAllocation(st, {Qθb ,Mτb}b∈[B],∆min,t, γ, λ, k, ϵt).
6: Sample at ∼ ω(t)(st, ·) and observe (rt, st+1) ∼ q(·|st, at)⊗ P (·|st, at).
7: Add transition zt = (st, at, rt, st+1) to the replay buffer D.
8: Training step.
9: Sample a batch B from D, and with probability p add the ith experience in B to a sub-batch

Bb, ∀b ∈ [B]. Update the (Q,M)-values of the bth member in the ensemble using Bb:
{Qθb , Qθ′

b
,Mτb}b∈[B] ← Training({Bb, Qθb , Qθ′

b
,Mτb}b∈[B]).

10: Update estimate ∆min,t+1 ← EstimateMinimumGap(∆min,t,B, {Qθb}b∈[B]).
11: Compute greedy policy as

π̄⋆
t (s)← Median({argmax

a
Qt+1,θ1(s, a), . . . , argmax

a
Qt+1,θB (s, a)}).

12: end for
13: end function
1: function EstimateAllocation(st, {Qθb ,Mτb}b∈[B],∆min,tγ, λ, k, ϵt)

2: Sample ξ ∼ U([0, 1]) and set, Q̂t(st, a) = Quantileξ({Qt,θ1(st, a), . . . , Qt,θB (st, a)}) (sim. M̂t).
3: Let π⋆

t (st) = argmaxa Q̂t(st, a), and set ∆t(st, a) = Q̂t(st, π
⋆
t (st, a))− Q̂t(st, a).

4: Compute MDP-related quantities

Ht(st, a) :=
2 + 8φ2M̂t(st, a)

21−k

(∆t(st, a) + λ)2
,

Ht :=
4(1 + γ)2 max(1, 4γ2φ2M̂t(st, π

⋆
t (st))

21−k )

(∆min,t + λ)2(1− γ)2

5: Set

ω(t)
o (st, a) =

{
Ht(st, a) if a ̸= π⋆

t (st),√
Ht

∑
a̸=π⋆t (st)

Ht(st, a) otherwise .

6: Return ω(t)(st, a) =
ϵt
|A| + (1− ϵt)

ω
(t)
o (st,a)∑

a′ ω
(t)
o (st,a′)

, the policy at time t in state st.

7: end function
1: function Training({Bb, Qθb , Qθ′

b
,Mτb}b∈[B])

2: for each model in the ensemble b = 1, . . . , B do
3: Compute targets yj = rj + γmaxa Qθ′

b
(sj+1, a) and perform a gradient descent step on Qθb using

∇θb(yj −Qθb(sj , aj))
2 for all j ∈ Bb.

4: Compute targets ȳj = (rj +maxa Qθb(sj+1, a) −Qθb(sj , aj))/γ and perform a gradient descent
step on Mτbusing∇τb(ȳ

2k

j −Mτb(sj , aj))
2.

5: end for
6: Every K steps update target models: θb′ ← θb for all b ∈ [B].
7: Return updated models {Qθb , Qθ′

b
,Mτb}b∈[B].

8: end function
1: function EstimateMinimumGap(∆min,t,B, {Qθb}b∈[B])
2: Set learning rate αt = O(1/t).
3: Update estimate of ∆min,t: let π⋆

θb
(sj) = argmaxa Qθb(sj , a) and compute target

δt = min
b∈[B]

min
j∈B

max
a̸=π⋆

θb
(sj)

Qθb(sj , π
⋆
θb(sj))−Qθb(sj , a)

and update estimate ∆min,t+1 ← (1− αt)∆min,t + αtδt.
4: Return updated estimate ∆min,t+1.
5: end function
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C Proofs

In this appendix, we provide the proofs of our main results. We start with some preliminary results.
We then introduce new notation to accommodate extensions beyond the assumptions made in the
main body of the paper, and prove our main theorem. Specifically, we broaden our sample-complexity
bounds to encompass communicating MDPs without a unique optimal policy.

C.1 Preliminaries

Let V : S → R be a bounded function. We show that Varsa[V ] ≤ MDsa[V ]2. This inequality
follows directly from the Bhatia-Davis inequality [12]. Applied to the value function of our MDP,
this result implies that in the bound derived in Theorem 4.1, the term corresponding to the span of
V ⋆ might be sometimes dominant, and we might indeed wish to remove it from the upper bound.

Lemma C.1. Consider an MDP ϕ with |S| states and a bounded vector V ∈ R|S|. For any (s, a),
we have Varsa[V ] ≤ MDsa[V ]2. If MDsa[V ] ≤ 1 then Varsa[V ] ≤ MDsa[V ].

Proof of Lemma C.1. The result is obtained leveraging the Bhatia-Davis inequality [12]. Fix (s, a),
and consider a bounded vector V . Let µ(s, a) = Es′∼P (·|s,a)[V (s′)], M = maxs V (s) and m =
mins V (s). Then, define

G(s, a) := Es′∼P (·|s,a)[(M − V (s′))(V (s′)−m)].

We have G(s, a) = −mM − Es′∼P (·|s,a)[V (s′)2] + (M +m)µ(s, a). Since 0 ≤ G(s, a),
−µ(s, a)2 ≤ −mM − Es′∼P (·|s,a)[V (s′)2] + (M +m)µ(s, a)− µ(s, a)2,

VarP (s,a)[V ] ≤ −mM + (M +m)µ(s, a)− µ(s, a)2,
VarP (s,a)[V ] ≤ (M − µ(s, a))(µ(s, a)−m).

Since MDsa[V ] = ∥V − µ(s, a)∥∞ = max(M − µ(s, a), µ(s, a)−m), we conclude that

VarP (s,a)[V ] ≤ max(M − µ(s, a), µ(s, a)−m)2 = MDP (s,a)[V ]2.

This also implies that, if MDsa[V ] ≤ 1, then Varsa[V ] ≤ MDsa[V ].

More generally, we also note that

Mk
sa[V

π]2
−k ≤ Es′∼P (·|s,a)

[(
max
s′

V π(s′)− Es̄∼P (·|s,a)[V
π(s̄)]

)2k]2−k
,

= Es′∼P (·|s,a)

[∥∥V π − Es̄∼P (·|s,a)[V
π(s̄)]

∥∥2k
∞

]2−k
,

= MDsa[V
π].

C.2 Alternative upper bounds

In this subsection, we establish the alternative upper bounds Ūε of the sample complexity lower
bound proposed in Theorem 4.2. Our results extend those of [37] to MDPs where the optimal policy
might not be unique.

C.2.1 Sample complexity lower bound

Assume for now that the way the learner interacts with the MDP corresponds to the generative model:
in each round, she can pick any (state, action) pair and observe the corresponding next state and
reward. Under this model, the following theorem provides a sample complexity lower bound satisfied
by any (ε, δ)-PAC algorithm.
Theorem C.2 ((δ, ε)-PAC lower bound). Consider ε ≥ 0, and a communicating MDP ϕ, not
necessarily with a unique optimal policy. Then, the sample complexity τ of any (δ, ε)-PAC algorithm
under the generative model satisfies the following lower bound:

Eϕ[τ ] ≥ Tεkl(δ, 1− δ), (15)
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where Tε = supω∈∆(S×A) Tε(ω) is the optimal characteristic time, and

Tε(ω)
−1 = inf

ψ∈Altε(ϕ)
E(s,a)∼ω[KLϕ|ψ(s, a)]. (16)

The proof follows the same lines as in [37]. A similar lower bound can be derived in the forward
model where the learner has to follow the system trajectory [38]: it is obtained by replacing the
supremum over ω ∈ ∆(S × A) by a supremum over ω ∈ Ω(ϕ), to account for the navigation
constraints.

C.2.2 Upper bound on Tε(ω)

As explained in [37], even for ε = 0, (16) is in general a non-convex problem. Therefore it may not
always be possible to even approximately solve it. An alternative way, introduced in[37], consists in
convexifying the problem. The solution of the new problem then gives an upper bound of T0.

To this aim, we will start from the following result, providing a decomposition of the confusing set.
Proposition C.3. We have Tε(ω) ≤ T (ω) for all ω, where T (ω) is defined as

T (ω)−1 = min
π∈Π⋆0(ϕ)

min
s,a̸=π(s)

min
ψ∈Altπ,sa(ϕ)

E(s,a)∼ω[KLϕ|ψ(s, a)]. (17)

where Altπ,sa(ϕ) = {ψ : ϕ≪ ψ,Qπψ(s, a) > V πψ (s)}.

Proof. A similar result was derived in [37]. Its proof follows directly from Lemma C.10 and
Lemma C.11. From Lemma C.10 we have that the set Alt(ϕ) = {ψ : ψ ≪ ϕ,Π⋆0(ϕ) ∩Π⋆0(ψ) = ∅}
contains Altε(ϕ). From Lemma C.11 we have that Alt(ϕ) ⊆ ∪π∈Π⋆0(ϕ)

∪s∪a ̸=π(s)Altπ,sa(ϕ), where

Altπ,sa(ϕ) = {ψ : Qπψ(s, a) > V πψ (s)}.
Therefore

Tε(ω)
−1 ≥ min

π∈Π⋆0(ϕ)
min

s,a̸=π(s)
min

ψ∈Altπ,sa(ϕ)
E(s,a)∼ω[KLϕ|ψ(s, a)] = T (ω)−1.

From the previous proposition, we are able to derive the upper bound of Tε.
Theorem C.4. Consider a communicating MDP ϕ, not necessarily with a unique optimal policy.
Then, for every (s, a) there exists k̄(s, a) ∈ N s.t. for all ω ∈ ∆(S ×A) we have

Tε(ω) ≤ U(ω), (18)

with

U(ω) = maxπ∈Π⋆0(ϕ)
maxs,a̸=π(s)

(
2+8φ2M(k̄(s,a))

sa [V ⋆ϕ ]2
1−k̄(s,a)

∆π(s,a)2ω(s,a)
+maxs′

4Cπ(s′)(1+γ)2

ω(s′,π(s′))∆π(s,a)2(1−γ)2

)
,

(19)
where ∆π(s, a) := V πϕ (s)−Qπϕ(s, a) andCπ(s′) = max

(
1, 4γ2φ2M

(k̄(s′,π(s′)))
s′π(s′) [V ⋆ϕ ]

21−k̄(s
′,π(s′))

)
.

Proof. The proof is similar as that of Theorem 1 in [37]. We start from the result of Proposition C.3:

Tε(ω)
−1 ≥ min

π∈Π⋆0(ϕ)
min

s,a̸=π(s)
inf

ψ∈Altπ,sa(ϕ)
E(s,a)∼ω[KLϕ|ψ(s, a)].

For a fixed (π, s, a), the constraint infψ∈Altπ,sa(ϕ) does not involve the pairs (s̃, ã) ∈ S × A \
{(s, a), (s′, π(s′))s′∈S}. As argued in [37], by convexity, the solution must satisfy KLϕ|ψ(s̃, ã) = 0
for those pairs. Hence

inf
ψ∈Altπ,sa(ϕ)

E(s,a)∼ω[KLϕ|ψ(s, a)] =

inf
ψ∈Altπ,sa(ϕ)

ω(s, a)KLϕ|ψ(s, a) +
∑
s′

ω(s′, π(s′))KLϕ|ψ(s
′, π(s′)).
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Let ∆π(s, a) := V πϕ (s)−Qπϕ(s, a). Then, using the fact that Qπψ(s, a) > V πψ (s), we obtain

∆π(s, a) < V πϕ (s)−Qπϕ(s, a) +Qπψ(s, a)− V πψ (s).

This is similar to condition (5) in [37]. Next, let ∆r(s, a) = rψ(s, a) − rϕ(s, a), ∆P (s, a) =
Pψ(s, a)− Pϕ(s, a), where the distribution P (s, a) of the next state given (s, a) is represented as a
column vector of dimension |S|. Further define the vector difference between the value in ψ and ϕ of
π: ∆V π =

[
V πψ (s1)− V πϕ (s1) . . . V πψ (s|S|)− V πϕ (s|S|)

]⊤
. Then, letting 1(s) = es be the unit

vector with 1 in position s, we find

∆π(s, a) < Qπψ(s, a)−Qπϕ(s, a)− 1(s)⊤∆V π,

< ∆r(s, a) + γ(Pψ(s, a)
⊤V πψ − Pϕ(s, a)⊤V πϕ )− 1(s)⊤∆V π,

< ∆r(s, a) + γ∆P (s, a)⊤V πϕ + (γPψ(s, a)− 1(s))⊤∆V π.

Now, observe that:

V πψ (s)− V πϕ (s) = ∆r(s, π(s)) + γ(Pψ(s, π(s))
⊤V πψ − Pϕ(s, π(s))⊤V πϕ ),

= ∆r(s, π(s)) + γ(Pψ(s, π(s))
⊤∆V π +∆P (s, π(s))⊤V πϕ ),

≤
∣∣∆r(s, π(s)) + γ(Pψ(s, π(s))

⊤∆V π +∆P (s, π(s))⊤V πϕ )
∣∣ ,

≤ max
s′
|∆r(s′, π(s′)) + γ∆P (s′, π(s′))⊤V πϕ |+ γmax

s̃
|V πψ (s̃)− V πϕ (s̃)|.

We deduce that:

∥∆V π∥∞ ≤
1

1− γ
[
max
s′
|∆r(s′, π(s′))|+ γ|∆P (s′, π(s′))⊤V πϕ |

]
.

Using the fact that ∥γPψ(s, a) − 1(s)∥1 = |γP (s|s, a) − 1| + γ(1 − P (s|s, a)) ≤ 1 + γ, we can
bound |(γPψ(s, a)− 1(s))⊤∆V π| as follows:

|(γPψ(s, a)− 1(s))⊤∆V π| ≤ ∥γPψ(s, a)− 1(s)∥1∥∆V π∥∞
≤ 1 + γ

1− γ
[
max
s′
|∆r(s′, π(s′))|+ γ|∆P (s′, π(s′))⊤V πϕ |

]
.

Therefore,

∆π(s, a) < |∆r(s, a)|+ γ|∆P (s, a)⊤V πϕ |+ 1+γ
1−γ

[
maxs′ |∆r(s′, π(s′))|+ γ|∆P (s′, π(s′))⊤V πϕ |

]
.

Write each of the terms as a fraction of ∆π(s, a) using {αi}3i=1, which are non-negative terms
satisfying

∑3
i=1 αi > 1:
α1∆π(s, a) = |∆r(s, a)|,
α2∆π(s, a) = γ|∆P (s, a)⊤V πϕ |,
α3∆π(s, a) =

1 + γ

1− γ maxs′
[
|∆r(s′, π(s′))|+ γ|∆P (s′, π(s′))⊤V πϕ |

]
.

For the first term, using the Pinsker inequality, we immediately get: (α1∆π(s, a))
2 ≤

2KLqϕ,qψ (s, a).

For the second term, using Lemma C.9, we obtain:

(α2∆π(s, a))
2 ≤ 8γ2φ2M (k̄(s,a))

sa [V ⋆ϕ ]
21−k̄(s,a)KLPϕ,Pψ (s, a).

Finally, to bound the last term, using (a+ b)2 ≤ 2(a2 + b2), Lemma C.9 and the Pinsker inequality,
we have(
|∆r(s′, π(s′))|+γ|∆P (s′, π(s′))⊤V πϕ |

)2
≤ 2

(
|∆r(s′, π(s′))|2 + γ2|∆P (s′, π(s′))⊤V πϕ |2

)
,

≤ 2
(
2KLqϕ,qψ (s

′, π(s′)) + 8γ2φ2M
(k̄(s′,π(s′)))
s′π(s′) [V ⋆ϕ ]

21−k̄(s
′,π(s′))

KLPϕ,Pψ (s
′, π(s′))

)
,

≤ 4Cπ(s′)(KLqϕ,qψ (s
′, π(s′)) + KLPϕ,Pψ (s

′, π(s′))),
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with Cπ(s′) = max
(
1, 4γ2φ2M

(k̄(s′,π(s′)))
s′π(s′) [V ⋆ϕ ]

21−k̄(s
′,π(s′))

)
. Therefore

α2
3

(1− γ)2
(1 + γ)2

∆π(s, a)
2 ≤ 4max

s′
Cπ(s′)(KLqϕ,qψ (s

′, π(s′)) + KLPϕ,Pψ (s
′, π(s′))),

= 4max
s′

ω(s′, π(s′))

ω(s′, π(s′))
Cπ(s′)(KLqϕ,qψ (s

′, π(s′)) + KLPϕ,Pψ (s
′, π(s′))),

≤ 4max
s̃

Cπ(s̃)

ω(s̃, π(s̃))
max
s′

ω(s′, π(s′))(KLqϕ,qψ (s
′, π(s′)) + KLPϕ,Pψ (s

′, π(s′))).

In conclusion, we have the following set of inequalities:
ω(s, a)(α1∆π(s, a))

2

2
≤ ω(s, a)KLqϕ,qψ (s, a),

ω(s, a)(α2∆π(s, a))
2

8γ2φ2M
(k̄(s,a))
Pϕ(s,a)

[V ⋆ϕ ]
21−k̄(s,a)

≤ ω(s, a)KLPϕ,Pψ (s, a),

min
s′

ω(s′, π(s′))(α3(1− γ)∆π(s, a))
2

4Cπ(s′)(1 + γ)2
≤ max

s′
ω(s′, π(s′))(KLqϕ,qψ (s

′, π(s′))

+ KLPϕ,Pψ (s
′, π(s′))).

As in [37] we observe that we can replace αi by αi/
∑
j αj (since

∑
i αi > 1). Consequently,

denoting by ∆n the n-dimensional simplex, we have

Tε(ω)
−1 ≥ min

π∈Π⋆0(ϕ)
min

s,a̸=π(s)
inf

ψ∈Āltπ,sa,ε(ϕ)
ω(s, a)KLϕ|ψ(s, a) +

∑
s′

ω(s′, π(s′))KLϕ|ψ(s
′, π(s′)).

≥ min
π∈Π⋆0(ϕ)

min
s,a̸=π(s)

inf
α∈∆3

3∑
i=1

Bi(s, a)α
2
i .

where
B1(s, a) = ω(s, a)∆π(s, a)

2/2,

B2(s, a) = ω(s, a)
∆π(s, a)

2

8γ2φ2M
(k̄(s,a))
sa [V ⋆ϕ ]

21−k̄(s,a)
,

B3(s, a) = min
s′

ω(s′, π(s′))
(∆π(s, a)(1− γ))2
4Cπ(s′)(1 + γ)2

.

Therefore Tε(ω)−1 ≥ minπ∈Π⋆0(ϕ)
mins,a̸=π(s)

(∑3
i=1Bi(s, a)

−1
)−1

, from which we conclude
that:

Tε(ω) ≤ maxπ∈Π⋆0(ϕ)
maxs,a̸=π(s)

(
2+8γ2φ2M(k̄(s,a))

sa [V ⋆ϕ ]2
1−k̄(s,a)

∆π(s,a)2ω(s,a)
+maxs′

4Cπ(s′)(1+γ)2

ω(s′,π(s′))∆π(s,a)2(1−γ)2

)
.

(20)

C.2.3 Closed form solution under the generative model

Under the generative model, we are able to find a closed-form solution of the sample complexity
upper bound by slightly relaxing our upper bound of Tε(ω). The procedure is similar to that used in
[37].
Theorem C.5. Let ε ≥ 0, and a communicating MDP ϕ, with a unique optimal policy πstar. Then,
for all ω ∈ ∆(S ×A), we have:

Tε(ω) ≤ U(ω) ≤ Ũ(ω), (21)
where U(ω) is defined in the previous theorem, and

Ũ(ω) = max
s,a̸=π⋆(s)

2 + 8φ2M
(k̄(s,a))
sa [V ⋆ϕ ]

21−k̄(s,a)

∆(s, a)2ω(s, a)
+

maxs′ 4C
π⋆(s′)(1 + γ)2

mins̃ ω(s̃, π⋆(s̃))∆2
min(1− γ)2

. (22)

where ∆(s, a) := V π
⋆

ϕ (s)−Qπ⋆ϕ (s, a).
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Proof. The proof follows from the previous theorem. Since there is a unique optimal policy we have
∆π(s, a) ≥ ∆min, and thus

Ũ(ω) ≤ max
s,a̸=π⋆(s)

2 + 8φ2M
(k̄(s,a))
sa [V ⋆ϕ ]

21−k̄(s,a)

∆(s, a)2ω(s, a)
+ max

s′

4Cπ
⋆

(s′)(1 + γ)2

ω(s′, π⋆(s′))∆2
min(1− γ)2

,

≤ max
s,a̸=π⋆(s)

2 + 8φ2M
(k̄(s,a))
sa [V ⋆ϕ ]

21−k̄(s,a)

∆(s, a)2ω(s, a)
+

maxs′ 4C
π⋆(s′)(1 + γ)2

mins̃ ω(s̃, π⋆(s̃))∆2
min(1− γ)2

.

For this particular bound, as in [37], we are able to find a closed form expression of the optimal
generative allocation ω⋆ ∈ argminω∈∆(S×A) Ũ(ω) leading to an upper bound of the sample com-
plexity lower bound. The following corollary is obtained by simply solving the optimization problem
infω∈∆(S×A) Ũ(ω).

Corollary C.6. Consider a communicating MDP with unique optimal policy. Consider the bound
defined in the previous theorem by Ũ(ω). Then, the generative solution ω⋆ = arg infω∈∆(S×A) Ũ(ω)
is given by

ω(s, a) =

{
H(s, a)/Γ s, a ̸= π⋆(s),√
H
∑
s,a̸=π⋆(s)H(s, a)/|S|/Γ otherwise.

(23)

where

H(s, a) =
2 + 8φ2M

(k̄(s,a))
sa [V ⋆ϕ ]

21−k̄(s,a)

∆(s, a)2ω(s, a)
, H = max

s′

4Cπ
⋆

(s′)(1 + γ)2

∆2
min(1− γ)2

, (24)

Γ =
∑

s,a̸=π⋆(s)

H(s, a) +

√
|S|H

∑
s,a̸=π⋆(s)

H(s, a). (25)

Furthermore, the value of the problem is:

inf
ω∈∆(S×A)

Ũ(ω) =

√ ∑
s,a̸=π⋆(s)

H(s, a) +
√
|S|H

2

≤ 2

 ∑
s,a̸=π⋆(s)

H(s, a) + |S|H

 . (26)

C.2.4 Technical lemmas

We finally state and prove the lemmas used in the derivation of our upper bounds of the sample
complexity lower bound. These lemmas can be seen as an alternative to Lemma 4 used by the authors
of [37] to derive their upper bounds.

In what follows, we consider a finite set Ω = {ω1, . . . , ωN}. For each ω ∈ Ω, let f(ω) be a real
number, and we define the vector f(Ω) = [f(ω1) . . . f(ωN )]

⊤.

We start by a result, that can be deducted from the proof of Lemma 4 in [37].

Lemma C.7. Let P,Q be pmfs over some finite space Ω = {ω1, . . . , ωN}. Let f : Ω → R and
f(Ω) := [f(ω1) . . . f(ωN )]

⊤.
Finally, we introduce the elementwise power2 f◦k(Ω) =

[
f(ω1)

k . . . f(ωN )k
]⊤

. Then

|(P −Q)⊤f(Ω)|2 ≤ 4dH(P,Q)2
(
2Eω∼Q[f(ω)2] + (P −Q)⊤(f◦2(Ω))

)
, (27)

where dH is the Hellinger distance.

2also known as as Hadamard power.
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Proof. The proof can be easily deduced from Lemma 4 in [37]. We present the proof for completeness.
Let
√
P be the square root of the elements in P (sim.

√
Q). We have:

(P −Q)⊤f(Ω) =
∑
ω

(P (ω)−Q(ω))f(ω),

=
∑
ω

(
√
P (ω)−

√
Q(ω))(

√
P (ω) +

√
Q(ω))f(ω),

= (
√
P −

√
Q)⊤[(

√
P +

√
Q) ◦ f(Ω)],

where ◦ is the Hadamard product. We apply the Cauchy-Schwartz inequality to the last term to get:

|(P −Q)⊤f(Ω)|2 ≤ ∥
√
P −

√
Q∥22∥∥(

√
P +

√
Q) ◦ f(Ω)∥22.

Note that ∥
√
P −√Q∥2 =

√
2dH(P,Q). Regarding ∥(

√
P +

√
Q) ◦ f(Ω)∥2, using the inequality

(a+ b)2 ≤ 2(a2 + b2), we have:

∥(
√
P +

√
Q) ◦ f(Ω)∥22 ≤ 2

∑
ω

(P (ω) +Q(ω))f(ω)2,

= 2
∑
ω

(2Q(ω) + P (ω)−Q(ω))f(ω)2,

= 2
(
2Eω∼Q[f(ω)2] + (P −Q)⊤f◦2(Ω)

)
,

which concludes the proof.

Applying the above lemma recursively, we obtain the following result.

Lemma C.8. Consider f : Ω→ R as before. Assume that maxω∈Ω |f(ω)| ≤ F <∞. Then,

|(P −Q)⊤f(Ω)| ≤
√
8φdH(P,Q) sup

k≥1
Eω∼Q[f(ω)2

k

]2
−k
, (28)

where φ is the golden ratio.

Proof. The idea is to observe that we can use Lemma C.7 to bound (P −Q)⊤f◦2(Ω) in Equation (27).
Then

|(P −Q)⊤f◦k(Ω)|2 ≤ 4dH(P,Q)2
(
2Eω∼Q[f(ω)2k] + (P −Q)⊤f◦2k(Ω)

)
.

For brevity, let Mk = Eω∼Q[f(ω)k], then

|(P −Q)⊤f(Ω)| ≤ 2dH(P,Q)
√
2M2 + (P −Q)⊤f◦2(Ω),

≤ 2dH(P,Q)

√
2M2 + 2dH(P,Q)

√
2M4 + (P −Q)⊤f◦4(Ω),

≤ α
√
2M2 + α

√
2M4 + α

√
2M8 + · · ·,

where α = 2dH(P,Q). A further rewriting yields

α

√
2M2 + α

√
2M4 + α

√
2M8 + · · ·,

=

√
2α2M2 + α3

√
2M4 + α

√
2M8 + · · ·,

=

√
2α2M2 +

√
2α6M4 + α7

√
2M8 + · · ·,

=

√
2α2M2 +

√
2α6M4 +

√
2α14M8 + · · ·,
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and note that the k-th term is given by ak = 2α2(2k−1)M2k . Consider now the sequence bk =

(ak)
2−k , and note that

sup
k≥1

bk ≤ sup
k≥1

(
2α2(2k−1)

)2−k
︸ ︷︷ ︸

(•)

· sup
k≥1

M2−k

2k .

Observe that (•) = 22
−k
α2−2−k+1

is a positive decreasing sequence, therefore we have that
supk≥1 bk ≤ α

√
2 · supk≥1M

2−k

2k .

Now, we notice that M2−k

2k is bounded for all k ≥ 1 from the boundedness of f over Ω

M2−k

2k = Eω[f(ω)2
k

]2
−k ≤ F <∞.

Hence, by letting M = α
√
2 · supk≥1M

2−k

2k , and using Herschfeld’s convergence theorem [26], we
find the desired result: √

2α2M2 +

√
2α6M4 +

√
2α14M8 + · · ·

≤
√
M2 +

√
M22 +

√
M23 + · · ·,

=M

√
1 +

√
1 +
√
1 + · · · =Mφ.

We are now ready to state the result that serves as an alternative to Lemma 4 in [37]. Let
(∆P (s, a))s′ = Pψ(s

′|s, a)− Pϕ(s′|s, a).

Lemma C.9. Consider a fixed state-action pair (s, a) and define V̄ πϕ (s, a) := Es′∼Pϕ(·|s,a)[V πϕ (s′)].

Let fπϕ (s, a, s
′) = V πϕ (s′) − V̄ πϕ (s, a) and Mk(s, a) = Es′∼Pϕ(·|s,a)[fπϕ (s, a, s′)2

k

]. Then, there
exists k̄ ∈ N such that

|∆P (s, a)⊤fπϕ (s, a)|2 ≤ 8φ2KLPϕ,Pψ (s, a)Mk̄(s, a)
21−k̄ , (29)

where fπϕ (s, a) =
[
fπϕ (s, a, s1) fπϕ (s, a, s2) · · · fπϕ (s, a, s|S|)

]⊤
and KLPϕ,Pψ (s, a) =

KL(Pϕ(s, a), Pψ(s, a)).

Proof. Consider a fixed (s, a). For any s′ ∈ S we have that |fπϕ (s, a, s′)| ≤ MDsa[V
π
ϕ ], therefore

∥fπϕ (s, a)∥∞ <∞. Using Lemma C.8 with fπϕ (s, a) we find the result by taking the square on both
sides, and using that d2H(P,Q) ≤ KL(P,Q).

C.2.5 Decomposition of the set of confusing MDPs

Decomposing the set Altε(ϕ) directly presents several challenges. It does even seem possible to
obtain a decomposition easy to work with. Instead, we relax the problem and work on Alt(ϕ) = {ψ :
ψ ≪ ϕ,Π⋆0(ϕ) ∩Π⋆0(ψ) = ∅}, a set containing Altε(ϕ).
Lemma C.10. Let ε ≥ 0. Then, in general Altε(ϕ) ⊆ Alt(ϕ).

Proof. The statement can be derived by contradiction: assume that ψ ∈ Altε(ϕ) does not belong to
Alt(ϕ). However, that implies that there is π ∈ Π⋆0(ϕ) s.t. π ∈ Π⋆0(ψ), which is not true since by
assumption Π⋆ε(ϕ) ∩Π⋆ε(ψ) = ∅.
Lemma C.11. Let Alt(ϕ) = {ψ : ψ ≪ ϕ,Π⋆0(ϕ) ∩ Π⋆0(ψ) = ∅}. Then Alt(ϕ) ⊆ ∪π∈Π⋆0(ϕ)

∪s
∪a̸=π(s)Altπ,sa(ϕ), where

Altπ,sa(ϕ) = {ψ : ψ ≪ ϕ,Qπψ(s, a) > V πψ (s)}.
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Proof. The proof follows the same steps as that of the decomposition lemma in [37], and we give it
for completeness.

By contradiction, consider ψ ∈ Alt(ϕ) s.t. for all π ∈ Π⋆0(ϕ) and s, a ̸= π(s) we have Qπψ(s, a) ≤
V πψ (s). Since Qπψ(s, π(s)) = V πψ (s), the following inequality holds for all π ∈ Π⋆0(ϕ) and for all
(s, a)

Qπψ(s, a) ≤ V πψ (s).

Define the Bellman operator for a generic policy π′ under ψ as (Tπ
′

ψ V )(s) = rψ(r, π
′(s)) +

Es′∼P (s,π′(s))[V (s′)]. Then, from the above inequality that holds for all (s, a) we get the following
result

T
π⋆ψ
ψ V πψ ≤ V πψ .

By monotonicity of the Bellman operator, we get T
π⋆ψ
ψ T

π⋆ψ
ψ V ≤ Tπ

⋆
ψ

ψ V πψ ≤ V πψ . Iterating, we find

V
π⋆ψ
ψ = lim

n→∞

(
T
π⋆ψ
ψ

)n
V ≤ V πψ ,

which is a contradiction since π is not optimal under ψ.
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