
Model-Free Active Exploration
in Reinforcement Learning

Alessio Russo
Division of Decision and Control Systems

KTH Royal Institute of Technology
Stockholm, SE

Alexandre Proutiere
Division of Decision and Control Systems

KTH Royal Institute of Technology
Stockholm, SE

Abstract

We study the problem of exploration in Reinforcement Learning and present a
novel model-free solution. We adopt an information-theoretical viewpoint and
start from the instance-specific lower bound of the number of samples that have
to be collected to identify a nearly-optimal policy. Deriving this lower bound
along with the optimal exploration strategy entails solving an intricate optimization
problem and requires a model of the system. In turn, most existing sample optimal
exploration algorithms rely on estimating the model. We derive an approximation
of the instance-specific lower bound that only involves quantities that can be
inferred using model-free approaches. Leveraging this approximation, we devise
an ensemble-based model-free exploration strategy applicable to both tabular and
continuous Markov decision processes. Numerical results demonstrate that our
strategy is able to identify efficient policies faster than state-of-the-art exploration
approaches.

1 Introduction

Efficient exploration remains a major challenge for reinforcement learning (RL) algorithms. Over the
last two decades, several exploration strategies have been proposed in the literature, often designed
with the aim of minimizing regret. These include model-based approaches such as Posterior Sampling
for RL [36](PSRL) and Upper Confidence Bounds for RL [4, 25, 2](UCRL), along with model-free
UCB-like methods [19, 56]. Regret minimization is a relevant objective when one cares about the
rewards accumulated during the learning phase. Nevertheless, an often more important objective
is to devise strategies that explore the environment so as to learn efficient policies using the fewest
number of samples [16]. Such an objective, referred to as Best Policy Identification (BPI), has been
investigated in simplistic Multi-Armed Bandit problems [16, 21] and more recently in tabular MDPs
[28, 29]. For these problems, tight instance-specific sample complexity lower bounds are known, as
well as model-based algorithms approaching these limits. However, model-based approaches may be
computationally expensive or infeasible to obtain. In this paper, we investigate whether we can adapt
the design of these algorithms so that they become model-free and hence more practical.

Inspired by [28, 29], we adopt an information-theoretical approach, and design our algorithms starting
from an instance-specific lower bound on the sample complexity of learning a nearly-optimal policy
in a Markov decision process (MDP). This lower bound is the value of an optimization problem,
referred to as the lower bound problem, whose solution dictates the optimal exploration strategy in
an environment. Algorithms designed on this instance-specific lower bound, rather than minimax
bounds, result in truly adaptive methods, capable of tailoring their exploration strategy according
to the specific MDP’s learning difficulty. Our method estimates the solution to the lower bound
problem and employs it as our exploration strategy. However, we face two major challenges: (1) the

Code repository: https://github.com/rssalessio/ModelFreeActiveExplorationRL

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/rssalessio/ModelFreeActiveExplorationRL

lower bound problem is non-convex and often intractable; (2) this lower bound problem depends
on the initially unknown MDP. In [29], the authors propose MDP-NAS, a model-based algorithm
that explores according to the estimated MDP. They convexify the lower bound problem and explore
according to the solution of the resulting simplified problem. However, this latter problem still has a
complicated dependency on the MDP. Moreover, extending MDP-NAS to large MDPs is challenging
since it requires an estimate of the model, and the capability to perform policy iteration. Additionally,
MDP-NAS employs a forced exploration technique to ensure that the parametric uncertainty (the
uncertainty about the true underlying MDP) diminishes over time — a method, as we argue later, that
we believe not to be efficient in handling this uncertainty.

We propose an alternative way to approximate the lower bound problem, so that its solution can be
learnt via a model-free approach. This solution depends only on the Q-function and the variance
of the value function. Both quantities can advantageously be inferred using classical stochastic
approximation methods. To handle the parametric uncertainty, we propose an ensemble-based
method using a bootstrapping technique. This technique is inspired by posterior sampling and allows
us to quantify the uncertainty when estimating the Q-function and the variance of the value function.

Our contributions are as follows: (1) we shed light on the role of the instance-specific quantities
needed to drive exploration in uncertain MDPs; (2) we derive an alternate upper bound of the lower
bound problem that in turn can be approximated using quantities that can be learned in a model-free
manner. We then evaluate the quality of this approximation on various environments: (i) a random
MDP, (ii) the Riverswim environment [47], and (iii) the Forked Riverswim environment (a novel
environment with high sample complexity); (3) based on this approximation, we present Model Free
Best Policy Identification (MF-BPI), a model-free exploration algorithm for tabular and continuous
MDPs. For the tabular MDPs, we test the performance of MF-BPI on the Riverswim and the Forked
Riverswim environments, and compare it to that of Q-UCB [19, 56], PSRL[36], and MDP-NAS[29].
For continuous state-spaces, we compare our algorithm to IDS[33] and BSP [39] (Boostrapped DQN
with randomized prior value functions) and assess their performance on hard-exploration problems
from the DeepMind BSuite [41] (the DeepSea and the Cartpole swingup problems).

2 Related Work

The body of work related to exploration methods in RL problems is vast, and we mainly focus
on online discounted MDPs (for the generative setting, refer to the analysis presented in [17, 28]).
Exploration strategies in RL often draw inspiration from the approaches used in multi-armed bandit
problems [26, 49], including ϵ-greedy exploration, Boltzmann exploration [57, 49, 26, 1], or more
advanced procedures, such as Upper-Confidence Bounds (UCB) methods [2, 3, 26] or Bayesian
procedures [52, 58, 14, 44]. We first discuss tabular MDPs, and then extend the discussion to the case
of RL with function approximation.

Exploration in tabular MDPs. Numerous algorithms have been proposed with the aim of matching
the PAC sample complexity minimax lower bound Ω̃

(
|S||A|

ε2(1−γ)3

)
[25]. In the design of these

algorithms, model-free approaches typically rely on a UCB-like exploration [2, 26], whereas model-
based methods leverage estimates of the MDP to drive the exploration. Some well-known model-free
algorithms are MEDIAN-PAC [42], DELAYED Q-LEARNING [48] and Q-UCB [56, 19]. Some
notable model-based algorithms include: DEL [34], an algorithm that achieves asymptotically
optimal instance-dependent regret; UCRL [25], an algorithm that uses extended value-iteration to
compute an optimistic MDP; PSRL [36], that uses posterior sampling to sample an MDP. Other
algorithms include MBIE [47], E3 [22], R-MAX [9, 20], and MORMAX [50]. Most of existing
algorithms are designed towards regret minimization. Recently, however, there has been a growing
interest towards exploration strategies with minimal sample complexity, see e.g. [60, 28]. In [28, 29],
the authors showed that computing an exploration strategy with minimal sample complexity requires
to solve a non-convex problem. To overcome this challenge, they derived a tractable approximation of
the lower bound problem, whose solution provides an efficient exploration policy under the generative
model [28] and the forward model [29]. This policy necessitates an estimate of the model, and
includes a forced exploration phase (an ϵ-soft policy to guarantee that all state-action pairs are visited
infinitely often). In [51], the above procedure is extended to linear MDPs, but there again, computing
an optimal exploration strategy remains challenging. On a side note, in [55], the authors provide an

2

alternative bound in the tabular case for episodic MDPs, and later extend it to linear MDPs [54]. The
episodic setting is further explored in [53] for deterministic MDPs.

Exploration in Deep Reinforcement Learning (DRL). Exploration methods in DRL environments
face several challenges, related to the fact that the state-action spaces are often continuous, and
other issues related to training deep neural architectures [46]. The main issue in these large MDPs
is that good exploration becomes extremely hard when either the reward is sparse/delayed or the
observations contain distracting features [10, 59]. Numerous heuristics have been proposed to tackle
these challenges, such as (1) adding an entropy term to the optimization problem to encourage
the policy to be more randomized [31, 18] or (2) injecting noise in the observations/parameters
[15, 43]. More generally, exploration techniques generally fall into two categories: uncertainty-
based and intrinsic-motivation-based [59, 24]. Uncertainty-based methods decouple the uncertainty
into parametric and aleatoric uncertainty. Parametric uncertainty [14, 32, 23, 59] quantifies the
uncertainty in the parameters of the state-action value. This uncertainty vanishes as the agent explores
and learns. The aleatoric uncertainty accounts for the inherent randomness of the environment
and of the policy [32, 23, 59]. Various methods have been proposed to address the parametric
uncertainty, including UCB-like mechanisms [11, 59], or TS-like (Thompson Sampling) techniques
[38, 36, 5, 35, 37, 40]. However, computing a posterior of the Q-values is a difficult task. For
instance, Bayesian DQN [5] extends Randomized Least-Squares Value Iteration (RLSVI) [38] by
considering the features prior to the output layer of the deep-Q network as a fixed feature vector, in
order to recast the problem as a linear MDP. Non-parametric posterior sampling methods include
Bootstrapped DQN (and Bootstrapped DQN with prior functions) [37, 39, 40], which maintains
several independent Q-value functions and randomly samples one of them to explore the environment.
Bootstrapped DQN was extended in various ways by integrating other techniques [6, 27]. For the sake
of brevity, we refer the reader to the survey in [59] for an exhaustive list of algorithms. Most of these
algorithms do not directly account for aleatoric uncertainty in the value function. This uncertainty is
usually estimated using methods like Distributional RL [8, 13, 30]. Well-known exploration methods
that account for both aleatoric and epistemic uncertainties include Double Uncertain Value Network
(DUVN) [32] and Information Directed Sampling (IDS) [23, 33]. The former uses Bayesian dropout
to measure the epistemic uncertainty, and the latter uses distributional RL [8] to estimate the variance
of the returns. In addition, IDS uses bootstrapped DQN to estimate the parametric uncertainty in the
form of a bound on the estimate of the suboptimality gaps. These uncertainties are then combined to
compute an exploration strategy. Similarly, in [12], the authors propose UA-DQN, an approach that
uses QR-DQN [13] to learn the parametric and aleatoric uncertainties from the quantile networks.
Lastly, we refer the reader to [59, 45, 7] for the class of intrinsic-motivation-based methods.

3 Preliminaries

Markov Decision Process. We consider an infinite-horizon discounted Markov Decision Process
(MDP), defined by the tuple ϕ = (S,A, P, q, γ, p0). S is the state space, A is the action space,
P : S×A→ ∆(S) is the distribution over the next state given a state-action pair (s, a), q : S×A→
∆([0, 1]) is the distribution of the collected reward (with support in [0, 1]), γ ∈ [0, 1) is the discount
factor and p0 is the distribution over the initial state.

Let π : S → ∆(A) be a stationary Markovian policy that maps a state to a distribution over actions,
and denote by r(s, a) = Er∼q(·|s,a)[r] the average reward collected when an action a is chosen
in state s. We denote by V π(s) = Eπϕ[

∑
t≥0 γ

tr(st, at)|s0 = s] the discounted value of policy
π. We denote by π⋆ an optimal stationary policy: for any s ∈ S, π⋆(s) ∈ argmaxπ V

π(s) and
define V ⋆(s) = maxπ V

π(s). For the sake of simplicity, we assume that the MDP has a unique
optimal policy (we extend our results to more general MDPs in the appendix). We further define
Π⋆ε(ϕ) = {π : ∥V π − V π

⋆∥∞ ≤ ε}, the set of ε-optimal policies in ϕ for ε ≥ 0. Finally, to avoid
technicalities, we assume (as in [29]) that the MDP ϕ is communicating (that is, for every pair of
states (s, s′), there exists a deterministic policy π such that state s′ is accessible from state s using π).

We denote by Qπ(s, a) := r(s, a) + γEs′∼P (·|s,a)[V
π(s′)] the Q-function of π in state (s, a). We

also define the sub-optimality gap of action a in state s to be ∆(s, a) := Q⋆(s, π⋆(s))−Q⋆(s, a),
where Q⋆ is the Q-function of π⋆, and let ∆min := mins,a̸=π⋆(s) ∆(s, a) be the minimum gap in ϕ.
For some policy π, we define Varsa[V

π] := Vars′∼P (·|s,a)[V
π(s′)] to be the variance of the value

function V π in the next state after taking action a in state s. More generally, we define Mk
sa[V

π] :=

3

Es′∼P (·|s,a)

[(
V π(s′)− Es̄∼P (·|s,a)[V

π(s̄)]
)2k]

to be the 2k-th moment of the value function in the

next state after taking action a in state s. We also let MDsa[V
π] := ∥V π − Es′∼P (·|s,a)[V

π]∥∞ be
the span of ϕ under π, i.e., the maximum deviation from the mean of the next state value after taking
action a in state s.

Best policy identification and sample complexity lower bounds. The MDP ϕ is initially unknown,
and we are interested in the scenario where the agent interacts sequentially with ϕ. In each round
t ∈ N, the agent selects an action at and observes the next state and the reward (st+1, rt): st+1 ∼
P (·|st, at) and rt ∼ q(·|st, at). The objective of the agent is to learn a policy in Π⋆ε(ϕ) (possibly π⋆)
as fast as possible. This objective is often formalized in a PAC framework where the learner has to
stop interacting with the MDP when she can output an ε-optimal policy with probability at least 1− δ.
In this formalism, the learner strategy consists of (i) a sampling rule or exploration strategy; (ii) a
stopping time τ ; (iii) an estimated optimal policy π̂. The strategy is called (ε, δ)-PAC if it stops almost
surely, and Pϕ[π̂ ∈ Π⋆ε(ϕ)] ≥ 1− δ. Interestingly, one may derive instance-specific lower bounds
of the sample complexity Eϕ[τ] of any (ε, δ)-PAC algorithm [28, 29], which involves computing an
optimal allocation vector ωopt ∈ ∆(S ×A) (where ∆(S ×A) is the set of distributions over S ×A)
that specifies the proportion of times an agent needs to sample each pair (s, a) to confidently identify
the optimal policy:

lim inf
δ→0

Eϕ[τ]
kl(δ, 1− δ)

≥ Tε(ωopt) where Tε(ω)−1 := inf
ψ∈Altε(ϕ)

E(s,a)∼ω[KLϕ|ψ(s, a)], (1)

and ωopt = arg infω∈Ω(ϕ) Tε(ω)
−1. Here, Altε(ϕ) is the set of confusing MDPs ψ such that the

ε-optimal policies of ϕ are not ε-optimal in ψ, i.e., Altε(ϕ) := {ψ : ϕ ≪ ψ,Π⋆ε(ϕ) ∩ Π⋆ε(ψ) = ∅}.
In this definition, if the next state and reward distributions under ψ are P ′(s, a) and q′(s, a), we write
ϕ≪ ψ if for all (s, a) the distributions of the next state and of the rewards satisfy P (s, a) ≪ P ′(s, a)
and q(s, a) ≪ q′(s, a).We further let KLϕ|ψ(s, a) := KL(P (s, a), P ′(s, a)) +KL(q(s, a), q′(s, a)).
Ω(ϕ) is the set of possible allocations; in the generative case it is ∆(S ×A), while with navigation
constraints we have Ω(ϕ) := {ω ∈ ∆(S ×A) : ω(s) =

∑
s′,a′ P (s|s′, a′)ω(s′, a′)},∀s ∈ S}, with

ω(s) :=
∑
a ω(s, a). Finally, kl(a, b) is the KL-divergence between two Bernoulli distributions of

means a and b.

4 Towards Efficient Exploration Allocations

We aim to extend previous studies on best policy identification to online model-free exploration. In
this section, we derive an approximation to the bound proposed in [28], involving quantities learnable
via stochastic approximation, thereby enabling the use of model-free approaches.

The optimization problem (1) leading to instance-specific sample complexity lower bounds has an
important interpretation [28, 29]. An allocation ωopt corresponds to an exploration strategy with
minimal sample complexity. To devise an efficient exploration strategy, one could then think of
estimating the MDP ϕ, and solving (1) for this estimated MDP to get an approximation of ωopt.
There are two important challenges towards applying this approach:

(i) Estimating the model can be difficult, especially for MDPs with large state and action spaces,
and arguably, a model-free method would be preferable.

(ii) The lower bound problem (1) is, in general, non-convex [28, 29].

A simple way to circumvent issue (ii) involves deriving an upper bound of the value of the sample
complexity lower bound problem (1). Specifically, one may derive an upper bound U(ω) of Tε(ω) by
convexifying the corresponding optimization problem. The exploration strategy can then be the ω⋆
that achieves the infimum of U(ω). This approach ensures that we identify an approximately optimal
policy, at the cost of over-exploring at a rate corresponding to the gap U(ω⋆)− Tε(ωopt). Note that
using a lower bound of Tε(ω) would not guarantee the identification of an optimal policy, since we
would explore "less" than required. The aforementioned approach was already used in [28] where the
authors derive an explicit upper bound U0(ω) of T0(ω). We also apply it, but derive an upper bound
such that implementing the corresponding allocation ω⋆ can be done in a model-free manner (hence
solving the first issue (i)).

4

4.1 Upper bounds on Tε(ω)

The next theorem presents the upper bound derived in [28].
Theorem 4.1 ([28]). Consider a communicating MDP ϕ with a unique optimal policy π⋆. For all
vectors ω ∈ ∆(S ×A),

T0(ω) ≤ U0(ω) := max
(s,a):a̸=π⋆(s)

H0(s, a)

ω(s, a)
+ max

s

H⋆
0

ω(s, π⋆(s))
, (2)

with
H0(s, a) =

2
∆(s,a)2 +max

(
16Varsa[V

⋆]
∆(s,a)2 , 6MDsa[V

⋆]4/3

∆(s,a)
4
3

)
,

H⋆
0 = 2

∆2
min(1−γ)2

+min

(
27

∆2
min(1−γ)3

,max

(
16maxs Varsπ⋆(s)[V

⋆]

∆2
min(1−γ)2

,
6maxs MDsπ⋆(s)[V

⋆]4/3

∆
4/3
min(1−γ)4/3

))
.

In the upper bound presented in this theorem, the following quantities characterize the hardness of
learning the optimal policy: ∆(s, a) represents the difficulty of learning that in state s action a is
sub-optimal; the variance Varsa[V ⋆] measures the aleatoric uncertainty in future state values; and the
span MDsa[V

⋆] of the optimal value function can be seen as another measure of aleatoric uncertainty,
large whenever there is a significant variability in the value for the possible next states.

Estimating the span MDsa[V
⋆], in an online setting, is a challenging task for large MDPs. Our

objective is to derive an alternative upper bound that, in turn, can be approximated using quantities
that can be learned in a model-free manner. We observe that the variance of the value function, and
more generally its moments Mk

sa[V
⋆]2

−k

for k ≥ 1 (see Appendix C), are smaller than the span. By
refining the proof techniques used in [28], we derive the following alternative upper bound.

Theorem 4.2. Let ε ≥ 0 and let k(s, a) := arg supk∈NM
k
sa[V

⋆]2
−k

(for brevity, we write k instead
of k(s, a)). Then, ∀ω ∈ ∆(S ×A), we have Tε(ω) ≤ U(ω), with

U(ω) := max
s,a̸=π⋆(s)

(
2 + 8φ2Mk

sa[V
⋆]2

1−k

ω(s, a)∆(s, a)2
+max

s′

C(s′)(1 + γ)2

ω(s′, π⋆(s′))∆(s, a)2(1− γ)2

)
, (3)

where C(s′) = max
(
4, 16γ2φ2Mk

s′,π⋆(s′)[V
⋆]2

1−k
)

and φ is the golden ratio.

We can observe that in the worst case, the upper bound U(ω⋆) of the sample complexity lower bound,

with ω⋆ = arg infω U(ω), scales as O(
|S||A|maxs MDs,π⋆(s)[V

⋆]2

∆2
min(1−γ)2

). Since MDsa[V
⋆] ≤ (1 − γ)−1,

then U(ω⋆) scales at most as O(|S||A|
∆2

min(1−γ)4
). However, the following questions arise: (1) Can we

select a single value of k that provides a good approximation across all states and actions? (2) How
much does this bound improve on that of Theorem 4.1? As we illustrate in the example presented
in the next subsection, we believe that actually selecting k = 1 for all states and actions leads to
sufficiently good results. With this choice, we obtain the following approximation:

U1(ω) := max
s,a̸=π⋆(s)

(
2 + 8φ2 Varsa[V

⋆]

ω(s, a)∆(s, a)2
+max

s′

C ′(s′)(1 + γ)2

ω(s′, π⋆(s′))∆(s, a)2(1− γ)2

)
, (4)

where C ′(s′) = max
(
4, 16γ2φ2 Vars′,π⋆(s′)[V

⋆]
)
. U1(ω) resembles the term in Theorem 4.1 (note

that we do not know whether U1 is a valid upper bound for Tε). For the second question, our
numerical experiments (presented below) suggest that U(ω) is a tighter upper bound than U0(ω).

4.2 Example on Tabular MDPs

In Figure 1, we compare the characteristic time upper bounds obtained in the previous subsection.
These upper bounds correspond to the allocations ω⋆, ω⋆0 , and ω⋆1 obtained by minimizing, over
∆(S × A)1, U(ω), U0(ω), and U1(ω), respectively. We evaluated these characteristic times on
various MDPs: (1) a random MDP (see Sec. A in the appendix); (2) the RiverSwim environment

1Results are similar when we account for the navigation constraints. We omit these results for simplicity.

5

5 7 10 15 20

|S|

1011

1014

1017

C
h

ar
ac

te
ri

st
ic

T
im

e
U

RandomMDP

5 7 10 15 20

|S|

108

109

1010

1011

Riverswim

5 7 11 15 21

|S|

1011

1017

1023

1029
Forked Riverswim

U(ω?)

U(ω?0)

U(ω?1)

U0(ω?0)

Figure 1: Comparison of the upper bounds (2) and (3) for different sizes of S and γ = 0.95. We
evaluated different allocations using U0(ω) and U(ω). The allocations are: ω⋆0 (the optimal allocation
in (2), ω⋆ (the optimal allocation in (3) and ω⋆1 (the optimal allocation in (4) by setting k = 1
uniformly across states and actions). For the random MDP we show the median value across 30 runs.

[47]; (3) the Forked RiverSwim, a novel environment where the agent needs to constantly explore
two different states to learn the optimal policy (compared to the RiverSwim environment, the sample
complexity is higher; refer to Appendix A for a complete description).

We note that across all plots, the optimal allocation ω⋆0 has a quite large characteristic time (black
cross). Instead, the optimal allocation ω⋆ (blue circle) computed using our new upper bound (3)
achieves a lower characteristic time. When we evaluate ω⋆0 on the new bound (3) (orange star), we
observe similar characteristic times.

Finally, to verify that we can indeed choose k = 1 uniformly across states and actions, we evaluated
the characteristic time ω⋆1 computed using (4) (green triangle). Our results indicate that the perfor-
mance is not different from those obtained with ω⋆, suggesting that the quantities of interest (gaps
and variances) are enough to learn an efficient exploration allocation. We investigate the choice of k
in more detail in Appendix A.

5 Model-Free Active Exploration Algorithms

In this section we present MF-BPI, a model-free exploration algorithm that leverages the optimal
allocations obtained through the previously derived upper bound of the sample complexity lower
bound. We first present an upper bound Ũ(ω) of U(ω), so that it is possible to derive a closed form
solution of the optimal allocation (an idea previously proposed in [28]).

Proposition 5.1. Assume that ϕ has a unique optimal policy π⋆. For all ω ∈ ∆(S ×A), we have:

U(ω) ≤ Ũ(ω) := max
s,a̸=π⋆(s)

H(s, a)

ω(s, a)
+

H

mins′ ω(s′, π⋆(s′))
,

withH(s, a) :=
2+8φ2Mk

sa[V
⋆]2

1−k

∆(s,a)2 andH := maxs′ C(s′)(1+γ)2

∆2
min(1−γ)2

. The minimizer ω̃⋆ := arg infω Ũ(ω)

satisfies ω̃⋆(s, a) ∝ H(s, a) for a ̸= π⋆(s) and ω̃⋆(s, π⋆(s)) ∝
√
H
∑
s,a̸=π⋆(s)H(s, a)/|S|

otherwise.

In the MF-BPI algorithm, we estimate the gaps ∆(s, a) and Mk
sa[V

⋆] for a fixed small value of k (we
later explain how to do this in a model-free manner.) and compute the corresponding allocation ω̃⋆.
This allocation drives the exploration under MF-BPI. Using this design approach, we face two issues:

(1) Uniform k and regularization. It is impractical to estimate Mk
sa[V

⋆] for multiple values of k.
Instead, we fix a small value of k (e.g., k = 1 or k = 2) for all state-action pairs (refer to the previous
section for a discussion on this choice). Then, to avoid excessively small values of the gaps in the
denominator, we regularize the allocation ω̃⋆ by replacing, in the expression of H(s, a) (resp. Hmin),
∆(s, a) (resp. ∆min) by (∆(s, a) + λ) (resp. (∆min + λ)) for some λ > 0.

(2) Handling parametric uncertainty via bootstrapping. The quantities ∆(s, a) and Mk
sa[V

⋆]
required to compute ω̃⋆ remain unknown during training, and we adopt the Certainty Equivalence
principle, substituting the current estimates of these quantities to compute the exploration strategy.

6

Algorithm 1 Boostrapped MF-BPI (Boostrapped Model Free Best Policy Identification)

Require: Parameters (λ, k, p); ensemble size B; learning rates {(αt, βt)}t.
1: Initialize Q1,b(s, a) ∼ U([0, 1/(1− γ)]) and M1,b(s, a) ∼ U([0, 1/(1− γ)2

k

]) for all (s, a) ∈
S ×A and b ∈ [B].

2: for t = 0, 1, 2, . . . , do
3: Bootstrap a sample (Q̂t, M̂t) from the ensemble, and compute the allocation ω(t) using

Proposition 5.1. Sample at ∼ ω(t)(st, ·); observe (rt, st+1) ∼ q(·|st, at)⊗ P (·|st, at).
4: for b = 1, . . . , B do
5: With probability p, using the experience (st, at, rt, st+1), update Qt,b and Mt,b using

Equations (5) and (6).
6: end for
7: end for

By doing so, we are inherently introducing parametric uncertainty into these terms that is not taken
into account by the allocation ω̃⋆. To deal with this uncertainty, the traditional method, as used e.g. in
[28, 29]), involves using ϵ-soft exploration policies to guarantee that all state-action pairs are visited
infinitely often. This ensures that the estimation errors vanish as time grows large. In practice, we
find this type of forced exploration inefficient. In MF-BPI, we opt for a bootstrapping approach to
manage parametric uncertainties, which can augment the traditional forced exploration step, leading
to more principled exploration.

5.1 Exploration in tabular MDPs.

The pseudo-code of MF-BPI for tabular MDPs is presented in Algorithm 1. In round t, MF-
BPI explores the MDP using the allocation ω(t) estimating ω̃⋆. To compute this allocation, we
use Proposition 5.1 and need (i) the sub-optimality gaps ∆(s, a), which can be easily derived
from the Q-function; (ii) the 2k-th moment Mk

sa[V
⋆], which can always be learnt by means of

stochastic approximation. In fact, for any Markovian policy π and pair (s, a) we have Mk
sa[V

π
ϕ] =

1

γ2k
Es′∼P (·|s,a)[δ

π(s, a, s′)2
k

], where δπ(s, a, s′) = r(s, a)+γEa′∼π(·|s′)[Qπ(s′, a′)]−Qπ(s, a) is
a variant of the TD-error. MF-BPI then uses an asynchronous two-timescale stochastic approximation
algorithm to learn Q⋆ and Mk

sa[V
⋆],

Qt+1(st, at) = Qt(st, at) + αt(st, at)
(
rt + γmax

a
Qt(st+1, a)−Qt(st, at)

)
, (5)

Mt+1(st, at) =Mt(st, at) + βt(st, at)
(
(δ′t/γ)

2k −Mt(st, at)
)
, (6)

where δ′t = rt+γmaxaQt+1(st+1, a)−Qt+1(st, at), and {(αt, βt)}t≥0 are learning rates satisfying∑
t≥0 αt(s, a) =

∑
t≥0 βt(s, a) = ∞,

∑
t≥0(αt(s, a)

2 + βt(s, a)
2) ≤ ∞, and αt(s,a)

βt(s,a)
→ 0.

MF-BPI uses bootstrapping to handle parametric uncertainty. We maintain an ensemble of
(Q,M)-values, with B members, from which we sample (Q̂t, M̂t) at time t. This sample
is generated by sampling a uniform random variable ξ ∼ U([0, 1]) and, for each (s, a) set
Q̂t(s, a) = Quantileξ(Qt,1(s, a), . . . , Qt,B(s, a)) (assuming a linear interpolation). This method
is akin to sampling from the parametric uncertainty distribution (we perform the same opera-
tion also to compute M̂t). This sample is used to compute the allocation ω(t) using Propo-
sition 5.1 by setting ∆t(s, a) = maxa′ Q̂t(s, a

′) − Q̂t(s, a), π⋆t (s) = argmaxa Q̂t(s, a) and
∆min,t = mins,a̸=π⋆

t (s)
∆t(s, a). Note that, the allocation ω(t) can be mixed with a uniform policy, to

guarantee asymptotic convergence of the estimates. Upon observing an experience, with probability
p, MF-BPI updates a member of the ensemble using this new experience. p tunes the rate at which
the models are updated, similar to sampling with replacement, speeding up the learning process.
Selecting a high value for p compromises the estimation of the parametric uncertainty, whereas
choosing a low value may slow down the learning process.

Exploration without bootstrapping? To illustrate the need for our bootstrapping approach, we
tried to use the allocation ω(t) mixed with a uniform allocation. In Figure 2, we show the results on
Riverswim-like environments with 5 states. While forced exploration ensures infinite visits to all

7

0 10000 20000 30000 40000 50000

t

0.0

0.5

1.0

1
−
‖V

?
−
V
π
? t
‖ ∞

‖V
?
‖ ∞

Optimal
Riverswim

0 10000 20000 30000 40000 50000

t

0.0

0.5

1.0
Optimal

ForkedRiverswim
Forced MF-BPI

Figure 2: Forced exploration example with 5 states. We explore according to ω(t)(st, a) = (1 −
ϵt)

ω̃⋆
t (st,a)∑

a′ ω̃⋆
t (st,a

′) +ϵt
1
|A| , mixing the estimate of the allocation ω̃⋆ from Proposition 5.1 with a uniform

policy, with ϵt = max(10−3, 1/Nt(st)) where Nt(s) indicates the number of times the agent visited
state s up to time t. Shade indicates 95% confidence interval.

state-action pairs, this guarantee only holds asymptotically. As a result, the allocation mainly focuses
on the current MDP estimate, neglecting other plausible MDPs that could produce the same data.
This makes the forced exploration approach too sluggish for effective convergence, suggesting its
inadequacy for rapid policy learning. These results highlight the need to account for the uncertainty
in Q,M when computing the allocation.

5.2 Extension to Deep Reinforcement Learning

To extend bootstrapped MF-BPI to continuous MDPs, we propose DBMF-BPI (see Algorithm 2,
or Appendix B). DBMF-BPI uses the mechanism of prior networks from BSP [39](bootstrapping
with additive prior) to account for uncertainty that does not originate from the observed data. As
before, we keep an ensemble {Qθ1 , . . . , QθB} of Q-values (with their target networks) and an en-
semble {Mτ1 , . . . ,MτB} of M -values, as well as their prior networks. We use the same procedure
as in the tabular case to compute (Q̂t, M̂t) at time t, except that we sample ξ ∼ U([0, 1]) every
Ts ∝ (1−γ)−1 training steps (or at the end of an episode) to make the training procedure more stable.
The quantity Q̂t is used to compute π⋆t (st) and ∆t(st, a). We estimate ∆min,t via stochastic approx-
imation, with the minimum gap from the last batch of transitions sampled from the replay buffer

serving as a target. To derive the exploration strategy, we compute Ht(st, a) =
2+8φ2M̂t(st,a)

21−k

(∆t(st,a)+λ)2

and Ht =
4(1+γ)2 max(1,4γ2φ2M̂t(st,π

⋆
t (st))

21−k
)

(∆min,t+λ)2(1−γ)2 . Next, we set the allocation ω
(t)
o as follows:

ω
(t)
o (st, a) = Ht(st, a) if a ̸= π⋆t (st) and ω

(t)
o (st, a) =

√
Ht

∑
a ̸=π⋆

t (st)
Ht(st, a) otherwise.

Finally, we obtain an ϵt-soft exploration policy ω(t)(st, ·) by mixing ω(t)
o (st, ·)/

∑
a ω

(t)
o (st, a) with

a uniform distribution (using an exploration parameter ϵt).

Algorithm 2 DBMF-BPI (Deep Bootstrapped Model Free BPI)

Require: Parameters (λ, k); ensemble size B; exploration rate {ϵt}t; estimate ∆min,0; mask probability p.
1: Initialize replay buffer D, networks Qθb ,Mτb and targets Qθ′

b
for all b ∈ [B].

2: for t = 0, 1, 2, . . . , do
3: Sampling step.
4: Compute allocation ω(t) ← ComputeAllocation(st, {Qθb ,Mτb}b∈[B],∆min,t, γ, λ, k, ϵt).
5: Sample at ∼ ω(t)(st, ·) and observe (rt, st+1) ∼ q(·|st, at)⊗ P (·|st, at).
6: Add transition zt = (st, at, rt, st+1) to the replay buffer D.
7: Training step.
8: Sample a batch B from D, and with probability p add the ith experience in B to a sub-batch

Bb, ∀b ∈ [B]. Update the (Q,M)-values of the bth member in the ensemble using Bb:
{Qθb , Qθ′

b
,Mτb}b∈[B] ← Training({Bb, Qθb , Qθ′

b
,Mτb}b∈[B]).

9: Update estimate ∆min,t+1 ← EstimateMinimumGap(∆min,t,B, {Qθb}b∈[B]).
10: end for

8

6 Numerical Results

We evaluate the performance of MF-BPI on benchmark problems and compare it against state-of-the-
art methods (details can be found in Appendix A).

Tabular MDPs. In the tabular case, we compared various algorithms on the Riverswim and Forked
Riverswim environments. We evaluate MF-BPI with (1) bootstrapping and with (2) the forced
exploration step using an ϵ-soft exploration policy, MDP-NAS [29], PSRL [36] and Q-UCB [19, 56].
For MDP-NAS, the model of the MDP was initialized in an optimistic way (with additive smoothing).

In both environments, we varied the size of the state space. In Figure 3, we show 1− ∥V ⋆−V π⋆
T ∥∞

∥V ⋆∥∞
,

a performance measure for the estimated policy π⋆T after T = |S| × 104 steps with γ = 0.99.
Results (the higher the better) indicate that bootstrapped MF-BPI can compete with model-based and
model-free algorithms on hard-exploration problems, without resorting to expensive model-based
procedures. Details of the experiments, including the initialization of the algorithms, are provided in
Appendix A.

5 10 20 30 50

|S|
0.00

0.25

0.50

0.75

1.00

1
−
‖V

?
−V

π
? T
‖ ∞

‖V
?
‖ ∞

Riverswim

5 9 19 29 49

|S|

ForkedRiverswim

Agent

Bootstrapped MF-BPI

Forced MF-BPI

Q-UCB

MDP-NaS

PSRL

Figure 3: Evaluation of the estimated optimal policy π⋆T after T steps for MF-BPI, Q-UCB, MDP-
NAS and PSRL. Results are averaged across 10 seeds and lines indicate 95% confidence intervals.

Deep RL. In environments with continuous state space, we compared DBMF-BPI with BSP [40, 39]
(Bootstrapped DQN with randomized priors) and IDS [33] (Information-Directed Sampling). We
also evaluated DBMF-BPI against BSP2, a variant of BSP that uses the same masking mechanism
as DBMF-BPI for updating the ensemble. These methods were tested on challenging exploration
problems from the DeepMind behavior suite [41] with varying levels of difficulty: (1) a stochastic
version of DeepSea and (2) the Cartpole swingup problem. The DeepSea problem includes a 5%
probability of the agent slipping, i.e., that an incorrect action is executed, which increases the aleatoric
variance.

The results for the Cartpole swingup problem are depicted in Figure 4 for various difficulty levels k
(see also Appendix A.5 for more details), demonstrating the ability of DBMF-BPI to quickly learn
an efficient policy. While BSP generally performs well, there is a notable difference in performance
when compared to DBMF-BPI. For a fair comparison, we used the same network initialization
across all methods, except for IDS. Untuned, IDS performed poorly; proper initialization improved
its performance, but results remained unsatisfactory. In Figure 5, we present two exploration metrics

0 50 100 150 200

Episode

0

10000

20000

30000

T
ot

al
u

p
ri

gh
t

ti
m

e
[s

te
p

s]

Cartpole swingup - difficulty k = 10

DBMF-BPI

BSP

BSP2

IDS

1 3 5 10

Difficulty k

0

20000

40000

60000

T
ot

al
u

p
ri

gh
t

ti
m

e
[s

te
p

s]

Cartpole swingup − episode 200

Figure 4: Cartpole swingup problem. On the left: total upright time at a difficulty level of k = 10. On
the right: total upright time after 200 episodes for different difficulties k. To observe a positive reward,
the pole’s angle must satisfy cos(θ) > k/20, and the cart’s position should satisfy |x| ≤ 1− k/20.
Bars and shaded areas indicate 95% confidence intervals.

9

0 5000 10000 15000 20000

Timestep t

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

en
tr

op
y

Frequency of visit (entropy)

0 5000 10000 15000 20000

Timestep t

Recent visit (entropy)

DBMF-BPI

BSP

BSP2

IDS

Figure 5: Exploration in Cartpole swingup for k = 5. On the left, we show the entropy of visitation
frequency for the state space (x, ẋ, θ, θ̇) during training. On the right, we show a measure of the
dispersion of the most recent visits; smaller values indicate that the agent is less explorative as t
increases.

for difficulty k = 5. The frequency of visits measures the uniformity and dispersion of visits across
the state space, while the second metric evaluates the recency of visits to different regions, capturing
how frequently the methods keep visiting previously visited states (a smaller value indicates that the
agent tends to concentrate on a specific region of the state space). For detailed analysis, please refer
to appendix A.

0 1000 2000 3000

Episode

0

200

400

S
u

cc
es

sf
u

l
ep

is
o
d

es

Slipping DeepSea - problem size 30

DBMF-BPI

BSP

BSP2

IDS

10 20 30 40 50

DeepSea problem size

0.0

0.1

0.2

0.3

0.4

st
d

(t
v
is
it
)

Slipping DeepSea − Exploration

Figure 6: Slipping DeepSea problem. On the left: total number of successful episodes (i.e., that the
agent managed to reach the final reward) for a grid with 302 input features. On the right: standard
deviation of tvisit at the last episode, depicting how much each agent explored (the lower the better).

For the slipping DeepSea problem, results are depicted in Fig. 6 (see also Appendix A.4 for more
details). Besides the number of successful episodes, we also display the standard deviation of
(tvisit)ij across all cells (i, j), where (tvisit)ij indicates the last timestep t that a cell (i, j) was visited
(normalized by NT , the product of the grid size, and the number of episodes). The right plot shows
std(tvisit) for different problem sizes, highlighting the good exploration properties of DBMF-BPI.
Additional details and exploration metrics can be found in Appendix A.

7 Conclusions

In this work, we studied the problem of exploration in Reinforcement Learning and presented MF-
BPI, a model-free solution for both tabular and continuous state-space MDPs. To derive this method,
we established a novel approximation of the instance-specific lower bound necessary for identifying
nearly-optimal policies. Importantly, this approximation depends only on quantities learnable via
stochastic approximation, paving the way towards model-free methods. Numerical results on hard-
exploration problems highlighted the effectiveness of our approach for learning efficient policies over
state-of-the-art methods.

10

Acknowledgments

This research was supported by the Swedish Foundation for Strategic Research through the CLAS
project (grant RIT17-0046) and partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. The authors would
also like to thank the anonymous reviewers for their valuable and insightful feedback. On a personal
note, Alessio Russo wishes to personally thank Damianos Tranos, Yassir Jedra, Daniele Foffano, and
Letizia Orsini for their invaluable assistance in reviewing the manuscript.

References
[1] Peter Atkins, Peter William Atkins, and Julio de Paula. Atkins’ physical chemistry. Oxford

university press, 2014.

[2] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

[4] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in Neural Information Processing Systems (NeurIPS), 21, 2008.

[5] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep q-networks. In 2018 Information Theory and Applications Workshop
(ITA), pages 1–9. IEEE, 2018.

[6] Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, and Zhaoran Wang.
Principled exploration via optimistic bootstrapping and backward induction. In International
Conference on Machine Learning, pages 577–587. PMLR, 2021.

[7] Andrew G Barto. Intrinsic motivation and reinforcement learning. Intrinsically Motivated
Learning in Natural and Artificial Systems, Springer, pages 17–47, 2013.

[8] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In International Conference on Machine Learning, pages 449–458. PMLR,
2017.

[9] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231,
2002.

[10] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations, 2018.

[11] Richard Y Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. Ucb exploration via
q-ensembles. arXiv preprint arXiv:1706.01502, 2017.

[12] William R Clements, Bastien Van Delft, Benoît-Marie Robaglia, Reda Bahi Slaoui, and
Sébastien Toth. Estimating risk and uncertainty in deep reinforcement learning. arXiv preprint
arXiv:1905.09638, 2019.

[13] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[14] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In Proceedings of
the 15th National Conference on Artificial Intelligence, American Association for Artificial
Intelligence, July, 1998, pages 761–768. AAAI Press, 1998.

[15] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for
exploration. arXiv preprint arXiv:1706.10295, 2017.

11

[16] Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence.
In Conference on Learning Theory, pages 998–1027. PMLR, 2016.

[17] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac bounds on
the sample complexity of reinforcement learning with a generative model. Machine learning,
Springer, 91:325–349, 2013.

[18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[19] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

[20] Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University
of London, University College London (United Kingdom), 2003.

[21] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best arm
identification in multi-armed bandit models. Journal of Machine Learning Research, 17:1–42,
2016.

[22] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, Springer, 49:209–232, 2002.

[23] Johannes Kirschner and Andreas Krause. Information directed sampling and bandits with
heteroscedastic noise. In Conference On Learning Theory, pages 358–384. PMLR, 2018.

[24] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforce-
ment learning: A survey. Information Fusion, 2022.

[25] Tor Lattimore and Marcus Hutter. Pac bounds for discounted mdps. In Algorithmic Learn-
ing Theory: 23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012.
Proceedings 23, pages 320–334. Springer, 2012.

[26] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[27] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference
on Machine Learning, pages 6131–6141. PMLR, 2021.

[28] Aymen Al Marjani and Alexandre Proutiere. Adaptive sampling for best policy identification in
markov decision processes. In International Conference on Machine Learning, pages 7459–
7468. PMLR, 2021.

[29] Aymen Al Marjani, Aurélien Garivier, and Alexandre Proutiere. Navigating to the best policy in
markov decision processes. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

[30] Borislav Mavrin, Hengshuai Yao, Linglong Kong, Kaiwen Wu, and Yaoliang Yu. Distributional
reinforcement learning for efficient exploration. In International Conference on Machine
Learning, pages 4424–4434. PMLR, 2019.

[31] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International Conference on Machine Learning, pages 1928–1937. PMLR,
2016.

[32] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Efficient exploration with
double uncertain value networks. In Deep Reinforcement Learning Symposium, NIPS 2017,
2017.

[33] Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-
directed exploration for deep reinforcement learning. In International Conference on Learning
Representations, 2018.

12

[34] Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in structured reinforce-
ment learning. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

[35] Ian Osband and Benjamin Van Roy. Bootstrapped thompson sampling and deep exploration.
arXiv preprint arXiv:1507.00300, 2015.

[36] Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems (NeurIPS), 26, 2013.

[37] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in Neural Information Processing Systems (NeurIPS), 29, 2016.

[38] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pages 2377–2386. PMLR,
2016.

[39] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep re-
inforcement learning. Advances in Neural Information Processing Systems (NeurIPS), 31,
2018.

[40] Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via
randomized value functions. Journal of Machine Learning Research, 20:1–62, 2019.

[41] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,
Katrina McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy,
Richard Sutton, David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning.
In International Conference on Learning Representations, 2020.

[42] Jason Pazis, Ronald E Parr, and Jonathan P How. Improving pac exploration using the median
of means. Advances in Neural Information Processing Systems (NeurIPS), 29, 2016.

[43] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018.

[44] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial
on thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

[45] Richard M Ryan and Edward L Deci. Intrinsic and extrinsic motivations: Classic definitions
and new directions. Contemporary educational psychology, 25(1):54–67, 2000.

[46] Mohit Sewak. Deep reinforcement learning. Springer, 2019.

[47] Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[48] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac
model-free reinforcement learning. In Proceedings of the 23rd International Conference on
Machine learning, pages 881–888, 2006.

[49] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[50] István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight
exploration complexity bounds. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 1031–1038, 2010.

[51] Jérôme Taupin, Yassir Jedra, and Alexandre Proutiere. Best policy identification in discounted
linear mdps. In Sixteenth European Workshop on Reinforcement Learning, 2023.

[52] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

13

[53] Andrea Tirinzoni, Aymen Al Marjani, and Emilie Kaufmann. Near instance-optimal pac
reinforcement learning for deterministic mdps. Advances in Neural Information Processing
Systems (NeurIPS), 35:8785–8798, 2022.

[54] Andrew Wagenmaker and Kevin G Jamieson. Instance-dependent near-optimal policy identifi-
cation in linear mdps via online experiment design. Advances in Neural Information Processing
Systems (NeurIPS), 35:5968–5981, 2022.

[55] Andrew J Wagenmaker, Max Simchowitz, and Kevin Jamieson. Beyond no regret: Instance-
dependent pac reinforcement learning. In Conference on Learning Theory, pages 358–418.
PMLR, 2022.

[56] Yuanhao Wang, Kefan Dong, Xiaoyu Chen, and Liwei Wang. Q-learning with ucb explo-
ration is sample efficient for infinite-horizon mdp. In International Conference on Learning
Representations, 2019.

[57] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis,
Cambridge University, Cambridge, England, 1989.

[58] Jeremy Wyatt. Exploration and inference in learning from reinforcement. PhD thesis, University
of Edinburgh, Edinburgh, England, 1998.

[59] Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Jianye Hao, Zhaopeng Meng, Peng Liu,
and Zhen Wang. Exploration in deep reinforcement learning: a comprehensive survey. arXiv
preprint arXiv:2109.06668, 2021.

[60] Andrea Zanette, Mykel J Kochenderfer, and Emma Brunskill. Almost horizon-free structure-
aware best policy identification with a generative model. In Advances in Neural Information
Processing Systems (NeurIPS), volume 32, 2019.

14

	Introduction
	Related Work
	Preliminaries
	Towards Efficient Exploration Allocations
	Upper bounds on T()
	Example on Tabular MDPs

	Model-Free Active Exploration Algorithms
	Exploration in tabular MDPs.
	Extension to Deep Reinforcement Learning

	Numerical Results
	Conclusions

