
Supplementary Material for ‘DatasetDM’

Weijia Wu1,3 Yuzhong Zhao2 Hao Chen1 Yuchao Gu3 Rui Zhao3 Yefei He1
Hong Zhou1∗ Mike Zheng Shou3∗ Chunhua Shen1,4

1Zhejiang University, China 2University of Chinese Academy of Sciences, China
3Show Lab, National University of Singapore 4Ant Group

Contents

1 Implementation details 2

1.1 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Baseline for Downstream Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Training Setup for DatasetDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Details for Training Data of DatasetDM . . . . . . . . . . . . . . . . . . . . . . . 4

2 Experiments 4

2.1 Comparison with Other Data Augmentation Methods. . . . . . . . . . . . . . . . . 4

2.2 Ablation Study for Baseline of Downstream Tasks. . . . . . . . . . . . . . . . . . 4

2.3 Human Pose Estimation on COCO val2017. . . . . . . . . . . . . . . . . . . . . 4

2.4 Semantic segmentation on DeepFashion-MM. . . . . . . . . . . . . . . . . . . . . 5

2.5 Depth Estimation on NYU Depth V2 val dataset. . . . . . . . . . . . . . . . . . . 5

2.6 Zero-Shot Semantic Segmentation on VOC 2012 . . . . . . . . . . . . . . . . . . 5

2.7 Domain Generalization across Different Domains . . . . . . . . . . . . . . . . . . 5

2.8 Comparison with the semi-supervised approaches on VOC2012 . . . . . . . . . . 6

2.9 More Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Details on the Architecture of Perception Decoder 6

3.1 Text Encoder for Open-Vocabulary Segmentation. . . . . . . . . . . . . . . . . . . 6

3.2 Semantic and Instance Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Human Pose and Depth Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Synthetic Dataset 8

4.1 Prompts from GPT-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Prompts for Each Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Limitation and Future Work 8
∗H. Zhou and M. Shou are the corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Task Dataset Full Real Data Used for DatasetDM # synthetic image

Instance Segmentation COCO 2017 [15] 118.3k 400 (0.3%) 80k
Semantic Segmentation VOC 2012 [8] 10.6k 100 (0.87%) 40k
Semantic Segmentation Cityscapes [6] 2.9k 9 (0.3%) 38k
Semantic Segmentation DeepFashion-MM [11] 12.7k 120 (0.9%) 38k
Zero-Shot Segmentation VOC 2012 [8] 10.6k 450 (3.9%) 40k
Depth NYU Depth V2 [19] 24.2k 50 (0.2%) 35k
Human Pose COCO 2017-Pose [15] 118.3k 800 (0.6%) 80k

Table 1: Comparison of data size. With less than 1% manually labeled images, DatasetDM can
enable the generation of an infinitely large annotated dataset.

method backbone input size # real im. # synthetic im. AP AP50 AP75 APM APL AR

Baseline R50 256 × 192 800 - 31.3 62.0 27.7 30.7 32.0 36.2
DatasetDM R50 256 × 192 - 80k (R:800) 11.4 28.2 7.8 6.9 17.7 14.3
DatasetDM R50 256 × 192 800 80k (R:800) 36.4 66.7 35.0 33.0 40.8 40.1
Baseline HR-W32 256 × 192 800 - 42.4 73.3 42.1 39.5 47.0 46.7
DatasetDM HR-W32 256 × 192 - 80k (R:800) 13.4 30.9 9.9 8.0 21.7 17.7
DatasetDM HR-W32 256 × 192 800 80k (R:800) 47.5 75.6 49.3 44.2 52.6 51.2
Baseline HR-W32 384 × 288 800 - 43.4 72.2 44.7 40.5 47.9 47.5
DatasetDM HR-W32 384 × 288 800 80k (R:800) 48.9 76.7 51.4 44.6 55.0 52.4

Table 2: Human Pose Estimation on COCO val2017. ‘R: ’ refers to the number of real data used
for training DatasetDM.
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1 Implementation details

1.1 Dataset Details

• Pascal-VOC 2012 [8] (20 classes) is a popular dataset for semantic segmentation in computer
vision. It contains thousands of annotated images featuring 20 different object classes, such
as animals, vehicles, and furniture.

• Cityscapes [6] (19 classes) is a benchmark dataset for semantic urban scene, primarily
focusing on semantic segmentation tasks in computer vision. It contains high-quality pixel-
level annotations of 5,000 images from 50 different cities, captured at various times of the
day and under diverse weather conditions. There are 2,975 images for training and 500
images for validation.

• COCO 2017 (Common Objects in Context) [15] is a widely-used benchmark dataset for
computer vision tasks, such as object detection, segmentation, and human pose estimation.
It contains over 200,000 labeled images with 1.5 million object instances belonging to 80
object categories

• NYU Depth V2 [19] is designed for indoor scene understanding tasks in computer vision,
specifically for depth estimation task. The NYU Depth V2 dataset contains 1,449 labeled
images and 407,024 unlabeled frames, captured from 464 diverse indoor scenes.

• DeepFashion-MM [11] (24 classes) is a benchmark dataset designed for the task of clothing
synthesis in the field of computer vision. It consists of 24 different clothing classes.

1.2 Baseline for Downstream Tasks

• Semantic/Instance Segmentation. We use Mask2former [4] as the baseline for comparing
synthetic data to real data. We use the official code2, maintaining all network settings, loss
functions, and configurations as presented in the original code. To evaluate the effectiveness
of synthetic data, we establish three settings: 1) training with purely real data, 2) training
with purely synthetic data, and 3) joint training with both synthetic and real data.

• Open-Vocabulary Semantic Segmentation. Similar to the generic semantic segmentation,
we use Mask2former [4] as the baseline. We train DatasetDM on 15 seen categories and

2https://github.com/facebookresearch/MaskFormer
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Collapsed label (8) Cityscapes (Fine annotations) original labels

Void
Unlabeled (0), ego vehicle (1), rectification border (2), out of ROI (3), static (4), dynamic (5), ground (6),
sidewalk (8), parking (9), rail track (10)

Road Road (7)
Construction Building (11), wall (12), fence (13), guard rail (14), bridge (15), tunnel (16)
Object pole (17), polegroup (18), traffic light (19), traffic sign (20)
Nature Vegetation (21), terrain (22)
Sky Sky (23)
Human Person (24), rider (25)
Vehicle UCar (26), truck (27), bus (28), caravan (29), trailer (30), train (31), motorcycle (32), bicycle (33), license plate (-1)

Table 3: Details for 8 and 19 categories on Cityscapes [6].

data aug. baseline backbone # real image # synthetic image mIoU Improv.

crop Mask2former [4] R50 100 - 41.5 -
flip, crop, color Mask2former [4] R50 100 - 43.4 +1.9
crop, DatasetDM Mask2former [4] R50 100 40k (R:100) 65.2 +23.7
flip, crop, color, DatasetDM Mask2former [4] R50 100 40k (R:100) 66.1 +24.6
crop Mask2former [4] Swin-B 100 - 64.1 -
flip, crop, color Mask2former [4] Swin-B 100 - 65.2 +1.1
crop, DatasetDM Mask2former [4] Swin-B 100 40k (R:100) 77.8 +13.7
flip, crop, color, DatasetDM Mask2former [4] Swin-B 100 40k (R:100) 78.5 +14.4
crop DeepLabV3+ [3] Mobilenet 100 - 39.1 -
crop, DatasetDM DeepLabV3+ [3] Mobilenet 100 40k (R:100) 45.3 +6.2
flip, crop, color DeepLabV3+ [3] Mobilenet 100 - 40.5 +1.4
flip, crop, color, DatasetDM DeepLabV3+ [3] Mobilenet 100 40k (R:100) 46.1 +7.0
crop DeepLabV3+ [3] R50 100 - 45.1 -
crop, DatasetDM DeepLabV3+ [3] R50 100 40k (R:100) 55.3 +10.2
flip, crop, color DeepLabV3+ [3] R50 100 - 46.3 +1.2
flip, crop, color, DatasetDM DeepLabV3+ [3] R50 100 40k (R:100) 56.9 +11.8

Table 4: Comparison with Data Augmentation. ‘R: ’ refers to the number of real data used to
train. ‘crop’, ‘flip’, and ‘color’ refer to the ‘random crop’, ‘random horizontal flip’, and ‘color
augmentation’, respectively.

generate a total of 40k synthetic images for 20 categories. Subsequently, we utilize these
data to train the Mask2former model and evaluate its performance on the 20 categories of
VOC 2012.

• Depth Estimation. DepthFormer [13]3, serving as the baseline, is employed to assess our
approach. We adhere to all network settings, loss functions, configurations, and training
strategies outlined in the original implementation.

• Pose Estimation. We adopt HRNet [20] and its official code4 for evaluating the pose
estimation task on synthetic data generated by DatasetDM. Currently, we focus on single-
person scenarios in each synthetic image and guide GPT-4 to generate corresponding images
accordingly.

1.3 Training Setup for DatasetDM

All experiments for training DatasetDM were carried out on a single V100 GPU, while downstream
task baselines (i.e. Mask2former, Depthformer) were trained using 8 V100 GPUs. Training our
DatasetDM for 50k iterations with just one V100 GPU takes merely a day, showcasing its efficacy
and efficiency. For all tasks, we employ the Adam optimizer [17] with a learning rate of 0.001 and a
batch size of 1. The loss function and data augmentations vary for different tasks.

• Semantic/Instance Segmentation. During the training phase of DatasetDM, we primarily
utilize two data augmentation techniques: random cropping to a size of 512×512 pixels,
and random scaling.

3https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox
4https://github.com/HRNet/HRNet-Human-Pose-Estimation
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Sampled Classes for Comparison/%
method backbone # real image # synthetic image outer dress headwear belt socks mIoU

Baseline R50 100 - 58.2 65.2 19.2 24.3 0 31.2
DatasetDM (ours) R50 - 40k (R:100) 53.1 57.2 0.4 0.4 0 28.9
DatasetDM (ours) R50 100 40k (R:100) 53.1 59.3 34.3 59.1 3.2 36.7
Baseline Swin-B 100 - 58.1 56.1 64.3 33.4 7.2 40.1
DatasetDM (ours) Swin-B 100 40k (R:100) 70.0 70.8 72.0 32.8 5.9 45.1

Table 5: Semantic segmentation on DeepFashion-MM [11]. ‘R: ’ refers to the number of real data
used to train.

method backbone # real image # synthetic image δ1↑ δ2↑ δ3↑ REL ↓ Sq REL ↓ RMS ↓ RMS log ↓
Baseline Swin-L 50 - 0.59 0.84 0.93 0.31 0.37 0.81 0.30
DatasetDM Swin-L - 35k (R:50) 0.68 0.90 0.97 0.22 0.19 0.60 0.23
DatasetDM Swin-L 50 35k (R:50) 0.68 0.91 0.98 0.21 0.18 0.63 0.23
Baseline Swin-L 250 - 0.79 0.96 0.99 0.16 0.11 0.51 0.19
DatasetDM Swin-L - 35k (R:250) 0.78 0.96 0.99 0.17 0.11 0.52 0.19
DatasetDM Swin-L 250 35k (R:250) 0.80 0.97 0.99 0.14 0.09 0.47 0.18

Table 6: Depth Estimation on NYU Depth V2 val dataset. Measurements are made for the depth
range from 0m to 10m.

• Depth Estimation. For depth estimation, we employ four data augmentation methods:
random flipping, cropping, brightness-contrast adjustment, and hue-saturation value manip-
ulation.

• Pose Estimation. For pose estimation, we use four data augmentation techniques: random
scaling, cropping, flipping, and rotation.

1.4 Details for Training Data of DatasetDM

Quantities of training read data. Table 1 provides a comprehensive comparison of the quantities
of training read data and synthetic data used for each downstream task in this study. Notably, with
the exception of the seen class in the zero-shot segmentation setting, training with our DatasetDM
requires less than 1% of the available real data. This efficiency potentially reduces the implementation
costs of perception algorithms and significantly improves data utilization.

2 Experiments

2.1 Comparison with Other Data Augmentation Methods.

From a certain perspective, the proposed DatasetDM is more akin to an efficient data augmentation
technique, and thus we compare it with some previous data augmentation schemes, as shown in Table
4. Compared with flip and color augmentation, DatasetDM demonstrates a substantial advantage,
bringing significant improvements, around 10% increase, which is significant for the computer vision
community.

2.2 Ablation Study for Baseline of Downstream Tasks.

In addition, the synthetic data generated by DatasetDM can seamlessly integrate with any existing
downstream task model. To substantiate this claim, we tested our model with several other benchmark
models, such as DeepLabV3, the results of which are detailed in Table 4. Notably, our synthetic
data was able to enhance the performance of DeepLabV3 by approximately 10%, underscoring the
robustness of our approach.

2.3 Human Pose Estimation on COCO val2017.

Table 2 presents the results of human pose estimation on the COCO 2017 dataset. Following the
approach of HRNet [20], we established three distinct experimental settings, including variations in
the backbone and input size, to evaluate the synthetic data from our model. Irrespective of the specific
setting, our method consistently achieved an improvement of approximately 5% in Average Precision
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Train Set/% mIoU/%
methods backbone # real image # synthetic image categories seen unseen harmonic

ZS3 [2] - 10.6k - 15 78.0 21.2 33.3
CaGNet [10] - 10.6k - 15 78.6 30.3 43.7
Joint [1] - 10.6k - 15 77.7 32.5 45.9
STRICT [18] - 10.6k - 15 82.7 35.6 49.8
SIGN [5] - 10.6k - 15 83.5 41.3 55.3
ZegFormer [7] - 10.6k - 15 86.4 63.6 73.3

Li et al. [14] ResNet101 10.0k (R:110k, COCO) 15+5 62.8 50.0 55.7
DiffuMask [21] ResNet101 - 200.0 k (R:0) 15+5 62.1 50.5 55.7
DiffuMask [21] Swin-B - 200.0k (R:0) 15+5 71.4 65.0 68.1
DatasetDM ResNet101 - 40k (R:450, VOC) 15+5 65.1 51.1 57.1
DatasetDM Swin-B - 40k (R:450, VOC) 15+5 78.8 60.5 68.4

Table 7: Zero-Shot Semantic Segmentation on PASCAL VOC 2012. ‘Seen’, ‘Unseen’, and
‘Harmonic’ denote the mIoU of seen, and unseen categories, and their harmonic mean. ‘R: ’ refers to
the number of real data from VOC 2012 or COCO 2017 used to train the generation model.

Train Set/%
methods baseline backbone # labeled real image # unlabeled synthetic image # synthetic image mIoU

ReCo [16] DeepLabv3 R101 60 10.6k-60 0 53.3
ReCo [16] DeepLabv3 R101 200 10.6k-200 0 69.8
ReCo [16] DeepLabv3 R101 600 10.6k-600 0 72.8
DatasetDM DeepLabv3 R101 60 0 40k 57.6
DatasetDM Mask2former R50 100 0 40k 66.1
DatasetDM Mask2former Swin-B 100 0 40k 78.5

Table 8: Comparisons with semi-supervised works on PASCAL VOC 2012.

(AP), which is a significant increase. Finally, it is noteworthy that our model attained competitive
performance, with an AP of 48.9%, using merely 800 training images.

2.4 Semantic segmentation on DeepFashion-MM.

Table 5 showcases the performance of semantic segmentation on the DeepFashion-MM dataset [11].
Like our other experiments, we have conducted two sets of experiments using different backbones.
Regardless of the setup, the joint training with synthetic data consistently outperforms the baseline
that uses purely synthetic data, with an approximate improvement of 5% mIoU.

2.5 Depth Estimation on NYU Depth V2 val dataset.

Table 6 presents the depth estimation experiment conducted on the NYU Depth V2 validation
dataset [19]. Two training strategies have been devised based on variations in the training data.
Independent of the data volume utilized, our approach consistently yields substantial improvements,
specifically 0.1 and 0.02 respectively.

2.6 Zero-Shot Semantic Segmentation on VOC 2012

Consistent with preceding studies [14, 21], we conduct an experiment on zero-shot (open-vocabulary)
semantic segmentation tasks using the VOC 2012 dataset [8]. Table 7 offers a comparative analysis
with existing approaches to zero-shot semantic segmentation. In this experiment, our model is trained
on a mere 450 images, with 30 images allocated for each of the 15 seen classes, and testing is
conducted across all 20 categories. Despite the limited dataset in comparison to the complete set
of 10.6k images, our model continues to exhibit competitive performance. In relation to methods
employing synthetic data, our model achieves state-of-the-art (SOTA) performance, reaching 68.4%
mIoU.

2.7 Domain Generalization across Different Domains

Following DiffuMask [21], we further assess the domain generalization capabilities of synthetic data
produced by DatasetDM, as depicted in Fig. 9. When compared with the previous state-of-the-art
(SOTA) method, DatasetDM demonstrates superior effectiveness in domain generalization. For
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mIoU/%
Train Set Test Set Car Person Motorbike mIoU

Cityscapes [6] VOC 2012 [8] val 26.4 32.9 28.3 29.2
ADE20K [22] VOC 2012 [8] val 73.2 66.6 64.1 68.0

DiffuMask [21] VOC 2012 [8] val 74.2 71.0 63.2 69.5
DatasetDM VOC 2012 [8] val 77.9 72.9 70.1 73.6

VOC 2012 [8] Cityscapes [6] val 85.6 53.2 11.9 50.2
ADE20K [22] Cityscapes [6] val 83.3 63.4 33.7 60.1

DiffuMask [21] Cityscapes [6] val 84.0 70.7 23.6 59.4
DatasetDM Cityscapes [6] val 85.6 58.9 12.7 52.4

Table 9: Performance for Domain Generalization between different datasets. Mask2former [4]
with ResNet50 is used as the baseline. Person and Rider classes of Cityscapes [6] are consider as
the same class, i.e., Person in the experiment.

instance, DatasetDM achieves a score of 73.6%, as opposed to DiffuMask’s score of 69.5% on
the VOC 2012 val set. Compared to real data, DatasetDM exhibits enhanced robustness in terms
of generalization. It is reasonable that synthetic data exhibits greater diversity, especially when
integrated with language models, as shown in Fig. 4 In terms of diversity and robustness, it far
surpasses real datasets.

2.8 Comparison with the semi-supervised approaches on VOC2012

Table 8 presents the comparison between the prior semi-supervised works and our DatasetDM. Even
with a smaller amount of data (60 images), our approach demonstrates competitive performance,
outperforming current semi-supervised semantic segmentation works. Furthermore, with a more
powerful backbone, our method can achieve even better performance, reaching a mIoU of 78.2 with
only 100 images.

2.9 More Qualitative Results

To demonstrate the high-quality synthetic data, we visualized synthetic data from two domains:
human-centric and urban city, as shown in Fig. 1 (human-centric) and Fig. 2 (urban city scenario).
The human-centric domain predominantly encompasses datasets related to human activity, such as
COCO 2017, Cityscapes, and DeepFashion-MM. On the other hand, the urban city scenario pertains
specifically to datasets like Cityscapes and COCO 2017. To the best of our knowledge, our work is the
first to support multi-task synthesis of data. We believe that unified annotation synthesis is meaningful
and can support interactions between different modalities. Recent works, e.g. ImageBind [9] have
already demonstrated its feasibility and necessity. Our method also has many advantages, such as
the ability to custom design datasets for a specific domain or to address bad case scenarios, and it is
particularly effective in solving problems related to long-tail data distribution. This is straightforward;
we can achieve it simply by adjusting our prompts.

3 Details on the Architecture of Perception Decoder

We show the detailed architecture of our P-Decoder in Fig. 3, which consists of pixel decoder, text
encoder, transformer decoder.

3.1 Text Encoder for Open-Vocabulary Segmentation.

In the open-vocabulary setting, for each class, we encode the corresponding class name (i.e. cat, dog)
into a d-dimensional vector using the CLIP encoder. For a word corresponding to two text tokens, we
average them into one token. Subsequently, this token is replicated n times, resulting in an n × d
matrix. The matrix is then concatenated with a learnable query embedding of dimensions n× 768.
Ultimately, the concatenation is processed through a Multilayer Perceptron (MLP) layer to fuse the
elements.
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Human Pose Estimation
(COCO 2017)

Depth Estimation
(Virtual KITTI 2)

Semantic Segmentation
(Cityscapes)Synthetic Image Semantic Segmentation

(DeepFashion-MM)
Instance Segmentation

(COCO 2017)

Prompt: A woman in a yellow 
long-sleeve sweater, high-
waisted beige corduroy pants, 
black heeled loafers, and a 
black leather belt, 
accessorized with a black 
leather tote bag and a pair 
of silver hoop earrings.

seed: 200096

Prompt: A man with short 
black hair in a gray V-neck t-
shirt, khaki cargo pants, and 
brown leather boots 
confidently down a city 
street

seed: 200030

Prompt: A man with short 
black hair in a gray V-neck t-
shirt, khaki cargo pants, and 
brown leather boots 
confidently down a city 
street.

seed: 200032

Prompt: A man with a buzz 
cut in a navy blue long-
sleeve button-up shirt, dark 
wash jeans, and black 
leather oxford shoes down a 
urban street

seed: 200030

Prompt: A woman with a half-
up, half-down hairstyle in a 
beige turtleneck sweater, 
brown corduroy pants, and 
black heeled knee-high boots 
down a city street.

seed: 571413

GPT-4

Prompt: Middle distance 
perception, a woman in a 
white lace romper, tan ankle-
strap wedges, a wide-
brimmed hat, and round 
sunglasses, holding a small 
brown leather purse 
confidently down a city 
street.
seed: 200096

Figure 1: Examples of Human-Centric Generated Data for DatasetDM. Our method is capable
of generating high-accuracy, high-diversity, and unified perceptual annotations.

3.2 Semantic and Instance Segmentation.

With the representation F̂, which is fused from multi-scale features and cross-attention maps, we
employ a pixel decoder and a transformer decoder to derive the per-pixel embedding C ×H ×W
and mask embedding C ×N . As per the method outlined by Li.et al [14], the pixel decoder consists
of several straightforward up-sampling layers. Each layer comprises four types of computations: 1)
1× 1 Conv for adjusting feature dimensionality, 2) Upsample using simple linear interpolation to
upscale the feature to a higher spatial resolution, 3) Concat for merging features from different layers,
and 4) Mix-conv for blending features from varying spatial resolutions, which includes two 3× 3
Conv. Similar to Mask2former [4], the transformer decoder comprises a stack of transformer layers
with cross-attention, self-attention, and masked attention. The final mask predictions of dimensions
N×H×W can be obtained by performing a simple matrix multiplication of the per-pixel embedding
of dimensions C ×H ×W and the mask embedding of dimensions C ×N .

3.3 Human Pose and Depth Estimation.

By expanding the segmentation architecture with the addition of two convolutional layers to the
pixel decoder, we are able to efficiently handle the associated tasks of pose and depth estimation.
Consequently, we derive two predictive outputs, denoted by O ∈ M×H×W and O ∈ M×H×W ,
corresponding to the human pose and depth estimation tasks, respectively.
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Prompt: A busy intersection 
featuring a yellow taxi and 
a white SUV waiting at a 
traffic light, with people 
crossing the street

seed: 107474

Prompt: A busy intersection 
featuring a yellow taxi and 
a white SUV waiting at a 
traffic light, with people 
crossing the street

seed: 681454

Prompt: A city street 
corner with a white 
limousine and a black 
luxury sedan parked in 
front of a high-end 
restaurant

seed: 631263

Prompt: A cityscape with 
a black muscle car and a 
black pickup truck parked 
on a street lined with 
trees.

seed: 256788

Prompt: A nighttime
urban scene with a man 
wearing a jacket rides a 
red motorcycle on the 
street.

seed: 750801
G
PT
-4
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GPT-4: Two cars are 
parked on the urban 
street  

seed: 200096

Figure 2: Examples of Generated Data for Urban City Scenario from DatasetDM.

4 Synthetic Dataset

4.1 Prompts from GPT-4

Here, we also demonstrate the detailed process of prompt generation, guided by GPT-4, as shown in
Fig. 4. Throughout the process, human only need to provide a small number of prompts to guide
GPT-4. With a cost of no more than 50 words prompt clue, we can accomplish the generation of
a massive number of prompts for a downstream task dataset. It is worth mention that text-guided
data is extremely flexible. We can customize the generation of certain attributes of data domain. For
instance, if we need to enhance the variation in the number of objects, we can provide a prompt like
More variation in number. This is extremely flexible and convenient.

4.2 Prompts for Each Dataset

As shown in Table 10, we also provide some prompt cases of our method for each dataset, and
we will open-source these prompts along with the corresponding code. For tasks that distinguish
between classes, i.e. semantic and instance segmentation, we will guide GPT-4 to generate around
100 descriptions specifically for each class. For tasks and datasets that are not class-sensitive, e.g.
pose and depth estimation, we guide GPT-4 to generate a large number of descriptions all at once.

5 Limitation and Future Work

5.1 Potential Negative Societal Impacts

As with other projects involving synthetic image generation, the potential adverse societal implications
of our work largely revolve around ethical considerations. Utilizing the Stable Diffusion model,
trained on the 5-billion image LION dataset, raises notable private copyright concerns due to the nature
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Multi-Scale Feature Maps (𝑡! Step)

Cross Attention Maps (𝑡! Step)

ChatGPT/GPT4

A man with a crew cut in a white polo shirt, light 
wash jeans, and white low-top sneakers confidently 
down a city street.

Text Encoder

OpenAI

Synthetic Images

×𝑡

C

Pixel Decoder

Transformer Decoder

Category: dog, cat, car, …

C
×9

Learnable Queues

Text Encoder

per-pixel embeddings C×𝐻×𝑊

MLP
Class Prediction N×𝐾

Mask Embedding C×𝑁
MLP

⊗

Mask Predictions N×𝐻×𝑊

Conv Layer

Human Opse, depth Predictions

Semantic, Instance Mask

⊗Drop with
Threshold

MLP

Figure 3: Details for P-Decoder. The whole framework of decoder consists of text encoder, pixel
decoder, and transformer decoder. For different downstream task, we only need to adjust minor
variations i.e. whether to startup some layers.

of the dataset. Nonetheless, we maintain that such potential repercussions should not overshadow the
applicability and value of our research. Numerous text-guided text-to-image diffusion works exist, of
which ours is but one. We also emphasize that it’s feasible to mitigate these ethical issues through
the careful crafting of specific prompts, serving as an effective countermeasure. Additionally, we
can mitigate this impact from an algorithmic perspective [12], such as eliminating certain concepts
(which may infringe on personal privacy) from the pretrained model.

5.2 Limitation & Future Work

Limitation. The main limitation of this study is that the quality and complexity of the synthesized data
still cannot compare with real data. If certain companies and organizations could invest substantial
resources to collect and manually annotate massive amounts of training data, better results could be
achieved. However, this is actually the main limitation of the Stable diffusion model. We could also
consider using more powerful diffusion models to alleviate this issue, as shown in Fig. 5. Deepfloyd
IF 5 is a more powerful text-guided image generation model, which significantly outperforms Stable
diffusion in two main aspects. First, it excels in semantic alignment - given a lengthy text description,
the IF model can generate related images more accurately. Second, the IF model can synthesize
images at a higher resolution, specifically 1024, while the resolution of Stable diffusion is only
512. We believe that our method, in combination with the DeepFloyd IF model, can lead to further
improvements and make a greater contribution. Due to time constraints (DeepFloyd IF released on
May 2023), we are unable to provide related experiments, but this does not affect the validation of
the effectiveness of our method. Our primary contribution lies in using a unified decoder to parse the
latent space of the pre-trained diffusion model, not in enhancing the quality of image synthesis.

Future Work This study is intriguing and innovative, possessing profound exploratory significance.
We identify several avenues for future enhancement: firstly, employing a more robust text-guided
image generation model may yield substantial improvements. Secondly, augmenting the efficiency
of prompt generation, or designing prompts that better align with the target domain could prove
beneficial. For example, synthesizing specific prompts corresponding to the COCO 2017 dataset
could be viable.
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Can GPT-4 produce good prompts for text-to-image generation model?

Human: Could you provide multiple descriptions for the car category in the COCO benchmark, with at least 10 variations for each description? These descriptions will 
be used as a guide for Stable Diffusion to generate corresponding images.
GPT-4: Sure, here are several distinct descriptions for the car category in the COCO benchmark, each with three variations:

1a. A red sports car speeding down a city street. 
1b. A blazing red sports car racing along an urban road. 
1c. A bright red sports car zooming through a bustling cityscape.

2a. A blue family sedan parked in a suburban driveway. 
2b. A sky-blue family car parked outside a suburban home. 
2c. A navy blue family vehicle resting in a suburban neighborhood driveway.
….

Human: Hi, do you know COCO2017 benchmark?
GPT-4: Yes, I am familiar with the COCO2017 benchmark. The Common Objects in Context (COCO) dataset is a popular large-scale dataset used for object 
detection, segmentation, and captioning tasks. The 2017 version of the COCO dataset is an update of previous iterations that provides a more extensive set of 
annotations, images, and challenges.
COCO2017 contains over 200,000 labeled images, covering 80 object categories, and is divided into training, validation, and testing subsets. The dataset is widely used 
by researchers and developers to train and evaluate computer vision models, particularly in tasks such as object detection, semantic segmentation, and instance 
segmentation. It also includes a captioning task, where models generate textual descriptions of images.
The COCO dataset and its benchmarks have been instrumental in driving the development of new algorithms and improvements in object detection, segmentation, and 
captioning tasks. Many state-of-the-art models are evaluated using COCO2017 as a benchmark to assess their performance.

Human: More intricate and diverse descriptions.
GPT-4: Here are several more complex and diverse descriptions for the car category in the COCO benchmark:

1a. A sleek, dark gray electric sports car silently gliding down a rain-soaked city 
street, reflecting the neon lights from the surrounding buildings. 
1b. A futuristic electric sports car with a deep gray hue speeding on wet urban roads, 
casting reflections of the vibrant neon city lights. 
1c. A cutting-edge, graphite-colored electric sports car driving effortlessly on damp 
city streets, mirroring the luminous neon signs nearby.

2a. A vintage mint-green station wagon, packed with surfboards and beach gear, 
parked near a sandy shore with the ocean waves crashing in the background. 
…

Human: More variation in numbers and scenarios.
GPT-4: Here are several more complex and diverse descriptions for the car category in the COCO benchmark:

1a. A trio of vintage race cars, their vibrant colors and classic designs, speeding 
around a historic racetrack during a nostalgic event. 
1b. Three eye-catching vintage race cars, showcasing their timeless beauty and speed, 
as they compete on a legendary circuit in a retro-themed race.
…

1a 1b

1a 1b

1a 1b

Figure 4: Prompts of diffusion model from GPT-4. By providing some simple cues, GPT-4 can
generate a vast and diverse array of prompts.
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Stronger diffusion model, better performance.

Prompt: A bustling city street with a red double-decker bus passing by, while a blue 
sedan waits at a stoplight next to pedestrians crossing the road.

Stable Diffusion DeepFloyd IF

Prompt: A man in a sharp grey suit, crisp white shirt, and black polished shoes strides 
confidently down a city street

Stable Diffusion DeepFloyd IF

Figure 5: Stronger Diffusion Model, Greater Potential. With the advancements in generative
models, synthetic data will have greater potential and possibilities for perception tasks. A simple
solution is to replace Stable Diffusion with DeepFolyd IF directly.
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