
Appendix

A Algorithm details

A.1 GLASS

Algorithm 1 GAN-based latent space search attack (GLASS)

Require: the client model MC ; the target intermediate feature representation z
⇤ = MC (x⇤); a pre-

trained StyleGAN model GStyle and mapping network f ; l2-distance L; KL-based regularization
coefficient �; T V regularization coefficient ↵;

1: Initialize z 2 Z space randomly
2: Find z  argminz L(MC (GStyle(z)),MC (x⇤)) + � R(GStyle , z) + ↵ T V(GStyle(z))

//Z space search
3: set w := f(z), then copy it 10 times as w+ 2W+ space
4: Find w+ argminw+ L(MC (GStyle(w+)),MC (x⇤)) + ↵ T V(GStyle(w+))

//W+ space search
5: return GStyle(w+)

A.2 GLASS++

Algorithm 2 GAN-based latent space search attack plus plus (GLASS++)

Require: the client model MC ; the target intermediate feature representation z
⇤ = MC (x⇤); a pre-

trained StyleGAN model GStyle and mapping network f ; an Encoder E = Mf � EPSP �Mm ;
public data X ; training epoch T ; batch size k; step size ✏; l2-distance L; T V regularization coeffi-
cient ↵; l2 regularization coefficient ↵1; LPIPS regularization coefficient ↵2; norm regularization
coefficient ↵3;

1: E = EncoderTraining(MC ,X )
2: Initialize w+ 2W+ space as w+ := E(MC (x⇤))

//W+ space mapping
3: Find w+ argminw+ L(MC (GStyle(w+)),MC (x⇤)) + ↵ T V(GStyle(w+))

//W+ space search
4: return GStyle(w+)
5:
6: Function EncoderTraining(MC ,X )
7: while t < T do

8: Random sample x1, x2, ..., xk from X
9: L(E(t)) = 1

k

Pk
i=1(↵1L(MC (GStyle(E(MC (xi)))),MC (xi))

10: +↵2LPIPS(GStyle(E(MC (xi))), xi)
11: +↵3 norm(E(MC (xi))))

12: E
(t+1) = E

(t) � ✏⇤ @L(E(t))
@E(t)

13: t + = 1
14: return E

(t)

15: end while

B Experimental details

B.1 Components

feature2image module Mf Mf consists of multiple groups of deconvolutional layers
and batch normalization layers, projecting vectors from high-dimensional feature
space into image space. Each additional group doubles the (Width,Height) of the
feature representations.
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pixel2style2pixel Encoder EPSP and map2styles blocks Mm We utilize the official imple-
mentation of EPSP and Mm from [Richardson et al., 2021]2. EPSP is a standard
feature pyramid over a ResNet backbone. Mm is a fully convolutional network
consisting of 2-strided convolutions and LeakyReLU activations. For each of the
target styles, the Mm blocks are trained to extract styles from the corresponding
feature maps at three different granularities (small, medium, largest). To adapt to
64⇥ 64-pixel images as input, we modify EPSP and Mm appropriately.

B.2 Split Points

Figure 8: Split Points. The intermediate feature representations include outputs from the convolutional
blocks and a fully connected block.

A standard ResNet-18 network is divided into blocks, as shown in Figure 8. From
Block1 to Block6, the (Width,Height) of features decreases gradually, which
means that spatial information is gradually transformed into semantic information
that helps with classification. It is worth noting that we evaluate the scenario where
the split point is deep enough (FCblock), making it very challenging for the adversary
to carry out DRA.

B.3 Hyperparameters of DRAs

We configure the following parameters for the Optimization-based rMEL and LM:
a learning rate of 1e-2, 20,000 iterations, and T V regularization coefficients of 2
and 1.5, respectively. Similarly, for GLASS, we set the learning rate to 1e-2 and
the number of iterations to 20,000. This setup ensures fairness and consistency
with other Optimization-based DRAs, as we believe that the attack effectiveness of
Optimization-based DRAs can be positively influenced by the learning rate and the
number of iterations.

Regarding IN, we selected a learning rate of 1e-3 and performed 30 training epochs.
For the encoder training of GLASS++, we use a learning rate of 1e-2 and trained
for 30 epochs. In the subsequent optimization process, we utilize a learning rate of
1e-2 and optimize 8,000 iterations. We set the T V regularization coefficient for our

2The official implementation of [Richardson et al., 2021]: https://github.com/eladrich/
pixel2style2pixel
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DRAs to 0.01, as the prior knowledge within the StyleGAN model already provides
satisfactory regularization.

During the defense examination, we set the T V regularization coefficient for rMEL
and LM to 0.3 and make adjustments to the hyperparameters for certain defenses. For
example, on NoPeek, we focus the loss solely on the l2-distance between features.

B.4 Implementation & Hyperparameters of Defenses

Implementation of Defenses Clipping-based Defenses. [He et al., 2020] introduces
Dropout Defense, generating random Masks M to apply pixel-level pruning directly
to intermediate feature representations as

z
⇤
Dropout

= MC (x)⌦M (8)

, each element of M is randomly allocated as 0 with probability r and 1 with
probability 1� r. [Singh et al., 2021] proposes DISCO, using an adversarial network
MA to train a Dynamic Channel Pruning layer P , giving consideration to both
privacy and utility as

Lutil , E[lu(MS (P (MC (x
⇤))), y⇤)], (9)

Lpriv , E[la(MA(P (MC (x
⇤))), x⇤)], (10)

min
P

[max
MA

�Lpriv + ⇢ min
MC ,MS

Lutil] (11)

, where ⇢ is a hyperparameter to trade-off between utility and privacy. In the inference
phase, P clips intermediate feature representations on channel-level according to
a feature map score predicted by P for protecting sensitive information in latent
representation, as

z
⇤
DISCO

= P (MC (x
⇤), R) (12)

. The value of pruning ratio R controls the proportion of channels to be pruned,
which provides a trade-off between privacy and utility. We utilize the official
implementation of [Singh et al., 2021]3.

Noise Addition-based Defenses. [Titcombe et al., 2021] proposes Noise Mask,
which adds additive Laplacian noise to intermediate feature representations as

z
⇤
Noise

= MC (x
⇤) + " (13)

, bringing disturbance to the sensitive information. When performing inference, a
random noise " is sampled from a Laplacian distribution parameterized by location
a and scale b. [Mireshghallah et al., 2020] proposes Shredder, which firstly trains
noise tensors overlaid on intermediate feature representations for maintaining utility
purposes, then fits each noise tensor to a Laplacian distribution. Finally, the fitted
distributions and orders of noise elements are collected. The optimization objective
for the noise tensor Tnoise is as follows:

Lutil , lu(MS (MC (x
⇤)), y⇤), (14)

3The official implementation of [Singh et al., 2021]: https://github.com/splitlearning/
InferenceBenchmark
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Lpriv , norm(MC (x
⇤) + Tnoise), (15)

min
Tnoise

[Lutil � ↵ Lpriv] (16)

. For a noisy inference, Shredder picks one of the collected distributions and
stochastically samples a noise tensor from this distribution. Then elements of
the noise tensor are rearranged to match the saved order and simply added to the
intermediate feature representations.

Feature Obfuscating-based defenses. [Li et al., 2021] adds an additional module
Adversary Reconstructer MAR and formalizes the training process as a min-max
game (Adversarial Learning):

Lutil , E[lu(MS (MC (x
⇤)), y⇤)], (17)

Lpriv1 , E[1� SSIM(MAR(MC (x
⇤)), x⇤)], (18)

Lpriv2 , E[1� SSIM(MAR(MC (x
⇤)), Inoise)], (19)

min
MC

[max
MAR

�Lpriv1 + Lpriv2 +min
MS

Lutil] (20)

, where the Inoise is one additional Gaussian noise image. The target is maintaining
the utility of the task while transforming the intermediate feature representations so
that there is less sensitive information that can be explored by MAR. Specifically,
the trade-off is controlled by �1 when the MC is optimized as

MC = argmin
MC

[Lutil + �1(Lpriv2 � Lpriv1)] (21)

. [Vepakomma et al., 2020] introduces NoPeek, adapting distance correlation mini-
mization to the training process. For decreasing the distance correlation4 between
input and intermediate feature representations, NoPeek enables the client model to
reduce redundant sensitive information of intermediate feature representations from
raw input, expressed as

Lutil , E[lu(MS (MC (x
⇤)), y⇤)], (22)

Lpriv , E[DCOR(MC (x
⇤), x⇤)], (23)

min
MC ,MS

[Lutil + �2 Lpriv] (24)

, where �2 controls the trade-off between utility and privacy. Similar to NoPeek,
[Osia et al., 2020] fine-turning the original model with Siamese architecture as an
additional loss item to make the representation of the same labeled points closer to
each other, while the representation of dissimilar points falls far from each other.
This can be expressed as

LSiamese =

⇢
kMC (x

⇤
1)�MC (x

⇤
2)k

2
2 similar (25)

max(0,margin� kMC (x
⇤
1)�MC (x

⇤
2)k2)

2
dissimilar (26)

4The implementation references the official implementation of [Vepakomma et al., 2020]: https://github.
com/tremblerz/nopeek
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min
MC ,MS

[Lutil + �3 LSiamese] (27)

, where x
⇤
1 and x

⇤
2 are data points, and the hyperparameter margin is set to control

the variance of the feature space, the �3 is set to control the trade-off between utility
and privacy.

Hyperparameters of Defenses Based on the attack effect of IN (for IN is more stable),
we select three sets of hyperparameters for each defense mechanism to achieve
varying degrees of privacy protection. In general, under the same defense, the higher
the accuracy loss of the model, the better the privacy protection effect, indicating a
trade-off between privacy and utility. The accuracy of each defended model and its
corresponding defense hyperparameters are shown in Table 3.

Table 3: Details of defense hyperparameters (we set the split point uniformly to Block3). For Shredder,
we sample the initial Tnoise that follows a Laplace distribution parameterized by location 0 and scale
20. Note that Shredder is the only defense mechanism that does not require retraining the target
model. We train 50 distributions for Shredder, maintaining an accuracy of over 77% for all of them.

Defense mechanisms Hyperparameters Settings
Dropout Defense r 0.7, 0.8, 0.9

DISCO (⇢, R) (0.75,0.2), (0.95,0.1), (0.95,0.5)
Noise Mask (loc a, scale b) (0,0.5), (0,1.0), (0,1.5)

Shredder ↵ = 0.001 Randomly select 3 out of 50 distributions.
Adversarial Learning �1 1, 2, 3

NoPeek �2 3, 5, 10
Siamese Defense �3,margin = 30 0.003, 0.005, 0.009

C Results of White-box DRAs

Table 4 shows the performance of our DRAs against the original model in the
White-box setting.

D Defense Analysis

D.1 Analysis of NoPeek

We evaluate the performance of GLASS against the same image on both the original
model and the model after NoPeek. Figure 9 (a) shows that the optimization curve
of NoPeek tends to 0 when the number of iterations is small, which means that
Feature Obfuscating type defenses represented by NoPeek mainly map different input
images to similar intermediate feature representations to realize defense. Figure 9
(b) further confirms the conclusion. It can be seen that the feature loss of two similar
reconstructed images is two orders of magnitude different.

D.2 Comparison of Defenses

As Figure 10 shows, the upper left curve implies a better privacy-utility trade-off.
NoPeek and DISCO achieve the optimal defensive effect on almost all DRAs. Most
of the curves show an increasing trend, that is, the loss of model accuracy is positively
correlated with the privacy defense effect.
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Table 4: Reconstruction attacks performance in the White-Box setting. Red represents the optimal
performance and Blue represents the second-best performance.

Split Point Method Evaluation Metrics
LPIPS # SSIM " PSNR " MSE # NIQE #

Block1

rMLE 0.042 0.961 32.88 0.003 14.50
LM 0.046 0.956 32.64 0.003 14.38
IN 0.026 0.961 31.98 0.003 12.76

GLASS 0.032 0.971 36.31 0.001 14.24
GLASS++ 0.037 0.967 35.60 0.001 14.18

Block2

rMLE 0.258 0.733 24.26 0.022 15.73
LM 0.131 0.874 28.24 0.009 15.36
IN 0.248 0.757 25.13 0.017 15.85

GLASS 0.097 0.876 28.66 0.008 13.54

GLASS++ 0.065 0.924 31.56 0.004 14.00

Block3

rMLE 0.415 0.608 21.43 0.041 16.54
LM 0.298 0.723 23.71 0.024 16.42
IN 0.289 0.685 22.86 0.029 15.73

GLASS 0.140 0.808 25.71 0.016 13.86

GLASS++ 0.128 0.833 26.56 0.014 15.30

Block4

rMLE 0.638 0.326 14.31 0.233 16.56
LM 0.536 0.517 18.81 0.077 16.91
IN 0.295 0.632 20.66 0.050 15.75

GLASS 0.252 0.644 21.19 0.049 14.69

GLASS++ 0.183 0.736 23.15 0.031 14.26

Block5

rMLE 0.764 0.215 12.11 0.351 16.32
LM 0.842 0.225 12.11 0.357 14.11

IN 0.377 0.476 16.14 0.149 14.95

GLASS 0.374 0.338 12.97 0.313 15.08
GLASS++ 0.293 0.499 16.13 0.157 15.27

Block6 IN 0.437 0.365 13.32 0.295 16.60
GLASS++ 0.369 0.373 14.38 0.215 15.19

Figure 9: The curve depicting the change of feature loss as the number of optimization iterations
increases.

D.3 Analysis of our DRAs under Defenses

Compared with other DRAs, it can be seen in Figure 11 (a) that the curves corre-
sponding to our methods are more concentrated on the right side (SSIM>0.5), which
means that the attacks have higher robustness to the defenses. Moreover, under the
attack of our DRAs, the curve corresponding to most defenses becomes relatively
vertical, suggesting that we somewhat break the privacy-utility trade-off.
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Figure 10: The correlation between the model’s accuracy and the SSIM of DRA under different
attacks and defenses.

Figure 11: The correlation between the model’s accuracy and the SSIM of our DRAs under different
defenses.

E Extended Experiments

E.1 Black-box & Query-free Settings.

Black-box Setting We relax the assumption of adversary capability and conduct ex-
periments in Black-box and Query-free settings. In the Black-box setting, we apply
two gradient-free optimization methods, CMA[Hansen, 2016] and RandomSearch5,
and substitute W+ space search with W space search to implement optimization.
The reason is that gradient-free optimization is relatively weak in high-dimensional
space, so our subsequent experiments based on gradient-free optimization are all
conducted in W space. Figure 12 and Table 5 demonstrate that gradient-free opti-
mization can effectively expose sensitive information in a single face, requiring just
2,000 iterations.

Table 5: Reconstruction attacks performance in the Black-Box setting.

Split Point Method Evaluation Metrics
LPIPS # SSIM " PSNR " MSE # NIQE #

Block2 CMA 0.314 0.504 18.02 0.088 12.33
RandomSearch 0.359 0.391 15.16 0.175 12.97

Block3 CMA 0.329 0.462 16.51 0.132 12.69
RandomSearch 0.352 0.383 14.49 0.211 13.70

Block4 CMA 0.424 0.324 13.40 0.286 11.98
RandomSearch 0.373 0.335 12.95 0.305 13.12

5We apply APIs from https://facebookresearch.github.io/nevergrad/
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Figure 12: Black-Box GLASS under different split points.

Query-free Setting In the Query-free setting, we have made interesting attempts and
improvements based on the shadow model reconstruction technique proposed by
[He et al., 2019]. Firstly, we replace the parameters of the shadow client model
M

S

C with the pre-trained ones instead of randomly initialized ones. This pre-trained
model is trained by the attacker on the target task with public data. has greatly
enhanced the effectiveness of the attack. As shown in Table 6, GLASS achieves
an SSIM of 0.392, surpassing the 0.152 of IN. Intuitively, we believe that this
improvement is due to the fact that when the pre-trained M

S

C performs fine-tuning
on the target task in conjunction with the server model MS , compared with the
randomly initialized convolution kernel, the trained convolution kernel can extract
more features. This allows it to adapt to MS for utility while extracting additional
features that the regular conventional kernel can capture, which greatly improves the
quality of the reconstructed image in color and texture, as shown in Figure 13. We
also equip GLASS++ with a pre-trained feature2image module at Block6 to improve
the effectiveness of the attack. Furthermore, we attempted to numerically crop the
latent code from the P+ space in order to mitigate the distortion of the reconstructed
image. This approach guarantees that feature searching can be conducted effectively
within a certain range and provides a trade-off between image similarity and feature-
matching accuracy. As indicated in Table 6, P+ space cropping results in a decrease
in LPIPS from 0.479 to 0.429. We apply the same measure to the GLASS at Block5.

Table 6: Reconstruction attacks performance in the Query-free setting.

Split Point Method Evaluation Metrics
LPIPS # SSIM " PSNR " MSE # NIQE #

Block2

rMLE 0.747 0.085 11.66 0.381 17.25
LM 0.738 0.096 11.21 0.426 15.52
IN 0.718 0.152 11.78 0.371 14.17

GLASS Fine-tuning 0.479 0.392 14.27 0.209 14.31
GLASS P+ cropping 0.429 0.329 14.04 0.230 13.25

E.2 Heterogeneous Data.

We suggest that the homogeneity of data has a significant impact on DRA. Specif-
ically, when dealing with homogeneous data, instances exhibit a high level of
structural similarity, whereas in the case of heterogeneous data, the level of structural

21



Figure 13: Query-free DRAs under Block2

similarity is comparatively lower. For heterogeneous data, we use (1) CIFAR-106

containing 60,000 color images, (2) CINIC-107 containing 270,000 color images.
Both are 32⇥ 32 images in 10 classes. For CINIC-10, we exclude any images that
are identical to those in CIFAR-10 and adopt a pre-trained StyleGAN-XL model8.
We study DRA against models built for Image Classification: 10-class image classi-
fication on the CINIC-10. We adopt ResNet-18[He et al., 2016] and split the target
model MC into different layers, as shown in Figure 8.
We employ a gradient-free CMA optimizer to facilitate GLASS optimization. This
choice is motivated by the fact that gradient-free optimization allows for a more
substantial perturbation of the representation space, which is very effective in the
reconstruction of heterogeneous data. Figure 14 illustrates that Optimization-based
GLASS yields superior reconfiguration attack outcomes across multiple Blocks com-
pared to the IN. The reason behind this discrepancy lies in the insufficient ability
of the Learning-based method to map features to images with significant structural
differences. Consequently, the reconstructed images of the Learning-based DRA
tend to become fuzzy. Our method makes up for this shortcoming by leveraging
abundant prior knowledge.

F t-SNE of Shredder

We further analyze Shredder and find that the intermediate feature representations
covered by samples generated from Shredder’s noise library can be clearly clus-
tered, even when the noise library contains 50 sets (far exceeds the default of 20)
of well-trained distributions, as shown in Figure 15. The specific experimental
procedure is as follows. First, we train a Shredder noise library consisting of 50
sets of distributions (collect the fitted distributions and orders of noise elements).

6https://www.cs.toronto.edu/~kriz/cifar.html
7https://github.com/BayesWatch/cinic-10
8https://github.com/autonomousvision/stylegan-xl
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Figure 14: DRAs against Heterogeneous Data.

Then, we randomly sample noise masks and add them to the target intermediate
feature representations (derived from privacy inference instances). Finally, we use
k-means9 clustering on these processed features to obtain labels, and then employ t-
SNE [Van der Maaten and Hinton, 2008] to reduce their dimensionality and visualize
them.

Therefore, for Optimization-based and Learning-based DRAs, we only need to
collect intermediate feature representations and utilize those that can be mapped
to the same set to carry out DRA. This reduces the Shredder’s noise library from
multiple distributions to a single distribution.

9We use the k-means implementation from scikit-learn: https://scikit-learn.org/stable/about.
html.
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Figure 15: Dimensionality Reduction and Visualization of intermediate feature representations after
Shredder processing.
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