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Abstract

Split Inference (SI) is an emerging deep learning paradigm that addresses computa-
tional constraints on edge devices and preserves data privacy through collaborative
edge-cloud approaches. However, SI is vulnerable to Data Reconstruction Attacks
(DRA), which aim to reconstruct users’ private prediction instances. Existing
attack methods suffer from various limitations. Optimization-based DRAs do not
leverage public data effectively, while Learning-based DRAs depend heavily on
auxiliary data quantity and distribution similarity. Consequently, these approaches
yield unsatisfactory attack results and are sensitive to defense mechanisms. To
overcome these challenges, we propose a GAN-based LAtent Space Search at-
tack (GLASS) that harnesses abundant prior knowledge from public data using
advanced StyleGAN technologies. Additionally, we introduce GLASS++ to en-
hance reconstruction stability. Our approach represents the first GAN-based DRA
against SI, and extensive evaluation across different split points and adversary
setups demonstrates its state-of-the-art performance. Moreover, we thoroughly
examine seven defense mechanisms, highlighting our method’s capability to reveal
private information even in the presence of these defenses.

1 Introduction

The emergence of Deep Learning (DL) has brought about a transformative impact on machine learning
applications, granting them remarkable capabilities. To cater to the increasing demand for DL models
on edge-side devices, various challenges related to performance arise. The growing size of model
parameters poses a burden on resource-constrained edge devices. As a result, the concept of Machine
Learning as a Service (MLaaS) has gained popularity as a solution. However, deploying DL services
in the cloud, where APIs are provided to users and raw data is collected for service provisioning,
raises concerns about potential data leakage. In this context, Split Inference (SI) has emerged as a
promising alternative [Eshratifar et al., 2019; Banitalebi-Dehkordi et al., 2021; Kang et al., 2017;
Matsubara et al., 2022; Hauswald et al., 2014]. SI involves splitting and deploying DNN models
between the edge and the cloud, allowing the cloud’s extensive computing and storage resources to
be leveraged while ensuring that users only need to upload intermediate feature representations to
protect the confidentiality of their original data.

However, recent studies have demonstrated that even with the use of intermediate feature repre-
sentations, a malicious cloud server can still launch privacy attacks. Of particular concern is the
Data Reconstruction Attack (DRA) [He et al., 2019; Singh et al., 2021; Yang et al., 2022], which
represents the most severe violation of user privacy as it aims to reconstruct the user’s inference
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Figure 1: Split Inference.

instances. Existing DRAs suffer from critical flaws that significantly diminish their effectiveness.
Optimization-based DRAs [He et al., 2019; Singh et al., 2021], for example, fail to effectively
leverage public data, while Learning-based DRAs [He et al., 2019] heavily depend on the quantity of
auxiliary data and require a high degree of distribution similarity between the auxiliary data and the
inference data.

To address these limitations and enhance the impact of the attack, we propose the GAN-based LAtent
Space Search attack (GLASS). This attack leverages the power of StyleGAN [Karras et al., 2019,
2020, 2021; Sauer et al., 2022] and fully capitalizes on the valuable prior knowledge embedded in
public data. Additionally, we introduce GLASS++, an improved version that enhances attack stability
and effectiveness.

We systematically evaluate the reconstruction performance of Optimization-based GLASS and
Learning-based GLASS++ on face data at different split points. Additionally, we thoroughly examine
and analyze seven advanced defense mechanisms against DRA in SI. These mechanisms are catego-
rized into three types: Clipping (Dropout Defense[He et al., 2020], DISCO[Singh et al., 2021]), Noise
Addition (Noise Mask[Titcombe et al., 2021], Shredder[Mireshghallah et al., 2020]) and Feature
Obfuscating (Adversarial Learning[Li et al., 2021], NoPeek[Vepakomma et al., 2020] and Siamese
Defense[Osia et al., 2020]). Furthermore, we go beyond the traditional assumptions about adversary
capabilities and extend our attack to heterogeneous data. Through our extensive experimentation, we
achieve superior attack results across various split points and different adversary setups, successfully
bypassing the employed defense mechanisms and compromising their effectiveness.

The key contributions of this paper are:

• We propose GLASS and GLASS++, which are enhanced DRAs combined with pre-trained
StyleGAN models. This is the first instance of utilizing the latent space search characteristic
of StyleGAN to develop DRAs specifically for SI. Additionally, we expand the practicality
of our methods by designing attack strategies for various adversary settings.

• Through the utilization of advanced StyleGAN technologies, we exploit the rich prior
knowledge present in public data, resulting in state-of-the-art reconstruction performance
across different split points. Our methods outperform existing baseline attacks on multiple
evaluation metrics, showcasing their superiority.

• We conduct a systematic evaluation and comparison of various DRAs against seven de-
fense mechanisms. The results demonstrate that our methods effectively reveal sensitive
information and undermine the robustness of the defenses.

2 Background and Related Work

2.1 Split Inference

Split Inference (SI) and Split Learning (SL)[Gupta and Raskar, 2018; Thapa et al., 2022; Poirot
et al., 2019] have emerged as promising alternatives, which split and deploy DNN models on both
the edge-side and the cloud side. In SI, a well-trained model M is split into client model MC and
server model MS . An inference data x

⇤ is fed to MC to get an intermediate feature representation
z
⇤ = MC (x⇤). z⇤ is then transmitted to the cloud to execute y⇤ = MS (z⇤). Finally, y⇤ is returned to

the edge-side to complete the inference process, as shown in Figure 1. Collaborative computing across
edge-cloud devices facilitates the reduction of computing payload on the edge side. By transmitting
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only the smashed data to the cloud side, a certain level of privacy protection can be ensured. Utilizing
distributed inference/training protocols, SI and SL achieve an improved trade-off between utility and
privacy.

2.2 Data Reconstruction Attacks on Split Inference

Data Reconstruction Attack (DRA) is one of the most powerful privacy attacks that focuses on
reconstructing private inference data. The existing DRAs can be broadly categorized as Optimization-
based and Learning-based. [He et al., 2019] introduced regularized Maximum Likelihood Estimation
(rMLE), firstly treating DRA as an optimization problem. For an intermediate feature represen-
tation z

⇤ = MC (x⇤), they find the optimal sample x which minimizes the posterior information
from feature-level observation by reducing the Euclidean Distance between MC (x) and MC (x⇤).
Additionally, they adapt the Total Variation (TV)[Rudin et al., 1992] to represent the prior infor-
mation derived from the distribution of natural images. Inspired by the deep image prior[Ulyanov
et al., 2018] for feature inversion, [Singh et al., 2021] proposed Likelihood Maximization (LM),
which took full advantage of a fixed input Autoencoder network MAE producing x = MAE (·) and
replaced the target optimization by minimizing the loss l2(MC (MAE (·)), z⇤), which significantly
improved the optimization-based DRA effect. For learning-based DRA, [He et al., 2019] introduced
Inverse-Network (IN) that leverages a certain amount of (z⇤, x⇤) pairs gained by querying the MC

to train a model M�1
C such that x = M

�1
C (z⇤). Similarly, l2 norm in the pixel space is also used as

the loss function. Facing serious threats of existing DRAs, a variety of defense mechanisms have
been proposed to greatly mitigate privacy leakage in SI. They are specifically designed to minimize
the disclosure of sensitive information from DRA, while still preserving the practical utility of the
inference data.

The Model Inversion Attack [Zhang et al., 2020; Chen et al., 2021; An et al., 2022] seeks to extract
sensitive features of an individual in the training data, by leveraging the coupled feature information
contained in the confidence score of an ID classification model. The Gradient Inversion Attack [Zhu
et al., 2019; Geiping et al., 2020; Jeon et al., 2021] aims to recover original training data from
shared gradients. Unlike them, DRA focuses on reconstructing private inference data using feature
representation output from the split layer of any functional DNN models.

2.3 StyleGAN & GAN Inversion

The StyleGAN generator consists of a mapping network f and a synthesis network GStyle . In
a typical image generation process of StyleGAN, a latent vector z is sampled from the Z space,
which follows the Gauss Distribution. Then an intermediate latent vector w is obtained from f(z).
The f is a mapping network implemented by an 8-layer Multi-Layer Perceptron (MLP), making
the generation based on a disentangled representation. Finally, the w is copied N times (N =
log(output_size, 2) ⇤ 2� 2) and leveraged to control layer-grained adaptive instance normalization
(AdaIN)[Huang and Belongie, 2017] operations, as shown in Figure 2.

With the rapid development of the StyleGAN series network, a variety of GAN Inversion methods
have emerged[Abdal et al., 2019, 2020; Richardson et al., 2021; Wang et al., 2023], which aim to
invert a given image back into the latent space of a pre-trained GAN model. Especially for StyleGAN,
several latent spaces (W+, S, P , P+)[Zhu et al., 2020b] and formulations (learning, optimization,
or both)[Xia et al., 2022] are utilized to achieve better inversion results. Different from common
GAN Inversion that focuses on distortion-editability trade-off[Zhu et al., 2020a; Tov et al., 2021],
in this paper we customize advanced GAN Inversion technologies to DRA in SI, concentrating on
raising the quality of reconstruction.

3 Methodology

In this section, we first analyze the threat model of DRA in SI. Then, we formulate the design details
and corresponding intuitions of our GLASS and GLASS++.
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Figure 2: The framework overview of GLASS & GLASS++.

3.1 Threat Model

We assume an honest-but-curious server-side adversary in SI, who receives the client’s intermediate
feature representations and tries to reconstruct the private inference instances from them. The
adversary has the parameters and structure of the whole target model MT , as a white-box setting.
This is a reasonable assumption in real-world scenarios, where typically the service provider of SI
needs to obtain the target model and perform the splitting setup before deploying it. We also take into
account the strictest case that the training of the target model is accompanied by defensive purposes.
This usually occurs when the target model is provided to the server by a trusted model provider that
sets defense mechanisms, or when the training objectives of the target model are forcibly set by the
client with privacy protection requirements. In addition, we extend the consideration to scenarios
where the adversary has limited capabilities, i.e., having no client model MC or being non-queryable,
as a black-box setting or a query-free setting. Besides, we assume that the adversary has an auxiliary
public dataset DA with a similar distribution to that of the target model training dataset. Later in
Section 5, we show that our attacks can be carried out effectively, even using an auxiliary dataset
with a certain distribution shift.

3.2 GLASS

Setup. Before launching the GLASS, a pre-trained StyleGAN generator GStyle is necessary, which
is trained on a data distribution similar to the private inference data DP . This is easy to obtain because
StyleGAN models pre-trained on various data distributions (especially structured data distributions
such as faces) are widely released online. We first formalize Optimization-based DRA as:

min L(MC (x), z⇤) (1)

, where L is the l2-distance between two intermediate features, and the adversary tries to find an x

closest to x
⇤ through optimization.

Z space search. The non-convexity of StyleGAN generation makes the optimization problem non-
convex. For the optimization of non-convex functions, an ideal initial point and certain disturbance
is extremely significant. The step 1� of GLASS is searching in Z space for the reason that the
entanglement of Z space increases the amplitude of positive perturbation (come from optimizer
Adam, SGD, etc) in representation space, which avoids the minimization via gradient descent resulting
in poor local minima in the same degree. The formal representation of Z space search is:

min
z2Z

L(MC (GStyle(z)),MC (x⇤)) + � R(GStyle , z) + ↵ T V(GStyle(z)) (2)

. Obtaining distorted images is a common occurrence by directly searching according to L, as the
optimization process may cause z to deviate significantly from the distribution of Z space. Therefore,
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we adopt KL-based regularization [Kingma and Welling, 2013] to constrain the optimization process
of z to conform to the normal distribution as:

R(GStyle , z) = �1

2

kX

i=1

(1 + log(�2
i )� µ

2
i � �

2
i ) (3)

, where µ
2
i and �

2
i represent the element-wise mean and standard deviation. The regularization item

R(·) reduces the Kullback-Leibler divergence between z and the standard Gaussian distribution
N (0, 1), controlled by �. Furthermore, we adopt Total Variation [Rudin et al., 1992] to bring
prior information of the natural image, which encourages the generated image x = GStyle(z) to be
piece-wise smooth, controlled by ↵. Defined as:

T V(x) =
X

i,j

q
|xi+1,j � xi,j |2 + |xi,j+1 � xi,j |2 (4)

W+ space search. Based on the z got in step 1�, we perform f(z) to obtain w, then copy it 10
times as w+. In step 2�, we search the W+ space as follows:

min
w+2W+

L(MC (GStyle(w+)),MC (x⇤)) + ↵ T V(GStyle(w+)) (5)

. For adequate disentanglement of W+ space, it is efficient to find the extreme point in the repre-
sentation space. The two-step search algorithm is intuitively efficient. As depicted in Figure 3 (A),
the search in Z space during step 1� introduces significant perturbations, thereby preventing the
initial point z from getting trapped in local optima. Subsequently, leveraging the superior editability
provided by the highly disentangled representations in W+ space, the search in step 2� further
enhances the resemblance between the reconstructed data and the private input data. The iterative
optimization process ultimately achieves the global optimum w+2 (the global optimum refers to the
optimum attainable by the attacker with existing knowledge). The detailed algorithm of GLASS can
be found in Appendix A.1.

z
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Figure 3: (A) Through the large disturbance brought by Z space search, GLASS can easily optimize
z to w+1 and further reach the global optimum w+2 by W+ space search. (B) When the available
information for reconstruction is tiny, Z space search will inevitably fall into the local optimal point
even accompanying disturbance, making GLASS optimize z

⇤ to w+⇤
1 and W+ space search to w+⇤

2.
While GLASS++ utilizes the mapping relationship between feature space and latent space to obtain
an improved initial point w+⇤

3 and subsequently achieves the global optimal w+⇤
4.

3.3 GLASS++

Intuition. GLASS, this purely optimization-based DRA method could achieve remarkable results at
shallow split points. However, when the split point is deep, the (Width,Height) of the intermediate
feature representation becomes far less than that of the private input, meaning that the spatial
information for reconstruction is gradually transformed into the semantic information needed for
the classification task. The less spatial information available makes the optimization process more
difficult, causing the results of GLASS to fall into pool local optima. As shown in Figure 3 (B), even
with a huge disturbance amplitude, z2 eventually falls into a local extreme point w+⇤

1, due to the lack
of information. This results in little improvement in the subsequent W+ space search. Therefore, we
propose GLASS++ to alleviate the above problem.
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Setup. Before launching the GLASS++, we introduce pixel2style2pixel Encoder EPSP and
map2styles blocks Mm from [Richardson et al., 2021]. Tensors of the image space are fed to EPSP to
generate three levels of feature maps. These feature maps are subsequently utilized by the map2styles
blocks Mm to extract desired styles w+. We incorporate these technologies into our DRA framework.
For more details on these components, please refer to Appendix B.1.

W+ space mapping & search. To tackle the problem of non-convex function optimization tending
to fall into local optima, we employ Learning-based methods. These methods involve mapping the
intermediate feature representation to W+ space, resulting in a more advantageous initial point. We
specifically design a feature2image module Mf , projecting vectors from high-dimensional feature
space into image space. This module serves as a valuable tool for facilitating subsequent style
extraction. Then we joint the EPSP and Mm to extract desired styles w+. In step 1�, these three
items collaboratively perform as Encoder E = Mf �EPSP �Mm , mapping the vectors from feature
space to W+ space as:

w+ = E(MC (x⇤)) (6)

, with the help of E, a point near the global optimum is determined as the initial point of W+ space
search in step 2�. As shown in Figure 3 (B), it is considerably more effortless to reach w+⇤

4 from
w+⇤

3 driven by gradient descent. The detailed algorithm of GLASS++ can be found in Appendix A.2.

3.4 Approach Analysis

Referring to [Jeon et al., 2021], we formalize the DRA under SI as an optimization problem. Through
a pre-trained StyleGAN generator, the problem of (1) can be better solved by transferring from Rm

to {GStyle(l) : l 2 Rk}, where l is a latent code in either Z or W+ space, k denotes the dimension
of l, and m refers to the dimension of image space. Hence, GLASS and GLASS++ perform the latent
spaces search as follows:

min
l2Rk

D(MC (GStyle(l)),MC (x⇤)) (7)

, where D represents total loss terms in latent spaces search. When the private inference data is
approximated with a sufficient narrow error, the DRA through latent spaces search in (7) aligns with
image space search in (1).

4 Evaluation

We systematically evaluate our proposed attacks in terms of their performance against representative
image classification tasks and compare them with existing attack methods. Additionally, we measure
the robustness of seven defense mechanisms against various DRAs. We implement GLASS and
GLASS++ in Pytorch[Paszke et al., 2019]. Most experiments are carried out on a server equipped
with 256 GB RAM, two Intel Xeon Gold 6133, and four NVIDIA RTX 4090 GPUs.

4.1 Experimental Settings

Datasets & Tasks. we use (1) CelebA[Liu et al., 2015] containing 202,599 face images of 10,177
identities, (2) FFHQ[Karras et al., 2019] containing 70,000 face images with considerable variation
in terms of age, ethnicity and image background. Both are scaled down to 64 ⇥ 64 pixels. We
study DRA against models built for the Attractiveness Classification task: Binary attractiveness
classification performed on the CelebA, as we consider attractiveness to be a remarkably inclusive
facial attribute. We adopt ResNet-18[He et al., 2016] and split the target model MC into different
layers, as shown in Appendix B.2.

Attack Setup. We split the datasets into two parts: a private dataset DP for training the target
model and a public data used as an auxiliary dataset DA for training our StyleGAN model. For
CelebA, we selected 80,525 images belonging to 3,000 identities with the highest number of images
as DP , while the remaining images from other identities as public data DA. This scheme ensures
that there are no overlapping identities between DA and DP in all experiments. This means that the
public data only helps the adversary obtain general information about the features as prior knowledge,
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without providing any class-specific information relevant to the private data[Chen et al., 2021]. For
practical reasons, we utilize the FFHQ dataset as public data to train our StyleGAN model, as there
are numerous StyleGAN models available on the Internet that are trained with FFHQ. Note that there
is a certain distribution shift between the FFHQ dataset and the celeba dataset[Kahla et al., 2022]. To
be fair, We set the number of iterations for Optimization-based DRA to 20,000 and the number of
training epochs for Learning-based DRA to 30, while incorporating Total Variation into each attack
loss function. It is worth acknowledging that the influence of hyperparameters varies across different
adversarial settings and defense mechanisms. We analyze the hyperparameter selection strategies
within different settings to meet the reasonable effectiveness of various attacks. Detailed information
regarding the hyperparameters can be found in Appendix B.3.

Compared Baselines & Evaluation Protocol. We set the three existing DRAs as the baseline
attacks: regularized Maximum Likelihood Estimation (rMLE)[He et al., 2019], Likelihood Maximiza-
tion (LM)[Singh et al., 2021] and Inverse-Network (IN)[He et al., 2019]. For the sake of generality,
our experiments are conducted on 40 randomly selected and fixed images, and the mean value of
each evaluation metric is calculated as the result.

Evaluation Metrics. In addition to visually quantifying reconstruction attacks, we selected five
metrics to evaluate the similarity between the original image and the reconstructed image: Learned
Perceptual Image Patch Similarity (LPIPS #)[Zhang et al., 2018], Structural Similarity Index (SSIM
")[Wang et al., 2004], Peak Signal-to-Noise Ratio (PSNR ")[Hore and Ziou, 2010], Mean Squared
Error (MSE #) and Natural Image Quality Evaluator (NIQE #)[Mittal et al., 2012]. Note that "#"
means the lower the metric the higher the relative image quality, while """ represents the higher the
metric the higher the image quality.

4.2 Attack Performance

Figure 4 shows the reconstruction attack performance of our methods. In general, our methods
demonstrate optimal and second-best performance across nearly all split points, whether compared
with Optimization-based or Learning-based DRAs. Specifically, when the split point is set to Block3,
our Optimization-based GLASS reduces LPIPS from 0.298 to 0.140 compared to LM; Our Learning-
based GLASS++ enhances the SSIM from 0.685 to 0.833 compared to IN (the full results are in
Appendix C). When the split point is located at a deeper Block5, GLASS exhibits a remarkable ability
in reconstructing faces with features highly similar to the ground truth. In contrast, other Optimization-
based DRAs fail to reveal any valid sensitive information. We attribute this superior performance to
two main factors: the wealth of prior knowledge embedded in the pre-trained StyleGAN model and
the powerful feature search capability brought by our methods. Note that LM achieves optimal NIQE
on Block5, but we observe that its reconstructed images are almost noisy. We analyze that this was
due to the instability of NIQE on small-size images, which resulted in extremely poor attack results
but good values. Therefore, we exclude NIQE from the experiments in subsection 4.3.

(a) Optimization-based DRAs (b) Learning-based DRAs

Figure 4: White-Box DRAs against the original model under different split points.
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4.3 Defense Mechanisms Assessment

Reconstruction Performance under Defense Mechanisms. The quantitative metrics in Table 1
demonstrate the remarkable effectiveness of our methods in breaching all defenses, surpassing the
performance of other baseline attacks even when the accuracy of the target model declines due to
defense. Our GLASS++ and GLASS consistently yield the optimal and the second-best results on
most of the metrics. Even against state-of-the-art defense mechanisms like NoPeek, Adversarial
Learning, and DISCO, we can still carry out powerful DRA, as shown in Figure 5. Specifically, when
against NoPeek (Acc=79.97%), GLASS and GLASS++ increased the SSIM of reconstructed images
to 0.554 and 0.678, compared to 0.006, 0.233 and 0.376 of baseline attacks, showcasing that our
methods turn the failure into the successful attack. It is crucial to emphasize that even a 3% loss in
accuracy is unsatisfactory because the target task is a simple binary classification problem. However,
in practice, DL tasks are often very complex, and even a slight privacy defense may lead to poor
performance.

Table 1: According to the attack effect of IN, we adjust the hyperparameters of different defenses to
provide the defended model with three levels of privacy protection, resulting in a gradual decrease in
model accuracy (original Acc=79.97 %). All experiments are performed on Block3. Implementation
details and hyperparameters of defenses are in Appendix B.4.

Defense Method Acc = 79.97% Acc = 79.23% Acc = 78.56%
LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE #

NoPeek

rMLE 0.853 0.006 7.059 1.048 0.855 0.006 7.099 1.039 0.856 0.006 7.105 1.038
LM 0.679 0.233 11.74 0.449 0.729 0.171 11.00 0.500 0.766 0.178 10.29 0.539
IN 0.638 0.376 15.57 0.160 0.607 0.377 15.51 0.156 0.618 0.352 15.15 0.168

GLASS 0.293 0.554 17.53 0.142 0.351 0.422 14.68 0.244 0.414 0.343 13.46 0.326
GLASS++ 0.220 0.678 21.60 0.070 0.295 0.549 18.04 0.160 0.301 0.532 18.21 0.115

Defense Method Acc = 79.34% Acc = 79.26% Acc = 79.04%
LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE #

DISCO

rMLE 0.618 0.330 14.69 0.228 0.784 0.147 11.87 0.367 0.763 0.162 11.96 0.361
LM 0.387 0.620 19.96 0.127 0.762 0.220 12.48 0.330 0.799 0.205 11.48 0.422
IN 0.410 0.584 20.59 0.049 0.626 0.336 15.84 0.149 0.636 0.314 15.56 0.158

GLASS 0.165 0.776 24.76 0.022 0.328 0.464 16.37 0.154 0.345 0.431 15.55 0.201
GLASS++ 0.152 0.784 24.75 0.021 0.241 0.584 18.79 0.082 0.260 0.576 18.46 0.086

Defense Method Acc = 79.13% Acc = 78.76% Acc = 78.13%
LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE #

Adv-
Learning

rMLE 0.591 0.327 14.60 0.252 0.654 0.200 12.69 0.343 0.678 0.155 12.03 0.381
LM 0.308 0.667 20.80 0.139 0.414 0.533 17.19 0.217 0.480 0.427 15.04 0.258
IN 0.483 0.517 19.82 0.059 0.584 0.382 17.57 0.100 0.601 0.342 16.45 0.130

GLASS 0.155 0.765 23.68 0.067 0.208 0.626 18.26 0.148 0.197 0.686 20.17 0.110

GLASS++ 0.131 0.816 25.93 0.016 0.142 0.794 24.69 0.023 0.157 0.763 23.21 0.040

Defense Method Acc = 78.57% Acc = 78.04% Acc = 77.83%
LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE #

Noise
Mask

rMLE 0.703 0.227 14.65 0.188 0.771 0.099 11.58 0.378 0.835 0.021 7.90 0.869
LM 0.612 0.409 18.30 0.079 0.708 0.225 14.61 0.185 0.791 0.057 8.78 0.709
IN 0.352 0.610 21.20 0.042 0.424 0.549 19.71 0.059 0.590 0.424 16.22 0.133

GLASS 0.230 0.660 21.66 0.039 0.245 0.607 20.16 0.056 0.360 0.396 15.18 0.174
GLASS++ 0.184 0.714 22.57 0.032 0.231 0.626 20.52 0.051 0.283 0.524 17.71 0.096

Defense Method Acc = 78.09% Acc = 77.65% Acc = 77.35%
LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE #

Dropout
Defense

rMLE 0.455 0.563 20.67 0.048 0.539 0.522 19.58 0.062 0.610 0.426 17.29 0.110
LM 0.319 0.717 23.44 0.026 0.408 0.659 22.21 0.034 0.483 0.606 21.11 0.044
IN 0.350 0.612 21.12 0.043 0.425 0.555 20.21 0.053 0.499 0.490 18.83 0.073

GLASS 0.144 0.790 25.31 0.018 0.171 0.766 24.23 0.023 0.195 0.712 22.83 0.031

GLASS++ 0.144 0.797 25.30 0.018 0.163 0.777 24.46 0.022 0.169 0.766 24.23 0.022

Defense Method Acc = 79.23% Acc = 78.65% Acc = 77.73%
LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE #

Shredder

rMLE 0.680 0.231 14.38 0.217 0.700 0.200 13.67 0.250 0.676 0.234 14.37 0.220
LM 0.547 0.475 19.09 0.074 0.564 0.448 18.44 0.086 0.538 0.481 18.97 0.072
IN 0.373 0.604 21.03 0.044 0.383 0.602 20.94 0.044 0.390 0.596 20.87 0.045

GLASS 0.222 0.668 21.82 0.042 0.246 0.634 20.95 0.047 0.236 0.646 21.32 0.045
GLASS++ 0.207 0.695 22.27 0.034 0.213 0.695 22.19 0.035 0.211 0.697 22.06 0.036

Defense Method Acc = 78.74% Acc = 78.44% Acc = 77.56%
LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE # LPIPS # SSIM " PSNR " MSE #

Siamese
Defense

rMLE 0.745 0.155 12.78 0.304 0.740 0.176 12.74 0.308 0.746 0.175 12.48 0.324
LM 0.574 0.451 16.97 0.157 0.604 0.405 16.40 0.176 0.670 0.335 14.67 0.228
IN 0.378 0.614 21.29 0.041 0.386 0.592 21.00 0.044 0.425 0.553 20.28 0.052

GLASS 0.166 0.797 25.30 0.023 0.186 0.751 23.77 0.033 0.201 0.731 23.07 0.046

GLASS++ 0.144 0.826 26.30 0.016 0.159 0.802 25.33 0.022 0.159 0.797 25.14 0.021

Defense Analysis. For Clipping type defenses (Dropout Defense, DISCO), a high clipping rate is
essential for providing sufficient privacy protection (about 90% intermediate feature clipping or 95%
channel clipping). Dropout Defense is difficult to defend against Optimized-based DRAs because the
Mask (randomly set to zero) superimposed on the intermediate feature representation can be easily
picked up. DISCO’s superior defense effect comes from 95% channel clipping, which is possible
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Figure 5: The results of different defenses against DRAs. The accuracy rate corresponds to the Acc
in Table 1, as Acc-1>Acc-2>Acc-3.

because the target task is relatively simple, resulting in highly redundant feature channels. For
Noise Addition type defenses (Noise Mask, Shredder), Optimization-based DRAs are noise-sensitive.
Even in a White-box setting, random sampling noise can still greatly interfere with the optimization
process, leading to poor attack effects. In contrast, Learning-based DRAs demonstrate a certain
robustness to noise. For further analysis of Shredder, we collect intermediate feature representations
superimposed with Shredder noise and apply t-SNE[Van der Maaten and Hinton, 2008] to reduce
their dimensionality. Notably, even when sampling from 50 noise distributions, the intermediate
features can be distinctly clustered into 50 groups, as shown in Appendix F. We can degrade the noise
distribution library of Shredder (default is 20) to a single distribution by using carefully selected
intermediate feature representations (which can be mapped to the corresponding target group) during
the optimization process, which greatly improves the effect of DRA. For Feature Obfuscating type
defenses (Adversarial Learning, NoPeek, Siamese Defense), we believe that they only serve to
increase the difficulty of feature matching in DRA. However, with a sufficiently powerful feature
search capability, the attack is easy to implement. Appendix D.1 illustrates the curves of feature
loss between the model with NoPeek and the original model under the GLASS, targeting the same
image during optimization. It is evident that when the optimization process converges, the numerical
difference between them is two orders of magnitude. In Appendix D.2, we establish a correlation
between the model’s accuracy and the SSIM of DRA under different attacks and defenses. Notably,
NoPeek and DISCO emerge as the most effective defense mechanisms. As shown in Appendix D.3(a),
the SSIM of our attacks is mostly above 0.5, and the slope of the broken lines is large, which means
that our attacks are more robust.

5 Extended Experiments

Black-box & Query-free Settings. We relax the assumption of adversary capability and use
gradient-free optimization technology to implement Black-box DRA. For Query-free, we adapt
model fine-tuning and P+ space cropping. The experimental results show that the gradient-free
optimization only takes 2,000 iterations to obtain effective information, and the customized GLASS
improves the attack SSIM of Block2 from 0.152 to 0.392 in the Query-free setting. Experimental
details and results are in Appendix E.1

Heterogeneous Data. We further extend the reconstruction attack to heterogeneous data like CINIC-
10 [Darlow et al., 2018]. We chose to utilize the gradient-free CMA optimizer because CINIC-10 has
a more heterogeneous data distribution than well-aligned datasets like CelebA, making it hard for
the gradient-based optimizer to search in latent space[Li et al., 2022]. In our implementation, we
utilize a publicly released StyleGAN-XL model trained on CIFAR-10 [Krizhevsky et al., 2009] to
construct GLASS. Figure 6 shows part of the results. It can be seen that owing to rich prior knowledge,
our GLASS can obtain highly similar semantic information and generate more vivid images than IN.
Experimental details are in Appendix E.2.
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Figure 6: DRAs against Heterogeneous Data.

Data Distribution Shift. We replaced the StyleGAN model used in the attack from the one trained
on the CelebA to the one trained on the FFHQ. Table 2 shows that GLASS++ is still very effective,
even if the prior knowledge is learned from a data distribution that differs from the private data
distribution (facial structure alignment and feature diversity difference). Furthermore, we enhance
the robustness of the attack by incorporating a fundamental domain adaptation technique, specifically
model fine-tuning. We concatenate a step of model parameter optimization after GLASS++ to make
the generator model parameters trainable, which further aligns the features of the reconstructed
images with the target features.

Table 2: Reconstruction attacks performance of Data Distribution Shift on Block3.

Dataset Method Evaluation Metrics
LPIPS # SSIM " PSNR " MSE # NIQE #

CelebA GLASS++ 0.128 0.833 26.56 0.014 15.30

FFHQ GLASS++ 0.211 0.727 23.95 0.025 13.77
GLASS++ Fine-tuning 0.199 0.736 24.22 0.023 14.75

Moreover, we carry out a more practical implementation of DRA on uncropped/unaligned private
inference data to enhance the quality of our work. According to [Yang et al., 2023], we enhance
StyleGAN by transitioning its constant first-layer feature to a variable one. We integrate this with the
latent code of W+ space and undertake joint optimization during the second stage of our methodology.
As demonstrated in Figure 7, the evaluation of GLASS underscores our method’s effectiveness even
when dealing with transformed or natural privacy inference data.

Figure 7: The results of GLASS when private inference data are transformed or natural images. The
split point is set to Block3.

6 Conclusion

In this paper, we propose GLASS and GLASS++, the enhanced DRAs against SI. Our experiments
demonstrate the effectiveness of our attacks on different split points and various adversarial settings.
We anticipate that our proposed attacks will spotlight the significance of safeguarding privacy in split
inference systems and encourage the advancement of more robust defense mechanisms. Regarding
the limitation, it mainly comes from the inherent flaw of Optimization-based attacks, for single image
optimization is less efficient than Learning-based attacks.

Acknowledgments and Disclosure of Funding We thank the anonymous reviewers for their
constructive comments. This work was supported in part by the National Natural Science Foundation
of China under Grants No. 61872430, 61402342, and 61772384 and was sponsored by Ant Group.

10



References

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4432–4441, 2019.

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit the embedded
images? In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 8296–8305, 2020.

Shengwei An, Guanhong Tao, Qiuling Xu, Yingqi Liu, Guangyu Shen, Yuan Yao, Jingwei Xu,
and Xiangyu Zhang. Mirror: Model inversion for deep learning network with high fidelity. In
Proceedings of the 29th Network and Distributed System Security Symposium, 2022.

Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and Yong Zhang.
Auto-split: a general framework of collaborative edge-cloud ai. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages 2543–2553, 2021.

Si Chen, Mostafa Kahla, Ruoxi Jia, and Guo-Jun Qi. Knowledge-enriched distributional model
inversion attacks. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 16178–16187, 2021.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram. Jointdnn: An efficient
training and inference engine for intelligent mobile cloud computing services. IEEE Transactions
on Mobile Computing, 20(2):565–576, 2019.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

Johann Hauswald, Thomas Manville, Qi Zheng, Ronald Dreslinski, Chaitali Chakrabarti, and Trevor
Mudge. A hybrid approach to offloading mobile image classification. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8375–8379. IEEE, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference.
In Proceedings of the 35th Annual Computer Security Applications Conference, pages 148–162,
2019.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Attacking and protecting data privacy in edge–cloud
collaborative inference systems. IEEE Internet of Things Journal, 8(12):9706–9716, 2020.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pages 2366–2369. IEEE, 2010.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normaliza-
tion. In Proceedings of the IEEE international conference on computer vision, pages 1501–1510,
2017.

Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative
image prior. Advances in neural information processing systems, 34:29898–29908, 2021.

11



Mostafa Kahla, Si Chen, Hoang Anh Just, and Ruoxi Jia. Label-only model inversion attacks via
boundary repulsion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15045–15053, 2022.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia
Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM
SIGARCH Computer Architecture News, 45(1):615–629, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8110–8119, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Alias-free generative adversarial networks. Advances in Neural Information Processing
Systems, 34:852–863, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ang Li, Jiayi Guo, Huanrui Yang, Flora D Salim, and Yiran Chen. Deepobfuscator: Obfuscating
intermediate representations with privacy-preserving adversarial learning on smartphones. In
Proceedings of the International Conference on Internet-of-Things Design and Implementation,
pages 28–39, 2021.

Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learning
via generative gradient leakage. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10132–10142, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pages 3730–3738, 2015.

Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early exiting
for deep learning applications: Survey and research challenges. ACM Computing Surveys, 55(5):
1–30, 2022.

Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali, Dean
Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect inference
privacy. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 3–18, 2020.

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
analyzer. IEEE Signal processing letters, 20(3):209–212, 2012.

Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajadmanesh, Ali Taheri, Kleomenis Katevas, Hamid R
Rabiee, Nicholas D Lane, and Hamed Haddadi. A hybrid deep learning architecture for privacy-
preserving mobile analytics. IEEE Internet of Things Journal, 7(5):4505–4518, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Maarten G Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-Cramer, Rajiv Gupta,
and Ramesh Raskar. Split learning for collaborative deep learning in healthcare. arXiv preprint
arXiv:1912.12115, 2019.

Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel
Cohen-Or. Encoding in style: a stylegan encoder for image-to-image translation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2287–2296, 2021.

12



Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pages 1–10, 2022.

Abhishek Singh, Ayush Chopra, Ethan Garza, Emily Zhang, Praneeth Vepakomma, Vivek Sharma,
and Ramesh Raskar. Disco: Dynamic and invariant sensitive channel obfuscation for deep
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12125–12135, 2021.

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun. Splitfed:
When federated learning meets split learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8485–8493, 2022.

Tom Titcombe, Adam J Hall, Pavlos Papadopoulos, and Daniele Romanini. Practical defences against
model inversion attacks for split neural networks. arXiv preprint arXiv:2104.05743, 2021.

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an encoder
for stylegan image manipulation. ACM Transactions on Graphics (TOG), 40(4):1–14, 2021.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 9446–9454, 2018.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and Ramesh Raskar. Nopeek: Information
leakage reduction to share activations in distributed deep learning. In 2020 International Conference
on Data Mining Workshops (ICDMW), pages 933–942. IEEE, 2020.

Yanbo Wang, Chuming Lin, Donghao Luo, Ying Tai, Zhizhong Zhang, and Yuan Xie. High-resolution
gan inversion for degraded images in large diverse datasets. arXiv preprint arXiv:2302.03406,
2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. Gan
inversion: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Mengda Yang, Ziang Li, Juan Wang, Hongxin Hu, Ao Ren, Xiaoyang Xu, and Wenzhe Yi. Measuring
data reconstruction defenses in collaborative inference systems. Advances in Neural Information
Processing Systems, 35:12855–12867, 2022.

Shuai Yang, Liming Jiang, Ziwei Liu, , and Chen Change Loy. Styleganex: Stylegan-based manipula-
tion beyond cropped aligned faces. In ICCV, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 586–595, 2018.

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret revealer:
Generative model-inversion attacks against deep neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 253–261, 2020.

Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain gan inversion for real image editing.
In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XVII 16, pages 592–608. Springer, 2020a.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

Peihao Zhu, Rameen Abdal, Yipeng Qin, John Femiani, and Peter Wonka. Improved stylegan
embedding: Where are the good latents? arXiv preprint arXiv:2012.09036, 2020b.

13


	Introduction
	Background and Related Work
	Split Inference
	Data Reconstruction Attacks on Split Inference
	StyleGAN & GAN Inversion

	Methodology
	Threat Model
	GLASS
	GLASS++
	Approach Analysis

	Evaluation
	Experimental Settings
	Attack Performance
	Defense Mechanisms Assessment

	Extended Experiments
	Conclusion
	Algorithm details
	GLASS
	GLASS++

	Experimental details
	Components
	Split Points
	Hyperparameters of DRAs
	Implementation & Hyperparameters of Defenses

	Results of White-box DRAs
	Defense Analysis
	Analysis of NoPeek
	Comparison of Defenses
	Analysis of our DRAs under Defenses

	Extended Experiments
	Black-box & Query-free Settings.
	Heterogeneous Data.

	t-SNE of Shredder

